1
|
Wang BX, Kane C, Nicastro L, King O, Kit-Anan W, Downing B, Deidda G, Couch LS, Pinali C, Mitraki A, MacLeod KT, Terracciano CM. Integrins Increase Sarcoplasmic Reticulum Activity for Excitation-Contraction Coupling in Human Stem Cell-Derived Cardiomyocytes. Int J Mol Sci 2022; 23:10940. [PMID: 36142853 PMCID: PMC9504605 DOI: 10.3390/ijms231810940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Engagement of the sarcoplasmic reticulum (SR) Ca2+ stores for excitation-contraction (EC)-coupling is a fundamental feature of cardiac muscle cells. Extracellular matrix (ECM) proteins that form the extracellular scaffolding supporting cardiac contractile activity are thought to play an integral role in the modulation of EC-coupling. At baseline, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) show poor utilisation of SR Ca2+ stores, leading to inefficient EC-coupling, like developing or human CMs in cardiac diseases such as heart failure. We hypothesised that integrin ligand-receptor interactions between ECM proteins and CMs recruit the SR to Ca2+ cycling during EC-coupling. hiPSC-CM monolayers were cultured on fibronectin-coated glass before 24 h treatment with fibril-forming peptides containing the integrin-binding tripeptide sequence arginine-glycine-aspartic acid (2 mM). Micropipette application of 40 mM caffeine in standard or Na+/Ca2+-free Tyrode's solutions was used to assess the Ca2+ removal mechanisms. Microelectrode recordings were conducted to analyse action potentials in current-clamp. Confocal images of labelled hiPSC-CMs were analysed to investigate hiPSC-CM morphology and ultrastructural arrangements in Ca2+ release units. This study demonstrates that peptides containing the integrin-binding sequence arginine-glycine-aspartic acid (1) abbreviate hiPSC-CM Ca2+ transient and action potential duration, (2) increase co-localisation between L-type Ca2+ channels and ryanodine receptors involved in EC-coupling, and (3) increase the rate of SR-mediated Ca2+ cycling. We conclude that integrin-binding peptides induce recruitment of the SR for Ca2+ cycling in EC-coupling through functional and structural improvements and demonstrate the importance of the ECM in modulating cardiomyocyte function in physiology.
Collapse
Affiliation(s)
- Brian X. Wang
- National Heart & Lung Institute, Imperial College London, London SW7 2AZ, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK
| | - Christopher Kane
- National Heart & Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Laura Nicastro
- National Heart & Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Oisín King
- National Heart & Lung Institute, Imperial College London, London SW7 2AZ, UK
- Human Safety, Bayer Crop Science, 06903 Sophia-Antipolis, France
| | - Worrapong Kit-Anan
- National Heart & Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Barrett Downing
- National Heart & Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Graziano Deidda
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology−Hellas (FORTH), 700 13 Heraklion, Greece
- Department of Materials Science and Technology, University of Crete, 700 13 Heraklion, Greece
| | - Liam S. Couch
- National Heart & Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Christian Pinali
- Division of Cardiovascular Sciences, University of Manchester, Manchester M13 9NT, UK
| | - Anna Mitraki
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology−Hellas (FORTH), 700 13 Heraklion, Greece
- Department of Materials Science and Technology, University of Crete, 700 13 Heraklion, Greece
| | - Kenneth T. MacLeod
- National Heart & Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Cesare M. Terracciano
- National Heart & Lung Institute, Imperial College London, London SW7 2AZ, UK
- Laboratory of Myocardial Electrophysiology, 4th Floor, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
2
|
Barefield DY, Yamakawa S, Tahtah I, Sell JJ, Broman M, Laforest B, Harris S, Alvarez AA, Araujo KN, Puckelwartz MJ, Wasserstrom JA, Fishman GI, McNally EM. Partial and complete loss of myosin binding protein H-like cause cardiac conduction defects. J Mol Cell Cardiol 2022; 169:28-40. [PMID: 35533732 PMCID: PMC9329245 DOI: 10.1016/j.yjmcc.2022.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/25/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023]
Abstract
A premature truncation of MYBPHL in humans and a loss of Mybphl in mice is associated with dilated cardiomyopathy, atrial and ventricular arrhythmias, and atrial enlargement. MYBPHL encodes myosin binding protein H-like (MyBP-HL). Prior work in mice indirectly identified Mybphl expression in the atria and in small puncta throughout the ventricle. Because of its genetic association with human and mouse cardiac conduction system disease, we evaluated the anatomical localization of MyBP-HL and the consequences of loss of MyBP-HL on conduction system function. Immunofluorescence microscopy of normal adult mouse ventricles identified MyBP-HL-positive ventricular cardiomyocytes that co-localized with the ventricular conduction system marker contactin-2 near the atrioventricular node and in a subset of Purkinje fibers. Mybphl heterozygous ventricles had a marked reduction of MyBP-HL-positive cells compared to controls. Lightsheet microscopy of normal perinatal day 5 mouse hearts showed enrichment of MyBP-HL-positive cells within and immediately adjacent to the contactin-2-positive ventricular conduction system, but this association was not apparent in Mybphl heterozygous hearts. Surface telemetry of Mybphl-null mice revealed atrioventricular block and atrial bigeminy, while intracardiac pacing revealed a shorter atrial relative refractory period and atrial tachycardia. Calcium transient analysis of isolated Mybphl-null atrial cardiomyocytes demonstrated an increased heterogeneity of calcium release and faster rates of calcium release compared to wild type controls. Super-resolution microscopy of Mybphl heterozygous and homozygous null atrial cardiomyocytes showed ryanodine receptor disorganization compared to wild type controls. Abnormal calcium release, shorter atrial refractory period, and atrial dilation seen in Mybphl null, but not wild type control hearts, agree with the observed atrial arrhythmias, bigeminy, and atrial tachycardia, whereas the proximity of MyBP-HL-positive cells with the ventricular conduction system provides insight into how a predominantly atrial expressed gene contributes to ventricular arrhythmias and ventricular dysfunction.
