1
|
Deng C, Aldali F, Luo H, Chen H. Regenerative rehabilitation: a novel multidisciplinary field to maximize patient outcomes. MEDICAL REVIEW (2021) 2024; 4:413-434. [PMID: 39444794 PMCID: PMC11495474 DOI: 10.1515/mr-2023-0060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/15/2024] [Indexed: 10/25/2024]
Abstract
Regenerative rehabilitation is a novel and rapidly developing multidisciplinary field that converges regenerative medicine and rehabilitation science, aiming to maximize the functions of disabled patients and their independence. While regenerative medicine provides state-of-the-art technologies that shed light on difficult-to-treated diseases, regenerative rehabilitation offers rehabilitation interventions to improve the positive effects of regenerative medicine. However, regenerative scientists and rehabilitation professionals focus on their aspects without enough exposure to advances in each other's field. This disconnect has impeded the development of this field. Therefore, this review first introduces cutting-edge technologies such as stem cell technology, tissue engineering, biomaterial science, gene editing, and computer sciences that promote the progress pace of regenerative medicine, followed by a summary of preclinical studies and examples of clinical investigations that integrate rehabilitative methodologies into regenerative medicine. Then, challenges in this field are discussed, and possible solutions are provided for future directions. We aim to provide a platform for regenerative and rehabilitative professionals and clinicians in other areas to better understand the progress of regenerative rehabilitation, thus contributing to the clinical translation and management of innovative and reliable therapies.
Collapse
Affiliation(s)
- Chunchu Deng
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fatima Aldali
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongmei Luo
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hong Chen
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
2
|
Amirzadeh Gougheri K, Ahmadi A, Ahmadabadi MG, Babajani A, Yazdanpanah G, Bahrami S, Hassani M, Niknejad H. Exosomal Cargo: Pro-angiogeneic, anti-inflammatory, and regenerative effects in ischemic and non-ischemic heart diseases - A comprehensive review. Biomed Pharmacother 2023; 168:115801. [PMID: 37918257 DOI: 10.1016/j.biopha.2023.115801] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023] Open
Abstract
Heart diseases are the primary cause of mortality and morbidity worldwide which inflict a heavy social and economic burden. Among heart diseases, most deaths are due to myocardial infarction (MI) or heart attack, which occurs when a decrement in blood flow to the heart causes injury to cardiac tissue. Despite several available diagnostic, therapeutic, and prognostic approaches, heart disease remains a significant concern. Exosomes are a kind of small extracellular vesicles released by different types of cells that play a part in intercellular communication by transferring bioactive molecules important in regenerative medicine. Many studies have reported the diagnostic, therapeutic, and prognostic role of exosomes in various heart diseases. Herein, we reviewed the roles of exosomes as new emerging agents in various types of heart diseases, including ischemic heart disease, cardiomyopathy, arrhythmia, and valvular disease, focusing on pathogenesis, therapeutic, diagnostic, and prognostic roles in different areas. We have also mentioned different routes of exosome delivery to target tissues, the effects of preconditioning and modification on exosome's capability, exosome production in compliance with good manufacturing practice (GMP), and their ongoing clinical applications in various medical contexts to shed light on possible clinical translation.
Collapse
Affiliation(s)
- Kowsar Amirzadeh Gougheri
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Ahmadi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, 1855 W. Taylor Street, MC 648, Chicago, IL 60612, USA
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Mohammad Hassani
- Department of Vascular and Endovascular Surgery, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Tieu A, Phillips KG, Costa KD, Mayourian J. Computational design of custom therapeutic cells to correct failing human cardiomyocytes. FRONTIERS IN SYSTEMS BIOLOGY 2023; 3:1102467. [PMID: 36743445 PMCID: PMC9894098 DOI: 10.3389/fsysb.2023.1102467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background Myocardial delivery of non-excitable cells-namely human mesenchymal stem cells (hMSCs) and c-kit+ cardiac interstitial cells (hCICs)-remains a promising approach for treating the failing heart. Recent empirical studies attempt to improve such therapies by genetically engineering cells to express specific ion channels, or by creating hybrid cells with combined channel expression. This study uses a computational modeling approach to test the hypothesis that custom hypothetical cells can be rationally designed to restore a healthy phenotype when coupled to human heart failure (HF) cardiomyocytes. Methods Candidate custom cells were simulated with a combination of ion channels from non-excitable cells and healthy human cardiomyocytes (hCMs). Using a genetic algorithm-based optimization approach, candidate cells were accepted if a root mean square error (RMSE) of less than 50% relative to healthy hCM was achieved for both action potential and calcium transient waveforms for the cell-treated HF cardiomyocyte, normalized to the untreated HF cardiomyocyte. Results Custom cells expressing only non-excitable ion channels were inadequate to restore a healthy cardiac phenotype when coupled to either fibrotic or non-fibrotic HF cardiomyocytes. In contrast, custom cells also expressing cardiac ion channels led to acceptable restoration of a healthy cardiomyocyte phenotype when coupled to fibrotic, but not non-fibrotic, HF cardiomyocytes. Incorporating the cardiomyocyte inward rectifier K+ channel was critical to accomplishing this phenotypic rescue while also improving single-cell action potential metrics associated with arrhythmias, namely resting membrane potential and action potential duration. The computational approach also provided insight into the rescue mechanisms, whereby heterocellular coupling enhanced cardiomyocyte L-type calcium current and promoted calcium-induced calcium release. Finally, as a therapeutically translatable strategy, we simulated delivery of hMSCs and hCICs genetically engineered to express the cardiomyocyte inward rectifier K+ channel, which decreased action potential and calcium transient RMSEs by at least 24% relative to control hMSCs and hCICs, with more favorable single-cell arrhythmia metrics. Conclusion Computational modeling facilitates exploration of customizable engineered cell therapies. Optimized cells expressing cardiac ion channels restored healthy action potential and calcium handling phenotypes in fibrotic HF cardiomyocytes and improved single-cell arrhythmia metrics, warranting further experimental validation studies of the proposed custom therapeutic cells.
Collapse
Affiliation(s)
- Andrew Tieu
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Katherine G. Phillips
- Department of Cardiothoracic Surgery, NYU Langone Health, New York, NY, United States
| | - Kevin D. Costa
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States,CORRESPONDENCE: Kevin D. Costa, Joshua Mayourian,
| | - Joshua Mayourian
- Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States,Department of Pediatrics, Harvard Medical School, Boston, MA, United States,Department of Pediatrics, Boston University, Boston, MA, United States,Department of Pediatrics, Boston Medical Center, Boston, MA, United States,CORRESPONDENCE: Kevin D. Costa, Joshua Mayourian,
| |
Collapse
|
4
|
Phillips KG, Turnbull IC, Hajjar RJ, Costa KD, Mayourian J. In silico Cell Therapy Model Restores Failing Human Myocyte Electrophysiology and Calcium Cycling in Fibrotic Myocardium. Front Physiol 2022; 12:755881. [PMID: 35046835 PMCID: PMC8762340 DOI: 10.3389/fphys.2021.755881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/22/2021] [Indexed: 11/28/2022] Open
Abstract
Myocardial delivery of human c-kit+ cardiac interstitial cells (hCICs) and human mesenchymal stem cells (hMSCs), an emerging approach for treating the failing heart, has been limited by an incomplete understanding of the effects on host myocardium. This computational study aims to model hCIC and hMSC effects on electrophysiology and calcium cycling of healthy and diseased human cardiomyocytes (hCM), and reveals a possible cardiotherapeutic benefit independent of putative regeneration processes. First, we developed an original hCIC mathematical model with an electrical profile comprised of distinct experimentally identified ion currents. Next, we verified the model by confirming it is representative of published experiments on hCIC whole-cell electrophysiology and on hCIC co-cultures with rodent cardiomyocytes. We then used our model to compare electrophysiological effects of hCICs to other non-excitable cells, as well as clinically relevant hCIC-hMSC combination therapies and fused hCIC-hMSC CardioChimeras. Simulation of direct coupling of hCICs to healthy or failing hCMs through gap junctions led to greater increases in calcium cycling with lesser reductions in action potential duration (APD) compared with hMSCs. Combined coupling of hCICs and hMSCs to healthy or diseased hCMs led to intermediate effects on electrophysiology and calcium cycling compared to individually coupled hCICs or hMSCs. Fused hCIC-hMSC CardioChimeras decreased healthy and diseased hCM APD and calcium transient amplitude compared to individual or combined cell treatments. Finally, to provide a theoretical basis for optimizing cell-based therapies, we randomized populations of 2,500 models incorporating variable hMSC and hCIC interventions and simulated their effects on restoring diseased cardiomyocyte electrophysiology and calcium handling. The permutation simulation predicted the ability to correct abnormal properties of heart failure hCMs in fibrotic, but not non-fibrotic, myocardium. This permutation experiment also predicted paracrine signaling to be a necessary and sufficient mechanism for this correction, counteracting the fibrotic effects while also restoring arrhythmia-related metrics such as upstroke velocity and resting membrane potential. Altogether, our in silico findings suggest anti-fibrotic effects of paracrine signaling are critical to abrogating pathological cardiomyocyte electrophysiology and calcium cycling in fibrotic heart failure, and support further investigation of delivering an optimized cellular secretome as a potential strategy for improving heart failure therapy.
