1
|
Sentell ZT, Nurcombe ZW, Mougharbel L, Anastasio N, Rivière JB, Babayeva S, Goodyer PR, Torban E, Kitzler TM. Expanding the phenotypic spectrum of CC2D2A-related ciliopathies: a rare homozygous nonsense variant in a patient with suspected nephronophthisis. Eur J Hum Genet 2024; 32:1184-1189. [PMID: 38987663 PMCID: PMC11368927 DOI: 10.1038/s41431-024-01668-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024] Open
Abstract
Biallelic pathogenic variants in the gene CC2D2A cause a spectrum of ciliopathies, including Joubert and Meckel syndrome, which frequently involve the kidney; however, no cases of isolated renal disease (i.e., nephronophthisis) have yet been reported. In an adult with a clinical presentation consistent with nephronophthisis, next-generation sequencing identified a rare homozygous nonsense variant in CC2D2A (c.100 C > T; p.(Arg34*)). Tissue-specific expression data and promoter activity analysis demonstrates that this variant primarily affects a transcript isoform predominant in the kidneys but does not affect the transcript isoforms predominant in other tissues typically involved in CC2D2A-related ciliopathies (e.g., cerebellum, liver). Expression analysis of patient-specific cDNA in MDCK cells demonstrates partial translation re-initiation downstream of p.(Arg34*) as a possible escape mechanism from nonsense mediated decay. These data provide mechanistic insights in support of this novel genotype-phenotype association.
Collapse
Affiliation(s)
- Zachary T Sentell
- Department of Human Genetics, McGill University, Montreal, Canada
- The Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Zachary W Nurcombe
- Department of Human Genetics, McGill University, Montreal, Canada
- The Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Lina Mougharbel
- The Research Institute of the McGill University Health Centre, Montreal, Canada
| | | | | | - Sima Babayeva
- Department of Medicine, McGill University Health Centre, Montreal, Canada
| | - Paul R Goodyer
- Department of Pediatrics, Division of Nephrology, McGill University Health Centre, Montreal, Canada
| | - Elena Torban
- Department of Medicine, McGill University Health Centre, Montreal, Canada
| | - Thomas M Kitzler
- Department of Human Genetics, McGill University, Montreal, Canada.
- The Research Institute of the McGill University Health Centre, Montreal, Canada.
- Division of Medical Genetics, McGill University Health Centre, Montreal, Canada.
| |
Collapse
|
2
|
Park NK, Park SJ, Park YG, Moon SH, Woo J, Kim HJ, Kim SJ, Choi SW. Translation reinitiation in c.453delC frameshift mutation of KCNH2 producing functional hERG K+ channels with mild dominant negative effect in the heterozygote patient-derived iPSC cardiomyocytes. Hum Mol Genet 2024; 33:110-121. [PMID: 37769355 DOI: 10.1093/hmg/ddad165] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/16/2023] [Accepted: 09/25/2023] [Indexed: 09/30/2023] Open
Abstract
The c.453delC (p.Thr152Profs*14) frameshift mutation in KCNH2 is associated with an elevated risk of Long QT syndrome (LQTS) and fatal arrhythmia. Nevertheless, the loss-of-function mechanism underlying this mutation remains unexplored and necessitates an understanding of electrophysiology. To gain insight into the mechanism of the LQT phenotype, we conducted whole-cell patch-clamp and immunoblot assays, utilizing both a heterologous expression system and patient-derived induced pluripotent stem cell-cardiomyocytes (iPSC-CMs) with 453delC-KCNH2. We also explored the site of translational reinitiation by employing LC/MS mass spectrometry. Contrary to the previous assumption of early termination of translation, the findings of this study indicate that the 453delC-KCNH2 leads to an N-terminally truncated hERG channel, a potential from a non-canonical start codon, with diminished expression and reduced current (IhERG). The co-expression with wildtype KCNH2 produced heteromeric hERG channel with mild dominant-negative effect. Additionally, the heterozygote patient-derived iPSC-CMs exhibited prolonged action potential duration and reduced IhERG, which was ameliorated with the use of a hERG activator, PD-118057. The results of our study offer novel insights into the mechanisms involved in congenital LQTS associated with the 453delC mutation of KCNH2. The mutant results in the formation of less functional N-terminal-truncated channels with reduced amount of membrane expression. A hERG activator is capable of correcting abnormalities in both the heterologous expression system and patient-derived iPSC-CMs.
Collapse
Affiliation(s)
- Na Kyeong Park
- Department of Physiology, Seoul National University College of Medicine, 103, Daehak-ro, Seoul 03080, Korea
| | - Soon-Jung Park
- Stem Cell Research Institute, T&R Biofab Co. Ltd, 237, Sangidaehak-ro, Siheung 15073, Korea
| | - Yun-Gwi Park
- Department of Animal Science and Technology, Chung-Ang University, 4726, Seodong-daero, Anseong 17546, Korea
| | - Sung-Hwan Moon
- Department of Animal Science and Technology, Chung-Ang University, 4726, Seodong-daero, Anseong 17546, Korea
| | - JooHan Woo
- Department of Physiology, Dongguk University College of Medicine, 123, Dongdae-ro, Gyeongju 38066, Korea
| | - Hyun Jong Kim
- Department of Physiology, Dongguk University College of Medicine, 123, Dongdae-ro, Gyeongju 38066, Korea
| | - Sung Joon Kim
- Department of Physiology, Seoul National University College of Medicine, 103, Daehak-ro, Seoul 03080, Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, 103, Daehak-ro, Seoul 03080, Korea
| | - Seong Woo Choi
- Department of Physiology, Dongguk University College of Medicine, 123, Dongdae-ro, Gyeongju 38066, Korea
| |
Collapse
|
3
|
Sherlock ME, Baquero Galvis L, Vicens Q, Kieft JS, Jagannathan S. Principles, mechanisms, and biological implications of translation termination-reinitiation. RNA (NEW YORK, N.Y.) 2023; 29:865-884. [PMID: 37024263 PMCID: PMC10275272 DOI: 10.1261/rna.079375.122] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/28/2023] [Indexed: 06/11/2023]
Abstract
The gene expression pathway from DNA sequence to functional protein is not as straightforward as simple depictions of the central dogma might suggest. Each step is highly regulated, with complex and only partially understood molecular mechanisms at play. Translation is one step where the "one gene-one protein" paradigm breaks down, as often a single mature eukaryotic mRNA leads to more than one protein product. One way this occurs is through translation reinitiation, in which a ribosome starts making protein from one initiation site, translates until it terminates at a stop codon, but then escapes normal recycling steps and subsequently reinitiates at a different downstream site. This process is now recognized as both important and widespread, but we are only beginning to understand the interplay of factors involved in termination, recycling, and initiation that cause reinitiation events. There appear to be several ways to subvert recycling to achieve productive reinitiation, different types of stresses or signals that trigger this process, and the mechanism may depend in part on where the event occurs in the body of an mRNA. This perspective reviews the unique characteristics and mechanisms of reinitiation events, highlights the similarities and differences between three major scenarios of reinitiation, and raises outstanding questions that are promising avenues for future research.
