1
|
Tian W, Ju J, Guan B, Wang T, Zhang J, Song L, Xu H. Role of hyperhomocysteinemia in atherosclerosis: from bench to bedside. Ann Med 2025; 57:2457527. [PMID: 39898976 PMCID: PMC11792134 DOI: 10.1080/07853890.2025.2457527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND Atherosclerosis is a leading cause of global mortality, driven by complex interactions between genetic, metabolic, and environmental factors. Among these, hyperhomocysteinemia (HHcy) has emerged as a significant and modifiable risk factor, contributing to endothelial dysfunction, oxidative stress, and vascular inflammation. Despite increasing recognition of its role in atherogenesis, the precise mechanisms and clinical implications of HHcy remain incompletely understood, necessitating a comprehensive review to connect recent mechanistic insights with practical applications. METHODS We analyzed the various mechanisms whereby HHcy accelerates the progression of atherosclerosis, and conducted a comprehensive review of publications in the fields of HHcy and atherosclerosis. RESULTS HHcy promotes atherosclerosis through several mechanisms, including inflammation, oxidative stress, epigenetic modification, and lipoprotein metabolism alteration. Moreover, this discussion extends to current strategies for the prevention and clinical management of HHcy-induced atherosclerosis. CONCLUSION This review consolidates and elucidates the latest advancements and insights into the role of HHcy in atherosclerosis. The comprehensive narrative connects fundamental research with clinical applications. Contemporary studies highlight the complex interplay between HHcy and atherosclerosis, establishing HHcy as not only a contributing risk factor but also an accelerator of various atherogenic processes.
Collapse
Affiliation(s)
- Wende Tian
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing China
| | - Jianqing Ju
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing China
| | - Baoyi Guan
- Department of Internal Medicine-Cardiovascular, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tongxin Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing China
| | - Jiqian Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Luxia Song
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing China
| | - Hao Xu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing China
| |
Collapse
|
2
|
Zhou X, Jiang S, Guo S, Yao S, Sheng Q, Zhang Q, Dong J, Liao L. C/EBPβ-Lin28a positive feedback loop triggered by C/EBPβ hypomethylation enhances the proliferation and migration of vascular smooth muscle cells in restenosis. Chin Med J (Engl) 2025; 138:419-429. [PMID: 38809089 PMCID: PMC11845193 DOI: 10.1097/cm9.0000000000003110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND The main cause of restenosis after percutaneous transluminal angioplasty (PTA) is the excessive proliferation and migration of vascular smooth muscle cells (VSMCs). Lin28a has been reported to play critical regulatory roles in this process. However, whether CCAAT/enhancer-binding proteins β (C/EBPβ) binds to the Lin28a promoter and drives the progression of restenosis has not been clarified. Therefore, in the present study, we aim to clarify the role of C/EBPβ-Lin28a axis in restenosis. METHODS Restenosis and atherosclerosis rat models of type 2 diabetes ( n = 20, for each group) were established by subjecting to PTA. Subsequently, the difference in DNA methylation status and expression of C/EBPβ between the two groups were assessed. EdU, Transwell, and rescue assays were performed to assess the effect of C/EBPβ on the proliferation and migration of VSMCs. DNA methylation status was further assessed using Methyltarget sequencing. The interaction between Lin28a and ten-eleven translocation 1 (TET1) was analysed using co-immunoprecipitation (Co-IP) assay. Student's t -test and one-way analysis of variance were used for statistical analysis. RESULTS C/EBPβ expression was upregulated and accompanied by hypomethylation of its promoter in restenosis when compared with atherosclerosis. In vitroC/EBPβ overexpression facilitated the proliferation and migration of VSMCs and was associated with increased Lin28a expression. Conversely, C/EBPβ knockdown resulted in the opposite effects. Chromatin immunoprecipitation assays further demonstrated that C/EBPβ could directly bind to Lin28a promoter. Increased C/EBPβ expression and enhanced proliferation and migration of VSMCs were observed after decitabine treatment. Further, mechanical stretch promoted C/EBPβ and Lin28a expression accompanied by C/EBPβ hypomethylation. Additionally, Lin28a overexpression reduced C/EBPβ methylation via recruiting TET1 and enhanced C/EBPβ-mediated proliferation and migration of VSMCs. The opposite was noted in Lin28a knockdown cells. CONCLUSION Our findings suggest that the C/EBPβ-Lin28a axis is a driver of restenosis progression, and presents a promising therapeutic target for restenosis.
Collapse
Affiliation(s)
- Xiaojun Zhou
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, Shandong 250014, China
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250014, China
| | - Shan Jiang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Siyi Guo
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shuai Yao
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qiqi Sheng
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qian Zhang
- Department of Pharmacology, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Jianjun Dong
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Lin Liao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, Shandong 250014, China
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250014, China
| |
Collapse
|
3
|
Gong S, Li Y, Yan K, Shi Z, Leng J, Bao Y, Ning K. The Crosstalk Between Endothelial Cells, Smooth Muscle Cells, and Macrophages in Atherosclerosis. Int J Mol Sci 2025; 26:1457. [PMID: 40003923 PMCID: PMC11855868 DOI: 10.3390/ijms26041457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/02/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory vascular disease closely tied to cellular metabolism. Recent genome-wide association study data have suggested the significant roles of endothelial cells, smooth muscle cells, and macrophages in the regression and exacerbation of AS. However, the impact of cellular crosstalk and cellular metabolic derangements on disease progression in AS is vaguely understood. In this review, we analyze the roles of the three cell types in AS. We also summarize the crosstalk between the two of them, and the associated molecules and consequences involved. In addition, we emphasize potential therapeutic targets and highlight the importance of the three-cell co-culture model and extracellular vesicles in AS-related research, providing ideas for future studies.
Collapse
Affiliation(s)
- Sihe Gong
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; (S.G.); (Y.L.); (K.Y.); (Z.S.)
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Yanni Li
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; (S.G.); (Y.L.); (K.Y.); (Z.S.)
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Kaijie Yan
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; (S.G.); (Y.L.); (K.Y.); (Z.S.)
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Zhonghong Shi
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; (S.G.); (Y.L.); (K.Y.); (Z.S.)
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Jing Leng
- Preclinical Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China;
| | - Yimin Bao
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; (S.G.); (Y.L.); (K.Y.); (Z.S.)
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Ke Ning
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; (S.G.); (Y.L.); (K.Y.); (Z.S.)
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| |
Collapse
|
4
|
Jiang Y, Liang B, Wu Q, Wang JR, Liu B. One new triterpenoids from Momordica charantia L. Nat Prod Res 2024; 38:1375-1380. [PMID: 36377715 DOI: 10.1080/14786419.2022.2144302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022]
Abstract
Momordica charantia L. (M. charantia) is an annual climbing herb in Cucurbitaceae. It is not only a food, but also a drug with a long history of application. This study aims to isolate and identify the chemical constituents form M. charantia and evaluate their inhibiting effect on Hcy-induced proliferation of VSMCs. Silica column chromatography, ODS silica column chromatography, Sephadex LH-20 column chromatography and semi-preparative HPLC were used to obtain one new compound (1). The inhibition on Hcy-induced proliferation of VSMCs 1 was tested through MTT method. As a result, 1 could partially rescue Hcy-induced proliferation of VSMCs at both 5 and 25 μM.
Collapse
Affiliation(s)
- Yue Jiang
- Department of Cardiology, The fourth Affiliated Hospital of China Medical University, Shenyang, P.R. China
| | - Bing Liang
- Department of Critical Care Medcine, The fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Qiong Wu
- Department of Critical Care Medcine, The fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jing-Ru Wang
- Department of Cardiology, The fourth Affiliated Hospital of China Medical University, Shenyang, P.R. China
| | - Bing Liu
- College of Pharmacy, Harbin University of Commerce, Harbin, P.R. China
| |
Collapse
|
5
|
Liu Z, Feng G, Chen Y, Fan J, Liang Z, Bi J, Dai X. Hyperhomocysteinemia may aggravate abdominal aortic aneurysm formation by up-regulating RASSF2. Gene 2024; 898:148036. [PMID: 38036076 DOI: 10.1016/j.gene.2023.148036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/14/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023]
Abstract
Abdominal aortic aneurysm (AAA) is a fatal cardiovascular disorder with high mortality and morbidity rates. To date, no drug has shown to significantly alleviate the risk of AAA. Previous studies have indicated that hyperhomocysteinemia (HHcy) significantly increases the incidence of AAA by disrupting endothelial cell homeostasis; however, the potential molecular mechanisms require clarification. Herein, we aimed to integrate transcriptomics analysis and molecular biology experiments to explore the potential molecular targets by which HHcy may increase the incidence of AAA. We integrated two AAA data profiles (GSE57691 and GSE7084) based on previously published microarray ribonucleic acid sequencing (RNAseq) data from the GEO database. Additionally, 500 μM homocysteine-treated human aorta endothelium cells microarray dataset (GSE175748) was downloaded and processed. Subsequently, single-cell RNA-seq profiles of the aortic aneurysms (GSE155468) were downloaded, scaled, and processed for further analysis. The microarray profiles analysis demonstrated that the Ras association domain family member 2 (RASSF2) and interleukin (IL)-1β are potentially the target genes involved in the HHcy-mediated aggravation of AAA formation. Single-cell RNAseq analysis revealed that RASSF2 might impair endothelial cell function by increasing inflammatory cell infiltration to participate in AAA formation. Finally, we conducted reverse transcription quantitative polymerase chain reaction and immunofluorescence analysis to validate the up-regulated mRNA expression of RASSF2 (p = 0.008) and IL-1β (p = 0.002) in AAA tissue compared to control tissue. Immunofluorescence staining revealed overexpression of RASSF2 protein in AAA tissue sections compared to control tissue (p = 0.037). Co-localization of RASSF2 and the aortic endothelium cell marker, CD31, was observed in tissue sections, indicating the potential involvement of RASSF2 in aortic endothelial cells. To summarise, our preliminary study revealed that HHcy may worsen AAA formation by up-regulating the expression of RASSF2 and IL-1β in aortic endothelium cells.
Collapse
Affiliation(s)
- Zongwei Liu
- Department of Vascular surgery of Tianjin Medical University General Hospital, Tianjin, PR China
| | - Guilin Feng
- Department of Vascular surgery of Tianjin Medical University General Hospital, Tianjin, PR China
| | - Yonghui Chen
- Department of Vascular surgery of Tianjin Medical University General Hospital, Tianjin, PR China
| | - Jibo Fan
- Department of Vascular surgery of Tianjin Medical University General Hospital, Tianjin, PR China
| | - Zhian Liang
- Department of Vascular surgery of Tianjin Medical University General Hospital, Tianjin, PR China
| | - Jiaxue Bi
- Department of Vascular surgery of Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Xiangchen Dai
- Department of Vascular surgery of Tianjin Medical University General Hospital, Tianjin, PR China.
| |
Collapse
|
6
|
Krumpolec P, Kodada D, Hadžega D, Petrovič O, Babišová K, Dosedla E, Turcsányiová Z, Minárik G. Changes in DNA methylation associated with a specific mode of delivery: a pilot study. Front Med (Lausanne) 2024; 11:1291429. [PMID: 38314203 PMCID: PMC10835804 DOI: 10.3389/fmed.2024.1291429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/05/2024] [Indexed: 02/06/2024] Open
Abstract
Background The mode of delivery represents an epigenetic factor with potential to affect further development of the individual by multiple mechanisms. DNA methylation may be one of them, representing a major epigenetic mechanism involving direct chemical modification of the individual's DNA. This pilot study aims to examine whether a specific mode of delivery induces changes of DNA methylation by comparing the umbilical cord blood and peripheral blood of the newborns. Methods Blood samples from infants born by vaginal delivery and caesarean section were analysed to prepare the Methylseq library according to NEBNext enzymatic Methyl-seq Methylation Library Preparation Kit with further generation of target-enriched DNA libraries using the Twist Human Methylome Panel. DNA methylation status was determined using Illumina next-generation sequencing (NGS). Results We identified 168 differentially methylated regions in umbilical cord blood samples and 157 regions in peripheral blood samples. These were associated with 59 common biological, metabolic and signalling pathways for umbilical cord and peripheral blood samples. Conclusion Caesarean section is likely to represent an important epigenetic factor with the potential to induce changes in the genome that could play an important role in development of a broad spectrum of disorders. Our results could contribute to the elucidation of how epigenetic factors, such as a specific mode of delivery, could have adverse impact on health of an individual later in their life.