Collapse
Affiliation(s)
- David Y. Barefield
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL;,Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL;,Correspondence to: David Y. Barefield, PhD, Department of Cell and Molecular Physiology Loyola University Chicago, 2160 S. 1st Ave. Maywood, IL 60153,
| | - Sean Yamakawa
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Ibrahim Tahtah
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Jordan J. Sell
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Michael Broman
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL
| | - Brigitte Laforest
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL
| | - Sloane Harris
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Alejandro A. Alvarez
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL
| | - Kelly N. Araujo
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL
| | - Megan J. Puckelwartz
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - J. Andrew Wasserstrom
- Department of Medicine and The Feinberg Cardiovascular and Renal Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Glenn I. Fishman
- Division of Cardiology, NYU Grossman School of Medicine, New York, New York
| | - Elizabeth M. McNally
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL;,Correspondence to: Elizabeth McNally, MD, PhD, Center for Genetic Medicine, Northwestern University, 303 E. Superior St. Chicago, IL 60611,
| |
Collapse
|
3
|
Švecová O, Bébarová M, Šimurdová M, Šimurda J. Fraction of the T-Tubular Membrane as an Important Parameter in Cardiac Cellular Electrophysiology: A New Way of Estimation. Front Physiol 2022; 13:837239. [PMID: 35620609 PMCID: PMC9127156 DOI: 10.3389/fphys.2022.837239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/15/2022] [Indexed: 12/02/2022] Open
Abstract
The transverse-axial tubular system (t-tubules) plays an essential role in excitation-contraction coupling in cardiomyocytes. Its remodelling is associated with various cardiac diseases. Numerous attempts were made to analyse characteristics essential for proper understanding of the t-tubules and their impact on cardiac cell function in health and disease. The currently available methodical approaches related to the fraction of the t-tubular membrane area produce diverse data. The widely used detubulation techniques cause irreversible cell impairment, thus, distinct cell samples have to be used for estimation of t-tubular parameters in untreated and detubulated cells. Our proposed alternative method is reversible and allows repetitive estimation of the fraction of t-tubular membrane (f t) in cardiomyocytes using short-term perfusion of the measured cell with a low-conductive isotonic sucrose solution. It results in a substantial increase in the electrical resistance of t-tubular lumen, thus, electrically separating the surface and t-tubular membranes. Using the whole-cell patch-clamp measurement and the new approach in enzymatically isolated rat atrial and ventricular myocytes, a set of data was measured and evaluated. The analysis of the electrical equivalent circuit resulted in the establishment of criteria for excluding measurements in which perfusion with a low conductivity solution did not affect the entire cell surface. As expected, the final average f t in ventricular myocytes (0.337 ± 0.017) was significantly higher than that in atrial myocytes (0.144 ± 0.015). The parameter f t could be estimated repetitively in a particular cell (0.345 ± 0.021 and 0.347 ± 0.023 in ventricular myocytes during the first and second sucrose perfusion, respectively). The new method is fast, simple, and leaves the measured cell intact. It can be applied in the course of experiments for which it is useful to estimate both the surface and t-tubular capacitance/area in a particular cell.
Collapse
Affiliation(s)
- Olga Švecová
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Markéta Bébarová
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Milena Šimurdová
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Jiří Šimurda
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
4
|
Automatic Activity Arising in Cardiac Muscle Sleeves of the Pulmonary Vein. Biomolecules 2021; 12:biom12010023. [PMID: 35053171 PMCID: PMC8773798 DOI: 10.3390/biom12010023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
Ectopic activity in the pulmonary vein cardiac muscle sleeves can both induce and maintain human atrial fibrillation. A central issue in any study of the pulmonary veins is their difference from the left atrial cardiac muscle. Here, we attempt to summarize the physiological phenomena underlying the occurrence of ectopic electrical activity in animal pulmonary veins. We emphasize that the activation of multiple signaling pathways influencing not only myocyte electrophysiology but also the means of excitation–contraction coupling may be required for the initiation of triggered or automatic activity. We also gather information regarding not only the large-scale structure of cardiac muscle sleeves but also recent studies suggesting that cellular heterogeneity may contribute to the generation of arrythmogenic phenomena and to the distinction between pulmonary vein and left atrial heart muscle.
Collapse
|
5
|
Alpha and beta myosin isoforms and human atrial and ventricular contraction. Cell Mol Life Sci 2021; 78:7309-7337. [PMID: 34704115 PMCID: PMC8629898 DOI: 10.1007/s00018-021-03971-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/03/2021] [Accepted: 10/08/2021] [Indexed: 01/15/2023]
Abstract
Human atrial and ventricular contractions have distinct mechanical characteristics including speed of contraction, volume of blood delivered and the range of pressure generated. Notably, the ventricle expresses predominantly β-cardiac myosin while the atrium expresses mostly the α-isoform. In recent years exploration of the properties of pure α- & β-myosin isoforms have been possible in solution, in isolated myocytes and myofibrils. This allows us to consider the extent to which the atrial vs ventricular mechanical characteristics are defined by the myosin isoform expressed, and how the isoform properties are matched to their physiological roles. To do this we Outline the essential feature of atrial and ventricular contraction; Explore the molecular structural and functional characteristics of the two myosin isoforms; Describe the contractile behaviour of myocytes and myofibrils expressing a single myosin isoform; Finally we outline the outstanding problems in defining the differences between the atria and ventricles. This allowed us consider what features of contraction can and cannot be ascribed to the myosin isoforms present in the atria and ventricles.
Collapse
|
6
|
Park SH, Kim A, An J, Cho HS, Kang TM. Nanoscale imaging of rat atrial myocytes by scanning ion conductance microscopy reveals heterogeneity of T-tubule openings and ultrastructure of the cell membrane. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:529-543. [PMID: 33093274 PMCID: PMC7585588 DOI: 10.4196/kjpp.2020.24.6.529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 11/15/2022]
Abstract
In contrast to ventricular myocytes, the structural and functional importance of atrial transverse tubules (T-tubules) is not fully understood. Therefore, we investigated the ultrastructure of T-tubules of living rat atrial myocytes in comparison with ventricular myocytes. Nanoscale cell surface imaging by scanning ion conductance microscopy (SICM) was accompanied by confocal imaging of intracellular T-tubule network, and the effect of removal of T-tubules on atrial excitation-contraction coupling (EC-coupling) was observed. By SICM imaging, we classified atrial cell surface into 4 subtypes. About 38% of atrial myocytes had smooth cell surface with no clear T-tubule openings and intracellular T-tubules (smooth-type). In 33% of cells, we found a novel membrane nanostructure running in the direction of cell length and named it 'longitudinal fissures' (LFs-type). Interestingly, T-tubule openings were often found inside the LFs. About 17% of atrial cells resembled ventricular myocytes, but they had smaller T-tubule openings and a lower Z-groove ratio than the ventricle (ventricular-type). The remaining 12% of cells showed a mixed structure of each subtype (mixed-type). The LFs-, ventricular-, and mixed-type had an appreciable amount of reticular form of intracellular T-tubules. Formamide-induced detubulation effectively removed atrial T-tubules, which was confirmed by both confocal images and decreased cell capacitance. However, the LFs remained intact after detubulation. Detubulation reduced action potential duration and L-type Ca2+channel (LTCC) density, and prolonged relaxation time of the myocytes. Taken together, we observed heterogeneity of rat atrial T-tubules and membranous ultrastructure, and the alteration of atrial EC-coupling by disruption of T-tubules.