Collapse
Affiliation(s)
- Madeline E Sherlock
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Laura Baquero Galvis
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Quentin Vicens
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Sujatha Jagannathan
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| |
Collapse
|
4
|
Russell PJ, Slivka JA, Boyle EP, Burghes AHM, Kearse MG. Translation reinitiation after uORFs does not fully protect mRNAs from nonsense-mediated decay. RNA (NEW YORK, N.Y.) 2023; 29:735-744. [PMID: 36878710 PMCID: PMC10187673 DOI: 10.1261/rna.079525.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/14/2023] [Indexed: 05/18/2023]
Abstract
It is estimated that nearly 50% of mammalian transcripts contain at least one upstream open reading frame (uORF), which are typically one to two orders of magnitude smaller than the downstream main ORF. Most uORFs are thought to be inhibitory as they sequester the scanning ribosome, but in some cases allow for translation reinitiation. However, termination in the 5' UTR at the end of uORFs resembles premature termination that is normally sensed by the nonsense-mediated mRNA decay (NMD) pathway. Translation reinitiation has been proposed as a method for mRNAs to prevent NMD. Here, we test how uORF length influences translation reinitiation and mRNA stability in HeLa cells. Using custom 5' UTRs and uORF sequences, we show that reinitiation can occur on heterologous mRNA sequences, favors small uORFs, and is supported when initiation occurs with more initiation factors. After determining reporter mRNA half-lives in HeLa cells and mining available mRNA half-life data sets for cumulative predicted uORF length, we conclude that translation reinitiation after uORFs is not a robust method for mRNAs to prevent NMD. Together, these data suggest that the decision of whether NMD ensues after translating uORFs occurs before reinitiation in mammalian cells.
Collapse
Affiliation(s)
- Paul J Russell
- Cellular, Molecular, and Biochemical Sciences Program, The Ohio State University, Columbus, Ohio 43210, USA
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Jacob A Slivka
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Computer Science and Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Elaina P Boyle
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Arthur H M Burghes
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Michael G Kearse
- Cellular, Molecular, and Biochemical Sciences Program, The Ohio State University, Columbus, Ohio 43210, USA
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
5
|
Zheng Z, Song Y, Tan X. Deciphering hERG Mutation in Long QT Syndrome Type 2 Using Antisense Oligonucleotide-Mediated Techniques: Lessons from Cystic Fibrosis. Heart Rhythm 2023:S1547-5271(23)02180-X. [PMID: 37121422 DOI: 10.1016/j.hrthm.2023.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023]
Abstract
Long QT syndrome type 2 (LQT2) is a genetic disorder caused by mutations in the KCNH2 gene, also known as the human ether-a-go-go-related gene (hERG). Over 30% of hERG mutations result in a premature termination codon (PTC) that triggers a process called nonsense-mediated mRNA decay (NMD), where the mRNA transcript is degraded. NMD is a quality control mechanism that removes faulty mRNA to prevent the translation of truncated proteins. Recent advances in antisense oligonucleotide (ASO) technology in the field of cystic fibrosis (CF) have yielded significant progress, including the ASO-mediated comprehensive characterization of key NMD factors and exon-skipping therapy. These advances have contributed to our understanding of the role of PTC-containing mutations in disease phenotypes and have also led to the development of potentially useful therapeutic strategies. Historically, studies of CF have provided valuable insights for the research on LQT2, particularly concerning increasing the expression of hERG. In this article, we outline the current state of knowledge regarding ASO, NMD, and hERG and discuss the introduction of ASO technology in the CF to elucidate the pathogenic mechanisms through targeting NMD. We also discuss the potential clinical therapeutic benefits and limitations of ASO for the management of LQT2. By drawing on lessons learned from CF research, we explore the potential translational values of these advances into LQT2 studies.
Collapse
Affiliation(s)
- Zequn Zheng
- Department of Cardiology, Shantou University Medical College, Shantou, China; Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, China; Clinical Research Center, First Affiliated Hospital of Shantou University Medical College, Shantou, China.
| | - Yongfei Song
- Ningbo Institute for Medicine &Biomedical Engineering Combined Innovation, Ningbo, China
| | - Xuerui Tan
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, China; Clinical Research Center, First Affiliated Hospital of Shantou University Medical College, Shantou, China.
| |
Collapse
|
6
|
Zhong L, Gao X, Wang Y, Qiu W, Han L, Gu X, Zhang H. Clinical characteristics and genotypes of 201 patients with mucopolysaccharidosis type II in China: A retrospective, observational study. Clin Genet 2023; 103:655-662. [PMID: 36945845 DOI: 10.1111/cge.14329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 03/23/2023]
Abstract
Mucopolysaccharidosis type II (MPS II) is an X-linked recessive lysosomal storage disease caused by a disease-associated variant in the IDS gene, which encodes iduronate 2-sulfatase (IDS). We aimed to characterize the clinical characteristics and genotypes of the largest cohort of Chinese patients with MPS II and so gain a deeper understanding of natural disease progression. Patients with confirmed MPS II and without treatment were included. The disease was classified as severe in patients with neurological impairment, and as attenuated in patients aged >6 years without neurological impairment. Of the 201 male patients, 78.1% had severe MPS II. Cognitive regression occurred before age 6 years in 94.3% of patients. Of 122 IDS variants identified, 37 were novel. Among the large gene alteration types identified, only the frequency of IDS-IDS2 recombination was significantly higher in severe versus attenuated MPS II (P = 0.032). Some identified point variants could inform the understanding of genotype-phenotype correlations. In conclusion, this study showed that classification of the disease as attenuated should only be made in patients aged >6 years. Our findings expand the understanding of the genotype-phenotype relationship, inform the diagnostic process, and provide an indication of the likely prognosis.