Collapse
Affiliation(s)
| | - Dominik Kodada
- Medirex Group Academy n.o., Nitra, Slovakia
- Department of Clinical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | | | | | | | - Erik Dosedla
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Košice, Slovakia
| | - Zuzana Turcsányiová
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Košice, Slovakia
| | | |
Collapse
|
7
|
Peng F, Xu B, Xia J, Chen X, Liu A. Association Between Serum Homocysteine Concentration, Aneurysm Wall Inflammation, and Aneurysm Symptoms in Intracranial Fusiform Aneurysm. Acad Radiol 2024; 31:168-179. [PMID: 37211477 DOI: 10.1016/j.acra.2023.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/23/2023]
Abstract
RATIONALE AND OBJECTIVES The pathophysiology of fusiform intracranial aneurysm (FIA) involves inflammatory processes, and homocysteine plays a role in the inflammatory processes in the vessel wall. Moreover, aneurysm wall enhancement (AWE) has emerged as a new imaging biomarker of aneurysm wall inflammatory pathologies. To investigate the pathophysiological mechanisms of aneurysm wall inflammation and FIA instability, we aimed to determine the associations between the homocysteine concentration, AWE, and FIAs' related symptoms. MATERIALS AND METHODS We retrospectively reviewed the data of 53 patients with FIA who underwent both high-resolution magnetic resonance imaging and serum homocysteine concentration measurement. FIAs' related symptoms were defined as ischemic stroke or transient ischemic attack, cranial nerve compression, brainstem compression, and acute headache. The contrast ratio of the signal intensity of the aneurysm wall to the pituitary stalk (CRstalk) was used to indicate AWE. Multivariate logistic regression and receiver operating characteristic (ROC) curve analyses were performed to determine how well the independent factors could predict FIAs' related symptoms. Predictors of CRstalk were also investigated. Spearman's correlation coefficient was used to identify the potential associations between these predictors. RESULTS Fifty-three patients were included, of whom 23 (43.4%) presented with FIAs' related symptoms. After adjusting for baseline differences in the multivariate logistic regression analysis, the CRstalk (odds ratio [OR]=3.207, P = .023) and homocysteine concentration (OR=1.344, P = .015) independently predicted FIAs' related symptoms. The CRstalk was able to differentiate between FIAs with and without symptoms (area under the ROC curve [AUC]=0.805), with an optimal cutoff value of 0.76. The homocysteine concentration could also differentiate between FIAs with and without symptoms (AUC=0.788), with an optimal cutoff value of 13.13. The combination of the CRstalk and homocysteine concentration had a better ability to identify symptomatic FIAs (AUC=0.857). Male sex (OR=0.536, P = .018), FIAs' related symptoms (OR=1.292, P = .038), and homocysteine concentration (OR=1.254, P = .045) independently predicted the CRstalk. CONCLUSION A higher serum homocysteine concentration and greater AWE indicate FIA instability. Serum homocysteine concentration may be a useful biomarker of FIA instability; however, this needs to be verified in future studies.
Collapse
Affiliation(s)
- Fei Peng
- Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China (F.P., B.X., J.X., X.C., A.L.)
| | - Boya Xu
- Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China (F.P., B.X., J.X., X.C., A.L.)
| | - Jiaxiang Xia
- Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China (F.P., B.X., J.X., X.C., A.L.)
| | - Xuge Chen
- Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China (F.P., B.X., J.X., X.C., A.L.)
| | - Aihua Liu
- Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China (F.P., B.X., J.X., X.C., A.L.).
| |
Collapse
|
8
|
Xiong Y, Wang Y, Yang T, Luo Y, Xu S, Li L. Receptor Tyrosine Kinase: Still an Interesting Target to Inhibit the Proliferation of Vascular Smooth Muscle Cells. Am J Cardiovasc Drugs 2023; 23:497-518. [PMID: 37524956 DOI: 10.1007/s40256-023-00596-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/05/2023] [Indexed: 08/02/2023]
Abstract
Vascular smooth muscle cells (VSMCs) proliferation is a critical event that contributes to the pathogenesis of vascular remodeling such as hypertension, restenosis, and pulmonary hypertension. Increasing evidences have revealed that VSMCs proliferation is associated with the activation of receptor tyrosine kinases (RTKs) by their ligands, including the insulin-like growth factor receptor (IGFR), fibroblast growth factor receptor (FGFR), epidermal growth factor receptor (EGFR), vascular endothelial growth factor receptor (VEGFR), and platelet-derived growth factor receptor (PDGFR). Moreover, some receptor tyrosinase inhibitors (TKIs) have been found and can prevent VSMCs proliferation to attenuate vascular remodeling. Therefore, this review will describe recent research progress on the role of RTKs and their inhibitors in controlling VSMCs proliferation, which helps to better understand the function of VSMCs proliferation in cardiovascular events and is beneficial for the prevention and treatment of vascular disease.
Collapse
Affiliation(s)
- Yilin Xiong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China
| | - Yan Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China
| | - Tao Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China
| | - Yunmei Luo
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China
| | - Shangfu Xu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China
| | - Lisheng Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China.
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
9
|
Fan R, Wang Y, Zhang J, An X, Liu S, Bai J, Li J, Lin Q, Xie Y, Liao J, Xia Y. Hyperhomocysteinaemia Promotes Doxorubicin-Induced Cardiotoxicity in Mice. Pharmaceuticals (Basel) 2023; 16:1212. [PMID: 37765020 PMCID: PMC10534320 DOI: 10.3390/ph16091212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Doxorubicin, a widely used chemotherapeutic drug in clinical oncology, causes a series of cardiac side effects referred to as doxorubicin-induced cardiotoxicity. Hyperhomocysteinaemia is an independent risk factor for multiple cardiovascular diseases. However, whether hyperhomocysteinaemia contributes to doxorubicin-induced cardiotoxicity is currently unknown. In this study, we explored the pathogenic effects of hyperhomocysteinaemia induced by dietary methionine supplementation (2% wt/wt in rodent chow) in a mouse model of doxorubicin-induced cardiotoxicity. Our data showed that methionine supplementation doubled serum homocysteine levels, inducing mild hyperhomocysteinaemia. Doxorubicin at a cumulative dosage of 25 mg/kg body weight led to significant weight loss and severe cardiac dysfunction, which were further exacerbated by methionine-induced mild hyperhomocysteinaemia. Doxorubicin-induced cardiac atrophy, cytoplasmic vacuolisation, myofibrillar disarray and loss, as well as cardiac fibrosis, were also exacerbated by methionine-induced mild hyperhomocysteinaemia. Additional folic acid supplementation (0.006% wt/wt) prevented methionine-induced hyperhomocysteinaemia and inhibited hyperhomocysteinaemia-aggravated cardiac dysfunction and cardiomyopathy. In particular, hyperhomocysteinaemia increased both serum and cardiac oxidative stress, which could all be inhibited by folic acid supplementation. Therefore, we demonstrated for the first time that hyperhomocysteinaemia could exacerbate doxorubicin-induced cardiotoxicity in mice, and the pathogenic effects of hyperhomocysteinaemia might at least partially correlate with increased oxidative stress and could be prevented by folic acid supplementation. Our study provides preliminary experimental evidence for the assessment of hyperhomocysteinaemia as a potential risk factor for chemotherapy-induced cardiotoxicity in cancer patients.
Collapse
Affiliation(s)
- Rui Fan
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yao Wang
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Jinjin Zhang
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiangbo An
- Department of Interventional Therapy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Shuang Liu
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116004, China
| | - Jie Bai
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian 116004, China
| | - Jiatian Li
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Qiuyue Lin
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yunpeng Xie
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Jiawei Liao
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yunlong Xia
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
10
|
Wu C, Duan X, Wang X, Wang L. Advances in the role of epigenetics in homocysteine-related diseases. Epigenomics 2023; 15:769-795. [PMID: 37718931 DOI: 10.2217/epi-2023-0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Homocysteine has a wide range of biological effects. However, the specific molecular mechanism of its pathogenicity is still unclear. The diseases induced by hyperhomocysteinemia (HHcy) are called homocysteine-related diseases. Clinical treatment of HHcy is mainly through folic acid and B-complex vitamins, which are not effective in reducing the associated end point events. Epigenetics is the alteration of heritable genes caused by DNA methylation, histone modification, noncoding RNAs and chromatin remodeling without altering the DNA sequence. In recent years the role of epigenetics in homocysteine-associated diseases has been gradually discovered. This article summarizes the latest evidence on the role of epigenetics in HHcy, providing new directions for its prevention and treatment.
Collapse
Affiliation(s)
- Chengyan Wu
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Xulei Duan
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Xuehui Wang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Libo Wang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
11
|
Sum H, Brewer AC. Epigenetic modifications as therapeutic targets in atherosclerosis: a focus on DNA methylation and non-coding RNAs. Front Cardiovasc Med 2023; 10:1183181. [PMID: 37304954 PMCID: PMC10248074 DOI: 10.3389/fcvm.2023.1183181] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Significant progress in the diagnosis and treatment of cardiovascular disease (CVD) has been made in the past decade, yet it remains a leading cause of morbidity and mortality globally, claiming an estimated 17.9 million deaths per year. Although encompassing any condition that affects the circulatory system, including thrombotic blockage, stenosis, aneurysms, blood clots and arteriosclerosis (general hardening of the arteries), the most prevalent underlying hallmark of CVD is atherosclerosis; the plaque-associated arterial thickening. Further, distinct CVD conditions have overlapping dysregulated molecular and cellular characteristics which underlie their development and progression, suggesting some common aetiology. The identification of heritable genetic mutations associated with the development of atherosclerotic vascular disease (AVD), in particular resulting from Genome Wide Association Studies (GWAS) studies has significantly improved the ability to identify individuals at risk. However, it is increasingly recognised that environmentally-acquired, epigenetic changes are key factors associated with atherosclerosis development. Increasing evidence suggests that these epigenetic changes, most notably DNA methylation and the misexpression of non-coding, microRNAs (miRNAs) are potentially both predictive and causal in AVD development. This, together with their reversible nature, makes them both useful biomarkers for disease and attractive therapeutic targets potentially to reverse AVD progression. We consider here the association of aberrant DNA methylation and dysregulated miRNA expression with the aetiology and progression of atherosclerosis, and the potential development of novel cell-based strategies to target these epigenetic changes therapeutically.