Collapse
Affiliation(s)
- Sun Hwa Park
- Department of Physiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Ami Kim
- Department of Physiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Jieun An
- Department of Physiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Hyun Sung Cho
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Tong Mook Kang
- Department of Physiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| |
Collapse
|
7
|
Filatova TS, Abramochkin DV, Shiels HA. Warmer, faster, stronger: Ca 2+ cycling in avian myocardium. J Exp Biol 2020; 223:jeb228205. [PMID: 32843363 DOI: 10.1242/jeb.228205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/17/2020] [Indexed: 11/20/2022]
Abstract
Birds occupy a unique position in the evolution of cardiac design. Their hearts are capable of cardiac performance on par with, or exceeding that of mammals, and yet the structure of their cardiomyocytes resembles those of reptiles. It has been suggested that birds use intracellular Ca2+ stored within the sarcoplasmic reticulum (SR) to power contractile function, but neither SR Ca2+ content nor the cross-talk between channels underlying Ca2+-induced Ca2+ release (CICR) have been studied in adult birds. Here we used voltage clamp to investigate the Ca2+ storage and refilling capacities of the SR and the degree of trans-sarcolemmal and intracellular Ca2+ channel interplay in freshly isolated atrial and ventricular myocytes from the heart of the Japanese quail (Coturnix japonica). A trans-sarcolemmal Ca2+ current (ICa) was detectable in both quail atrial and ventricular myocytes, and was mediated only by L-type Ca2+ channels. The peak density of ICa was larger in ventricular cells than in atrial cells, and exceeded that reported for mammalian myocardium recorded under similar conditions. Steady-state SR Ca2+ content of quail myocardium was also larger than that reported for mammals, and reached 750.6±128.2 μmol l-1 in atrial cells and 423.3±47.2 μmol l-1 in ventricular cells at 24°C. We observed SR Ca2+-dependent inactivation of ICa in ventricular myocytes, indicating cross-talk between sarcolemmal Ca2+ channels and ryanodine receptors in the SR. However, this phenomenon was not observed in atrial myocytes. Taken together, these findings help to explain the high-efficiency avian myocyte excitation-contraction coupling with regard to their reptilian-like cellular ultrastructure.
Collapse
Affiliation(s)
- Tatiana S Filatova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia
- Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova str.,1, Moscow 117997, Russia
| | - Denis V Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia
- Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova str.,1, Moscow 117997, Russia
- Ural Federal University, Mira 19, Ekaterinburg 620002, Russia
- Laboratory of Cardiac Physiology, Institute of Physiology of komi Science Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Pervomayskaya str., 50, 167982 Syktyvkar, Komi Republic, Russia
| | - Holly A Shiels
- Faculty of Biology, Medicine and Health, Core Technology Facility, 46 Grafton Street, University of Manchester, Manchester M13 9NT, UK
| |
Collapse
|
8
|
Marchena M, Echebarria B. Influence of the tubular network on the characteristics of calcium transients in cardiac myocytes. PLoS One 2020; 15:e0231056. [PMID: 32302318 PMCID: PMC7164608 DOI: 10.1371/journal.pone.0231056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/14/2020] [Indexed: 01/09/2023] Open
Abstract
Transverse and axial tubules (TATS) are an essential ingredient of the excitation-contraction machinery that allow the effective coupling of L-type Calcium Channels (LCC) and ryanodine receptors (RyR2). They form a regular network in ventricular cells, while their presence in atrial myocytes is variable regionally and among animal species We have studied the effect of variations in the TAT network using a bidomain computational model of an atrial myocyte with variable density of tubules. At each z-line the t-tubule length is obtained from an exponential distribution, with a given mean penetration length. This gives rise to a distribution of t-tubules in the cell that is characterized by the fractional area (F.A.) occupied by the t-tubules. To obtain consistent results, we average over different realizations of the same mean penetration length. To this, in some simulations we add the effect of a network of axial tubules. Then we study global properties of calcium signaling, as well as regional heterogeneities and local properties of sparks and RyR2 openings. In agreement with recent experiments in detubulated ventricular and atrial cells, we find that detubulation reduces the calcium transient and synchronization in release. However, it does not affect sarcoplasmic reticulum (SR) load, so the decrease in SR calcium release is due to regional differences in Ca2+ release, that is restricted to the cell periphery in detubulated cells. Despite the decrease in release, the release gain is larger in detubulated cells, due to recruitment of orphaned RyR2s, i.e, those that are not confronting a cluster of LCCs. This probably provides a safeguard mechanism, allowing physiological values to be maintained upon small changes in the t-tubule density. Finally, we do not find any relevant change in spark properties between tubulated and detubulated cells, suggesting that the differences found in experiments could be due to differential properties of the RyR2s in the membrane and in the t-tubules, not incorporated in the present model. This work will help understand the effect of detubulation, that has been shown to occur in disease conditions such as heart failure (HF) in ventricular cells, or atrial fibrillation (AF) in atrial cells.