Collapse
Affiliation(s)
- Lin Zhong
- Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, People's Republic of China
| | - Xiaolan Gao
- Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, People's Republic of China
| | - Yu Wang
- Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, People's Republic of China
| | - Wenjuan Qiu
- Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, People's Republic of China
| | - Lianshu Han
- Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, People's Republic of China
| | - Xuefan Gu
- Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, People's Republic of China
| | - Huiwen Zhang
- Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, People's Republic of China
| |
Collapse
|
7
|
Supek F, Lehner B, Lindeboom RG. To NMD or Not To NMD: Nonsense-Mediated mRNA Decay in Cancer and Other Genetic Diseases. Trends Genet 2021; 37:657-668. [DOI: 10.1016/j.tig.2020.11.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023]
|
8
|
Flegel WA, Srivastava K. Frameshift variations in the RHD coding sequence: Molecular mechanisms permitting protein expression. Transfusion 2020; 60:2737-2744. [PMID: 33037655 DOI: 10.1111/trf.16123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/08/2020] [Accepted: 07/17/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Willy A Flegel
- Department of Transfusion Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Kshitij Srivastava
- Department of Transfusion Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
9
|
SRSF7 maintains its homeostasis through the expression of Split-ORFs and nuclear body assembly. Nat Struct Mol Biol 2020; 27:260-273. [PMID: 32123389 PMCID: PMC7096898 DOI: 10.1038/s41594-020-0385-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 01/23/2020] [Indexed: 02/08/2023]
Abstract
SRSF7 is an essential RNA-binding protein whose misexpression promotes cancer. Here, we describe how SRSF7 maintains its protein homeostasis in murine P19 cells using an intricate negative feedback mechanism. SRSF7 binding to its premessenger RNA promotes inclusion of a poison cassette exon and transcript degradation via nonsense-mediated decay (NMD). However, elevated SRSF7 levels inhibit NMD and promote translation of two protein halves, termed Split-ORFs, from the bicistronic SRSF7-PCE transcript. The first half acts as dominant-negative isoform suppressing poison cassette exon inclusion and instead promoting the retention of flanking introns containing repeated SRSF7 binding sites. Massive SRSF7 binding to these sites and its oligomerization promote the assembly of large nuclear bodies, which sequester SRSF7 transcripts at their transcription site, preventing their export and restoring normal SRSF7 protein levels. We further show that hundreds of human and mouse NMD targets, especially RNA-binding proteins, encode potential Split-ORFs, some of which are expressed under specific cellular conditions.
Collapse
|
10
|
Aiken J, Buscaglia G, Aiken AS, Moore JK, Bates EA. Tubulin mutations in brain development disorders: Why haploinsufficiency does not explain TUBA1A tubulinopathies. Cytoskeleton (Hoboken) 2020; 77:40-54. [PMID: 31574570 DOI: 10.1002/cm.21567] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/09/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022]
Abstract
The neuronal cytoskeleton performs incredible feats during nervous system development. Extension of neuronal processes, migration, and synapse formation rely on the proper regulation of microtubules. Mutations that disrupt the primary α-tubulin expressed during brain development, TUBA1A, are associated with a spectrum of human brain malformations. One model posits that TUBA1A mutations lead to a reduction in tubulin subunits available for microtubule polymerization, which represents a haploinsufficiency mechanism. We propose an alternative model for the majority of tubulinopathy mutations, in which the mutant tubulin polymerizes into the microtubule lattice to dominantly "poison" microtubule function. Nine distinct α-tubulin and ten β-tubulin genes have been identified in the human genome. These genes encode similar tubulin proteins, called isotypes. Multiple tubulin isotypes may partially compensate for heterozygous deletion of a tubulin gene, but may not overcome the disruption caused by missense mutations that dominantly alter microtubule function. Here, we describe disorders attributed to haploinsufficiency versus dominant negative mechanisms to demonstrate the hallmark features of each disorder. We summarize literature on mouse models that represent both knockout and point mutants in tubulin genes, with an emphasis on how these mutations might provide insight into the nature of tubulinopathy patient mutations. Finally, we present data from a panel of TUBA1A tubulinopathy mutations generated in yeast α-tubulin that demonstrate that α-tubulin mutants can incorporate into the microtubule network and support viability of yeast growth. This perspective on tubulinopathy mutations draws on previous studies and additional data to provide a fresh perspective on how TUBA1A mutations disrupt neurodevelopment.
Collapse
Affiliation(s)
- Jayne Aiken
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | - Georgia Buscaglia
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - A Sophie Aiken
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | - Jeffrey K Moore
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | - Emily A Bates
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
11
|
Cohen S, Kramarski L, Levi S, Deshe N, Ben David O, Arbely E. Nonsense mutation-dependent reinitiation of translation in mammalian cells. Nucleic Acids Res 2020; 47:6330-6338. [PMID: 31045216 PMCID: PMC6614817 DOI: 10.1093/nar/gkz319] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 04/16/2019] [Accepted: 04/22/2019] [Indexed: 11/14/2022] Open
Abstract
In-frame stop codons mark the termination of translation. However, post-termination ribosomes can reinitiate translation at downstream AUG codons. In mammals, reinitiation is most efficient when the termination codon is positioned close to the 5′-proximal initiation site and around 78 bases upstream of the reinitiation site. The phenomenon was studied mainly in the context of open reading frames (ORFs) found within the 5′-untranslated region, or polycicstronic viral mRNA. We hypothesized that reinitiation of translation following nonsense mutations within the main ORF of p53 can promote the expression of N-truncated p53 isoforms such as Δ40, Δ133 and Δ160p53. Here, we report that expression of all known N-truncated p53 isoforms by reinitiation is mechanistically feasible, including expression of the previously unidentified variant Δ66p53. Moreover, we found that significant reinitiation of translation can be promoted by nonsense mutations located even 126 codons downstream of the 5′-proximal initiation site, and observed when the reinitiation site is positioned between 6 and 243 bases downstream of the nonsense mutation. We also demonstrate that reinitiation can stabilise p53 mRNA transcripts with a premature termination codon, by allowing such transcripts to evade the nonsense mediated decay pathway. Our data suggest that the expression of N-truncated proteins from alleles carrying a premature termination codon is more prevalent than previously thought.