Collapse
|
12
|
Shi L, Zhou J, Dong J, Gao F, Zhao W. Association of low-level blood lead with plasma homocysteine in US children and adolescents. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023:10.1007/s10653-023-01526-7. [PMID: 37029846 DOI: 10.1007/s10653-023-01526-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
Although research in adults has revealed a positive relationship between blood lead levels (BLLs) and homocysteine (Hcy) levels in adults, few studies have investigated this relationship in children and adolescents. We evaluated the relationship between lowlevel blood lead and Hcy levels in US children and adolescents. A total of 8,313 children and adolescents aged 8-19 participated in this study via the National Health and Nutrition Examination Survey 1999-2006. Multivariable linear regression analyses were performed to examine the association between continuous BLLs and Hcy levels. The dose-dependent relationship between continuous BLLs and Hcy levels was analyzed using smooth curve fitting. The average age of participants was 14.1 ± 3.3 years (50.3% male). The mean values of BLLs and Hcy levels were 1.45 μg/dL and 5.77 μmol/L, respectively. In a multivariable adjusted model, an increase in 1.0 μg/dL of BLLs was associated with an elevation of 0.06 μmol/L in Hcy levels (β = 0.06, 95%CI:0.02-0.10, P = 0.001). A linear relationship between BLLs and Hcy levels was discovered using smooth curve fitting (P non-linearity = 0.464). The relationship between low-level blood lead and Hcy levels was stronger on participants with lower serum folate levels (P for interaction = 0.002). Low BLLs were positively associated with plasma Hcy levels in children and adolescents, which varies depending on the levels of folate, vitamin B, and dietary supplements involved in Hcy metabolism.
Collapse
Affiliation(s)
- Lingfei Shi
- Department of Geriatrics and Psychiatry, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
| | - Jia Zhou
- Cancer Center, Gamma Knife Treatment Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
| | - Jinjiang Dong
- Department of Neurosurgery, First People's Hospital of Chun'an City, Hangzhou, 311700, Zhejiang, China
| | - Faliang Gao
- Center for Rehabilitation Medicine, Department of Neurosurgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China.
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China.
| | - Wenyan Zhao
- Center for General Practice Medicine, Department of General Practice Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
13
|
Lim JW, Kim CW, Park HO, Chung EY, Chae C, Son J, Shin YH, Park SH, Choi SM. Association between shift work and serum homocysteine level in female electronic manufacturing services workers. Ann Occup Environ Med 2023; 35:e4. [PMID: 37063598 PMCID: PMC10089812 DOI: 10.35371/aoem.2023.35.e4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/27/2022] [Accepted: 02/06/2023] [Indexed: 03/29/2023] Open
Abstract
Background Shift work has been shown to increase the risk of cardiovascular disease (CVD) based on several evidences. The classic risk factors of CVD include age, hypertension, smoking, obesity and diabetes. Recently, the serum homocysteine level has been reported to be a valuable indicator of CVD risk. This study aimed to determine the variation in serum homocysteine level as a cardiovascular risk indicator among female workers according to shift work. Methods The data of regular health examination of workers at an electronic manufacturing services company in Yeongnam region, South Korea in 2019 were examined in this study. The investigation was based on a cross-sectional study conducted on 697 female workers (199 day workers and 498 shift workers). The sociodemographic and biochemical characteristics were compared between day workers and shift workers. Through a logistic regression analysis, the odds ratio (OR) of the increased serum homocysteine level in relation to shift work was determined. Results Compared to female day workers, female shift workers showed significantly higher level of serum homocysteine (8.85 ± 2.16 vs. 9.42 ± 2.04 μmol/mL; p = 0.001). The OR of day workers against shift workers was 1.81 (95% confidence interval [CI]: 1.25-2.63). With the adjustment of variables that may influence the level of serum homocysteine, the adjusted OR was 1.68 (95% CI: 1.09-2.60). Conclusions The serum homocysteine level was significantly higher in shift workers than in day workers. It is thus likely to be a useful predictor of CVD in shift workers.
Collapse
|
14
|
Zhang D, Ning J, Ramprasath T, Yu C, Zheng X, Song P, Xie Z, Zou MH. Kynurenine promotes neonatal heart regeneration by stimulating cardiomyocyte proliferation and cardiac angiogenesis. Nat Commun 2022; 13:6371. [PMID: 36289221 PMCID: PMC9606021 DOI: 10.1038/s41467-022-33734-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 09/29/2022] [Indexed: 12/25/2022] Open
Abstract
Indoleamine 2,3 dioxygenase-1 (IDO1) catalyzes tryptophan-kynurenine metabolism in many inflammatory and cancer diseases. Of note, acute inflammation that occurs immediately after heart injury is essential for neonatal cardiomyocyte proliferation and heart regeneration. However, the IDO1-catalyzed tryptophan metabolism during heart regeneration is largely unexplored. Here, we find that apical neonatal mouse heart resection surgery led to rapid and consistent increases in cardiac IDO1 expression and kynurenine accumulation. Cardiac deletion of Ido1 gene or chemical inhibition of IDO1 impairs heart regeneration. Mechanistically, elevated kynurenine triggers cardiomyocyte proliferation by activating the cytoplasmic aryl hydrocarbon receptor-SRC-YAP/ERK pathway. In addition, cardiomyocyte-derived kynurenine transports to endothelial cells and stimulates cardiac angiogenesis by promoting aryl hydrocarbon receptor nuclear translocation and enhancing vascular endothelial growth factor A expression. Notably, Ahr deletion prevents indoleamine 2,3 dioxygenase -kynurenine-associated heart regeneration. In summary, increasing indoleamine 2,3 dioxygenase-derived kynurenine level promotes cardiac regeneration by functioning as an endogenous regulator of cardiomyocyte proliferation and cardiac angiogenesis.
Collapse
Affiliation(s)
- Donghong Zhang
- Center for Molecular and Translational Medicine, Georgia State University, 157 Decatur Street North East, Atlanta, GA, 30303, USA
| | - Jinfeng Ning
- Center for Molecular and Translational Medicine, Georgia State University, 157 Decatur Street North East, Atlanta, GA, 30303, USA
| | - Tharmarajan Ramprasath
- Center for Molecular and Translational Medicine, Georgia State University, 157 Decatur Street North East, Atlanta, GA, 30303, USA
| | - Changjiang Yu
- Center for Molecular and Translational Medicine, Georgia State University, 157 Decatur Street North East, Atlanta, GA, 30303, USA
| | - Xiaoxu Zheng
- Center for Molecular and Translational Medicine, Georgia State University, 157 Decatur Street North East, Atlanta, GA, 30303, USA
| | - Ping Song
- Center for Molecular and Translational Medicine, Georgia State University, 157 Decatur Street North East, Atlanta, GA, 30303, USA
| | - Zhonglin Xie
- Center for Molecular and Translational Medicine, Georgia State University, 157 Decatur Street North East, Atlanta, GA, 30303, USA
| | - Ming-Hui Zou
- Center for Molecular and Translational Medicine, Georgia State University, 157 Decatur Street North East, Atlanta, GA, 30303, USA.
| |
Collapse
|
15
|
Deng Y, Li Z, An X, Fan R, Wang Y, Li J, Yang X, Liao J, Xia Y. Hyperhomocysteinemia Promotes Cardiac Hypertrophy in Hypertension. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1486157. [PMID: 36046692 PMCID: PMC9423973 DOI: 10.1155/2022/1486157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/03/2022] [Indexed: 12/22/2022]
Abstract
Hyperhomocysteinemia (HHcy) is positively linked with several cardiovascular diseases; however, its role and underlying mechanisms in pathological cardiac hypertrophy are still unclear. Here, we focused on the effects and underlying mechanisms of HHcy in hypertensive cardiac hypertrophy, one of the most common and typical types of pathological cardiac hypertrophy. By a retrospective analysis of the association between HHcy and cardiac hypertrophy in a hypertensive cohort, we found that the prevalence of HHcy was higher in patients with hypertrophy and significantly associated with the presence of cardiac hypertrophy after adjusting for other conventional risk factors. In mice, HHcy induced by a methionine (2% wt/wt) diet feeding significantly promoted cardiac hypertrophy as well as cardiac inflammation and fibrosis induced by 3-week angiotensin ІІ (AngІІ) infusion (1000 ng/kg/min), while folic acid (0.006% wt/wt) supplement corrected HHcy and attenuated AngII-stimulated cardiac phenotypes. Mechanistic studies further showed that homocysteine (Hcy) exacerbated AngII-stimulated expression of Calcineurin and nuclear factor of activated T cells (NFAT), which could be attenuated by folic acid both in mice and in neonatal rat cardiomyocytes. Moreover, treatment with cyclosporin A, an inhibitor of Calcineurin, blocked Hcy-stimulated Calcineurin-NFAT signaling and hypertrophy in neonatal rat cardiomyocytes. In conclusion, our study indicates that HHcy promotes cardiac hypertrophy in hypertension, and Calcineurin-NFAT pathway might be involved in the pro-hypertrophic effect of Hcy.
Collapse
Affiliation(s)
- Yawen Deng
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhitong Li
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiangbo An
- Department of Interventional Therapy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Rui Fan
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yao Wang
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiatian Li
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaolei Yang
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiawei Liao
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yunlong Xia
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
16
|
Kim SA, Lee AS, Lee HB, Hur HJ, Lee SH, Sung MJ. Soluble epoxide hydrolase inhibitor, TPPU, attenuates progression of atherosclerotic lesions and vascular smooth muscle cell phenotypic switching. Vascul Pharmacol 2022; 145:107086. [PMID: 35752378 DOI: 10.1016/j.vph.2022.107086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/22/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022]
Abstract
Atherosclerosis manifests as a chronic inflammation resulting from multiple interactions between circulating factors and various cell types in blood vessel walls. Growing evidence shows that phenotypic switching and proliferation of vascular smooth muscle cells (VSMCs) plays an important role in the progression of atherosclerosis. Soluble epoxide hydrolase (sEH)/epoxyeicosatrienoic acids are mediated by vascular inflammation. N-[1-(1-oxopropyl)-4-piperidinyl]-N'-[4-(trifluoromethoxy)phenyl]-urea (TPPU) is an sEH inhibitor. This study investigated the therapeutic effect of TPPU on atherosclerosis in vivo and homocysteine-induced vascular inflammation in vitro and explored their molecular mechanisms. We found that TPPU decreased WD-induced atherosclerotic plaque lesions, inflammation, expression of sEH, and nicotinamide adenine dinucleotide phosphate oxidase-4 (Nox4), and increased the expression of contractile phenotype marker of aortas in ApoE (-/-) mice. TPPU also inhibited homocysteine-stimulated VSMC proliferation, migration, and phenotypic switching, and reduced Nox4 in human-aorta-VSMC regulation. We conclude that TPPU has anti-atherosclerotic effects, potentially because of the suppression of VSMC phenotype switching. Thus, TPPU could be a potential therapeutic target for phenotypic switching attenuation in atherosclerosis.