Collapse
Affiliation(s)
- Katherine G. Phillips
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Irene C. Turnbull
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Kevin D. Costa
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Joshua Mayourian
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Department of Pediatrics, Boston University, Boston, MA, United States
- Department of Pediatrics, Boston Medical Center, Boston, MA, United States
| |
Collapse
|
5
|
Martins-Marques T. Connecting different heart diseases through intercellular communication. Biol Open 2021; 10:bio058777. [PMID: 34494646 PMCID: PMC8443862 DOI: 10.1242/bio.058777] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/12/2021] [Indexed: 12/22/2022] Open
Abstract
Well-orchestrated intercellular communication networks are pivotal to maintaining cardiac homeostasis and to ensuring adaptative responses and repair after injury. Intracardiac communication is sustained by cell-cell crosstalk, directly via gap junctions (GJ) and tunneling nanotubes (TNT), indirectly through the exchange of soluble factors and extracellular vesicles (EV), and by cell-extracellular matrix (ECM) interactions. GJ-mediated communication between cardiomyocytes and with other cardiac cell types enables electrical impulse propagation, required to sustain synchronized heart beating. In addition, TNT-mediated organelle transfer has been associated with cardioprotection, whilst communication via EV plays diverse pathophysiological roles, being implicated in angiogenesis, inflammation and fibrosis. Connecting various cell populations, the ECM plays important functions not only in maintaining the heart structure, but also acting as a signal transducer for intercellular crosstalk. Although with distinct etiologies and clinical manifestations, intercellular communication derailment has been implicated in several cardiac disorders, including myocardial infarction and hypertrophy, highlighting the importance of a comprehensive and integrated view of complex cell communication networks. In this review, I intend to provide a critical perspective about the main mechanisms contributing to regulate cellular crosstalk in the heart, which may be considered in the development of future therapeutic strategies, using cell-based therapies as a paradigmatic example. This Review has an associated Future Leader to Watch interview with the author.
Collapse
Affiliation(s)
- Tania Martins-Marques
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| |
Collapse
|
6
|
Sattayaprasert P, Vasireddi SK, Bektik E, Jeon O, Hajjiri M, Mackall JA, Moravec CS, Alsberg E, Fu J, Laurita KR. Human Cardiac Mesenchymal Stem Cells Remodel in Disease and Can Regulate Arrhythmia Substrates. Circ Arrhythm Electrophysiol 2020; 13:e008740. [PMID: 32755466 PMCID: PMC7578059 DOI: 10.1161/circep.120.008740] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND The mesenchymal stem cell (MSC), known to remodel in disease and have an extensive secretome, has recently been isolated from the human heart. However, the effects of normal and diseased cardiac MSCs on myocyte electrophysiology remain unclear. We hypothesize that in disease the inflammatory secretome of cardiac human MSCs (hMSCs) remodels and can regulate arrhythmia substrates. METHODS hMSCs were isolated from patients with or without heart failure from tissue attached to extracted device leads and from samples taken from explanted/donor hearts. Failing hMSCs or nonfailing hMSCs were cocultured with normal human cardiac myocytes derived from induced pluripotent stem cells. Using fluorescent indicators, action potential duration, Ca2+ alternans, and spontaneous calcium release (SCR) incidence were determined. RESULTS Failing and nonfailing hMSCs from both sources exhibited similar trilineage differentiation potential and cell surface marker expression as bone marrow hMSCs. Compared with nonfailing hMSCs, failing hMSCs prolonged action potential duration by 24% (P<0.001, n=15), increased Ca2+ alternans by 300% (P<0.001, n=18), and promoted spontaneous calcium release activity (n=14, P<0.013) in human cardiac myocytes derived from induced pluripotent stem cells. Failing hMSCs exhibited increased secretion of inflammatory cytokines IL (interleukin)-1β (98%, P<0.0001) and IL-6 (460%, P<0.02) compared with nonfailing hMSCs. IL-1β or IL-6 in the absence of hMSCs prolonged action potential duration but only IL-6 increased Ca2+ alternans and promoted spontaneous calcium release activity in human cardiac myocytes derived from induced pluripotent stem cells, replicating the effects of failing hMSCs. In contrast, nonfailing hMSCs prevented Ca2+ alternans in human cardiac myocytes derived from induced pluripotent stem cells during oxidative stress. Finally, nonfailing hMSCs exhibited >25× higher secretion of IGF (insulin-like growth factor)-1 compared with failing hMSCs. Importantly, IGF-1 supplementation or anti-IL-6 treatment rescued the arrhythmia substrates induced by failing hMSCs. CONCLUSIONS We identified device leads as a novel source of cardiac hMSCs. Our findings show that cardiac hMSCs can regulate arrhythmia substrates by remodeling their secretome in disease. Importantly, therapy inhibiting (anti-IL-6) or mimicking (IGF-1) the cardiac hMSC secretome can rescue arrhythmia substrates.
Collapse
Affiliation(s)
- Prasongchai Sattayaprasert
- Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, OH (P.S., S.K.V., M.H., K.R.L.)
| | - Sunil K Vasireddi
- Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, OH (P.S., S.K.V., M.H., K.R.L.)
| | - Emre Bektik
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA (E.B.)
| | - Oju Jeon
- Departments of Biomedical Engineering (O.J., E.A.), University of Illinois at Chicago
| | - Mohammad Hajjiri
- Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, OH (P.S., S.K.V., M.H., K.R.L.)
| | - Judith A Mackall
- Harrington Heart & Vascular Institute, University Hospitals Cleveland Medical Center (J.A.M.)
| | - Christine S Moravec
- Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland (C.S.M.)
| | - Eben Alsberg
- Departments of Biomedical Engineering (O.J., E.A.), University of Illinois at Chicago.,Orthopaedics (E.A.), University of Illinois at Chicago.,Pharmacology (E.A.), University of Illinois at Chicago.,Mechanical & Industrial Engineering (E.A.), University of Illinois at Chicago
| | - Jidong Fu
- Department of Physiology & Cell Biology, The Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus (J.F.)
| | - Kenneth R Laurita
- Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, OH (P.S., S.K.V., M.H., K.R.L.)
| |
Collapse
|
7
|
de Freitas JS, Neves CA, Del Carlo RJ, Belfort FG, Lavorato VN, Silame-Gomes LHL, Ramos RMS, Cunha DQND, Okano BS, Pereira VG, de Oliveira EM, Carneiro-Júnior MA, Natali AJ. Effects of exercise training and stem cell therapy on the left ventricle of infarcted rats. Rev Port Cardiol 2019; 38:649-656. [PMID: 31812373 DOI: 10.1016/j.repc.2019.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/17/2018] [Accepted: 02/03/2019] [Indexed: 01/24/2023] Open
Abstract
INTRODUCTION AND OBJECTIVES Stem cell therapy and aerobic exercise are non-pharmacological therapies following myocardial infarction. The aim of this study was to test whether aerobic exercise training enhances the benefits of mesenchymal stem cell (MSC) therapy on remodeling of the extracellular matrix and fetal gene expression in the left ventricle of infarcted rats. METHODS Myocardial infarction was surgically induced in six-week old male Wistar rats. Animals were divided into four groups: sedentary control (SC) and sedentary and stem cell treated (SCMSC); exercised (EX) and exercised and stem cell treated (EXMSC). Bone marrow-derived MSCs were immediately transplanted via the tail vein (concentration: 1×106 cells). Exercise training (five days/week, 60 min/day; 60% of maximal running speed) started 24 hours after myocardial infarction and lasted for 12 weeks. RESULTS Exercise capacity was higher in exercised than in sedentary groups. Animals in the SCMSC, EX and EXMSC groups exhibited better cardiac function than those in SC. Collagen content was lower in the SCMSC, EX and EXMSC groups than in SC and skeletal α-actin expression was lower in EX and EXMSC than in SC. The α/β-MHC ratio was higher in EX and EXMSC than in SC. The combination of therapies further reduced collagen content in the remote region of the infarct (∼24%) and skeletal α-actin expression (∼30%). CONCLUSION Aerobic exercise training appears to enhance the beneficial effects of stem cell therapy on remodeling of the extracellular matrix and fetal gene expression in the left ventricle of rats with moderate infarction.
Collapse
Affiliation(s)
- Juliana S de Freitas
- General Biology Department, Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil; Physical Education Department, Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil
| | - Clóvis A Neves
- General Biology Department, Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil
| | - Ricardo J Del Carlo
- Veterinary Medicine Department, Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil
| | - Felipe G Belfort
- Physical Education Department, Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil
| | - Victor N Lavorato
- Physical Education Department, Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil
| | - Luis H L Silame-Gomes
- Physical Education Department, Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil
| | - Regiane M S Ramos
- Physical Education Department, Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil
| | - Daise Q N da Cunha
- Physical Education Department, Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil
| | - Bárbara S Okano
- Veterinary Medicine Department, Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil
| | - Vanessa G Pereira
- Veterinary Medicine Department, Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil
| | - Edilamar M de Oliveira
- School of Physical Education and Sport, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | | | - Antônio J Natali
- Physical Education Department, Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil.
| |
Collapse
|
8
|
de Freitas JS, Neves CA, Del Carlo RJ, Belfort FG, Lavorato VN, Silame-Gomes LH, Ramos RM, Cunha DQD, Okano BS, Pereira VG, de Oliveira EM, Carneiro-Júnior MA, Natali AJ. Effects of exercise training and stem cell therapy on the left ventricle of infarcted rats. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2019. [DOI: 10.1016/j.repce.2019.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
9
|
Aghabozorgi AS, Ahangari N, Eftekhaari TE, Torbati PN, Bahiraee A, Ebrahimi R, Pasdar A. Circulating exosomal miRNAs in cardiovascular disease pathogenesis: New emerging hopes. J Cell Physiol 2019; 234:21796-21809. [PMID: 31273798 DOI: 10.1002/jcp.28942] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/16/2019] [Accepted: 05/23/2019] [Indexed: 12/11/2022]
Abstract
Cardiovascular diseases (CVDs) are one of the leading causes of morbidity and mortality. Standard therapies have failed to significantly increase patients' survival. Moreover, the majority of conventional screening procedures are ineffective for the diagnosis of CVDs at early stages. Accumulating evidence suggests that numerous cell types release a class of nano-sized vesicles named exosomes into the extracellular space. Exosomes are widely distributed in various body fluids and contain a number of diverse biomolecules such as proteins, lipids, and both mRNA and noncoding RNAs which reflect host-cell molecular architecture. MicroRNAs (miRNAs), which can be found in exosomes, could be taken up by both neighboring and distal cells. Not only has recent evidence indicated the regulatory role of exosomal miRNAs in the pathogenesis of CVD, but it has also been shown that differential expression of exosomal miRNAs in CVDs has made them promising biomarkers for early detection of CVDs. Owing to these remarkable features, exosomal miRNAs have emerged as hot spots in research. This review summarizes the role of exosomal miRNAs in the pathogenesis of CVDs and discusses their potential application in the clinical setting as both therapeutic and diagnostic tools.