Collapse
Affiliation(s)
- Sarit Cohen
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Lior Kramarski
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Shahar Levi
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Noa Deshe
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Oshrit Ben David
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Eyal Arbely
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.,Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
12
|
Dyle MC, Kolakada D, Cortazar MA, Jagannathan S. How to get away with nonsense: Mechanisms and consequences of escape from nonsense-mediated RNA decay. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1560. [PMID: 31359616 PMCID: PMC10685860 DOI: 10.1002/wrna.1560] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/25/2019] [Accepted: 07/04/2019] [Indexed: 11/04/2023]
Abstract
Nonsense-mediated RNA decay (NMD) is an evolutionarily conserved RNA quality control process that serves both as a mechanism to eliminate aberrant transcripts carrying premature stop codons, and to regulate expression of some normal transcripts. For a quality control process, NMD exhibits surprising variability in its efficiency across transcripts, cells, tissues, and individuals in both physiological and pathological contexts. Whether an aberrant RNA is spared or degraded, and by what mechanism, could determine the phenotypic outcome of a disease-causing mutation. Hence, understanding the variability in NMD is not only important for clinical interpretation of genetic variants but also may provide clues to identify novel therapeutic approaches to counter genetic disorders caused by nonsense mutations. Here, we discuss the current knowledge of NMD variability and the mechanisms that allow certain transcripts to escape NMD despite the presence of NMD-inducing features. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA in Disease and Development > RNA in Disease RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Michael C. Dyle
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Divya Kolakada
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael A. Cortazar
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sujatha Jagannathan
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
13
|
Oleaga-Quintas C, Deswarte C, Moncada-Vélez M, Metin A, Krishna Rao I, Kanık-Yüksek S, Nieto-Patlán A, Guérin A, Gülhan B, Murthy S, Özkaya-Parlakay A, Abel L, Martínez-Barricarte R, Pérez de Diego R, Boisson-Dupuis S, Kong XF, Casanova JL, Bustamante J. A purely quantitative form of partial recessive IFN-γR2 deficiency caused by mutations of the initiation or second codon. Hum Mol Genet 2019; 27:3919-3935. [PMID: 31222290 DOI: 10.1093/hmg/ddy275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/17/2018] [Accepted: 07/17/2018] [Indexed: 02/07/2023] Open
Abstract
Mendelian susceptibility to mycobacterial disease (MSMD) is characterized by clinical disease caused by weakly virulent mycobacteria, such as environmental mycobacteria and Bacillus Calmette-Guérin vaccines, in otherwise healthy individuals. All known genetic etiologies disrupt interferon (IFN)-γ immunity. Germline bi-allelic mutations of IFNGR2 can underlie partial or complete forms of IFN-γ receptor 2 (IFN-γR2) deficiency. Patients with partial IFN-γR2 deficiency express a dysfunctional molecule on the cell surface. We studied three patients with MSMD from two unrelated kindreds from Turkey (P1, P2) and India (P3), by whole-exome sequencing. P1 and P2 are homozygous for a mutation of the initiation codon(c.1A>G) of IFNGR2, whereas P3 is homozygous for a mutation of the second codon (c.4delC). Overexpressed mutant alleles produce small amounts of full-length IFN-γR2 resulting in an impaired, but not abolished, response to IFN-γ. Moreover, SV40-fibroblasts of P1 and P2 responded weakly to IFN-γ, and Epstein Barr virus-transformed B cells had a barely detectable response to IFN-γ. Studies in patients' primary T cells and monocyte-derived macrophages yielded similar results. The residual expression of IFN-γR2 protein of normal molecular weight and function is due to the initiation of translation between the second and ninth non-AUG codons. We thus describe mutations of the first and second codons of IFNGR2, which define a new form of partial recessive IFN-γR2 deficiency. Residual levels of IFN-γ signaling were very low, accounting for the more severe clinical phenotype of these patients with residual expression levels of normally functional surface receptors than of patients with partial recessive IFN-γR2 deficiency due to surface-expressed dysfunctional receptors, whose residual levels of IFN-γ signaling were higher.