Collapse
Affiliation(s)
- Miquel Marchena
- Departament de Física, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Blas Echebarria
- Departament de Física, Universitat Politècnica de Catalunya, Barcelona, Spain
- * E-mail:
| |
Collapse
|
9
|
Mackrill JJ, Shiels HA. Evolution of Excitation-Contraction Coupling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:281-320. [DOI: 10.1007/978-3-030-12457-1_12] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Hohendanner F, Heinzel FR, Blaschke F, Pieske BM, Haverkamp W, Boldt HL, Parwani AS. Pathophysiological and therapeutic implications in patients with atrial fibrillation and heart failure. Heart Fail Rev 2019; 23:27-36. [PMID: 29038991 DOI: 10.1007/s10741-017-9657-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Heart failure and atrial fibrillation are common and responsible for significant mortality of patients. Both share the same risk factors like hypertension, ischemic heart disease, diabetes, obesity, arteriosclerosis, and age. A variety of microscopic and macroscopic changes favor the genesis of atrial fibrillation in patients with preexisting heart failure, altered subcellular Ca2+ homeostasis leading to increased cellular automaticity as well as concomitant fibrosis that are induced by pressure/volume overload and altered neurohumoral states. Atrial fibrillation itself promotes clinical deterioration of patients with preexisting heart failure as atrial contraction significantly contributes to ventricular filling. In addition, atrial fibrillation induced tachycardia can even further compromise ventricular function by inducing tachycardiomyopathy. Even though evidence has been provided that atrial functions significantly and independently of confounding ventricular pathologies, correlate with mortality of heart failure patients, rate and rhythm controls have been shown to be of equal effectiveness in improving mortality. Yet, it also has been shown that cohorts of patients with heart failure benefit from a rhythm control concept regarding symptom control and hospitalization. To date, amiodarone is the most feasible approach to restore sinus rhythm, yet its use is limited by its extensive side-effect profile. In addition, other therapies like catheter-based pulmonary vein isolation are of increasing importance. A wide range of heart failure-specific therapies are available with mixed impact on new onset or perpetuation of atrial fibrillation. This review highlights pathophysiological concepts and possible therapeutic approaches to treat patients with heart failure at risk for or with atrial fibrillation.
Collapse
Affiliation(s)
- Felix Hohendanner
- Department of Cardiology, Charité University Medicine, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany. .,Partner Site Berlin, German Center for Cardiovascular Research (DZHK), Berlin, Germany.
| | - F R Heinzel
- Department of Cardiology, Charité University Medicine, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.,Partner Site Berlin, German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - F Blaschke
- Department of Cardiology, Charité University Medicine, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.,Partner Site Berlin, German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - B M Pieske
- Department of Cardiology, Charité University Medicine, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.,Partner Site Berlin, German Center for Cardiovascular Research (DZHK), Berlin, Germany.,Department of Internal Medicine and Cardiology, German Heart Center, 13353, Berlin, Germany
| | - W Haverkamp
- Department of Cardiology, Charité University Medicine, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.,Partner Site Berlin, German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - H L Boldt
- Department of Cardiology, Charité University Medicine, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.,Partner Site Berlin, German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - A S Parwani
- Department of Cardiology, Charité University Medicine, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.,Partner Site Berlin, German Center for Cardiovascular Research (DZHK), Berlin, Germany
| |
Collapse
|
11
|
Jones PP, MacQuaide N, Louch WE. Dyadic Plasticity in Cardiomyocytes. Front Physiol 2018; 9:1773. [PMID: 30618792 PMCID: PMC6298195 DOI: 10.3389/fphys.2018.01773] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/23/2018] [Indexed: 11/13/2022] Open
Abstract
Contraction of cardiomyocytes is dependent on sub-cellular structures called dyads, where invaginations of the surface membrane (t-tubules) form functional junctions with the sarcoplasmic reticulum (SR). Within each dyad, Ca2+ entry through t-tubular L-type Ca2+ channels (LTCCs) elicits Ca2+ release from closely apposed Ryanodine Receptors (RyRs) in the SR membrane. The efficiency of this process is dependent on the density and macroscale arrangement of dyads, but also on the nanoscale organization of LTCCs and RyRs within them. We presently review accumulating data demonstrating the remarkable plasticity of these structures. Dyads are known to form gradually during development, with progressive assembly of both t-tubules and junctional SR terminals, and precise trafficking of LTCCs and RyRs. While dyads can exhibit compensatory remodeling when required, dyadic degradation is believed to promote impaired contractility and arrythmogenesis in cardiac disease. Recent data indicate that this plasticity of dyadic structure/function is dependent on the regulatory proteins junctophilin-2, amphiphysin-2 (BIN1), and caveolin-3, which critically arrange dyadic membranes while stabilizing the position and activity of LTCCs and RyRs. Indeed, emerging evidence indicates that clustering of both channels enables "coupled gating", implying that nanoscale localization and function are intimately linked, and may allow fine-tuning of LTCC-RyR crosstalk. We anticipate that improved understanding of dyadic plasticity will provide greater insight into the processes of cardiac compensation and decompensation, and new opportunities to target the basic mechanisms underlying heart disease.
Collapse
Affiliation(s)
- Peter P. Jones
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- HeartOtago, University of Otago, Dunedin, New Zealand
| | - Niall MacQuaide
- Institute of Cardiovascular Sciences, University of Glasgow, Glasgow, United Kingdom
- Clyde Biosciences, Glasgow, United Kingdom
| | - William E. Louch
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| |
Collapse
|
12
|
Marchena M, Echebarria B. Computational Model of Calcium Signaling in Cardiac Atrial Cells at the Submicron Scale. Front Physiol 2018; 9:1760. [PMID: 30618786 PMCID: PMC6295473 DOI: 10.3389/fphys.2018.01760] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 11/21/2018] [Indexed: 01/27/2023] Open
Abstract
In cardiac cells, calcium is the mediator of excitation-contraction coupling. Dysfunctions in calcium handling have been identified as the origin of some cardiac arrhythmias. In the particular case of atrial myocytes, recent available experimental data has found links between these dysfunctions and structural changes in the calcium handling machinery (ryanodine cluster size and distribution, t-tubular network, etc). To address this issue, we have developed a computational model of an atrial myocyte that takes into account the detailed intracellular structure. The homogenized macroscopic behavior is described with a two-concentration field model, using effective diffusion coefficients of calcium in the sarcoplasmic reticulum (SR) and in the cytoplasm. The model reproduces the right calcium transients and dependence with pacing frequency. Under basal conditions, the calcium rise is mostly restricted to the periphery of the cell, with a large concentration ratio between the periphery and the interior. We have then studied the dependence of the speed of the calcium wave on cytosolic and SR diffusion coefficients, finding an almost linear relation with the former, in agreement with a diffusive and fire mechanism of propagation, and little dependence on the latter. Finally, we have studied the effect of a change in RyR cluster microstructure. We find that, under resting conditions, the spark frequency decreases slightly with RyR cluster spatial dispersion, but markedly increases when the RyRs are distributed in clusters of larger size, stressing the importance of RyR cluster organization to understand atrial arrhythmias, as recent experimental results suggest (Macquaide et al., 2015).