Collapse
Affiliation(s)
- Amirsaeed S Aghabozorgi
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Najmeh Ahangari
- Department of Modern Sciences & Technology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tasnim E Eftekhaari
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.,Cardiovascular Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Paria N Torbati
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Alireza Bahiraee
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Reyhane Ebrahimi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Pasdar
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Division of Applied Medicine, Medical School, University of Aberdeen, Foresterhill, Aberdeen, UK
| |
Collapse
|
10
|
Mayourian J, Ceholski DK, Gonzalez DM, Cashman TJ, Sahoo S, Hajjar RJ, Costa KD. Physiologic, Pathologic, and Therapeutic Paracrine Modulation of Cardiac Excitation-Contraction Coupling. Circ Res 2019; 122:167-183. [PMID: 29301848 DOI: 10.1161/circresaha.117.311589] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cardiac excitation-contraction coupling (ECC) is the orchestrated process of initial myocyte electrical excitation, which leads to calcium entry, intracellular trafficking, and subsequent sarcomere shortening and myofibrillar contraction. Neurohumoral β-adrenergic signaling is a well-established mediator of ECC; other signaling mechanisms, such as paracrine signaling, have also demonstrated significant impact on ECC but are less well understood. For example, resident heart endothelial cells are well-known physiological paracrine modulators of cardiac myocyte ECC mainly via NO and endothelin-1. Moreover, recent studies have demonstrated other resident noncardiomyocyte heart cells (eg, physiological fibroblasts and pathological myofibroblasts), and even experimental cardiotherapeutic cells (eg, mesenchymal stem cells) are also capable of altering cardiomyocyte ECC through paracrine mechanisms. In this review, we first focus on the paracrine-mediated effects of resident and therapeutic noncardiomyocytes on cardiomyocyte hypertrophy, electrophysiology, and calcium handling, each of which can modulate ECC, and then discuss the current knowledge about key paracrine factors and their underlying mechanisms of action. Next, we provide a case example demonstrating the promise of tissue-engineering approaches to study paracrine effects on tissue-level contractility. More specifically, we present new functional and molecular data on the effects of human adult cardiac fibroblast conditioned media on human engineered cardiac tissue contractility and ion channel gene expression that generally agrees with previous murine studies but also suggests possible species-specific differences. By contrast, paracrine secretions by human dermal fibroblasts had no discernible effect on human engineered cardiac tissue contractile function and gene expression. Finally, we discuss systems biology approaches to help identify key stem cell paracrine mediators of ECC and their associated mechanistic pathways. Such integration of tissue-engineering and systems biology methods shows promise to reveal novel insights into paracrine mediators of ECC and their underlying mechanisms of action, ultimately leading to improved cell-based therapies for patients with heart disease.
Collapse
Affiliation(s)
- Joshua Mayourian
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Delaine K Ceholski
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY
| | - David M Gonzalez
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Timothy J Cashman
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Susmita Sahoo
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Roger J Hajjar
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Kevin D Costa
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
11
|
Inhibition of Aortic Intimal Hyperplasia and Vascular Smooth Muscle Proliferation and Extracellular Matrix Protein Expressions by Astragalus-Angelica Combination. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:1508637. [PMID: 30186350 PMCID: PMC6110036 DOI: 10.1155/2018/1508637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/30/2018] [Indexed: 11/17/2022]
Abstract
VSMC proliferation and ECM deposition always resulted in intimal hyperplasia. Astragalus–Angelica combination has a protective effect on the cardiovascular system. The inhibition effect of different Astragalus–Angelica combination on the hyperplastic intima after vascular balloon injury in rats was investigated in this study. Astragalus–Angelica combination can inhibit the intima hyperplasia after balloon injury, in which a 1:1 ratio shows excellent results. Astragalus–Angelica combination can enhance the expression of smooth muscle α-actin (SMа-actin) and inhibit the expression of proliferating cell nuclear antigen (PCNA), cyclin D1, cyclin E, collagen I (Col-I), fibronectin (FN), and matrix metallopeptidase-9 (MMP-9) in hyperplastic intima, suggesting that Astragalus–Angelica combination can inhibit the intimal hyperplasia of blood vessels in rats. The mechanism is related to the inhibition of PI3K/Akt signaling pathway activation and thereby inhibits the phenotypic transformation and cell proliferation of VSMCs and thus inhibits the extracellular matrix (ECM) deposition of vascular wall during intimal hyperplasia.
Collapse
|
12
|
Liu Z, Liu J, Xiao M, Wang J, Yao F, Zeng W, Yu L, Guan Y, Wei W, Peng Z, Zhu K, Wang J, Yang Z, Zhong J, Chen J. Mesenchymal stem cell–derived microvesicles alleviate pulmonary arterial hypertension by regulating renin-angiotensin system. JOURNAL OF THE AMERICAN SOCIETY OF HYPERTENSION 2018; 12:470-478. [DOI: 10.1016/j.jash.2018.02.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 11/23/2022]
|
13
|
Mayourian J, Ceholski DK, Gorski PA, Mathiyalagan P, Murphy JF, Salazar SI, Stillitano F, Hare JM, Sahoo S, Hajjar RJ, Costa KD. Exosomal microRNA-21-5p Mediates Mesenchymal Stem Cell Paracrine Effects on Human Cardiac Tissue Contractility. Circ Res 2018; 122:933-944. [PMID: 29449318 DOI: 10.1161/circresaha.118.312420] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 01/08/2023]
Abstract
RATIONALE The promising clinical benefits of delivering human mesenchymal stem cells (hMSCs) for treating heart disease warrant a better understanding of underlying mechanisms of action. hMSC exosomes increase myocardial contractility; however, the exosomal cargo responsible for these effects remains unresolved. OBJECTIVE This study aims to identify lead cardioactive hMSC exosomal microRNAs to provide a mechanistic basis for optimizing future stem cell-based cardiotherapies. METHODS AND RESULTS Integrating systems biology and human engineered cardiac tissue (hECT) technologies, partial least squares regression analysis of exosomal microRNA profiling data predicted microRNA-21-5p (miR-21-5p) levels positively correlate with contractile force and calcium handling gene expression responses in hECTs treated with conditioned media from multiple cell types. Furthermore, miR-21-5p levels were significantly elevated in hECTs treated with the exosome-enriched fraction of the hMSC secretome (hMSC-exo) versus untreated controls. This motivated experimentally testing the human-specific role of miR-21-5p in hMSC-exo-mediated increases of cardiac tissue contractility. Treating hECTs with miR-21-5p alone was sufficient to recapitulate effects observed with hMSC-exo on hECT developed force and expression of associated calcium handling genes (eg, SERCA2a and L-type calcium channel). Conversely, knockdown of miR-21-5p in hMSCs significantly diminished exosomal procontractile and associated calcium handling gene expression effects on hECTs. Western blots supported miR-21-5p effects on calcium handling gene expression at the protein level, corresponding to significantly increased calcium transient amplitude and decreased decay time constant in comparison to miR-scramble control. Mechanistically, cotreating with miR-21-5p and LY294002, a PI3K inhibitor, suppressed these effects. Finally, mathematical simulations predicted the translational capacity for miR-21-5p treatment to restore calcium handling in mature ischemic adult human cardiomyocytes. CONCLUSIONS miR-21-5p plays a key role in hMSC-exo-mediated effects on cardiac contractility and calcium handling, likely via PI3K signaling. These findings may open new avenues of research to harness the role of miR-21-5p in optimizing future stem cell-based cardiotherapies.