Collapse
Affiliation(s)
- Carmen Oleaga-Quintas
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Imagine Institute, Necker Hospital for Sick Children, Paris, France.,Paris Descartes University, Paris, France.,Department of Immunology, School of Medicine, Complutense University, Madrid, Spain
| | - Caroline Deswarte
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Imagine Institute, Necker Hospital for Sick Children, Paris, France.,Paris Descartes University, Paris, France
| | - Marcela Moncada-Vélez
- Primary Immunodeficiencies Group, School of Medicine, University of Antioquia UdeA, Medellin, Colombia
| | - Ayse Metin
- Infectious Diseases Unit, Ankara Hematology Oncology Children's Training and Research Hospital, Ankara, Turkey
| | | | - Saliha Kanık-Yüksek
- Infectious Diseases Unit, Ankara Hematology Oncology Children's Training and Research Hospital, Ankara, Turkey
| | - Alejandro Nieto-Patlán
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Imagine Institute, Necker Hospital for Sick Children, Paris, France.,Paris Descartes University, Paris, France
| | - Antoine Guérin
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Imagine Institute, Necker Hospital for Sick Children, Paris, France.,Paris Descartes University, Paris, France
| | - Belgin Gülhan
- Infectious Diseases Unit, Ankara Hematology Oncology Children's Training and Research Hospital, Ankara, Turkey
| | - Savita Murthy
- Department of Pediatrics, St John's Medical College, Bangalore, India
| | - Aslınur Özkaya-Parlakay
- Infectious Diseases Unit, Ankara Hematology Oncology Children's Training and Research Hospital, Ankara, Turkey
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Imagine Institute, Necker Hospital for Sick Children, Paris, France.,Paris Descartes University, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, the Rockefeller University, New York, USA
| | - Rubén Martínez-Barricarte
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, the Rockefeller University, New York, USA
| | - Rebeca Pérez de Diego
- Laboratory of Immunogenetics of Human Diseases IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Imagine Institute, Necker Hospital for Sick Children, Paris, France.,Paris Descartes University, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, the Rockefeller University, New York, USA
| | - Xiao-Fei Kong
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, the Rockefeller University, New York, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Imagine Institute, Necker Hospital for Sick Children, Paris, France.,Paris Descartes University, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, the Rockefeller University, New York, USA.,Howard Hughes Medical Institute, New York, USA.,Pediatric Hematology-Immunology Unit, AP-HP, Necker Hospital for Sick Children, Paris, France
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Imagine Institute, Necker Hospital for Sick Children, Paris, France.,Paris Descartes University, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, the Rockefeller University, New York, USA.,Center for the Study of Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France
| |
Collapse
|
14
|
Abstract
Long QT syndrome type 2 (LQT2) is caused by mutations in the human ether-à-go-go related gene (hERG), which encodes the Kv11.1 potassium channel in the heart. Over 30% of identified LQT2 mutations are nonsense or frameshift mutations that introduce premature termination codons (PTCs). Contrary to intuition, the predominant consequence of LQT2 nonsense and frameshift mutations is not the production of truncated proteins, but rather the degradation of mutant mRNA by nonsense-mediated mRNA decay (NMD), an RNA surveillance mechanism that selectively eliminates the mRNA transcripts that contain PTCs. In this chapter, we describe methods to study NMD of hERG nonsense and frameshift mutations in long QT syndrome.
Collapse
Affiliation(s)
- Qiuming Gong
- Knight Cardiovascular Institute, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Rd., Mail Code CHH14Z, Portland, OR, 97239, USA
| | - Zhengfeng Zhou
- Knight Cardiovascular Institute, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Rd., Mail Code CHH14Z, Portland, OR, 97239, USA.
| |
Collapse
|
15
|
Kalstrup T, Blunck R. Reinitiation at non-canonical start codons leads to leak expression when incorporating unnatural amino acids. Sci Rep 2015; 5:11866. [PMID: 26153354 PMCID: PMC4648390 DOI: 10.1038/srep11866] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/05/2015] [Indexed: 12/31/2022] Open
Abstract
With the rapid development of a continuously growing selection of unnatural amino acids (UAAs), UAA insertion becomes increasingly popular for investigating proteins. However, it can prove problematic to ensure the homogeneity of the expressed proteins, when homogeneity is compromised by “leak expression”. Here, we show that leak expression may be mediated by reinitiation and can result in unwanted proteins when stop codons for UAA insertion are mutated into the N-terminus of proteins. We demonstrate that up to 25% of leak expression occurs through reinitiation in the Shaker-Kv channel when stop codons are located within the first 70 amino acids. Several non-canonical start codons were identified as translation reinitaition sites, and by removing the start codons, we were able to decrease leak expression to less than 1%. Our study emphasizes the need to carefully inspect for leak expression when inserting UAAs and demonstrates how leak expression can be eliminated.
Collapse
Affiliation(s)
- Tanja Kalstrup
- Groupe d'Études des Protéines Membranaires (GÉPROM), Departments of Physics and of Physiology, Université de Montréal, Montréal, QC, Canada
| | - Rikard Blunck
- Groupe d'Études des Protéines Membranaires (GÉPROM), Departments of Physics and of Physiology, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
16
|
Wilbe M, Ekvall S, Eurenius K, Ericson K, Casar-Borota O, Klar J, Dahl N, Ameur A, Annerén G, Bondeson ML. MuSK: a new target for lethal fetal akinesia deformation sequence (FADS). J Med Genet 2015; 52:195-202. [PMID: 25612909 DOI: 10.1136/jmedgenet-2014-102730] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Fetal akinesia deformation sequence syndrome (FADS, OMIM 208150) is characterised by decreased fetal movement (fetal akinesia) as well as intrauterine growth restriction, arthrogryposis, and developmental anomalies (eg, cystic hygroma, pulmonary hypoplasia, cleft palate, and cryptorchidism). Mutations in components of the acetylcholine receptor (AChR) pathway have previously been associated with FADS. METHODS AND RESULTS We report on a family with recurrent fetal loss, where the parents had five affected fetuses/children with FADS and one healthy child. The fetuses displayed no fetal movements from the gestational age of 17 weeks, extended knee joints, flexed hips and elbows, and clenched hands. Whole exome sequencing of one affected fetus and the parents was performed. A novel homozygous frameshift mutation was identified in muscle, skeletal receptor tyrosine kinase (MuSK), c.40dupA, which segregated with FADS in the family. Haplotype analysis revealed a conserved haplotype block suggesting a founder mutation. MuSK (muscle-specific tyrosine kinase receptor), a component of the AChR pathway, is a main regulator of neuromuscular junction formation and maintenance. Missense mutations in MuSK have previously been reported to cause congenital myasthenic syndrome (CMS) associated with AChR deficiency. CONCLUSIONS To our knowledge, this is the first report showing that a mutation in MuSK is associated with FADS. The results support previous findings that CMS and/or FADS are caused by complete or severe functional disruption of components located in the AChR pathway. We propose that whereas milder mutations of MuSK will cause a CMS phenotype, a complete loss is lethal and will cause FADS.