Collapse
Affiliation(s)
- Miquel Marchena
- Departament de Física, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Blas Echebarria
- Departament de Física, Universitat Politècnica de Catalunya, Barcelona, Spain
| |
Collapse
|
13
|
Vagos M, van Herck IGM, Sundnes J, Arevalo HJ, Edwards AG, Koivumäki JT. Computational Modeling of Electrophysiology and Pharmacotherapy of Atrial Fibrillation: Recent Advances and Future Challenges. Front Physiol 2018; 9:1221. [PMID: 30233399 PMCID: PMC6131668 DOI: 10.3389/fphys.2018.01221] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/13/2018] [Indexed: 12/19/2022] Open
Abstract
The pathophysiology of atrial fibrillation (AF) is broad, with components related to the unique and diverse cellular electrophysiology of atrial myocytes, structural complexity, and heterogeneity of atrial tissue, and pronounced disease-associated remodeling of both cells and tissue. A major challenge for rational design of AF therapy, particularly pharmacotherapy, is integrating these multiscale characteristics to identify approaches that are both efficacious and independent of ventricular contraindications. Computational modeling has long been touted as a basis for achieving such integration in a rapid, economical, and scalable manner. However, computational pipelines for AF-specific drug screening are in their infancy, and while the field is progressing quite rapidly, major challenges remain before computational approaches can fill the role of workhorse in rational design of AF pharmacotherapies. In this review, we briefly detail the unique aspects of AF pathophysiology that determine requirements for compounds targeting AF rhythm control, with emphasis on delimiting mechanisms that promote AF triggers from those providing substrate or supporting reentry. We then describe modeling approaches that have been used to assess the outcomes of drugs acting on established AF targets, as well as on novel promising targets including the ultra-rapidly activating delayed rectifier potassium current, the acetylcholine-activated potassium current and the small conductance calcium-activated potassium channel. Finally, we describe how heterogeneity and variability are being incorporated into AF-specific models, and how these approaches are yielding novel insights into the basic physiology of disease, as well as aiding identification of the important molecular players in the complex AF etiology.
Collapse
Affiliation(s)
- Márcia Vagos
- Computational Physiology Department, Simula Research Laboratory, Lysaker, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Ilsbeth G. M. van Herck
- Computational Physiology Department, Simula Research Laboratory, Lysaker, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Joakim Sundnes
- Computational Physiology Department, Simula Research Laboratory, Lysaker, Norway
- Center for Cardiological Innovation, Oslo, Norway
| | - Hermenegild J. Arevalo
- Computational Physiology Department, Simula Research Laboratory, Lysaker, Norway
- Center for Cardiological Innovation, Oslo, Norway
| | - Andrew G. Edwards
- Computational Physiology Department, Simula Research Laboratory, Lysaker, Norway
- Center for Cardiological Innovation, Oslo, Norway
| | - Jussi T. Koivumäki
- BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
14
|
Sutanto H, van Sloun B, Schönleitner P, van Zandvoort MAMJ, Antoons G, Heijman J. The Subcellular Distribution of Ryanodine Receptors and L-Type Ca 2+ Channels Modulates Ca 2+-Transient Properties and Spontaneous Ca 2+-Release Events in Atrial Cardiomyocytes. Front Physiol 2018; 9:1108. [PMID: 30166973 PMCID: PMC6107030 DOI: 10.3389/fphys.2018.01108] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/23/2018] [Indexed: 11/13/2022] Open
Abstract
Spontaneous Ca2+-release events (SCaEs) from the sarcoplasmic reticulum play crucial roles in the initiation of cardiac arrhythmias by promoting triggered activity. However, the subcellular determinants of these SCaEs remain incompletely understood. Structural differences between atrial and ventricular cardiomyocytes, e.g., regarding the density of T-tubular membrane invaginations, may influence cardiomyocyte Ca2+-handling and the distribution of cardiac ryanodine receptors (RyR2) has recently been shown to undergo remodeling in atrial fibrillation. These data suggest that the subcellular distribution of Ca2+-handling proteins influences proarrhythmic Ca2+-handling abnormalities. Here, we employ computational modeling to provide an in-depth analysis of the impact of variations in subcellular RyR2 and L-type Ca2+-channel distributions on Ca2+-transient properties and SCaEs in a human atrial cardiomyocyte model. We incorporate experimentally observed RyR2 expression patterns and various configurations of axial tubules in a previously published model of the human atrial cardiomyocyte. We identify an increased SCaE incidence for larger heterogeneity in RyR2 expression, in which SCaEs preferentially arise from regions of high local RyR2 expression. Furthermore, we show that the propagation of Ca2+ waves is modulated by the distance between RyR2 bands, as well as the presence of experimentally observed RyR2 clusters between bands near the lateral membranes. We also show that incorporation of axial tubules in various amounts and locations reduces Ca2+-transient time to peak. Furthermore, selective hyperphosphorylation of RyR2 around axial tubules increases the number of spontaneous waves. Finally, we present a novel model of the human atrial cardiomyocyte with physiological RyR2 and L-type Ca2+-channel distributions that reproduces experimentally observed Ca2+-handling properties. Taken together, these results significantly enhance our understanding of the structure-function relationship in cardiomyocytes, identifying that RyR2 and L-type Ca2+-channel distributions have a major impact on systolic Ca2+ transients and SCaEs.