Collapse
Affiliation(s)
- So Ah Kim
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, Jeollabuk-Do, Republic of Korea; Department of Food Biotechnology, Chonbuk National University, Jeollabuk-Do, Republic of Korea
| | - Ae Sin Lee
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, Jeollabuk-Do, Republic of Korea
| | - Han Bit Lee
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, Jeollabuk-Do, Republic of Korea
| | - Haeng Jeon Hur
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, Jeollabuk-Do, Republic of Korea
| | - Sang Hee Lee
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, Jeollabuk-Do, Republic of Korea
| | - Mi Jeong Sung
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, Jeollabuk-Do, Republic of Korea.
| |
Collapse
|
17
|
Bajic Z, Sobot T, Skrbic R, Stojiljkovic MP, Ponorac N, Matavulj A, Djuric DM. Homocysteine, Vitamins B6 and Folic Acid in Experimental Models of Myocardial Infarction and Heart Failure—How Strong Is That Link? Biomolecules 2022; 12:biom12040536. [PMID: 35454125 PMCID: PMC9027107 DOI: 10.3390/biom12040536] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/29/2022] Open
Abstract
Cardiovascular diseases are the leading cause of death and the main cause of disability. In the last decade, homocysteine has been found to be a risk factor or a marker for cardiovascular diseases, including myocardial infarction (MI) and heart failure (HF). There are indications that vitamin B6 plays a significant role in the process of transsulfuration in homocysteine metabolism, specifically, in a part of the reaction in which homocysteine transfers a sulfhydryl group to serine to form α-ketobutyrate and cysteine. Therefore, an elevated homocysteine concentration (hyperhomocysteinemia) could be a consequence of vitamin B6 and/or folate deficiency. Hyperhomocysteinemia in turn could damage the endothelium and the blood vessel wall and induce worsening of atherosclerotic process, having a negative impact on the mechanisms underlying MI and HF, such as oxidative stress, inflammation, and altered function of gasotransmitters. Given the importance of the vitamin B6 in homocysteine metabolism, in this paper, we review its role in reducing oxidative stress and inflammation, influencing the functions of gasotransmitters, and improving vasodilatation and coronary flow in animal models of MI and HF.
Collapse
Affiliation(s)
- Zorislava Bajic
- Department of Physiology, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina; (Z.B.); (T.S.); (N.P.); (A.M.)
| | - Tanja Sobot
- Department of Physiology, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina; (Z.B.); (T.S.); (N.P.); (A.M.)
| | - Ranko Skrbic
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina; (R.S.); (M.P.S.)
| | - Milos P. Stojiljkovic
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina; (R.S.); (M.P.S.)
| | - Nenad Ponorac
- Department of Physiology, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina; (Z.B.); (T.S.); (N.P.); (A.M.)
| | - Amela Matavulj
- Department of Physiology, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina; (Z.B.); (T.S.); (N.P.); (A.M.)
| | - Dragan M. Djuric
- Faculty of Medicine, Institute of Medical Physiology “Richard Burian”, University of Belgrade, 11000 Belgrade, Serbia
- Correspondence:
| |
Collapse
|
18
|
Cellular Crosstalk between Endothelial and Smooth Muscle Cells in Vascular Wall Remodeling. Int J Mol Sci 2021; 22:ijms22147284. [PMID: 34298897 PMCID: PMC8306829 DOI: 10.3390/ijms22147284] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 12/24/2022] Open
Abstract
Pathological vascular wall remodeling refers to the structural and functional changes of the vessel wall that occur in response to injury that eventually leads to cardiovascular disease (CVD). Vessel wall are composed of two major primary cells types, endothelial cells (EC) and vascular smooth muscle cells (VSMCs). The physiological communications between these two cell types (EC–VSMCs) are crucial in the development of the vasculature and in the homeostasis of mature vessels. Moreover, aberrant EC–VSMCs communication has been associated to the promotor of various disease states including vascular wall remodeling. Paracrine regulations by bioactive molecules, communication via direct contact (junctions) or information transfer via extracellular vesicles or extracellular matrix are main crosstalk mechanisms. Identification of the nature of this EC–VSMCs crosstalk may offer strategies to develop new insights for prevention and treatment of disease that curse with vascular remodeling. Here, we will review the molecular mechanisms underlying the interplay between EC and VSMCs. Additionally, we highlight the potential applicable methodologies of the co-culture systems to identify cellular and molecular mechanisms involved in pathological vascular wall remodeling, opening questions about the future research directions.
Collapse
|
19
|
Xu H, Li S, Liu YS. Roles and Mechanisms of DNA Methylation in Vascular Aging and Related Diseases. Front Cell Dev Biol 2021; 9:699374. [PMID: 34262910 PMCID: PMC8273304 DOI: 10.3389/fcell.2021.699374] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022] Open
Abstract
Vascular aging is a pivotal risk factor promoting vascular dysfunction, the development and progression of vascular aging-related diseases. The structure and function of endothelial cells (ECs), vascular smooth muscle cells (VSMCs), fibroblasts, and macrophages are disrupted during the aging process, causing vascular cell senescence as well as vascular dysfunction. DNA methylation, an epigenetic mechanism, involves the alteration of gene transcription without changing the DNA sequence. It is a dynamically reversible process modulated by methyltransferases and demethyltransferases. Emerging evidence reveals that DNA methylation is implicated in the vascular aging process and plays a central role in regulating vascular aging-related diseases. In this review, we seek to clarify the mechanisms of DNA methylation in modulating ECs, VSMCs, fibroblasts, and macrophages functions and primarily focus on the connection between DNA methylation and vascular aging-related diseases. Therefore, we represent many vascular aging-related genes which are modulated by DNA methylation. Besides, we concentrate on the potential clinical application of DNA methylation to serve as a reliable diagnostic tool and DNA methylation-based therapeutic drugs for vascular aging-related diseases.
Collapse
Affiliation(s)
- Hui Xu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Aging and Age-Related Disease Research, Central South University, Changsha, China
| | - Shuang Li
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Aging and Age-Related Disease Research, Central South University, Changsha, China
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Aging and Age-Related Disease Research, Central South University, Changsha, China
| |
Collapse
|
20
|
DNA Methylation in Atherosclerosis: A New Perspective. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6623657. [PMID: 34257689 PMCID: PMC8249120 DOI: 10.1155/2021/6623657] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 06/08/2021] [Indexed: 01/14/2023]
Abstract
Atherosclerotic cardiovascular diseases, in which atherosclerosis (AS) is the main pathologic basis, are currently the primary diseases leading to human deaths. Emerging evidence showed that DNA methylation, which could affect the transcription and expression of critical regulatory genes, has key roles in AS. Aberrant DNA methylation including aberrant hypomethylation and hypermethylation plays key roles in endothelial-cell dysfunction, macrophage inflammation, abnormal proliferation of vascular smooth muscle cells, plaque rupture, and thrombosis in AS. Chinese herbal medicines, including single compounds and formulations, showed light on the treatment of AS through regulating the aberrant DNA methylation in AS. Targeting the aberrant DNA methylation may be one of the most important treatment strategies in the cure and prevention of AS. In this review, we focus on the relationship between DNA methylation and AS, as well as the beneficial effects of Chinese herbal medicines on DNA methylation in AS.
Collapse
|
21
|
Infante T, Franzese M, Ruocco A, Schiano C, Affinito O, Pane K, Memoli D, Rizzo F, Weisz A, Bontempo P, Grimaldi V, Berrino L, Soricelli A, Mauro C, Napoli C. ABCA1, TCF7, NFATC1, PRKCZ, and PDGFA DNA methylation as potential epigenetic-sensitive targets in acute coronary syndrome via network analysis. Epigenetics 2021; 17:547-563. [PMID: 34151742 DOI: 10.1080/15592294.2021.1939481] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Acute coronary syndrome (ACS) is the most severe clinical manifestation of coronary heart disease.We performed an epigenome-wide analysis of circulating CD4+ and CD8+ T cells isolated from ACS patients and healthy subjects (HS), enrolled in the DIANA clinical trial, by reduced-representation bisulphite sequencing (RRBS). In CD4+ T cells, we identified 61 differentially methylated regions (DMRs) associated with 57 annotated genes (53% hyper- and 47% hypo-methylated) by comparing ACS patients vs HS. In CD8+ T cells, we identified 613 DMRs associated with 569 annotated genes (28% hyper- and 72% hypo-methylated) in ACS patients as compared to HS. In CD4+ vs CD8+ T cells of ACS patients we identified 175 statistically significant DMRs associated with 157 annotated genes (41% hyper- and 59% hypo-methylated). From pathway analyses, we selected six differentially methylated hub genes (NFATC1, TCF7, PDGFA, PRKCB, PRKCZ, ABCA1) and assessed their expression levels by q-RT-PCR. We found an up-regulation of selected genes in ACS patients vs HS (P < 0.001). ABCA1, TCF7, PDGFA, and PRKCZ gene expression was positively associated with CK-MB serum concentrations (r = 0.75, P = 0.03; r = 0.760, P = 0.029; r = 0.72, P = 0.044; r = 0.74, P = 0.035, respectively).This pilot study is the first single-base resolution map of DNA methylome by RRBS in CD4+ and CD8+ T cells and provides specific methylation signatures to clarify the role of aberrant methylation in ACS pathogenesis, thus supporting future research for novel epigenetic-sensitive biomarkers in the prevention and early diagnosis of this pathology.
Collapse
Affiliation(s)
- Teresa Infante
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Antonio Ruocco
- Unit of Cardiovascular Diseases and Arrhythmias, "Antonio Cardarelli" Hospital, Naples, Italy
| | - Concetta Schiano
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | | | - Domenico Memoli
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, SA, Italy.,Genome Research Center for Health, Campus of Medicine, Baronissi, SA, Italy
| | - Francesca Rizzo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, SA, Italy.,Genome Research Center for Health, Campus of Medicine, Baronissi, SA, Italy
| | - Alessandro Weisz
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, SA, Italy.,Genome Research Center for Health, Campus of Medicine, Baronissi, SA, Italy
| | - Paola Bontempo
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Vincenzo Grimaldi
- IRCCS SDN, Naples, Italy.,U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Andrea Soricelli
- IRCCS SDN, Naples, Italy.,Department of Exercise and Wellness Sciences, University of Naples Parthenope, Naples, Italy
| | - Ciro Mauro
- Unit of Cardiovascular Diseases and Arrhythmias, "Antonio Cardarelli" Hospital, Naples, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy.,IRCCS SDN, Naples, Italy
| |
Collapse
|
22
|
Yan W, Cao Y, Zhen P, Ji D, Chai J, Xue K, Dai H, Wang W. Decreased autophagy of vascular smooth muscle cells was involved in hyperhomocysteinemia-induced vascular ageing. Clin Exp Pharmacol Physiol 2021; 48:524-533. [PMID: 33325046 DOI: 10.1111/1440-1681.13442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 06/20/2020] [Accepted: 11/18/2020] [Indexed: 11/30/2022]
Abstract
Ageing and hyperhomocysteinemia (HHcy) are important risk factors for cardiovascular diseases (CVDs). HHcy affects the occurrence of vascular diseases in the elderly. So far, the mechanism of HHcy-induced vascular ageing remains largely unknown. Autophagy level is significantly reduced in the ageing process, and restoring impaired autophagy to a normal state may be one of the possible ways to extend the expected longevity and lifespan in the future. In this study, we established the HHcy rat model by feeding a 2.5% methionine diet. Small animal ultrasound and the tail-cuff method indicated that the vascular pulse wave velocity (PWV) and pulse pressure (PP) of HHcy rats were increased significantly compared with the control group. Vascular morphology and structure have been changed in HHcy rats, including lumen dilation, increased collagen fibre deposition and increased p53/p21/p16 expression. In vitro, under the stimulation of homocysteine (500 μmol/L, 24 hours), the rat vascular smooth muscle cells (VSMCs) presented senescence, which was characterized by the increased expression of ageing-related markers, such as p16, p21 and p53 as well as increased senescence-associated beta-galactosidase (SA-β-gal) activity. Meanwhile, the autophagy level was decreased both in vivo and in vitro, shown as the increased level of autophagy substrate p62 and the reduced level of autophagy marker LC3 II/I in the thoracic aorta of HHcy rats and in Hcy-treated VSMCs, respectively. The senescence phenotype of VSMCs was reversed by increased autophagy levels induced by rapamycin. Our findings indicate that decreased autophagy of VSMCs is involved in hyperhomocysteinemia-induced vascular ageing.