Collapse
Affiliation(s)
- Maria Wilbe
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Sara Ekvall
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Karin Eurenius
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Katharina Ericson
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden Department of Pathology and Cytology, Uppsala University Hospital, Uppsala, Sweden
| | - Olivera Casar-Borota
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden Department of Pathology and Cytology, Uppsala University Hospital, Uppsala, Sweden
| | - Joakim Klar
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Niklas Dahl
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Adam Ameur
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Göran Annerén
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Marie-Louise Bondeson
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
17
|
Helms AS, Davis FM, Coleman D, Bartolone SN, Glazier AA, Pagani F, Yob JM, Sadayappan S, Pedersen E, Lyons R, Westfall MV, Jones R, Russell MW, Day SM. Sarcomere mutation-specific expression patterns in human hypertrophic cardiomyopathy. ACTA ACUST UNITED AC 2014; 7:434-43. [PMID: 25031304 DOI: 10.1161/circgenetics.113.000448] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Heterozygous mutations in sarcomere genes in hypertrophic cardiomyopathy (HCM) are proposed to exert their effect through gain of function for missense mutations or loss of function for truncating mutations. However, allelic expression from individual mutations has not been sufficiently characterized to support this exclusive distinction in human HCM. METHODS AND RESULTS Sarcomere transcript and protein levels were analyzed in septal myectomy and transplant specimens from 46 genotyped HCM patients with or without sarcomere gene mutations and 10 control hearts. For truncating mutations in MYBPC3, the average ratio of mutant:wild-type transcripts was ≈1:5, in contrast to ≈1:1 for all sarcomere missense mutations, confirming that nonsense transcripts are uniquely unstable. However, total MYBPC3 mRNA was significantly increased by 9-fold in HCM samples with MYBPC3 mutations compared with control hearts and with HCM samples without sarcomere gene mutations. Full-length MYBPC3 protein content was not different between MYBPC3 mutant HCM and control samples, and no truncated proteins were detected. By absolute quantification of abundance with multiple reaction monitoring, stoichiometric ratios of mutant sarcomere proteins relative to wild type were strikingly variable in a mutation-specific manner, with the fraction of mutant protein ranging from 30% to 84%. CONCLUSIONS These results challenge the concept that haploinsufficiency is a unifying mechanism for HCM caused by MYBPC3 truncating mutations. The range of allelic imbalance for several missense sarcomere mutations suggests that certain mutant proteins may be more or less stable or incorporate more or less efficiently into the sarcomere than wild-type proteins. These mutation-specific properties may distinctly influence disease phenotypes.
Collapse
Affiliation(s)
- Adam S Helms
- From the Departments of Internal Medicine (A.S.H., F.D., D.C., S.B., J.M.Y., S.M.D.), Molecular and Integrative Physiology (A.A.G., M.V.W.), Cardiac Surgery (F.P., M.V.W.), Sequencing Core (E.P., R.L.), and Pediatrics (M.W.R.), University of Michigan, Ann Arbor; Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S.S.); and MS Bioworks, Ann Arbor, MI (R.J.)
| | - Frank M Davis
- From the Departments of Internal Medicine (A.S.H., F.D., D.C., S.B., J.M.Y., S.M.D.), Molecular and Integrative Physiology (A.A.G., M.V.W.), Cardiac Surgery (F.P., M.V.W.), Sequencing Core (E.P., R.L.), and Pediatrics (M.W.R.), University of Michigan, Ann Arbor; Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S.S.); and MS Bioworks, Ann Arbor, MI (R.J.)
| | - David Coleman
- From the Departments of Internal Medicine (A.S.H., F.D., D.C., S.B., J.M.Y., S.M.D.), Molecular and Integrative Physiology (A.A.G., M.V.W.), Cardiac Surgery (F.P., M.V.W.), Sequencing Core (E.P., R.L.), and Pediatrics (M.W.R.), University of Michigan, Ann Arbor; Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S.S.); and MS Bioworks, Ann Arbor, MI (R.J.)
| | - Sarah N Bartolone
- From the Departments of Internal Medicine (A.S.H., F.D., D.C., S.B., J.M.Y., S.M.D.), Molecular and Integrative Physiology (A.A.G., M.V.W.), Cardiac Surgery (F.P., M.V.W.), Sequencing Core (E.P., R.L.), and Pediatrics (M.W.R.), University of Michigan, Ann Arbor; Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S.S.); and MS Bioworks, Ann Arbor, MI (R.J.)
| | - Amelia A Glazier
- From the Departments of Internal Medicine (A.S.H., F.D., D.C., S.B., J.M.Y., S.M.D.), Molecular and Integrative Physiology (A.A.G., M.V.W.), Cardiac Surgery (F.P., M.V.W.), Sequencing Core (E.P., R.L.), and Pediatrics (M.W.R.), University of Michigan, Ann Arbor; Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S.S.); and MS Bioworks, Ann Arbor, MI (R.J.)
| | - Francis Pagani
- From the Departments of Internal Medicine (A.S.H., F.D., D.C., S.B., J.M.Y., S.M.D.), Molecular and Integrative Physiology (A.A.G., M.V.W.), Cardiac Surgery (F.P., M.V.W.), Sequencing Core (E.P., R.L.), and Pediatrics (M.W.R.), University of Michigan, Ann Arbor; Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S.S.); and MS Bioworks, Ann Arbor, MI (R.J.)
| | - Jaime M Yob
- From the Departments of Internal Medicine (A.S.H., F.D., D.C., S.B., J.M.Y., S.M.D.), Molecular and Integrative Physiology (A.A.G., M.V.W.), Cardiac Surgery (F.P., M.V.W.), Sequencing Core (E.P., R.L.), and Pediatrics (M.W.R.), University of Michigan, Ann Arbor; Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S.S.); and MS Bioworks, Ann Arbor, MI (R.J.)
| | - Sakthivel Sadayappan
- From the Departments of Internal Medicine (A.S.H., F.D., D.C., S.B., J.M.Y., S.M.D.), Molecular and Integrative Physiology (A.A.G., M.V.W.), Cardiac Surgery (F.P., M.V.W.), Sequencing Core (E.P., R.L.), and Pediatrics (M.W.R.), University of Michigan, Ann Arbor; Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S.S.); and MS Bioworks, Ann Arbor, MI (R.J.)
| | - Ellen Pedersen
- From the Departments of Internal Medicine (A.S.H., F.D., D.C., S.B., J.M.Y., S.M.D.), Molecular and Integrative Physiology (A.A.G., M.V.W.), Cardiac Surgery (F.P., M.V.W.), Sequencing Core (E.P., R.L.), and Pediatrics (M.W.R.), University of Michigan, Ann Arbor; Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S.S.); and MS Bioworks, Ann Arbor, MI (R.J.)