Collapse
Affiliation(s)
- Henry Sutanto
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Bart van Sloun
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Patrick Schönleitner
- Department of Physiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | | | - Gudrun Antoons
- Department of Physiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Jordi Heijman
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
15
|
Song Z, Liu MB, Qu Z. Transverse tubular network structures in the genesis of intracellular calcium alternans and triggered activity in cardiac cells. J Mol Cell Cardiol 2018; 114:288-299. [PMID: 29217432 PMCID: PMC5801147 DOI: 10.1016/j.yjmcc.2017.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/31/2017] [Accepted: 12/04/2017] [Indexed: 12/20/2022]
Abstract
RATIONALE The major role of a transverse-tubular (TT) network in a cardiac cell is to facilitate effective excitation-contraction coupling and signaling. The TT network structures are heterogeneous within a single cell, and vary between different types of cells and species. They are also remodeled in cardiac diseases. However, how different TT network structures predispose cardiac cells to arrhythmogenesis remains to be revealed. OBJECTIVE To systematically investigate the roles of TT network structure and the underlying mechanisms in the genesis of intracellular calcium (Ca2+) alternans and triggered activity (TA). METHODS AND RESULTS Based on recent experimental observations, different TT network structures, including uniformly and non-uniformly random TT distributions, were modeled in a cardiac cell model consisting of a three-dimensional network of Ca2+ release units (CRUs). Our simulations showed that both Ca2+ alternans and Ca2+ wave-mediated TA were promoted when the fraction of orphaned CRUs was in an intermediate range, but suppressed in cells exhibiting either well-organized TT networks or low TT densities. Ca2+ alternans and TA could be promoted by low TT densities when the cells were small or the CRU coupling was strong. Both alternans and TA occurred more easily in uniformly random TT networks than in non-uniformly random TT networks. Subcellular spatially discordant Ca2+ alternans was promoted by non-uniformly random TT networks but suppressed by increasing CRU coupling strength. These mechanistic insights provide a holistic understanding of the effects of TT network structure on the susceptibility to arrhythmogenesis. CONCLUSIONS The TT network plays important roles in promoting Ca2+ alternans and TA, and different TT network structures may predispose cardiac cells differently to arrhythmogenesis.
Collapse
Affiliation(s)
- Zhen Song
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| | - Michael B Liu
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Zhilin Qu
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
16
|
Macková K, Zahradníková A, Hoťka M, Hoffmannová B, Zahradník I, Zahradníková A. Calcium release-dependent inactivation precedes formation of the tubular system in developing rat cardiac myocytes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 46:691-703. [PMID: 28913625 DOI: 10.1007/s00249-017-1249-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/21/2017] [Accepted: 08/17/2017] [Indexed: 01/06/2023]
Abstract
Developing cardiac myocytes undergo substantial structural and functional changes transforming the mechanism of excitation-contraction coupling from the embryonic form, based on calcium influx through sarcolemmal DHPR calcium channels, to the adult form, relying on local calcium release through RYR calcium channels of sarcoplasmic reticulum stimulated by calcium influx. We characterized day-by-day the postnatal development of the structure of sarcolemma, using techniques of confocal fluorescence microscopy, and the development of the calcium current, measured by the whole-cell patch-clamp in isolated rat ventricular myocytes. We characterized the appearance and expansion of the t-tubule system and compared it with the appearance and progress of the calcium current inactivation induced by the release of calcium ions from sarcoplasmic reticulum as structural and functional measures of direct DHPR-RYR interaction. The release-dependent inactivation of calcium current preceded the development of the t-tubular system by several days, indicating formation of the first DHPR-RYR couplons at the surface sarcolemma and their later spreading close to contractile myofibrils with the growing t-tubules. Large variability of both of the measured parameters among individual myocytes indicates uneven maturation of myocytes within the growing myocardium.
Collapse
Affiliation(s)
- Katarina Macková
- Department of Muscle Cell Research, Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05, Bratislava, Slovakia
| | - Alexandra Zahradníková
- Department of Muscle Cell Research, Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05, Bratislava, Slovakia
| | - Matej Hoťka
- Department of Muscle Cell Research, Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05, Bratislava, Slovakia
| | - Barbora Hoffmannová
- Department of Muscle Cell Research, Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05, Bratislava, Slovakia
| | - Ivan Zahradník
- Department of Muscle Cell Research, Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05, Bratislava, Slovakia
| | - Alexandra Zahradníková
- Department of Muscle Cell Research, Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05, Bratislava, Slovakia.
| |
Collapse
|
17
|
Colman MA, Pinali C, Trafford AW, Zhang H, Kitmitto A. A computational model of spatio-temporal cardiac intracellular calcium handling with realistic structure and spatial flux distribution from sarcoplasmic reticulum and t-tubule reconstructions. PLoS Comput Biol 2017; 13:e1005714. [PMID: 28859079 PMCID: PMC5597258 DOI: 10.1371/journal.pcbi.1005714] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 09/13/2017] [Accepted: 08/08/2017] [Indexed: 12/28/2022] Open
Abstract
Intracellular calcium cycling is a vital component of cardiac excitation-contraction coupling. The key structures responsible for controlling calcium dynamics are the cell membrane (comprising the surface sarcolemma and transverse-tubules), the intracellular calcium store (the sarcoplasmic reticulum), and the co-localisation of these two structures to form dyads within which calcium-induced-calcium-release occurs. The organisation of these structures tightly controls intracellular calcium dynamics. In this study, we present a computational model of intracellular calcium cycling in three-dimensions (3-D), which incorporates high resolution reconstructions of these key regulatory structures, attained through imaging of tissue taken from the sheep left ventricle using serial block face scanning electron microscopy. An approach was developed to model the sarcoplasmic reticulum structure at the whole-cell scale, by reducing its full 3-D structure to a 3-D network of one-dimensional strands. The model reproduces intracellular calcium dynamics during control pacing and reveals the high-resolution 3-D spatial structure of calcium gradients and intracellular fluxes in both the cytoplasm and sarcoplasmic reticulum. We also demonstrated the capability of the model to reproduce potentially pro-arrhythmic dynamics under perturbed conditions, pertaining to calcium-transient alternans and spontaneous release events. Comparison with idealised cell models emphasised the importance of structure in determining calcium gradients and controlling the spatial dynamics associated with calcium-transient alternans, wherein the probabilistic nature of dyad activation and recruitment was constrained. The model was further used to highlight the criticality in calcium spark propagation in relation to inter-dyad distances. The model presented provides a powerful tool for future investigation of structure-function relationships underlying physiological and pathophysiological intracellular calcium handling phenomena at the whole-cell. The approach allows for the first time direct integration of high-resolution images of 3-D intracellular structures with models of calcium cycling, presenting the possibility to directly assess the functional impact of structural remodelling at the cellular scale. The organisation of the membrane and sub-cellular structures of cells in the heart closely controls the coupling between its electrical and mechanical function. Computational models of the cellular calcium handling system, which is responsible for this electro-mechanical coupling, have been developed in recent years to study underlying structure-function relationships. Previous models have been largely idealised in structure; we present a new model which incorporates experimental data describing the high-resolution organisation of the primary structures involved in calcium dynamics. Significantly, the structure of the intracellular calcium store is modelled for the first time. The model is shown to reproduce calcium dynamics in control cells in both normal and abnormal conditions, demonstrating its suitability for future investigation of structure-function relationships. Thus, the model presented provides a powerful tool for the direct integration of experimentally acquired structural data in healthy and diseased cells and assessment of the role of structure in regulating normal and abnormal calcium dynamics.