Collapse
Affiliation(s)
- Joshua Mayourian
- From the Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY (J.M., D.K.C., P.A.G., P.M., J.F.M., S.I.S., F.S., S.S., R.J.H., K.D.C.); and Interdisciplinary Stem Cell Institute, Department of Cardiology, University of Miami Miller School of Medicine, Miami, FL (J.M.H.)
| | - Delaine K Ceholski
- From the Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY (J.M., D.K.C., P.A.G., P.M., J.F.M., S.I.S., F.S., S.S., R.J.H., K.D.C.); and Interdisciplinary Stem Cell Institute, Department of Cardiology, University of Miami Miller School of Medicine, Miami, FL (J.M.H.)
| | - Przemek A Gorski
- From the Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY (J.M., D.K.C., P.A.G., P.M., J.F.M., S.I.S., F.S., S.S., R.J.H., K.D.C.); and Interdisciplinary Stem Cell Institute, Department of Cardiology, University of Miami Miller School of Medicine, Miami, FL (J.M.H.)
| | - Prabhu Mathiyalagan
- From the Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY (J.M., D.K.C., P.A.G., P.M., J.F.M., S.I.S., F.S., S.S., R.J.H., K.D.C.); and Interdisciplinary Stem Cell Institute, Department of Cardiology, University of Miami Miller School of Medicine, Miami, FL (J.M.H.)
| | - Jack F Murphy
- From the Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY (J.M., D.K.C., P.A.G., P.M., J.F.M., S.I.S., F.S., S.S., R.J.H., K.D.C.); and Interdisciplinary Stem Cell Institute, Department of Cardiology, University of Miami Miller School of Medicine, Miami, FL (J.M.H.)
| | - Sophia I Salazar
- From the Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY (J.M., D.K.C., P.A.G., P.M., J.F.M., S.I.S., F.S., S.S., R.J.H., K.D.C.); and Interdisciplinary Stem Cell Institute, Department of Cardiology, University of Miami Miller School of Medicine, Miami, FL (J.M.H.)
| | - Francesca Stillitano
- From the Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY (J.M., D.K.C., P.A.G., P.M., J.F.M., S.I.S., F.S., S.S., R.J.H., K.D.C.); and Interdisciplinary Stem Cell Institute, Department of Cardiology, University of Miami Miller School of Medicine, Miami, FL (J.M.H.)
| | - Joshua M Hare
- From the Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY (J.M., D.K.C., P.A.G., P.M., J.F.M., S.I.S., F.S., S.S., R.J.H., K.D.C.); and Interdisciplinary Stem Cell Institute, Department of Cardiology, University of Miami Miller School of Medicine, Miami, FL (J.M.H.)
| | - Susmita Sahoo
- From the Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY (J.M., D.K.C., P.A.G., P.M., J.F.M., S.I.S., F.S., S.S., R.J.H., K.D.C.); and Interdisciplinary Stem Cell Institute, Department of Cardiology, University of Miami Miller School of Medicine, Miami, FL (J.M.H.)
| | - Roger J Hajjar
- From the Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY (J.M., D.K.C., P.A.G., P.M., J.F.M., S.I.S., F.S., S.S., R.J.H., K.D.C.); and Interdisciplinary Stem Cell Institute, Department of Cardiology, University of Miami Miller School of Medicine, Miami, FL (J.M.H.)
| | - Kevin D Costa
- From the Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY (J.M., D.K.C., P.A.G., P.M., J.F.M., S.I.S., F.S., S.S., R.J.H., K.D.C.); and Interdisciplinary Stem Cell Institute, Department of Cardiology, University of Miami Miller School of Medicine, Miami, FL (J.M.H.).
| |
Collapse
|
14
|
Mayourian J, Cashman TJ, Ceholski DK, Johnson BV, Sachs D, Kaji DA, Sahoo S, Hare JM, Hajjar RJ, Sobie EA, Costa KD. Experimental and Computational Insight Into Human Mesenchymal Stem Cell Paracrine Signaling and Heterocellular Coupling Effects on Cardiac Contractility and Arrhythmogenicity. Circ Res 2017. [PMID: 28642329 DOI: 10.1161/circresaha.117.310796] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Myocardial delivery of human mesenchymal stem cells (hMSCs) is an emerging therapy for treating the failing heart. However, the relative effects of hMSC-mediated heterocellular coupling (HC) and paracrine signaling (PS) on human cardiac contractility and arrhythmogenicity remain unresolved. OBJECTIVE The objective is to better understand hMSC PS and HC effects on human cardiac contractility and arrhythmogenicity by integrating experimental and computational approaches. METHODS AND RESULTS Extending our previous hMSC-cardiomyocyte HC computational model, we incorporated experimentally calibrated hMSC PS effects on cardiomyocyte L-type calcium channel/sarcoendoplasmic reticulum calcium-ATPase activity and cardiac tissue fibrosis. Excitation-contraction simulations of hMSC PS-only and combined HC+PS effects on human cardiomyocytes were representative of human engineered cardiac tissue (hECT) contractile function measurements under matched experimental treatments. Model simulations and hECTs both demonstrated that hMSC-mediated effects were most pronounced under PS-only conditions, where developed force increased ≈4-fold compared with non-hMSC-supplemented controls during physiological 1-Hz pacing. Simulations predicted contractility of isolated healthy and ischemic adult human cardiomyocytes would be minimally sensitive to hMSC HC, driven primarily by PS. Dominance of hMSC PS was also revealed in simulations of fibrotic cardiac tissue, where hMSC PS protected from potential proarrhythmic effects of HC at various levels of engraftment. Finally, to study the nature of the hMSC paracrine effects on contractility, proteomic analysis of hECT/hMSC conditioned media predicted activation of PI3K/Akt signaling, a recognized target of both soluble and exosomal fractions of the hMSC secretome. Treating hECTs with exosome-enriched, but not exosome-depleted, fractions of the hMSC secretome recapitulated the effects observed with hMSC conditioned media on hECT-developed force and expression of calcium-handling genes (eg, SERCA2a, L-type calcium channel). CONCLUSIONS Collectively, this integrated experimental and computational study helps unravel relative hMSC PS and HC effects on human cardiac contractility and arrhythmogenicity, and provides novel insight into the role of exosomes in hMSC paracrine-mediated effects on contractility.
Collapse
Affiliation(s)
- Joshua Mayourian
- From the Cardiovascular Research Center (J.M., T.J.C., D.K.C., D.S., S.S., R.J.H., K.D.C.), Department of Developmental and Regenerative Biology (D.A.K.), and Department of Pharmacology and Systems Therapeutics (E.A.S.), Icahn School of Medicine at Mount Sinai, New York; Department of Medicine, University of Washington Seattle (B.V.J.); and The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL (J.M.H.)
| | - Timothy J Cashman
- From the Cardiovascular Research Center (J.M., T.J.C., D.K.C., D.S., S.S., R.J.H., K.D.C.), Department of Developmental and Regenerative Biology (D.A.K.), and Department of Pharmacology and Systems Therapeutics (E.A.S.), Icahn School of Medicine at Mount Sinai, New York; Department of Medicine, University of Washington Seattle (B.V.J.); and The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL (J.M.H.)
| | - Delaine K Ceholski
- From the Cardiovascular Research Center (J.M., T.J.C., D.K.C., D.S., S.S., R.J.H., K.D.C.), Department of Developmental and Regenerative Biology (D.A.K.), and Department of Pharmacology and Systems Therapeutics (E.A.S.), Icahn School of Medicine at Mount Sinai, New York; Department of Medicine, University of Washington Seattle (B.V.J.); and The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL (J.M.H.)
| | - Bryce V Johnson
- From the Cardiovascular Research Center (J.M., T.J.C., D.K.C., D.S., S.S., R.J.H., K.D.C.), Department of Developmental and Regenerative Biology (D.A.K.), and Department of Pharmacology and Systems Therapeutics (E.A.S.), Icahn School of Medicine at Mount Sinai, New York; Department of Medicine, University of Washington Seattle (B.V.J.); and The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL (J.M.H.)
| | - David Sachs
- From the Cardiovascular Research Center (J.M., T.J.C., D.K.C., D.S., S.S., R.J.H., K.D.C.), Department of Developmental and Regenerative Biology (D.A.K.), and Department of Pharmacology and Systems Therapeutics (E.A.S.), Icahn School of Medicine at Mount Sinai, New York; Department of Medicine, University of Washington Seattle (B.V.J.); and The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL (J.M.H.)
| | - Deepak A Kaji
- From the Cardiovascular Research Center (J.M., T.J.C., D.K.C., D.S., S.S., R.J.H., K.D.C.), Department of Developmental and Regenerative Biology (D.A.K.), and Department of Pharmacology and Systems Therapeutics (E.A.S.), Icahn School of Medicine at Mount Sinai, New York; Department of Medicine, University of Washington Seattle (B.V.J.); and The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL (J.M.H.)
| | - Susmita Sahoo
- From the Cardiovascular Research Center (J.M., T.J.C., D.K.C., D.S., S.S., R.J.H., K.D.C.), Department of Developmental and Regenerative Biology (D.A.K.), and Department of Pharmacology and Systems Therapeutics (E.A.S.), Icahn School of Medicine at Mount Sinai, New York; Department of Medicine, University of Washington Seattle (B.V.J.); and The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL (J.M.H.)
| | - Joshua M Hare
- From the Cardiovascular Research Center (J.M., T.J.C., D.K.C., D.S., S.S., R.J.H., K.D.C.), Department of Developmental and Regenerative Biology (D.A.K.), and Department of Pharmacology and Systems Therapeutics (E.A.S.), Icahn School of Medicine at Mount Sinai, New York; Department of Medicine, University of Washington Seattle (B.V.J.); and The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL (J.M.H.)
| | - Roger J Hajjar
- From the Cardiovascular Research Center (J.M., T.J.C., D.K.C., D.S., S.S., R.J.H., K.D.C.), Department of Developmental and Regenerative Biology (D.A.K.), and Department of Pharmacology and Systems Therapeutics (E.A.S.), Icahn School of Medicine at Mount Sinai, New York; Department of Medicine, University of Washington Seattle (B.V.J.); and The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL (J.M.H.)