Collapse
Affiliation(s)
- Wenjing Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yan Cao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Panpan Zhen
- Department of Pathology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Dengyu Ji
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jiayin Chai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ke Xue
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Hongyan Dai
- Department of Cardiology, Qingdao Municipal Hospital, Qingdao, China
| | - Wen Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China
| |
Collapse
|
23
|
Yang X, Yang Y, Guo J, Meng Y, Li M, Yang P, Liu X, Aung LHH, Yu T, Li Y. Targeting the epigenome in in-stent restenosis: from mechanisms to therapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:1136-1160. [PMID: 33664994 PMCID: PMC7896131 DOI: 10.1016/j.omtn.2021.01.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Coronary artery disease (CAD) is one of the most common causes of death worldwide. The introduction of percutaneous revascularization has revolutionized the therapy of patients with CAD. Despite the advent of drug-eluting stents, restenosis remains the main challenge in treating patients with CAD. In-stent restenosis (ISR) indicates the reduction in lumen diameter after percutaneous coronary intervention, in which the vessel's lumen re-narrowing is attributed to the aberrant proliferation and migration of vascular smooth muscle cells (VSMCs) and dysregulation of endothelial cells (ECs). Increasing evidence has demonstrated that epigenetics is involved in the occurrence and progression of ISR. In this review, we provide the latest and comprehensive analysis of three separate but related epigenetic mechanisms regulating ISR, namely, DNA methylation, histone modification, and non-coding RNAs. Initially, we discuss the mechanism of restenosis. Furthermore, we discuss the biological mechanism underlying the diverse epigenetic modifications modulating gene expression and functions of VSMCs, as well as ECs in ISR. Finally, we discuss potential therapeutic targets of the small molecule inhibitors of cardiovascular epigenetic factors. A more detailed understanding of epigenetic regulation is essential for elucidating this complex biological process, which will assist in developing and improving ISR therapy.
Collapse
Affiliation(s)
- Xi Yang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao 266100, Shandong, People’s Republic of China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, People’s Republic of China
| | - Junjie Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao 266100, Shandong, People’s Republic of China
| | - Yuanyuan Meng
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People’s Republic of China
| | - Min Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People’s Republic of China
| | - Panyu Yang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People’s Republic of China
| | - Xin Liu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao 266100, Shandong, People’s Republic of China
| | - Lynn Htet Htet Aung
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People’s Republic of China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People’s Republic of China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People’s Republic of China
| | - Yonghong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao 266100, Shandong, People’s Republic of China
| |
Collapse
|
24
|
Zhai Y, Wang W, Luo B, Xie Y, Du H, Wang D, Zhao X, Kang W, Shi H, Li Z. Determination of S-Adenosylmethionine and S-Adenosylhomocysteine in Human Urine by Ion Chromatography with Solid Phase Extraction Based on the Application of Micromolecule Ion-Pairing Agent. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1760295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Yijing Zhai
- Department of Nutrition, Hebei Medical University First Affiliated Hospital, Shijiazhuang, China
| | - Wei Wang
- School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Bin Luo
- Department of Nutrition, Hebei Medical University First Affiliated Hospital, Shijiazhuang, China
| | - Ying Xie
- Department of Nutrition, Hebei Medical University First Affiliated Hospital, Shijiazhuang, China
| | - Hongzhen Du
- Department of Nutrition, Hebei Medical University First Affiliated Hospital, Shijiazhuang, China
| | - Dandan Wang
- Department of Nutrition, Hebei Medical University First Affiliated Hospital, Shijiazhuang, China
| | - Xiaopeng Zhao
- Department of Nutrition, Hebei Medical University First Affiliated Hospital, Shijiazhuang, China
| | - Weijun Kang
- School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Hongmei Shi
- School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Zengning Li
- Department of Nutrition, Hebei Medical University First Affiliated Hospital, Shijiazhuang, China
| |
Collapse
|
25
|
Zhang M, Li F, Pokharel S, Ma T, Wang X, Wang Y, Wang W, Lin R. Lycium barbarum polysaccharide protects against Homocysteine-induced Vascular smooth muscle cell proliferation and phenotypic transformation via PI3K/Akt pathway. J Mol Histol 2020; 51:629-637. [PMID: 32897463 DOI: 10.1007/s10735-020-09909-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/24/2020] [Indexed: 10/23/2022]
Abstract
Lycium barbarum polysaccharide (LBP) is an alkaloid extracted from lycium barbarum. LBP is the active component of lycium barbarum used to treat hypertension, atherosclerosis and other cardiovascular diseases in Chinese traditional medicine. However, the underlying cellular and molecular mechanisms of LBP- mediated activity in vascular disease remain poorly understood. In the present study, we showed the protective effect of LBP in vascular smooth muscle cells. Our results indicate that LBP significantly reduces the proliferation of VSMCs caused by Homocysteine (Hcy) and inhibits the phenotypic transformation of VSMCs caused by Hcy, from contractile to synthetic. LBP inhibited the protein expression of PI3K and Akt caused by Hcy, and increased the expression of miR-145. The results indicate that LBP exhibits substantial therapeutic potential for the treatment of Hcy-induced VSMCs proliferation and phenotypic transformation through inhibition of PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Minghao Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.,School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China.,Key Laboratory of Metabolic Cardiovascular Diseases Research of National Health Commission, Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, China
| | - Fan Li
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China.,Key Laboratory of Metabolic Cardiovascular Diseases Research of National Health Commission, Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, China.,Sanqun Medical College, Xinxiang Medical University, Xinxiang, 453003, China
| | - Smritee Pokharel
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC, USA
| | - Ting Ma
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China.,Key Laboratory of Metabolic Cardiovascular Diseases Research of National Health Commission, Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, China
| | - Xiuyu Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China.,Key Laboratory of Metabolic Cardiovascular Diseases Research of National Health Commission, Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, China
| | - Yiyong Wang
- Department of Cardiovascular Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Weirong Wang
- Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Rong Lin
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
26
|
Zhuge Y, Zhang J, Qian F, Wen Z, Niu C, Xu K, Ji H, Rong X, Chu M, Jia C. Role of smooth muscle cells in Cardiovascular Disease. Int J Biol Sci 2020; 16:2741-2751. [PMID: 33110393 PMCID: PMC7586427 DOI: 10.7150/ijbs.49871] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022] Open
Abstract
Normally, smooth muscle cells (SMCs) are localized in the tunica media of the vasculature, where they take responsibility for vascular contraction and extracellular matrix (ECM) generation. SMCs also play a significant role in obedience and elastic rebound of the artery in response to the haemodynamic condition. However, under pathological or stressed conditions, phenotype switching from contractile to synthetic state or other cell types will occur in SMCs to positively or negatively contribute to disease progression. Various studies demonstrated that functional changes of SMCs are implicated in several cardiovascular diseases. In this review, we present the function of vascular SMCs (VSMCs) and the involved molecular mechanisms about phenotype switching, and summarize the roles of SMCs in atherosclerosis, hypertension, arterial aneurysms and myocardial infarction, hoping to obtain potential therapeutic targets against cardiovascular disease in the clinical practices.
Collapse
Affiliation(s)
- Yingzhi Zhuge
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.,Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Jian Zhang
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.,Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Fanyu Qian
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.,Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zhengwang Wen
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Chao Niu
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.,Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Ke Xu
- The Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| | - Hao Ji
- The Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| | - Xing Rong
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Maoping Chu
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.,Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Chang Jia
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.,Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
27
|
Guo Y, Pei Y, Li K, Cui W, Zhang D. DNA N 6-methyladenine modification in hypertension. Aging (Albany NY) 2020; 12:6276-6291. [PMID: 32283543 PMCID: PMC7185115 DOI: 10.18632/aging.103023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
Abstract
DNA methylation has a role in the pathogenesis of essential hypertension. DNA N6-methyladenine (6mA) modification as a novel adenine methylation exists in human tissues, but whether it plays a role in hypertension development remains unclear. Here, we reported that the global 6mA DNA level in leukocytes was significantly reduced in patients with hypertension and was reversed with successful treatment. Age, systolic blood pressure, and serum total cholesterol and high-density lipoprotein levels were associated with decreased leukocyte 6mA DNA level. Elevated ALKBH1 (AlkB homolog 1), a demethylase of 6mA, level mediated this dynamic change in 6mA level in leukocytes and vascular smooth muscle cells in hypertension mouse and rat models. Knockdown of ALKBH1 suppressed angiotensin II-induced vascular smooth muscle phenotype transformation, proliferation and migration. ALKBH1-6mA directly and negatively regulated hypoxia inducible factor 1 α (HIF1α), which responded to angiotensin II-induced vascular remodeling. Collectively, our results demonstrate a potential epigenetic role for ALKBH1-6mA regulation in hypertension development, diagnosis and treatment.
Collapse
Affiliation(s)
- Ye Guo
- Department of Laboratory Medicine, Peking Union Medical College Hospital and Peking Union Medical College, Beijing 100021, PR China
| | - Yuqing Pei
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Kexin Li
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Wei Cui
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Donghong Zhang
- Center for Molecular and Translational Medicine, Georgia State University, Research Science Center, Atlanta, GA 30303, USA
| |
Collapse
|
28
|
Zhang M, Li F, Wang X, Gong J, Xian Y, Wang G, Zheng Z, Shang C, Wang B, He Y, Wang W, Lin R. MiR-145 alleviates Hcy-induced VSMC proliferation, migration, and phenotypic switch through repression of the PI3K/Akt/mTOR pathway. Histochem Cell Biol 2020; 153:357-366. [DOI: 10.1007/s00418-020-01847-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2020] [Indexed: 12/20/2022]
|
29
|
Mechanisms of homocysteine-induced damage to the endothelial, medial and adventitial layers of the arterial wall. Biochimie 2020; 173:100-106. [PMID: 32105811 DOI: 10.1016/j.biochi.2020.02.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/20/2020] [Indexed: 11/23/2022]
Abstract
Homocysteine (Hcy) is a non-protein forming amino acid which is the direct metabolic precursor of methionine. Increased concentration of serum Hcy is considered a risk factor for cardiovascular disease and is specifically linked to various diseases of the vasculature. Serum Hcy is associated with atherosclerosis, hypertension and aneurysms of the aorta in humans, though the precise mechanisms by which Hcy contributes to these conditions remain elusive. Results from clinical trials that successfully lowered serum Hcy without reducing features of vascular disease in cardiovascular patients have cast doubt on whether or not Hcy directly impacts the vasculature. However, studies in animals and in cell culture suggest that Hcy has a vast array of toxic effects on the vasculature, with demonstrated roles in endothelial dysfunction, medial remodeling and adventitial inflammation. It is hypothesized that rather than serum Hcy, tissue-bound Hcy and the incorporation of Hcy into proteins could underlie the toxic effects of Hcy on the vasculature. In this review, we present evidence for Hcy-associated vascular disease in humans, and we critically examine the possible mechanisms by which Hcy specifically impacts the endothelial, medial and adventitial layers of the arterial wall. Deciphering the mechanisms by which Hcy interacts with proteins in the arterial wall will allow for a better understanding of the pathomechanisms of hyperhomocysteinemia and will help to define a better means of prevention at the appropriate window of life.