Collapse
Affiliation(s)
- Michael A. Colman
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail:
| | - Christian Pinali
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health Sciences, University of Manchester, Manchester, United Kingdom
| | - Andrew W. Trafford
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health Sciences, University of Manchester, Manchester, United Kingdom
| | - Henggui Zhang
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Manchester, Manchester, United Kingdom
| | - Ashraf Kitmitto
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
18
|
Schönleitner P, Schotten U, Antoons G. Mechanosensitivity of microdomain calcium signalling in the heart. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017. [PMID: 28648626 DOI: 10.1016/j.pbiomolbio.2017.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In cardiac myocytes, calcium (Ca2+) signalling is tightly controlled in dedicated microdomains. At the dyad, i.e. the narrow cleft between t-tubules and junctional sarcoplasmic reticulum (SR), many signalling pathways combine to control Ca2+-induced Ca2+ release during contraction. Local Ca2+ gradients also exist in regions where SR and mitochondria are in close contact to regulate energetic demands. Loss of microdomain structures, or dysregulation of local Ca2+ fluxes in cardiac disease, is often associated with oxidative stress, contractile dysfunction and arrhythmias. Ca2+ signalling at these microdomains is highly mechanosensitive. Recent work has demonstrated that increasing mechanical load triggers rapid local Ca2+ releases that are not reflected by changes in global Ca2+. Key mechanisms involve rapid mechanotransduction with reactive oxygen species or nitric oxide as primary signalling molecules targeting SR or mitochondria microdomains depending on the nature of the mechanical stimulus. This review summarizes the most recent insights in rapid Ca2+ microdomain mechanosensitivity and re-evaluates its (patho)physiological significance in the context of historical data on the macroscopic role of Ca2+ in acute force adaptation and mechanically-induced arrhythmias. We distinguish between preload and afterload mediated effects on local Ca2+ release, and highlight differences between atrial and ventricular myocytes. Finally, we provide an outlook for further investigation in chronic models of abnormal mechanics (eg post-myocardial infarction, atrial fibrillation), to identify the clinical significance of disturbed Ca2+ mechanosensitivity for arrhythmogenesis.
Collapse
Affiliation(s)
- Patrick Schönleitner
- Dept of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | - Uli Schotten
- Dept of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | - Gudrun Antoons
- Dept of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands.
| |
Collapse
|
19
|
Maleckar MM, Edwards AG, Louch WE, Lines GT. Studying dyadic structure-function relationships: a review of current modeling approaches and new insights into Ca 2+ (mis)handling. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2017; 11:1179546817698602. [PMID: 28469494 PMCID: PMC5392018 DOI: 10.1177/1179546817698602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/19/2016] [Indexed: 11/25/2022]
Abstract
Excitation–contraction coupling in cardiac myocytes requires calcium influx through L-type calcium channels in the sarcolemma, which gates calcium release through sarcoplasmic reticulum ryanodine receptors in a process known as calcium-induced calcium release, producing a myoplasmic calcium transient and enabling cardiomyocyte contraction. The spatio-temporal dynamics of calcium release, buffering, and reuptake into the sarcoplasmic reticulum play a central role in excitation–contraction coupling in both normal and diseased cardiac myocytes. However, further quantitative understanding of these cells’ calcium machinery and the study of mechanisms that underlie both normal cardiac function and calcium-dependent etiologies in heart disease requires accurate knowledge of cardiac ultrastructure, protein distribution and subcellular function. As current imaging techniques are limited in spatial resolution, limiting insight into changes in calcium handling, computational models of excitation–contraction coupling have been increasingly employed to probe these structure–function relationships. This review will focus on the development of structural models of cardiac calcium dynamics at the subcellular level, orienting the reader broadly towards the development of models of subcellular calcium handling in cardiomyocytes. Specific focus will be given to progress in recent years in terms of multi-scale modeling employing resolved spatial models of subcellular calcium machinery. A review of the state-of-the-art will be followed by a review of emergent insights into calcium-dependent etiologies in heart disease and, finally, we will offer a perspective on future directions for related computational modeling and simulation efforts.
Collapse
Affiliation(s)
- Mary M Maleckar
- Simula Research Laboratory, Center for Cardiological Innovation and Center for Biomedical Computing, Lysaker, Norway
| | - Andrew G Edwards
- Simula Research Laboratory, Center for Cardiological Innovation and Center for Biomedical Computing, Lysaker, Norway.,University of Oslo, Oslo, Norway
| | - William E Louch
- Institute for Experimental Medical Research (IEMR), Oslo University Hospital and the University of Oslo, Oslo, Norway
| | - Glenn T Lines
- Simula Research Laboratory, Center for Cardiological Innovation and Center for Biomedical Computing, Lysaker, Norway
| |
Collapse
|
20
|
Gergs U, Fahrion CM, Bock P, Fischer M, Wache H, Hauptmann S, Schmitz W, Neumann J. Evidence for a functional role of calsequestrin 2 in mouse atrium. Acta Physiol (Oxf) 2017; 219:669-682. [PMID: 27484853 DOI: 10.1111/apha.12766] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 02/23/2016] [Accepted: 07/30/2016] [Indexed: 12/01/2022]
Abstract
AIM Several genetically modified mice models were studied so far to investigate the role of cardiac calsequestrin (CSQ2) for the contractile function of the ventricle and for the occurrence of ventricular tachycardia. Using a CSQ2 knockout mouse, we wanted to study also the atrial function of CSQ2. METHODS The influence of CSQ2 on atrial function and, for comparison, ventricular function was studied in isolated cardiac preparations and by echocardiography as well as electrocardiography in mice with deletion of CSQ2. RESULTS Using deletion of exon 1, we have successfully generated a constitutive knockout mouse of the calsequestrin 2 gene (CSQ2-/- ). CSQ2 protein was absent in the heart (atrium, ventricle), but also in oesophagus and skeletal muscle of homozygous knockout mice. In 6-month-old CSQ2-/- mice, relative left atrial weight was increased, whereas relative heart weight was unchanged. The staircase phenomena in paced left atrial preparations on force of contraction and the post-rest potentiation were different between wild type and CSQ2-/- indicative for a decreased sarcoplasmic Ca2+ load and supporting an important role of CSQ2 also in the atrium. The incidence of arrhythmias was increased in CSQ2-/- . In 2-year-old CSQ2-/- mice, cardiac hypertrophy and heart failure were noted possibly as a result of chronically increased cytosolic Ca2+ levels. CONCLUSION These data suggest a functional role of CSQ2 not only in the ventricle but also in the atrium of mammalian hearts. Loss of CSQ2 function can cause not only arrhythmias, but also cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- U. Gergs