| | - Robert Lyons
- From the Departments of Internal Medicine (A.S.H., F.D., D.C., S.B., J.M.Y., S.M.D.), Molecular and Integrative Physiology (A.A.G., M.V.W.), Cardiac Surgery (F.P., M.V.W.), Sequencing Core (E.P., R.L.), and Pediatrics (M.W.R.), University of Michigan, Ann Arbor; Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S.S.); and MS Bioworks, Ann Arbor, MI (R.J.)
| | - Margaret V Westfall
- From the Departments of Internal Medicine (A.S.H., F.D., D.C., S.B., J.M.Y., S.M.D.), Molecular and Integrative Physiology (A.A.G., M.V.W.), Cardiac Surgery (F.P., M.V.W.), Sequencing Core (E.P., R.L.), and Pediatrics (M.W.R.), University of Michigan, Ann Arbor; Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S.S.); and MS Bioworks, Ann Arbor, MI (R.J.)
| | - Richard Jones
- From the Departments of Internal Medicine (A.S.H., F.D., D.C., S.B., J.M.Y., S.M.D.), Molecular and Integrative Physiology (A.A.G., M.V.W.), Cardiac Surgery (F.P., M.V.W.), Sequencing Core (E.P., R.L.), and Pediatrics (M.W.R.), University of Michigan, Ann Arbor; Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S.S.); and MS Bioworks, Ann Arbor, MI (R.J.)
| | - Mark W Russell
- From the Departments of Internal Medicine (A.S.H., F.D., D.C., S.B., J.M.Y., S.M.D.), Molecular and Integrative Physiology (A.A.G., M.V.W.), Cardiac Surgery (F.P., M.V.W.), Sequencing Core (E.P., R.L.), and Pediatrics (M.W.R.), University of Michigan, Ann Arbor; Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S.S.); and MS Bioworks, Ann Arbor, MI (R.J.)
| | - Sharlene M Day
- From the Departments of Internal Medicine (A.S.H., F.D., D.C., S.B., J.M.Y., S.M.D.), Molecular and Integrative Physiology (A.A.G., M.V.W.), Cardiac Surgery (F.P., M.V.W.), Sequencing Core (E.P., R.L.), and Pediatrics (M.W.R.), University of Michigan, Ann Arbor; Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S.S.); and MS Bioworks, Ann Arbor, MI (R.J.).
| |
Collapse
|
18
|
Gong Q, Stump MR, Deng V, Zhang L, Zhou Z. Identification of Kv11.1 isoform switch as a novel pathogenic mechanism of long-QT syndrome. ACTA ACUST UNITED AC 2014; 7:482-90. [PMID: 25028483 DOI: 10.1161/circgenetics.114.000586] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The KCNH2 gene encodes the Kv11.1 potassium channel that conducts the rapidly activating delayed rectifier current in the heart. The relative expression of the full-length Kv11.1a isoform and the C-terminally truncated Kv11.1a-USO isoform plays an important role in regulation of channel function. The formation of C-terminal isoforms is determined by competition between the splicing and alternative polyadenylation of KCNH2 intron 9. It is not known whether changes in the relative expression of Kv11.1a and Kv11.1a-USO can cause long-QT syndrome. METHODS AND RESULTS We identified a novel KCNH2 splice site mutation in a large family. The mutation, IVS9-2delA, is a deletion of the A in the AG dinucleotide of the 3' acceptor site of intron 9. We designed an intron-containing full-length KCNH2 gene construct to study the effects of the mutation on the relative expression of Kv11.1a and Kv11.1a-USO at the mRNA, protein, and functional levels. We found that this mutation disrupted normal splicing and resulted in exclusive polyadenylation of intron 9, leading to a switch from the functional Kv11.1a to the nonfunctional Kv11.1a-USO isoform in HEK293 cells and HL-1 cardiomyocytes. We also showed that IVS9-2delA caused isoform switch in the mutant allele of mRNA isolated from patient lymphocytes. CONCLUSIONS Our findings indicate that the IVS9-2delA mutation causes a switch in the expression of the functional Kv11.1a isoform to the nonfunctional Kv11.1a-USO isoform. Kv11.1 isoform switch represents a novel mechanism in the pathogenesis of long-QT syndrome.
Collapse
Affiliation(s)
- Qiuming Gong
- From the Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR (Q.G., M.R.S., V.D., Z.Z.); and Lankenau Institute for Medical Research and Lankenau Medical Center, Jefferson Medical College, Philadelphia, PA (L.Z.)
| | - Matthew R Stump
- From the Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR (Q.G., M.R.S., V.D., Z.Z.); and Lankenau Institute for Medical Research and Lankenau Medical Center, Jefferson Medical College, Philadelphia, PA (L.Z.)
| | - Vivianne Deng
- From the Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR (Q.G., M.R.S., V.D., Z.Z.); and Lankenau Institute for Medical Research and Lankenau Medical Center, Jefferson Medical College, Philadelphia, PA (L.Z.)
| | - Li Zhang
- From the Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR (Q.G., M.R.S., V.D., Z.Z.); and Lankenau Institute for Medical Research and Lankenau Medical Center, Jefferson Medical College, Philadelphia, PA (L.Z.)
| | - Zhengfeng Zhou
- From the Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR (Q.G., M.R.S., V.D., Z.Z.); and Lankenau Institute for Medical Research and Lankenau Medical Center, Jefferson Medical College, Philadelphia, PA (L.Z.).
| |
Collapse
|
19
|
Schmitt N, Grunnet M, Olesen SP. Cardiac potassium channel subtypes: new roles in repolarization and arrhythmia. Physiol Rev 2014; 94:609-53. [PMID: 24692356 DOI: 10.1152/physrev.00022.2013] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
About 10 distinct potassium channels in the heart are involved in shaping the action potential. Some of the K+ channels are primarily responsible for early repolarization, whereas others drive late repolarization and still others are open throughout the cardiac cycle. Three main K+ channels drive the late repolarization of the ventricle with some redundancy, and in atria this repolarization reserve is supplemented by the fairly atrial-specific KV1.5, Kir3, KCa, and K2P channels. The role of the latter two subtypes in atria is currently being clarified, and several findings indicate that they could constitute targets for new pharmacological treatment of atrial fibrillation. The interplay between the different K+ channel subtypes in both atria and ventricle is dynamic, and a significant up- and downregulation occurs in disease states such as atrial fibrillation or heart failure. The underlying posttranscriptional and posttranslational remodeling of the individual K+ channels changes their activity and significance relative to each other, and they must be viewed together to understand their role in keeping a stable heart rhythm, also under menacing conditions like attacks of reentry arrhythmia.