| | - Eric A Sobie
- From the Cardiovascular Research Center (J.M., T.J.C., D.K.C., D.S., S.S., R.J.H., K.D.C.), Department of Developmental and Regenerative Biology (D.A.K.), and Department of Pharmacology and Systems Therapeutics (E.A.S.), Icahn School of Medicine at Mount Sinai, New York; Department of Medicine, University of Washington Seattle (B.V.J.); and The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL (J.M.H.)
| | - Kevin D Costa
- From the Cardiovascular Research Center (J.M., T.J.C., D.K.C., D.S., S.S., R.J.H., K.D.C.), Department of Developmental and Regenerative Biology (D.A.K.), and Department of Pharmacology and Systems Therapeutics (E.A.S.), Icahn School of Medicine at Mount Sinai, New York; Department of Medicine, University of Washington Seattle (B.V.J.); and The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL (J.M.H.).
| |
Collapse
|
15
|
Mayourian J, Savizky RM, Sobie EA, Costa KD. Modeling Electrophysiological Coupling and Fusion between Human Mesenchymal Stem Cells and Cardiomyocytes. PLoS Comput Biol 2016; 12:e1005014. [PMID: 27454812 PMCID: PMC4959759 DOI: 10.1371/journal.pcbi.1005014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 06/08/2016] [Indexed: 01/16/2023] Open
Abstract
Human mesenchymal stem cell (hMSC) delivery has demonstrated promise in preclinical and clinical trials for myocardial infarction therapy; however, broad acceptance is hindered by limited understanding of hMSC-human cardiomyocyte (hCM) interactions. To better understand the electrophysiological consequences of direct heterocellular connections between hMSCs and hCMs, three original mathematical models were developed, representing an experimentally verified triad of hMSC families with distinct functional ion channel currents. The arrhythmogenic risk of such direct electrical interactions in the setting of healthy adult myocardium was predicted by coupling and fusing these hMSC models to the published ten Tusscher midcardial hCM model. Substantial variations in action potential waveform—such as decreased action potential duration (APD) and plateau height—were found when hCMs were coupled to the two hMSC models expressing functional delayed rectifier-like human ether à-go-go K+ channel 1 (hEAG1); the effects were exacerbated for fused hMSC-hCM hybrid cells. The third family of hMSCs (Type C), absent of hEAG1 activity, led to smaller single-cell action potential alterations during coupling and fusion, translating to longer tissue-level mean action potential wavelength. In a simulated 2-D monolayer of cardiac tissue, re-entry vulnerability with low (5%) hMSC insertion was approximately eight-fold lower with Type C hMSCs compared to hEAG1-functional hMSCs. A 20% decrease in APD dispersion by Type C hMSCs compared to hEAG1-active hMSCs supports the claim of reduced arrhythmogenic potential of this cell type with low hMSC insertion. However, at moderate (15%) and high (25%) hMSC insertion, the vulnerable window increased independent of hMSC type. In summary, this study provides novel electrophysiological models of hMSCs, predicts possible arrhythmogenic effects of hMSCs when directly coupled to healthy hCMs, and proposes that isolating a subset of hMSCs absent of hEAG1 activity may offer increased safety as a cell delivery cardiotherapy at low levels of hMSC-hCM coupling. Myocardial infarction—better known as a heart attack—strikes on average every 43 seconds in America. An emerging approach to treat myocardial infarction patients involves the delivery of human mesenchymal stem cells (hMSCs) to the damaged heart. While clinical trials of this therapeutic approach have yet to report adverse effects on heart electrical rhythm, such consequences have been implicated in simpler experimental systems and thus remain a concern. In this study, we utilized mathematical modeling to simulate electrical interactions arising from direct coupling between hMSCs and human heart cells to develop insight into the possible adverse effects of this therapeutic approach on human heart electrical activity, and to assess a novel strategy for reducing some potential risks of this therapy. We developed the first mathematical models of electrical activity of three families of hMSCs based on published experimental data, and integrated these with previously established mathematical models of human heart cell electrical activity. Our computer simulations demonstrated that one particular family of hMSCs minimized the disturbances in cardiac electrical activity both at the single-cell and tissue levels, suggesting that isolating this specific sub-population of hMSCs for myocardial delivery could potentially increase the safety of future hMSC-based heart therapies.
Collapse
Affiliation(s)
- Joshua Mayourian
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ruben M. Savizky
- Department of Chemistry, The Cooper Union, New York, New York, United States of America
| | - Eric A. Sobie
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Kevin D. Costa
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
16
|
Hepatoprotective Effect of Quercetin on Endoplasmic Reticulum Stress and Inflammation after Intense Exercise in Mice through Phosphoinositide 3-Kinase and Nuclear Factor-Kappa B. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8696587. [PMID: 27504150 PMCID: PMC4967689 DOI: 10.1155/2016/8696587] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 06/19/2016] [Indexed: 12/17/2022]
Abstract
The mechanisms underlying intense exercise-induced liver damage and its potential treatments remain unclear. We explored the hepatoprotection and mechanisms of quercetin, a naturally occurring flavonoid, in strenuous exercise-derived endoplasmic reticulum stress (ERS) and inflammation. Intense exercise (28 m/min at a 5° slope for 90 min) resulted in the leakage of aminotransferases in the BALB/C mice. The hepatic ultrastructural malformations and oxidative stress levels were attenuated by quercetin (100 mg/kg·bw). Intense exercise and thapsigargin- (Tg-) induced ERS (glucose-regulated protein 78, GRP78) and inflammatory cytokines levels (IL-6 and TNF-α) were decreased with quercetin. Furthermore, quercetin resulted in phosphoinositide 3-kinase (PI3K) induction, Ca2+ restoration, and blockade of the activities of Jun N-terminal kinase (JNK), activating transcription factor 6 (ATF6) and especially NF-κB (p65 and p50 nuclear translocation). A PI3K inhibitor abrogated the protection of quercetin on ERS and inflammation of mouse hepatocytes. SP600125 (JNK inhibitor), AEBSF (ATF6 inhibitor), and especially PDTC (NF-κB inhibitor) enhanced the quercetin-induced protection against Tg stimulation. Collectively, intense exercise-induced ERS and inflammation were attenuated by quercetin. PI3K/Akt activation and JNK, ATF6, and especially NF-κB suppression were involved in the protection. Our results highlight a novel preventive strategy for treating ERS and inflammation-mediated liver damage induced by intense exercise using natural phytochemicals.
Collapse
|
17
|
Mesenchymal stem cells suppress cardiac alternans by activation of PI3K mediated nitroso-redox pathway. J Mol Cell Cardiol 2016; 98:138-45. [PMID: 27238412 DOI: 10.1016/j.yjmcc.2016.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 05/03/2016] [Accepted: 05/25/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND The paracrine action of non-cardiac progenitor cells is robust, but not well understood. Mesenchymal stem cells (MSC) have been shown to enhance calcium (Ca(++)) cycling in myocytes. Therefore, we hypothesized that MSCs can suppress cardiac alternans, an important arrhythmia substrate, by paracrine action on Ca(++) cycling. METHODS AND RESULTS Human cardiac myocyte monolayers derived from iPS cells (hCM) were cultured without or with human MSCs (hMSC) directly or plated on a transwell insert. Ca(++) transient alternans (Ca(++) ALT) and Ca(++) transient duration (CaD) were measured from hCM monolayers following application of 200μM H2O2. Ca(++) ALT in hCM was significantly decreased when cultured with hMSCs directly (97%, p<0.0001) and when cultured with hMSC in the transwell insert (80%, p<0.0001). When hCM with hMSCs were pretreated with PI3K or eNOS inhibitors, Ca(++) ALT was larger than baseline by 20% (p<0.0001) and 36% (p<0.0001), respectively. In contrast, Ca(++) ALT was reduced by 89% compared to baseline (p<0.0001) when hCM monolayers without hMSCs were pretreated with 20μM GSNO. In all experiments, changes in Ca(++) ALT were mirrored by changes in CaD. Finally, real time quantitative PCR revealed no significant differences in mRNA expression of RyR2, SERCA2a, and phospholamban between hCM cultured with or without hMSCs. CONCLUSION Ca(++) ALT is suppressed by hMSCs in a paracrine fashion due to activation of a PI3K-mediated nitroso-redox pathway. These findings demonstrate, for the first time, how stem cell therapy might be antiarrhythmic by suppressing cardiac alternans through paracrine action on Ca(++) cycling.