Collapse
|
30
|
Schiano C, Benincasa G, Franzese M, Della Mura N, Pane K, Salvatore M, Napoli C. Epigenetic-sensitive pathways in personalized therapy of major cardiovascular diseases. Pharmacol Ther 2020; 210:107514. [PMID: 32105674 DOI: 10.1016/j.pharmthera.2020.107514] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The complex pathobiology underlying cardiovascular diseases (CVDs) has yet to be explained. Aberrant epigenetic changes may result from alterations in enzymatic activities, which are responsible for putting in and/or out the covalent groups, altering the epigenome and then modulating gene expression. The identification of novel individual epigenetic-sensitive trajectories at single cell level might provide additional opportunities to establish predictive, diagnostic and prognostic biomarkers as well as drug targets in CVDs. To date, most of studies investigated DNA methylation mechanism and miRNA regulation as epigenetics marks. During atherogenesis, big epigenetic changes in DNA methylation and different ncRNAs, such as miR-93, miR-340, miR-433, miR-765, CHROME, were identified into endothelial cells, smooth muscle cells, and macrophages. During man development, lipid metabolism, inflammation and homocysteine homeostasis, alter vascular transcriptional mechanism of fundamental genes such as ABCA1, SREBP2, NOS, HIF1. At histone level, increased HDAC9 was associated with matrix metalloproteinase 1 (MMP1) and MMP2 expression in pro-inflammatory macrophages of human carotid plaque other than to have a positive effect on toll like receptor signaling and innate immunity. HDAC9 deficiency promoted inflammation resolution and reverse cholesterol transport, which might block atherosclerosis progression and promote lesion regression. Here, we describe main human epigenetic mechanisms involved in atherosclerosis, coronary heart disease, ischemic stroke, peripheral artery disease; cardiomyopathy and heart failure. Different epigenetics mechanisms are activated, such as regulation by circular RNAs, as MICRA, and epitranscriptomics at RNA level. Moreover, in order to open new frontiers for precision medicine and personalized therapy, we offer a panoramic view on the most innovative bioinformatic tools designed to identify putative genes and molecular networks underlying CVDs in man.
Collapse
Affiliation(s)
- Concetta Schiano
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Giuditta Benincasa
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | | | | | | | - Claudio Napoli
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; IRCCS SDN, Naples, Italy
| |
Collapse
|
31
|
Wang LK, Wang H, Wu XL, Shi L, Yang RM, Wang YC. Relationships among resistin, adiponectin, and leptin and microvascular complications in patients with type 2 diabetes mellitus. J Int Med Res 2020; 48:300060519870407. [PMID: 31891278 PMCID: PMC7607287 DOI: 10.1177/0300060519870407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective To investigate the relationships among serum resistin, adiponectin, and
leptin and microvascular complications in patients with type 2 diabetes
mellitus (T2DM). Methods A total of 120 patients with T2DM were divided into non-microangiopathy and
microangiopathy groups. Sixty age- and sex-matched healthy subjects were
used as a normal control (NC) group. Body height, body mass, waist
circumference, and blood pressure were determined, and waist/hip ratio
(WHR), body mass index, blood glucose, lipids, resistin, leptin,
adiponectin, free fatty acids (FFA), high-sensitivity C-reactive protein
(hs-CRP), fasting insulin, hemoglobin A1c, and homeostatic model assessment
of insulin resistance (HOMA-IR) were compared among the three groups. Results Serum levels of resistin, leptin, FFA, and hs-CRP were significantly higher
and levels of adiponectin were significantly lower in patients in the
non-microangiopathy (n = 60) and microangiopathy groups (n = 60) compared
with the NC group (n = 60). Serum resistin and leptin levels in patients
with T2DM were positively correlated with WHR, hs-CRP, FFA, HOMA-IR, and
triglycerides, but negatively correlated with high-density
lipoprotein-cholesterol (HDL-C). Serum adiponectin levels in patients with
T2DM were negatively correlated with WHR, hs-CRP, FFA, HOMA-IR, and
triglycerides, but positively correlated with HDL-C. Conclusion Serum resistin, adiponectin, and leptin levels correlate with the occurrence
of T2DM and microvascular complications.
Collapse
Affiliation(s)
- Li-Kun Wang
- Department of Ultrasound, First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Hua Wang
- Department of Pharmacy, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xue-Liang Wu
- Department of General Surgery, First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Li Shi
- Department of Endocrinology, First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Rui-Min Yang
- Department of Ultrasound, First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Yi-Cheng Wang
- Department of Ultrasound, First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| |
Collapse
|
32
|
Exposure to Toxic Heavy Metals Can Influence Homocysteine Metabolism? Antioxidants (Basel) 2019; 9:antiox9010030. [PMID: 31905706 PMCID: PMC7022705 DOI: 10.3390/antiox9010030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Homocysteine is a sulfur amino acid whose metabolism is activated in two pathways: remethylation to methionine, which requires folate and vitamin B12, and transsulfuration to cystathionine, which needs pyridoxal-5'-phosphate. High homocysteine level increases the risk of developing heart disease, stroke, peripheral vascular diseases, and cognitive impairment. Some evidence showed that exposure to these metals increased plasma homocysteine levels. METHODS A systematic review was carried out to clarify the relationship between homocysteine blood levels and exposure to toxic heavy metals (Lead, Cadmium, Mercury, and Chromium). RESULTS The results of this systematic review indicate that exposure to Pb, Cr, Cd, and Hg is connected with nonphysiological homocysteine levels or vitamin B12 and folate serum concentrations. CONCLUSIONS These findings reinforce the importance of involvement in exposure to heavy metals in homocysteine metabolism. This supports the role of blood metals as potential upstream modifiable risk factors to prevent the development of other established risk factors as hyperhomocysteinemia.
Collapse
|
33
|
Tanshinone ⅡA inhibits homocysteine-induced proliferation of vascular smooth muscle cells via miR-145/CD40 signaling. Biochem Biophys Res Commun 2019; 522:157-163. [PMID: 31757424 DOI: 10.1016/j.bbrc.2019.11.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/08/2019] [Indexed: 12/11/2022]
Abstract
Tanshinone IIA (Tan IIA), isolated from the traditional Chinese herb Danshen, exhibits broad cardiovascular protective effects. However, the effect of Tan IIA on Homocysteine (Hcy)-induced proliferation of vascular smooth muscle cells (VSMCs) remains unknown. We herein determined whether Tan IIA exerted anti-proliferative effect in Hcy-treating VSMCs, and further investigated the underlying mechanism (miR-145/CD40 signaling). The results showed that Tan IIA significantly inhibited VSMCs proliferation induced by Hcy in a dose-dependent manner, and reversed the VSMCs injury as indicated by decreased KLF4 and increased Calponin expression. In view of the key role of miR-145 in VSMCs, we further explored the role of miR-145 on the protective effect of Tan IIA against Hcy-induced VSMCs proliferation. The miR-145 expression was down-regulated and its targeted gene CD40 was up-regulated in Hcy-treating VSMCs, while the Tan IIA reversed the effect of Hcy, suggesting the miR-145/CD40 may be involve in the protective effect of Tan IIA. To determine the speculation, miR-145 inhibitor was used to inhibit miR-145 expression. The results indicated that miR-145 inhibitor can suppress the protective effects of Tan IIA against Hcy-induced VSMCs proliferation. Collectively, present study demonstrates that Tan IIA inhibits Hcy-induced proliferation of VSMCs via miR-145/CD40 signaling.
Collapse
|
34
|
Rizzacasa B, Amati F, Romeo F, Novelli G, Mehta JL. Epigenetic Modification in Coronary Atherosclerosis. J Am Coll Cardiol 2019; 74:1352-1365. [DOI: 10.1016/j.jacc.2019.07.043] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/15/2019] [Indexed: 02/06/2023]
|
35
|
Dysregulation of Epigenetic Mechanisms of Gene Expression in the Pathologies of Hyperhomocysteinemia. Int J Mol Sci 2019; 20:ijms20133140. [PMID: 31252610 PMCID: PMC6651274 DOI: 10.3390/ijms20133140] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023] Open
Abstract
Hyperhomocysteinemia (HHcy) exerts a wide range of biological effects and is associated with a number of diseases, including cardiovascular disease, dementia, neural tube defects, and cancer. Although mechanisms of HHcy toxicity are not fully uncovered, there has been a significant progress in their understanding. The picture emerging from the studies of homocysteine (Hcy) metabolism and pathophysiology is a complex one, as Hcy and its metabolites affect biomolecules and processes in a tissue- and sex-specific manner. Because of their connection to one carbon metabolism and editing mechanisms in protein biosynthesis, Hcy and its metabolites impair epigenetic control of gene expression mediated by DNA methylation, histone modifications, and non-coding RNA, which underlies the pathology of human disease. In this review we summarize the recent evidence showing that epigenetic dysregulation of gene expression, mediated by changes in DNA methylation and histone N-homocysteinylation, is a pathogenic consequence of HHcy in many human diseases. These findings provide new insights into the mechanisms of human disease induced by Hcy and its metabolites, and suggest therapeutic targets for the prevention and/or treatment.
Collapse
|
36
|
Wang J, Zhang C, Li C, Zhao D, Li S, Ma L, Cui Y, Wei X, Zhao Y, Gao Y. MicroRNA-92a promotes vascular smooth muscle cell proliferation and migration through the ROCK/MLCK signalling pathway. J Cell Mol Med 2019; 23:3696-3710. [PMID: 30907506 PMCID: PMC6484312 DOI: 10.1111/jcmm.14274] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/12/2019] [Accepted: 02/23/2019] [Indexed: 12/31/2022] Open
Abstract
To identify the interaction between known regulators of atherosclerosis, microRNA-92a (miR-92a), Rho-associated coiled-coil-forming kinase (ROCK) and myosin light chain kinase (MLCK), we examined their expressions during proliferation and migration of platelet-derived growth factor-BB (PDGF-BB)-regulated vascular smooth muscle cells (VSMCs), both in vivo and in vitro. During the formation of atherosclerosis plaque in mice, a parallel increase in expression levels of MLCK and miR-92a was observed while miR-92a expression was reduced in ML-7 (an inhibitor of MLCK) treated mice and in MLCK-deficient VSMCs. In vitro results indicated that both MLCK and miR-92a shared the same signalling pathway. Transfection of miR-92a mimic partially restored the effect of MLCK's deficiency and antagonized the effect of Y27632 (an inhibitor of ROCK) on the down-regulation of VSMCs activities. ML-7 increased the expression of Kruppel-like factor 4 (KLF4, a target of miR-92a), and siRNA-KLF4 increased VSMCs' activity level. Consistently, inhibition of either MLCK or ROCK enhanced the KLF4 expression. Moreover, we observed that ROCK/MLCK up-regulated miR-92a expression in VSMCs through signal transducer and activator of transcription 3 (STAT3) activation. In conclusion, the activation of ROCK/STAT3 and/or MLCK/STAT3 may up-regulate miR-92a expression, which subsequently inhibits KLF4 expression and promotes PDGF-BB-mediated proliferation and migration of VSMCs. This new downstream node in the ROCK/MLCK signalling pathway may offer a potential intervention target for treatment of atherosclerosis.