Collapse
|
20
|
Gong Q, Stump MR, Zhou Z. Position of premature termination codons determines susceptibility of hERG mutations to nonsense-mediated mRNA decay in long QT syndrome. Gene 2014; 539:190-7. [PMID: 24530480 DOI: 10.1016/j.gene.2014.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/01/2014] [Accepted: 02/10/2014] [Indexed: 01/26/2023]
Abstract
The degradation of human ether-a-go-go-related gene (hERG, KCNH2) transcripts containing premature termination codon (PTC) mutations by nonsense-mediated mRNA decay (NMD) is an important mechanism of long QT syndrome type 2 (LQT2). The mechanisms governing the recognition of PTC-containing hERG transcripts as NMD substrates have not been established. We used a minigene system to study two frameshift mutations, R1032Gfs 25 and D1037Rfs 82. R1032Gfs 25 introduces a PTC in exon 14, whereas D1037Rfs 82 causes a PTC in the last exon (exon 15). We showed that R1032Gfs 25, but not D1037Rfs 82, reduced the level of mutant mRNA compared to the wild-type minigene in an NMD-dependent manner. The deletion of intron 14 prevented degradation of R1032Gfs 25 mRNA indicating that a downstream intron is required for NMD. The recognition and elimination of PTC-containing transcripts by NMD required that the mutation be positioned >54-60 nt upstream of the 3'-most exon-exon junction. Finally, we used a full-length hERG splicing-competent construct to show that inhibition of downstream intron splicing by antisense morpholino oligonucleotides inhibited NMD and rescued the functional expression of a third LQT2 mutation, Y1078. The present study defines the positional requirements for the susceptibility of LQT2 mutations to NMD and posits that the majority of reported LQT2 nonsense and frameshift mutations are potential targets of NMD.
Collapse
Affiliation(s)
- Qiuming Gong
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Matthew R Stump
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Zhengfeng Zhou
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
21
|
Jagu B, Charpentier F, Toumaniantz G. Identifying potential functional impact of mutations and polymorphisms: linking heart failure, increased risk of arrhythmias and sudden cardiac death. Front Physiol 2013; 4:254. [PMID: 24065925 PMCID: PMC3778269 DOI: 10.3389/fphys.2013.00254] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 08/29/2013] [Indexed: 01/22/2023] Open
Abstract
Researchers and clinicians have discovered several important concepts regarding the mechanisms responsible for increased risk of arrhythmias, heart failure, and sudden cardiac death. One major step in defining the molecular basis of normal and abnormal cardiac electrical behavior has been the identification of single mutations that greatly increase the risk for arrhythmias and sudden cardiac death by changing channel-gating characteristics. Indeed, mutations in several genes encoding ion channels, such as SCN5A, which encodes the major cardiac Na+ channel, have emerged as the basis for a variety of inherited cardiac arrhythmias such as long QT syndrome, Brugada syndrome, progressive cardiac conduction disorder, sinus node dysfunction, or sudden infant death syndrome. In addition, genes encoding ion channel accessory proteins, like anchoring or chaperone proteins, which modify the expression, the regulation of endocytosis, and the degradation of ion channel a-subunits have also been reported as susceptibility genes for arrhythmic syndromes. The regulation of ion channel protein expression also depends on a fine-tuned balance among different other mechanisms, such as gene transcription, RNA processing, post-transcriptional control of gene expression by miRNA, protein synthesis, assembly and post-translational modification and trafficking. The aim of this review is to inventory, through the description of few representative examples, the role of these different biogenic mechanisms in arrhythmogenesis, HF and SCD in order to help the researcher to identify all the processes that could lead to arrhythmias. Identification of novel targets for drug intervention should result from further understanding of these fundamental mechanisms.
Collapse
Affiliation(s)
- Benoît Jagu
- INSERM, UMR1087, l'institut du thorax, IRS-UN Nantes, France ; CNRS, UMR6291 Nantes, France ; Faculté de Médecine, Université de Nantes Nantes, France
| | | | | |
Collapse
|
22
|
Stump MR, Gong Q, Zhou Z. LQT2 nonsense mutations generate trafficking defective NH2-terminally truncated channels by the reinitiation of translation. Am J Physiol Heart Circ Physiol 2013; 305:H1397-404. [PMID: 23997099 DOI: 10.1152/ajpheart.00304.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human ether-a-go-go-related gene (hERG) encodes a voltage-activated K(+) channel that contributes to the repolarization of the cardiac action potential. Long QT syndrome type 2 (LQT2) is an autosomal dominant disorder caused by mutations in hERG, and patients with LQT2 are susceptible to severe ventricular arrhythmias. We have previously shown that nonsense and frameshift LQT2 mutations caused a decrease in mutant mRNA by the nonsense-mediated mRNA decay (NMD) pathway. The Q81X nonsense mutation was recently found to be resistant to NMD. Translation of Q81X is reinitiated at Met(124), resulting in the generation of NH2-terminally truncated hERG channels with altered gating properties. In the present study, we identified two additional NMD-resistant LQT2 nonsense mutations, C39X and C44X, in which translation is reinitiated at Met(60). Deletion of the first 59 residues of the channel truncated nearly one-third of the highly structured Per-Arnt-Sim domain and resulted in the generation of trafficking-defective proteins and a complete loss of hERG current. Partial deletion of the Per-Arnt-Sim domain also resulted in the accelerated degradation of the mutant channel proteins. The coexpression of mutant and wild-type channels did not significantly disrupt the function and trafficking properties of wild-type hERG. Our present findings indicate that translation reinitiation may generate trafficking-defective as well as dysfunctional channels in patients with LQT2 premature termination codon mutations that occur early in the coding sequence.
Collapse
Affiliation(s)
- Matthew R Stump
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
| | | | | |
Collapse
|