Collapse
|
18
|
Zhang M, Liu D, Li S, Chang L, Zhang Y, Liu R, Sun F, Duan W, Du W, Wu Y, Zhao T, Xu C, Lu Y. Bone marrow mesenchymal stem cell transplantation retards the natural senescence of rat hearts. Stem Cells Transl Med 2015; 4:494-502. [PMID: 25855590 DOI: 10.5966/sctm.2014-0206] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 02/02/2015] [Indexed: 11/16/2022] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) have been shown to offer a wide variety of cellular functions including the protective effects on damaged hearts. Here we investigated the antiaging properties of BMSCs and the underlying mechanism in a cellular model of cardiomyocyte senescence and a rat model of aging hearts. Neonatal rat ventricular cells (NRVCs) and BMSCs were cocultured in the same dish with a semipermeable membrane to separate the two populations. Monocultured NRVCs displayed the senescence-associated phenotypes, characterized by an increase in the number of β-galactosidase-positive cells and decreases in the degradation and disappearance of cellular organelles in a time-dependent manner. The levels of reactive oxygen species and malondialdehyde were elevated, whereas the activities of antioxidant enzymes superoxide dismutase and glutathione peroxidase were decreased, along with upregulation of p53, p21(Cip1/Waf1), and p16(INK4a) in the aging cardiomyocytes. These deleterious alterations were abrogated in aging NRVCs cocultured with BMSCs. Qualitatively, the same senescent phenotypes were consistently observed in aging rat hearts. Notably, BMSC transplantation significantly prevented these detrimental alterations and improved the impaired cardiac function in the aging rats. In summary, BMSCs possess strong antisenescence action on the aging NRVCs and hearts and can improve cardiac function after transplantation in aging rats. The present study, therefore, provides an alternative approach for the treatment of heart failure in the elderly population.
Collapse
Affiliation(s)
- Mingyu Zhang
- Department of Pharmacology and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, State Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Di Liu
- Department of Pharmacology and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, State Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Shuang Li
- Department of Pharmacology and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, State Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Lingling Chang
- Department of Pharmacology and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, State Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Yu Zhang
- Department of Pharmacology and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, State Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Ruixue Liu
- Department of Pharmacology and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, State Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Fei Sun
- Department of Pharmacology and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, State Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Wenqi Duan
- Department of Pharmacology and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, State Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Weijie Du
- Department of Pharmacology and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, State Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Yanping Wu
- Department of Pharmacology and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, State Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Tianyang Zhao
- Department of Pharmacology and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, State Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Chaoqian Xu
- Department of Pharmacology and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, State Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Yanjie Lu
- Department of Pharmacology and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, State Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| |
Collapse
|
19
|
Yu B, Kim HW, Gong M, Wang J, Millard RW, Wang Y, Ashraf M, Xu M. Exosomes secreted from GATA-4 overexpressing mesenchymal stem cells serve as a reservoir of anti-apoptotic microRNAs for cardioprotection. Int J Cardiol 2014; 182:349-60. [PMID: 25590961 DOI: 10.1016/j.ijcard.2014.12.043] [Citation(s) in RCA: 370] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/27/2014] [Accepted: 12/20/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Exosomes play an important role in intercellular signaling and exert regulatory function by carrying bioactive molecules. This study investigated (1) the cardioprotective capabilities of exosomes derived from mesenchymal stem cells (MSCs) overexpressing GATA-4 (MSC(GATA-4)) and (2) its underlying regulatory mechanisms for expression of target proteins in recipient cells. METHODS AND RESULTS Exosomes were isolated and purified from MSC(GATA-4) (Exo(GATA-4)) and control MSCs (Exo(Null)). Cell injury was investigated in primary cultured rat neonatal cardiomyocytes (CM) and in the rat heart. Exosomes contributed to increased CM survival, reduced CM apoptosis, and preserved mitochondrial membrane potential in CM cultured under a hypoxic environment. Direct intramyocardial transplantation of exosomes at the border of an ischemic region following ligation of the left anterior descending coronary artery significantly restored cardiac contractile function and reduced infarct size. Real-time PCR revealed that several anti-apoptotic miRs were highly expressed in Exo(GATA-4). Rapid internalization of Exo(GATA-4) by CM was documented using time-lapse imaging. Subsequent expression of these miRs, particularly miR-19a was higher in CM and in the myocardium treated with Exo(GATA-4) compared to those treated with Exo(Null). The enhanced protective effects observed in CM were diminished by the inhibition of miR-19a. The expression level of PTEN, a predicted target of miR-19a, was reduced in CM treated with Exo(GATA-4), which resulted in the activation of the Akt and ERK signaling pathways. CONCLUSIONS Exo(GATA-4) upon transplantation in the damaged tissue mediate protection by releasing multiple miRs responsible for activation of the cell survival signaling pathway.
Collapse
Affiliation(s)
- Bin Yu
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Ha Won Kim
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Min Gong
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Jingcai Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Ronald W Millard
- Department of Pharmacology & Cell Biophysics, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Muhammad Ashraf
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Meifeng Xu
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA.
| |
Collapse
|
20
|
Karantalis V, DiFede DL, Gerstenblith G, Pham S, Symes J, Zambrano JP, Fishman J, Pattany P, McNiece I, Conte J, Schulman S, Wu K, Shah A, Breton E, Davis-Sproul J, Schwarz R, Feigenbaum G, Mushtaq M, Suncion VY, Lardo AC, Borrello I, Mendizabal A, Karas TZ, Byrnes J, Lowery M, Heldman AW, Hare JM. Autologous mesenchymal stem cells produce concordant improvements in regional function, tissue perfusion, and fibrotic burden when administered to patients undergoing coronary artery bypass grafting: The Prospective Randomized Study of Mesenchymal Stem Cell Therapy in Patients Undergoing Cardiac Surgery (PROMETHEUS) trial. Circ Res 2014; 114:1302-10. [PMID: 24565698 DOI: 10.1161/circresaha.114.303180] [Citation(s) in RCA: 264] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RATIONALE Although accumulating data support the efficacy of intramyocardial cell-based therapy to improve left ventricular (LV) function in patients with chronic ischemic cardiomyopathy undergoing CABG, the underlying mechanism and impact of cell injection site remain controversial. Mesenchymal stem cells (MSCs) improve LV structure and function through several effects including reducing fibrosis, neoangiogenesis, and neomyogenesis. OBJECTIVE To test the hypothesis that the impact on cardiac structure and function after intramyocardial injections of autologous MSCs results from a concordance of prorecovery phenotypic effects. METHODS AND RESULTS Six patients were injected with autologous MSCs into akinetic/hypokinetic myocardial territories not receiving bypass graft for clinical reasons. MRI was used to measure scar, perfusion, wall thickness, and contractility at baseline, at 3, 6, and 18 months and to compare structural and functional recovery in regions that received MSC injections alone, revascularization alone, or neither. A composite score of MRI variables was used to assess concordance of antifibrotic effects, perfusion, and contraction at different regions. After 18 months, subjects receiving MSCs exhibited increased LV ejection fraction (+9.4 ± 1.7%, P=0.0002) and decreased scar mass (-47.5 ± 8.1%; P<0.0001) compared with baseline. MSC-injected segments had concordant reduction in scar size, perfusion, and contractile improvement (concordant score: 2.93 ± 0.07), whereas revascularized (0.5 ± 0.21) and nontreated segments (-0.07 ± 0.34) demonstrated nonconcordant changes (P<0.0001 versus injected segments). CONCLUSIONS Intramyocardial injection of autologous MSCs into akinetic yet nonrevascularized segments produces comprehensive regional functional restitution, which in turn drives improvement in global LV function. These findings, although inconclusive because of lack of placebo group, have important therapeutic and mechanistic hypothesis-generating implications. CLINICAL TRIAL REGISTRATION URL http://clinicaltrials.gov/show/NCT00587990. Unique identifier: NCT00587990.
Collapse
Affiliation(s)
- Vasileios Karantalis
- From the University of Miami Miller School of Medicine, Interdisciplinary Stem Cell Institute, Miami, FL (V.K., D.L.D., R.S., M.M., V.Y.S., A.W.L., J.M.H.); Johns Hopkins University, Cardiovascular Division, Baltimore, MD (G.G., S.S., E.B., J.D.-S., A.C.L.); University of Maryland, Cardiothoracic Surgery, Baltimore, MD (S.P., J.C.); Veterans Affairs Healthcare System, Cardiothoracic Surgery, Miami, FL (J.S., T.Z.K.); Jackson Health System, Cardiology, Miami, FL (J.P.Z.); University of Miami Miller School of Medicine, Radiology, Miami, FL (J.F., P.P.); University of Texas MD Anderson, Stem Cell Transplantation, Houston, TX (I.M.N.), Johns Hopkins University, Heart and Vascular Institute, Baltimore, MD (K.W.), Johns Hopkins University, Comprehensive Transplant Center (A.S.); University of Southern California, Internal Medicine, Los Angeles, CA (G.F.); Johns Hopkins University, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD (I.B.); EMMES Corporation, Rockville, MD (A.M.), University of Miami Miller School of Medicine, Hematology/Oncology, Miami, FL (J.B.); and University of Miami Miller School of Medicine, Cardiology, Miami, FL (T.Z.K., M.L.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
DeSantiago J, Bare DJ, Xiao L, Ke Y, Solaro RJ, Banach K. p21-Activated kinase1 (Pak1) is a negative regulator of NADPH-oxidase 2 in ventricular myocytes. J Mol Cell Cardiol 2014; 67:77-85. [PMID: 24380729 PMCID: PMC3930036 DOI: 10.1016/j.yjmcc.2013.12.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 12/19/2013] [Accepted: 12/21/2013] [Indexed: 12/20/2022]
Abstract
Ischemic conditions reduce the activity of the p21-activated kinase (Pak1) resulting in increased arrhythmic activity. Triggered arrhythmic activity during ischemia is based on changes in cellular ionic balance and the cells Ca(2+) handling properties. In the current study we used isolated mouse ventricular myocytes (VMs) deficient for the expression of Pak1 (Pak1(-/-)) to determine the mechanism by which Pak1 influences the generation of arrhythmic activity during simulated ischemia. The Ca(2+) transient amplitude and kinetics did not significantly change in wild type (WT) and Pak1(-/-) VMs during 15 min of simulated ischemia. However, Pak1(-/-) VMs exhibited an exaggerated increase in [Ca(2+)]i, which resulted in spontaneous Ca(2+) release events and waves. The Ca(2+) overload in Pak1(-/-) VMs could be suppressed with a reverse mode blocker (KB-R7943) of the sodium calcium exchanger (NCX), a cytoplasmic scavenger of reactive oxygen species (ROS; TEMPOL) or a RAC1 inhibitor (NSC23766). Measurements of the cytoplasmic ROS levels revealed that decreased Pak1 activity in Pak1(-/-) VMs or VMs treated with the Pak1 inhibitor (IPA3) enhanced cellular ROS production. The Pak1 dependent increase in ROS was attenuated in VMs deficient for NADPH oxidase 2 (NOX2; p47(phox-/-)) or in VMs where NOX2 was inhibited (gp91ds-tat). Voltage clamp recordings showed increased NCX activity in Pak1(-/-) VMs that depended on enhanced NOX2 induced ROS production. The exaggerated Ca(2+) overload in Pak1(-/-) VMs could be mimicked by low concentrations of ouabain. Overall our data show that Pak1 is a critical negative regulator of NOX2 dependent ROS production and that a latent ROS dependent stimulation of NCX activity can predispose VMs to Ca(2+) overload under conditions where no significant changes in excitation-contraction coupling are yet evident.