Collapse
Affiliation(s)
- Jingyu Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical SciencesDalian Medical UniversityDalianChina
| | - Chenxu Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical SciencesDalian Medical UniversityDalianChina
| | - Cai Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical SciencesDalian Medical UniversityDalianChina
| | - Dandan Zhao
- Department of Biochemistry and Molecular Biology, College of Basic Medical SciencesDalian Medical UniversityDalianChina
| | - Shuyao Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical SciencesDalian Medical UniversityDalianChina
| | - Le Ma
- College of StomatologyDalian Medical UniversityDalianChina
| | - Ying Cui
- Department of Biochemistry and Molecular Biology, College of Basic Medical SciencesDalian Medical UniversityDalianChina
- Liaoning Provincial Key Lab of Medical Molecular BiologyDalian Medical UniversityDalianChina
| | - Xiaoqing Wei
- Department of Biochemistry and Molecular Biology, College of Basic Medical SciencesDalian Medical UniversityDalianChina
- Liaoning Provincial Key Lab of Medical Molecular BiologyDalian Medical UniversityDalianChina
| | - Ying Zhao
- Department of Biochemistry and Molecular Biology, College of Basic Medical SciencesDalian Medical UniversityDalianChina
- Liaoning Provincial Key Lab of Medical Molecular BiologyDalian Medical UniversityDalianChina
| | - Ying Gao
- Department of Biochemistry and Molecular Biology, College of Basic Medical SciencesDalian Medical UniversityDalianChina
- Liaoning Provincial Key Lab of Medical Molecular BiologyDalian Medical UniversityDalianChina
| |
Collapse
|
37
|
Liang H, Xie X, Song X, Huang M, Su T, Chang X, Liang B, Huang D. Orphan nuclear receptor NR4A1 suppresses hyperhomocysteinemia-induced hepatic steatosis in vitro and in vivo. FEBS Lett 2019; 593:1061-1071. [PMID: 30973961 DOI: 10.1002/1873-3468.13384] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/20/2019] [Accepted: 04/08/2019] [Indexed: 02/05/2023]
Abstract
Homocysteine (Hcy) is associated with nonalcoholic fatty liver disease (NAFLD). orphan nuclear receptor subfamily 4 group A member 1 (NR4A1) is involved in hepatic lipid metabolism. However, the potential role of NR4A1 in Hcy-associated NAFLD remains elusive. We aimed to elucidate the regulation of NR4A1 and its significance in Hcy-induced NAFLD. Hcy induced steatosis and elevated the expression of CD36 and FATP2 in HepG2 cells. Furthermore, Hcy enhanced p300 and decreased HDAC7 recruitment to the NR4A1 promoter, resulting in histone H3K27 hyperacetylation and NR4A1 upregulation. Moreover, NR4A1 depletion not only mimicked but also exaggerated the effects of Hcy on steatosis, whereas NR4A1 agonist Cytosporone B (CsnB) blocked Hcy-induced steatosis. In hyperhomocysteinemia (HHcy) mice, CsnB attenuated HHcy-induced hepatic steatosis. Thus, Hcy transiently and rapidly induces NR4A1 expression to reduce Hcy-induced steatosis.
Collapse
Affiliation(s)
- Hongjin Liang
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, China
- Department of Rheumatology, the First Affiliated Hospital, Shantou University Medical College, China
| | - Xina Xie
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, China
- Health Science Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, China
| | - Xuhong Song
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, China
| | - Meihui Huang
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, China
- Department of Pathology and Central Laboratory, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, China
| | - Ting Su
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, China
| | - Xiaolan Chang
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, China
| | - Bin Liang
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, China
| | - Dongyang Huang
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, China
| |
Collapse
|
38
|
Aavik E, Babu M, Ylä-Herttuala S. DNA methylation processes in atherosclerotic plaque. Atherosclerosis 2019; 281:168-179. [DOI: 10.1016/j.atherosclerosis.2018.12.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/09/2018] [Accepted: 12/14/2018] [Indexed: 12/18/2022]
|
39
|
Oberkersch RE, Santoro MM. Role of amino acid metabolism in angiogenesis. Vascul Pharmacol 2018; 112:17-23. [PMID: 30423448 DOI: 10.1016/j.vph.2018.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/02/2018] [Indexed: 01/09/2023]
Abstract
The role of endothelial metabolism represents a crucial element governing the formation and the differentiation of blood vessels, termed angiogenesis. Besides glycolysis and fatty acid oxidation, endothelial cells rely on specific amino acids to proliferate, migrate, and survive. In this review we focus on the metabolism of those amino acids and the intermediates that hold an established function within angiogenesis and endothelial pathophysiology. We also discuss recent work which provides a rationale for specific amino acid-restricted diets and its beneficial effects on vascular tissues, including extending the life span and preventing the development of a variety of diseases.
Collapse
|
40
|
Li M, Qian M, Kyler K, Xu J. Endothelial-Vascular Smooth Muscle Cells Interactions in Atherosclerosis. Front Cardiovasc Med 2018; 5:151. [PMID: 30406116 PMCID: PMC6207093 DOI: 10.3389/fcvm.2018.00151] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/04/2018] [Indexed: 12/20/2022] Open
Abstract
Atherosclerosis is a chronic progressive inflammatory process that can eventually lead to cardiovascular disease (CVD). Despite available treatment, the prevalence of atherosclerotic CVD, which has become the leading cause of death worldwide, persists. Identification of new mechanisms of atherogenesis are highly needed in order to develop an effective therapeutic treatment. The blood vessels contain two primary major cell types: endothelial cells (EC) and vascular smooth muscle cells (VSMC). Each of these performs an essential function in sustaining vascular homeostasis. EC-VSMC communication is essential not only to development, but also to the homeostasis of mature blood vessels. Aberrant EC-VSMC interaction could promote atherogenesis. Identification of the mode of EC-VSMC crosstalk that regulates vascular functionality and sustains homeostasis may offer strategic insights for prevention and treatment of atherosclerotic CVD. Here we will review the molecular mechanisms underlying the interplay between EC and VSMC that could contribute to atherosclerosis. We also highlight open questions for future research directions.
Collapse
Affiliation(s)
- Manna Li
- Department of Medicine, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - Ming Qian
- Department of Medicine, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - Kathy Kyler
- Office of Research Administration, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - Jian Xu
- Department of Medicine, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| |
Collapse
|
41
|
Salidroside attenuates endothelial cellular senescence via decreasing the expression of inflammatory cytokines and increasing the expression of SIRT3. Mech Ageing Dev 2018; 175:1-6. [DOI: 10.1016/j.mad.2017.12.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 12/26/2017] [Accepted: 12/27/2017] [Indexed: 12/21/2022]
|
42
|
Lin H, Ni T, Zhang J, Meng L, Gao F, Pan S, Luo H, Xu F, Ru G, Chi J, Guo H. Knockdown of Herp alleviates hyperhomocysteinemia mediated atherosclerosis through the inhibition of vascular smooth muscle cell phenotype switching. Int J Cardiol 2018; 269:242-249. [PMID: 30017525 DOI: 10.1016/j.ijcard.2018.07.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/29/2018] [Accepted: 07/06/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Phenotypic switching of vascular smooth muscle cells (VSMCs) plays a key role in atherosclerosis. We aimed to investigate whether Homocysteine-responsive endoplasmic reticulum protein (Herp) was involved in VSMC phenotypic switching and affected atheroprogression. METHODS To assess the role of Herp in homocysteine (Hcy)-associated atherosclerosis, Herp-/- and LDLR-/- double knockout mice were generated and fed with a high methionine diet (HMD) to induce Hyperhomocysteinemia (HHcy). Atherosclerotic lesions, cholesterol homeostasis, endoplasmic reticulum (ER) stress activation, and the phenotype of VSMCs were assessed in vivo. We used siRNAs to knockdown Herp in cultured VSMCs to further validate our findings in vitro. RESULTS HMD significantly activated the activating transcription factor 6 (ATF6)/Herp arm of ER stress in LDLR-/- mice, and induced the phenotypic switch of VSMCs, with the loss of contractile proteins (SMA and calponin) and an increase of OPN protein. Herp-/-/LDLR-/- mice developed reduced atherosclerotic lesions in the aortic sinus and the whole aorta when compared with LDLR-/- mice. However, Herp deficiency had no effect on diet-induced HHcy and hyperlipidemia. Inhibition of VSMC phenotypic switching, decreased proliferation and collagen accumulation were observed in Herp-/-/LDLR-/- mice when compared with LDLR-/- mice. In vitro experiments demonstrated that Hcy caused VSMC phenotypic switching, promoted cell proliferation and migration; this was reversed by Herp depletion. We achieved similar results via inhibition of ER stress using 4-phenylbutyric-acid (4-PBA) in Hcy-treated VSMCs. CONCLUSION Herp deficiency inhibits the phenotypic switch of VSMCs and the development of atherosclerosis, thus providing novel insights into the role of Herp in atherogenesis.
Collapse
Affiliation(s)
- Hui Lin
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China; The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Tingjuan Ni
- Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Jie Zhang
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Liping Meng
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Feidan Gao
- Zhejiang Chinese Medical University, Hangzhou 310000, Zhejiang, China
| | - Sunlei Pan
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Hangqi Luo
- Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Fukang Xu
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Guomei Ru
- Medical Research Center, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Jufang Chi
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China; The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| | - Hangyuan Guo
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China; The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| |
Collapse
|
43
|
Wu Y, Su SA, Xie Y, Shen J, Zhu W, Xiang M. Murine models of vascular endothelial injury: Techniques and pathophysiology. Thromb Res 2018; 169:64-72. [PMID: 30015230 DOI: 10.1016/j.thromres.2018.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/08/2018] [Accepted: 07/08/2018] [Indexed: 12/13/2022]
Abstract
Vascular endothelial injury (VEI) triggers pathological processes in various cardiovascular diseases, such as coronary heart disease and hypertension. To further elucidate the in vivo pathological mechanisms of VEI, many animal models have been established. For the easiness of genetic manipulation and feeding, murine models become most commonly applied for investigating VEI. Subsequently, countless valuable information concerning pathogenesis has been obtained and therapeutic strategies for VEI have been developed. This review will highlight some typical murine VEI models from the perspectives of pharmacological intervention, surgery and genetic manipulation. The techniques, pathophysiology, advantages, disadvantages and the experimental purpose of each model will also be discussed.
Collapse
Affiliation(s)
- Yue Wu
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou 310009, Zhejiang Province, China
| | - Sheng-An Su
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou 310009, Zhejiang Province, China
| | - Yao Xie
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou 310009, Zhejiang Province, China
| | - Jian Shen
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou 310009, Zhejiang Province, China
| | - Wei Zhu
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou 310009, Zhejiang Province, China.
| | - Meixiang Xiang
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou 310009, Zhejiang Province, China.
| |
Collapse
|
44
|
Kim J, Kim H, Roh H, Kwon Y. Causes of hyperhomocysteinemia and its pathological significance. Arch Pharm Res 2018; 41:372-383. [PMID: 29552692 DOI: 10.1007/s12272-018-1016-4] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 02/26/2018] [Indexed: 02/03/2023]
Abstract
In the last 10 years, homocysteine has been regarded as a marker of cardiovascular disease and a definite risk factor for many other diseases. Homocysteine is biosynthesized from methionine through multiple steps and then goes through one of two major metabolic pathways: remethylation and transsulfuration. Hyperhomocysteinemia is a state in which too much homocysteine is present in the body. The main cause of hyperhomocysteinemia is a dysfunction of enzymes and cofactors associated with the process of homocysteine biosynthesis. Other causes include excessive methionine intake, certain diseases and side effects of some drugs. Hyperhomocysteinemia is a trigger for many diseases, such as atherosclerosis, congestive heart failure, age-related macular degeneration, Alzheimer's disease and hearing loss. There are many studies showing a positive relationship between homocysteine level and various symptoms. We speculate that a high level of homocysteine can be the sole reason or an aggravating factor in numerous diseases for which causal links are not fully understood.