Collapse
Affiliation(s)
- Jaime DeSantiago
- Center for Cardiovascular Research, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA; Department of Medicine, Section of Cardiology, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
| | - Dan J Bare
- Center for Cardiovascular Research, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA; Department of Medicine, Section of Cardiology, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
| | - Lei Xiao
- Center for Cardiovascular Research, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA; Department of Medicine, Section of Cardiology, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA; Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
| | - Yunbo Ke
- Center for Cardiovascular Research, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA; Department of Physiology and Biophysics, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
| | - R John Solaro
- Center for Cardiovascular Research, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA; Department of Physiology and Biophysics, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
| | - Kathrin Banach
- Center for Cardiovascular Research, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA; Department of Medicine, Section of Cardiology, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA.
| |
Collapse
|
22
|
Rubach M, Adelmann R, Haustein M, Drey F, Pfannkuche K, Xiao B, Koester A, Udink ten Cate FEA, Choi YH, Neef K, Fatima A, Hannes T, Pillekamp F, Hescheler J, Šarić T, Brockmeier K, Khalil M. Mesenchymal stem cells and their conditioned medium improve integration of purified induced pluripotent stem cell-derived cardiomyocyte clusters into myocardial tissue. Stem Cells Dev 2014; 23:643-53. [PMID: 24219308 DOI: 10.1089/scd.2013.0272] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Induced pluripotent stem cell-derived cardiomyocytes (iPS-CMs) might become therapeutically relevant to regenerate myocardial damage. Purified iPS-CMs exhibit poor functional integration into myocardial tissue. The aim of this study was to investigate whether murine mesenchymal stem cells (MSCs) or their conditioned medium (MScond) improves the integration of murine iPS-CMs into myocardial tissue. Vital or nonvital embryonic murine ventricular tissue slices were cocultured with purified clusters of iPS-CMs in combination with murine embryonic fibroblasts (MEFs), MSCs, or MScond. Morphological integration was assessed by visual scoring and functional integration by isometric force and field potential measurements. We observed a moderate morphological integration of iPS-CM clusters into vital, but a poor integration into nonvital, slices. MEFs and MSCs but not MScond improved morphological integration of CMs into nonvital slices and enabled purified iPS-CMs to confer force. Coculture of vital slices with iPS-CMs and MEFs or MSCs resulted in an improved electrical integration. A comparable improvement of electrical coupling was achieved with the cell-free MScond, indicating that soluble factors secreted by MSCs were involved in electrical coupling. We conclude that cells such as MSCs support the engraftment and adhesion of CMs, and confer force to noncontractile tissue. Furthermore, soluble factors secreted by MSCs mediate electrical coupling of purified iPS-CM clusters to myocardial tissue. These data suggest that MSCs may increase the functional engraftment and therapeutic efficacy of transplanted iPS-CMs into infarcted myocardium.
Collapse
Affiliation(s)
- Martin Rubach
- 1 Department of Pediatric Cardiology, University of Cologne , Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Taglieri DM, Johnson KR, Burmeister BT, Monasky MM, Spindler MJ, DeSantiago J, Banach K, Conklin BR, Carnegie GK. The C-terminus of the long AKAP13 isoform (AKAP-Lbc) is critical for development of compensatory cardiac hypertrophy. J Mol Cell Cardiol 2014; 66:27-40. [PMID: 24161911 PMCID: PMC4074493 DOI: 10.1016/j.yjmcc.2013.10.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 09/24/2013] [Accepted: 10/14/2013] [Indexed: 10/26/2022]
Abstract
The objective of this study was to determine the role of A-Kinase Anchoring Protein (AKAP)-Lbc in the development of heart failure, by investigating AKAP-Lbc-protein kinase D1 (PKD1) signaling in vivo in cardiac hypertrophy. Using a gene-trap mouse expressing a truncated version of AKAP-Lbc (due to disruption of the endogenous AKAP-Lbc gene), that abolishes PKD1 interaction with AKAP-Lbc (AKAP-Lbc-ΔPKD), we studied two mouse models of pathological hypertrophy: i) angiotensin (AT-II) and phenylephrine (PE) infusion and ii) transverse aortic constriction (TAC)-induced pressure overload. Our results indicate that AKAP-Lbc-ΔPKD mice exhibit an accelerated progression to cardiac dysfunction in response to AT-II/PE treatment and TAC. AKAP-Lbc-ΔPKD mice display attenuated compensatory cardiac hypertrophy, increased collagen deposition and apoptosis, compared to wild-type (WT) control littermates. Mechanistically, reduced levels of PKD1 activation are observed in AKAP-Lbc-ΔPKD mice compared to WT mice, resulting in diminished phosphorylation of histone deacetylase 5 (HDAC5) and decreased hypertrophic gene expression. This is consistent with a reduced compensatory hypertrophy phenotype leading to progression of heart failure in AKAP-Lbc-ΔPKD mice. Overall, our data demonstrates a critical in vivo role for AKAP-Lbc-PKD1 signaling in the development of compensatory hypertrophy to enhance cardiac performance in response to TAC-induced pressure overload and neurohumoral stimulation by AT-II/PE treatment.
Collapse
Affiliation(s)
- Domenico M Taglieri
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, 60612 IL, USA
| | - Keven R Johnson
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, 60612 IL, USA
| | - Brian T Burmeister
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, 60612 IL, USA
| | - Michelle M Monasky
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, 60612 IL, USA; Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, 60612 IL, USA
| | - Matthew J Spindler
- Gladstone Institute of Cardiovascular Disease, 1650 Owens Street, San Francisco, CA 94158, USA
| | - Jaime DeSantiago
- Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, 60612 IL, USA
| | - Kathrin Banach
- Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, 60612 IL, USA
| | - Bruce R Conklin
- Gladstone Institute of Cardiovascular Disease, 1650 Owens Street, San Francisco, CA 94158, USA
| | - Graeme K Carnegie
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, 60612 IL, USA.
| |
Collapse
|
24
|
DeSantiago J, Bare DJ, Ke Y, Sheehan KA, Solaro RJ, Banach K. Functional integrity of the T-tubular system in cardiomyocytes depends on p21-activated kinase 1. J Mol Cell Cardiol 2013; 60:121-8. [PMID: 23612118 PMCID: PMC3679655 DOI: 10.1016/j.yjmcc.2013.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 03/06/2013] [Accepted: 04/12/2013] [Indexed: 12/30/2022]
Abstract
p21-activated kinase (Pak1), a serine-threonine protein kinase, regulates cytoskeletal dynamics and cell motility. Recent experiments further demonstrate that loss of Pak1 results in exaggerated hypertrophic growth in response to pathophysiological stimuli. Calcium (Ca) signaling plays an important role in the regulation of transcription factors involved in hypertrophic remodeling. Here we aimed to determine the role of Pak1 in cardiac excitation-contraction coupling (ECC). Ca transients were recorded in isolated, ventricular myocytes (VMs) from WT and Pak1(-/-) mice. Pak1(-/-) Ca transients had a decreased amplitude, prolonged rise time and delayed recovery time. Di-8-ANNEPS staining revealed a decreased T-tubular density in Pak1(-/-) VMs that coincided with decreased cell capacitance and increased dis-synchrony of Ca induced Ca release (CICR) at individual release units. These changes were not observed in atrial myocytes of Pak1(-/-) mice where the T-tubular system is only sparsely developed. Experiments in cultured rabbit VMs supported a role of Pak1 in the maintenance of the T-tubular structure. T-tubular density in rabbit VMs significantly decreased within 24h of culture. This was accompanied by a decrease of the Ca transient amplitude and a prolongation of its rise time. However, overexpression of constitutively active Pak1 in VMs attenuated the structural remodeling as well as changes in ECC. The results provide significant support for a prominent role of Pak1 activity not only in the functional regulation of ECC but for the structural maintenance of the T-tubular system whose remodeling is an integral feature of hypertrophic remodeling.
Collapse
Affiliation(s)
- Jaime DeSantiago
- Center for Cardiovascular Research, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
- Dept. of Medicine, Section of Cardiology, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
| | - Dan J Bare
- Center for Cardiovascular Research, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
- Dept. of Medicine, Section of Cardiology, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
| | - Yunbo Ke
- Center for Cardiovascular Research, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
- Dept. of Physiology and Biophysics, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
| | - Katherine A. Sheehan
- Center for Cardiovascular Research, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
- Dept. of Physiology and Biophysics, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
| | - R. John Solaro
- Center for Cardiovascular Research, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
- Dept. of Physiology and Biophysics, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
| | - Kathrin Banach
- Center for Cardiovascular Research, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
- Dept. of Medicine, Section of Cardiology, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
| |
Collapse
|
25
|
Exploiting paracrine mechanisms of tissue regeneration to repair damaged organs. Transplant Res 2013; 2:10. [PMID: 23786652 PMCID: PMC3718694 DOI: 10.1186/2047-1440-2-10] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 06/13/2013] [Indexed: 01/09/2023] Open
Abstract
Stem cells have been studied for many years for their potential to repair damaged organs in the human body. Although many different mechanisms have been suggested as to how stem cells may initiate and facilitate repair processes, much remains unknown. Recently, there has been considerable interest in the idea that stem cells may exert their effects in vivo via paracrine actions. This could involve the release of cytokines, growth factors or secreted extracellular vesicles. This article reviews the role that paracrine actions may play in tissue regeneration. In particular, it considers how microvesicles, as a mediator or modulator of paracrine action, can be exploited as a tool for non-cell-based therapies in regenerative medicine.
Collapse
|
26
|
DeSantiago J, Bare DJ, Banach K. Ischemia/Reperfusion injury protection by mesenchymal stem cell derived antioxidant capacity. Stem Cells Dev 2013; 22:2497-507. [PMID: 23614555 DOI: 10.1089/scd.2013.0136] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mesenchymal stem cell (MSC) transplantation after ischemia/reperfusion (I/R) injury reduces infarct size and improves cardiac function. We used mouse ventricular myocytes (VMs) in an in vitro model of I/R to determine the mechanism by which MSCs prevent reperfusion injury by paracrine signaling. Exposure of mouse VMs to an ischemic challenge depolarized their mitochondrial membrane potential (Ψmito), increased their diastolic Ca(2+), and significantly attenuated cell shortening. Reperfusion of VMs with Ctrl tyrode or MSC-conditioned tyrode (ConT) resulted in a transient increase of the Ca(2+) transient amplitudes in all cells. ConT-reperfused cells exhibited a decreased number early after depolarization (EADs) (ConT: 6.3% vs. Ctrl: 28.4%) and prolonged survival (ConT: 58% vs. Ctrl: 33%). Ψmito rapidly recovered in Ctrl as well as ConT-treated VMs on reperfusion; however, in Ctrl solution, an exaggerated hyperpolarization of Ψmito was determined that preceded the collapse of Ψmito. The ability of ConT to attenuate the hyperpolarization of Ψmito was suppressed on inhibition of the PI3K/Akt signaling pathway or IK,ATP. However, protection of Ψmito was best mimicked by the reactive oxygen species (ROS) scavenger mitoTEMPO. Analysis of ConT revealed a significant antioxidant capacity that was linked to the presence of extracellular superoxide dismutase (SOD3) in ConT. In conclusion, MSC ConT protects VMs from simulated I/R injury by its SOD3-mediated antioxidant capacity and by delaying the recovery of Ψmito through Akt-mediated opening of IK,ATP. These changes attenuate reperfusion-induced ROS production and prevent the opening of the permeability transition pore and arrhythmic Ca(2+) release.
Collapse
Affiliation(s)
- Jaime DeSantiago
- Section of Cardiology, Department of Medicine, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois 60612-7323, USA
| | | | | |
Collapse
|
27
|
Therapeutic potential of mesenchymal stem cells in regenerative medicine. Stem Cells Int 2013; 2013:496218. [PMID: 23577036 PMCID: PMC3615627 DOI: 10.1155/2013/496218] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/25/2013] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are stromal cells that have the ability to self-renew and also exhibit multilineage differentiation into both mesenchymal and nonmesenchymal lineages. The intrinsic properties of these cells make them an attractive candidate for clinical applications. MSCs are of keen interest because they can be isolated from a small aspirate of bone marrow or adipose tissues and can be easily expanded in vitro. Moreover, their ability to modulate immune responses makes them an even more attractive candidate for regenerative medicine as allogeneic transplant of these cells is feasible without a substantial risk of immune rejection. MSCs secrete various immunomodulatory molecules which provide a regenerative microenvironment for a variety of injured tissues or organ to limit the damage and to increase self-regulated tissue regeneration. Autologous/allogeneic MSCs delivered via the bloodstream augment the titers of MSCs that are drawn to sites of tissue injury and can accelerate the tissue repair process. MSCs are currently being tested for their potential use in cell and gene therapy for a number of human debilitating diseases and genetic disorders. This paper summarizes the current clinical and nonclinical data for the use of MSCs in tissue repair and potential therapeutic role in various diseases.
Collapse
|
28
|
Askar SFA, Ramkisoensing AA, Atsma DE, Schalij MJ, de Vries AAF, Pijnappels DA. Engraftment patterns of human adult mesenchymal stem cells expose electrotonic and paracrine proarrhythmic mechanisms in myocardial cell cultures. Circ Arrhythm Electrophysiol 2013; 6:380-91. [PMID: 23420831 DOI: 10.1161/circep.111.000215] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND After intramyocardial injection, mesenchymal stem cells (MSCs) may engraft and influence host myocardium. However, engraftment rate and pattern of distribution are difficult to control in vivo, hampering assessment of potential adverse effects. In this study, the role of the engraftment patterns of MSCs on arrhythmicity in controllable in vitro models is investigated. METHODS AND RESULTS Cocultures of 4×10(5) neonatal rat cardiomyocytes and 7% or 28% adult human MSCs (hMSCs) in diffuse or clustered distribution patterns were prepared. Electrophysiological effects were studied by optical mapping and patch-clamping. In diffuse cocultures, hMSCs dose-dependently decreased neonatal rat cardiomyocyte excitability, slowed conduction, and prolonged action potential duration until 90% repolarization (APD90). Triggered activity (14% versus 0% in controls) and increased inducibility of re-entry (53% versus 6% in controls) were observed in 28% hMSC cocultures. MSC clusters increased APD90, slowed conduction locally, and increased re-entry inducibility (23%), without increasing triggered activity. Pharmacological heterocellular electric uncoupling increased excitability and conduction velocity to 133% in 28% hMSC cocultures, but did not alter APD90. Transwell experiments showed that hMSCs dose-dependently increased APD90, APD dispersion, inducibility of re-entry and affected specific ion channel protein levels, whereas excitability was unaltered. Incubation with hMSC-derived exosomes did not increase APD in neonatal rat cardiomyocyte cultures. CONCLUSIONS Adult hMSCs affect arrhythmicity of neonatal rat cardiomyocyte cultures by heterocellular coupling leading to depolarization-induced conduction slowing and by direct release of paracrine factors that negatively affect repolarization rate. The extent of these detrimental effects depends on the number and distribution pattern of hMSCs. These results suggest that caution should be urged against potential adverse effects of myocardial hMSC engraftment.
Collapse
Affiliation(s)
- Saïd F A Askar
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
29
|
Mureli S, Gans CP, Bare DJ, Geenen DL, Kumar NM, Banach K. Mesenchymal stem cells improve cardiac conduction by upregulation of connexin 43 through paracrine signaling. Am J Physiol Heart Circ Physiol 2012; 304:H600-9. [PMID: 23241322 DOI: 10.1152/ajpheart.00533.2012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) were shown to improve cell survival and alleviate cardiac arrhythmias when transplanted into cardiac tissue; however, little is known about the mechanism by which MSCs modify the electrophysiological properties of cardiac tissue. We aimed to distinguish the influence of cell-cell coupling between myocytes and MSCs from that of MSC-derived paracrine factors on the spontaneous activity and conduction velocity (θ) of multicellular cardiomyocyte preparations. HL-1 cells were plated on microelectrode arrays and their spontaneous activity and θ was determined from field potential recordings. In heterocellular cultures of MSCs and HL-1 cells the beating frequency was attenuated (t(0h): 2.26 ± 0.18 Hz; t(4h): 1.98 ± 0.26 Hz; P < 0.01) concomitant to the intercellular coupling between MSCs and cardiomyocytes. In HL-1 monolayers supplemented with MSC conditioned media (ConM) or tyrode (ConT) θ significantly increased in a time-dependent manner (ConT: t(0h): 2.4 cm/s ± 0.2; t(4h): 3.1 ± 0.4 cm/s), whereas the beating frequency remained constant. Connexin (Cx)43 mRNA and protein expression levels also increased after ConM or ConT treatment over the same time period. Enhanced low-density lipoprotein receptor-related protein 6 (LRP6) phosphorylation after ConT treatment implicates the Wnt signaling pathway. Suppression of Wnt secretion from MSCs (IWP-2; 5 μmol/l) reduced the efficacy of ConT to induce phospho-LRP6 and to increase θ. Inhibition of β-catenin (cardamonin; 10 μmol/l) or GSK3-α/β (LiCl; 5 mmol/l) also suppressed changes in θ, further supporting the hypothesis that MSC-mediated Cx43 upregulation occurs in part through secreted Wnt ligands and activation of the canonical Wnt signaling pathway.
Collapse
Affiliation(s)
- Shwetha Mureli
- Center for Cardiovascular Research, Department of Medicine, Section of Cardiology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|