Collapse
Affiliation(s)
- Jihyun Kim
- Ewha Institute for Global Pharmacy Leadership, College of Pharmacy, Ewha Womans University, Seoul, 120-750, Republic of Korea
| | - Hyunhee Kim
- Ewha Institute for Global Pharmacy Leadership, College of Pharmacy, Ewha Womans University, Seoul, 120-750, Republic of Korea
| | - Heewon Roh
- Ewha Institute for Global Pharmacy Leadership, College of Pharmacy, Ewha Womans University, Seoul, 120-750, Republic of Korea
| | - Youngjoo Kwon
- Ewha Institute for Global Pharmacy Leadership, College of Pharmacy, Ewha Womans University, Seoul, 120-750, Republic of Korea.
| |
Collapse
|
45
|
Duan L, Hu J, Xiong X, Liu Y, Wang J. The role of DNA methylation in coronary artery disease. Gene 2018; 646:91-97. [DOI: 10.1016/j.gene.2017.12.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 11/07/2017] [Accepted: 12/18/2017] [Indexed: 01/09/2023]
|
46
|
Karolczak K, Kubalczyk P, Glowacki R, Pietruszynski R, Watala C. Aldosterone modulates blood homocysteine and cholesterol in coronary artery disease patients - a possible impact on atherothrombosis? Physiol Res 2018; 67:197-207. [PMID: 29303611 DOI: 10.33549/physiolres.933668] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aldosterone plays a key role in maintaining the homeostasis of the whole organism. Under some circumstances, aldosterone can contribute to the progression of cardiovascular diseases, including coronary artery disease. This study demonstrates that aldosterone associates negatively with some lipidogram parameters and positively with the concentration of homocysteine. These associations are characteristic for coronary artery disease and are not present in control subjects. The findings also indicate that in vitro aldosterone stimulates homocysteine production by rat adrenal glands, which may explain the associations observed with coronary artery disease. Moreover, we have found that aldosterone significantly modulates in vitro platelet reactivity to arachidonate and collagen - aldosterone increases the pro-aggregatory action of collagen, but decreases the pro-aggregatory potential of arachidonate. Therefore, the findings of these in vitro and ex vivo experiments indicate the existence of new pathways by which aldosterone modulates lipid- homocysteine- and platelet-dependent atherogenesis.
Collapse
Affiliation(s)
- K Karolczak
- Department of Hemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, Lodz, Poland. or
| | | | | | | | | |
Collapse
|
47
|
Li T, Yu B, Liu Z, Li J, Ma M, Wang Y, Zhu M, Yin H, Wang X, Fu Y, Yu F, Wang X, Fang X, Sun J, Kong W. Homocysteine directly interacts and activates the angiotensin II type I receptor to aggravate vascular injury. Nat Commun 2018; 9:11. [PMID: 29296021 PMCID: PMC5750214 DOI: 10.1038/s41467-017-02401-7] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 11/28/2017] [Indexed: 11/29/2022] Open
Abstract
Hyperhomocysteinemia (HHcy) is a risk factor for various cardiovascular diseases. However, the mechanism underlying HHcy-aggravated vascular injury remains unclear. Here we show that the aggravation of abdominal aortic aneurysm by HHcy is abolished in mice with genetic deletion of the angiotensin II type 1 (AT1) receptor and in mice treated with an AT1 blocker. We find that homocysteine directly activates AT1 receptor signalling. Homocysteine displaces angiotensin II and limits its binding to AT1 receptor. Bioluminescence resonance energy transfer analysis reveals distinct conformational changes of AT1 receptor upon binding to angiotensin II and homocysteine. Molecular dynamics and site-directed mutagenesis experiments suggest that homocysteine regulates the conformation of the AT1 receptor both orthosterically and allosterically by forming a salt bridge and a disulfide bond with its Arg167 and Cys289 residues, respectively. Together, these findings suggest that strategies aimed at blocking the AT1 receptor may mitigate HHcy-associated aneurysmal vascular injuries. High homocysteine plasma levels are associated with cardiovascular diseases. Here, Li and colleagues find that homocysteine aggravates vascular injury by direct binding to the angiotensin II type 1 receptor (AT1R), identifying AT1R inhibition as a potential strategy to counteract the deleterious vascular effects of hyperhomocysteinemia.
Collapse
Affiliation(s)
- Tuoyi Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China.,Capital Normal University High School, Beijing, 100048, China
| | - Bing Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
| | - Zhixin Liu
- Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University; Key Laboratory Experimental Teratology of the Ministry of Education, Jinan, Shandong, 250012, China
| | - Jingyuan Li
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, 19 B, Yuquan Road, Beijing, 100049, China
| | - Mingliang Ma
- Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University; Key Laboratory Experimental Teratology of the Ministry of Education, Jinan, Shandong, 250012, China
| | - Yingbao Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
| | - Mingjiang Zhu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, China
| | - Huiyong Yin
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, China
| | - Xiaofeng Wang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, 19 B, Yuquan Road, Beijing, 100049, China
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
| | - Fang Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
| | - Xian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
| | - Xiaohong Fang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jinpeng Sun
- Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University; Key Laboratory Experimental Teratology of the Ministry of Education, Jinan, Shandong, 250012, China. .,School of Medicine, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China.
| |
Collapse
|
48
|
Peng L, Huang YT, Chen J, Zhuang YX, Zhang F, Chen JY, Zhou L, Zhang DH. Osthole sensitizes with radiotherapy to suppress tumorigenesis of human nasopharyngeal carcinoma in vitro and in vivo. Cancer Manag Res 2018; 10:5471-5477. [PMID: 30519095 PMCID: PMC6233473 DOI: 10.2147/cmar.s182798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Radiotherapy is one of the most comment and useful treatment for nasopharyngeal carcinoma (NPC), but the radioresistance remains a major obstacle. Osthole, a natural coumarin derivative, has been shown to have anti-tumor and anti-inflammatory activity. However, the relationship between osthole and NPC treatment, especially for radiotherapy, is still elusive. METHODS Osthole with or without X ray radiotherapy treated with CNE2 cells, a human EC cell line. Cell viability, proliferation, migration and apoptosis were measured by MTT, colony formation, Annexin V/PI double staining, Transwell assay, respectively. NPC tumor models were established on BALB/c nude mice by subcutaneously injection of CNE2 cells and the effect of osthole and radiotherapy on tumor growth in vivo was studied. RESULTS We found that in a dose-dependent manner, osthole could individually, and synergistically with radiotherapy, reduce NPC cell (CNE2) viability, proliferation, migration, and invasion, and induce apoptosis, respectively. This effect of anti-tumor growth and induction of apoptosis was further confirmed in mice induced by subcutaneously injection with CNE2 cells and following treated with osthole or/and radiation. CONCLUSION Osthole increases the effect of radiotherapy on anti-human nasopharyngeal cancer.
Collapse
Affiliation(s)
- Lin Peng
- Clinical Laboratory, Cancer Hospital of Shantou University Medical College, Shantou 515031, People's Republic of China
| | - Yi-Teng Huang
- Health Care Center, The First Affiliated Hospital of Shantou University Medical College. Shantou 515041, People's Republic of China
| | - Jian Chen
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, Shantou 515031, People's Republic of China
| | - Yi-Xuan Zhuang
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, Shantou 515031, People's Republic of China
| | - Fan Zhang
- Oncological Research Lab, Cancer Hospital of Shantou University Medical College, Shantou 515031, People's Republic of China,
| | - Jiong-Yu Chen
- Oncological Research Lab, Cancer Hospital of Shantou University Medical College, Shantou 515031, People's Republic of China,
| | - Li Zhou
- Department of Gynecological Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515031, People's Repulic of China
| | - Dong-Hong Zhang
- Department of Cardiology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, People's Repulic of China,
| |
Collapse
|
49
|
Duan L, Liu C, Hu J, Liu Y, Wang J, Chen G, Li Z, Chen H. Epigenetic mechanisms in coronary artery disease: The current state and prospects. Trends Cardiovasc Med 2017; 28:311-319. [PMID: 29366539 DOI: 10.1016/j.tcm.2017.12.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/18/2017] [Accepted: 12/23/2017] [Indexed: 12/12/2022]
Abstract
Coronary artery disease (CAD) is the leading cause of morbidity and mortality. CAD has both genetic and environmental causes. In the past two decades, the understanding of epigenetics has advanced swiftly and vigorously. It has been demonstrated that epigenetic modifications are associated with the onset and progression of CAD. This review aims to improve the understanding of the epigenetic mechanisms closely related to CAD and to provide a novel perspective on the onset and development of CAD. Epigenetic changes include DNA methylation, histone modification, microRNA and lncRNA, which are interrelated with critical genes and influence the expression of those genes. In addition, miRNA plays a diverse role in the pathological process of CAD. Numerous studies have found that some cardiac-specific miRNAs have potential as certain diagnostic biomarkers and treatment targets for CAD. In this review, the aberrant epigenetic mechanisms that contribute to CAD will be discussed. We will also provide novel insight into the epigenetic mechanisms that target CAD.
Collapse
Affiliation(s)
- Lian Duan
- Department of Cardiology, Guang' an men Hospital, No. 5 Beixiange, Xicheng District, Beijing, China; Beijing University of Traditional Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing, China
| | - Chao Liu
- Department of Cardiology, Guang' an men Hospital, No. 5 Beixiange, Xicheng District, Beijing, China; Beijing University of Traditional Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing, China
| | - Junyuan Hu
- Department of Cardiology, Guang' an men Hospital, No. 5 Beixiange, Xicheng District, Beijing, China; Beijing University of Traditional Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing, China
| | - Yongmei Liu
- Department of Cardiology, Guang' an men Hospital, No. 5 Beixiange, Xicheng District, Beijing, China
| | - Jie Wang
- Department of Cardiology, Guang' an men Hospital, No. 5 Beixiange, Xicheng District, Beijing, China.
| | - Guang Chen
- Department of Cardiology, Guang' an men Hospital, No. 5 Beixiange, Xicheng District, Beijing, China; Beijing University of Traditional Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing, China
| | - Zhaoling Li
- Department of Cardiology, Guang' an men Hospital, No. 5 Beixiange, Xicheng District, Beijing, China
| | - Hengwen Chen
- Department of Cardiology, Guang' an men Hospital, No. 5 Beixiange, Xicheng District, Beijing, China
| |
Collapse
|
50
|
Folic Acid Supplementation for Stroke Prevention in Patients With Cardiovascular Disease. Am J Med Sci 2017; 354:379-387. [PMID: 29078842 DOI: 10.1016/j.amjms.2017.05.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/07/2017] [Accepted: 05/31/2017] [Indexed: 11/21/2022]
Abstract
BACKGROUND Controversy remains regarding the efficacy of folic acid supplementation in reducing the risk of stroke. This study aimed to evaluate the effect of folic acid supplementation on stroke prevention in patients with cardiovascular disease (CVD). MATERIALS AND METHODS We searched the PubMed, EMBASE and Cochrane Library databases through October 2016 to identify randomized clinical trials of folic acid supplementation to prevent stroke in patients with CVD. Relative risks (RRs) with 95% CIs were used to examine the association between folic acid supplementation and the risk of stroke with a fixed-effect model. Stratified analyses were performed according to modifiers that may affect the efficacy of folic acid supplementation. RESULTS Eleven studies with a total of 65,790 participants were included. Folic acid supplementation was associated with a significant benefit in reducing the risk of stroke in patients with CVD (RR = 0.90; 95% CI: 0.84-0.97; P = 0.005). In the stratified analysis, greater beneficial effects were observed in participants with a decrease in homocysteine concentrations of 25% or greater (RR = 0.85; 95% CI: 0.74-0.97; P = 0.03), those with a daily folate dose of less than 2mg (RR = 0.78; 95% CI: 0.68-0.89; P = 0.01), and populations in regions with no or partly fortified grain (RR = 0.87; 95% CI: 0.81-0.94; P = 0.04). CONCLUSIONS Our meta-analysis demonstrated that folic acid supplementation is effective in stroke prevention in patients with CVD.
Collapse
|