- Institut für Pharmakologie und Toxikologie; Medizinische Fakultät; Martin-Luther-Universität Halle-Wittenberg; Halle/Saale Germany
| | - C. M. Fahrion
- Institut für Pharmakologie und Toxikologie; Medizinische Fakultät; Martin-Luther-Universität Halle-Wittenberg; Halle/Saale Germany
| | - P. Bock
- Institut für Pharmakologie und Toxikologie; Medizinische Fakultät; Martin-Luther-Universität Halle-Wittenberg; Halle/Saale Germany
| | - M. Fischer
- Institut für Pharmakologie und Toxikologie; Medizinische Fakultät; Martin-Luther-Universität Halle-Wittenberg; Halle/Saale Germany
| | - H. Wache
- Institut für Pharmakologie und Toxikologie; Medizinische Fakultät; Martin-Luther-Universität Halle-Wittenberg; Halle/Saale Germany
| | - S. Hauptmann
- Institut für Pathologie am Krankenhaus Düren gGmbH; Düren Germany
| | - W. Schmitz
- Institut für Pharmakologie und Toxikologie; Universitätsklinikum Münster; Münster Germany
| | - J. Neumann
- Institut für Pharmakologie und Toxikologie; Medizinische Fakultät; Martin-Luther-Universität Halle-Wittenberg; Halle/Saale Germany
| |
Collapse
|
21
|
Crocini C, Ferrantini C, Coppini R, Sacconi L. Electrical defects of the transverse-axial tubular system in cardiac diseases. J Physiol 2017; 595:3815-3822. [PMID: 27981580 PMCID: PMC5471422 DOI: 10.1113/jp273042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/21/2016] [Indexed: 01/20/2023] Open
Abstract
Electrical excitability is an essential feature of cardiomyocytes and the homogenous propagation of the action potential is guaranteed by a complex network of membrane invaginations called the transverse-axial tubular system (TATS). TATS structural remodelling is a hallmark of cardiac diseases and we demonstrated that this can be accompanied by electrical defects at single T-tubular level. Using a random-access multi-photon (RAMP) microscope, we found that pathological T-tubules can fail to conduct action potentials, which delays local Ca2+ release. Although the underlying causes for T-tubular electrical failure are still unknown, our findings suggest that they are likely to be related to local ultrastructural alterations. Here, we first review the experimental approach that allowed us to observe and dissect the consequences of TATS electrical dysfunction and then propose two different strategies to unveil the reasons for T-tubular electrical failures. The first strategy consists in a correlative approach, in which the failing T-tubule identified with the RAMP microscope is then imaged with electron microscopy. The second approach exploits the diffusion of molecules within TATS to gain insights into the local TATS structure, even without a thorough reconstruction of the tubular network. Although challenging, the local electrical failure occurring at single T-tubules is a fundamental question that needs to be addressed and could provide novel insights in cardiac pathophysiology.
Collapse
Affiliation(s)
- Claudia Crocini
- European Laboratory for Non-Linear Spectroscopy, 50019, Sesto Fiorentino, Italy.,National Institute of Optics, National Research Council, 50125, Florence, Italy
| | - Cecilia Ferrantini
- Division of Physiology, Department of Experimental and Clinical Medicine, University of Florence, 50134, Florence, Italy
| | - Raffaele Coppini
- Division of Pharmacology, Department 'NeuroFarBa', University of Florence, 50139, Florence, Italy
| | - Leonardo Sacconi
- European Laboratory for Non-Linear Spectroscopy, 50019, Sesto Fiorentino, Italy.,National Institute of Optics, National Research Council, 50125, Florence, Italy
| |
Collapse
|
22
|
Kobirumaki-Shimozawa F, Oyama K, Shimozawa T, Mizuno A, Ohki T, Terui T, Minamisawa S, Ishiwata S, Fukuda N. Nano-imaging of the beating mouse heart in vivo: Importance of sarcomere dynamics, as opposed to sarcomere length per se, in the regulation of cardiac function. ACTA ACUST UNITED AC 2016; 147:53-62. [PMID: 26712849 PMCID: PMC4692490 DOI: 10.1085/jgp.201511484] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
¡Vive la différence! In cardiac contraction, the reduction in sarcomere length—rather than length itself—determines contractile force. Sarcomeric contraction in cardiomyocytes serves as the basis for the heart’s pump functions in mammals. Although it plays a critical role in the circulatory system, myocardial sarcomere length (SL) change has not been directly measured in vivo under physiological conditions because of technical difficulties. In this study, we developed a high speed (100–frames per second), high resolution (20-nm) imaging system for myocardial sarcomeres in living mice. Using this system, we conducted three-dimensional analysis of sarcomere dynamics in left ventricular myocytes during the cardiac cycle, simultaneously with electrocardiogram and left ventricular pressure measurements. We found that (a) the working range of SL was on the shorter end of the resting distribution, and (b) the left ventricular–developed pressure was positively correlated with the SL change between diastole and systole. The present findings provide the first direct evidence for the tight coupling of sarcomere dynamics and ventricular pump functions in the physiology of the heart.
Collapse
Affiliation(s)
- Fuyu Kobirumaki-Shimozawa
- Department of Cell Physiology and Department of Anesthesiology, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| | - Kotaro Oyama
- Department of Cell Physiology and Department of Anesthesiology, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan Department of Physics and Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Togo Shimozawa
- Department of Physics and Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Akari Mizuno
- Department of Physics and Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Takashi Ohki
- Department of Physics and Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Takako Terui
- Department of Cell Physiology and Department of Anesthesiology, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| | - Susumu Minamisawa
- Department of Cell Physiology and Department of Anesthesiology, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| | - Shin'ichi Ishiwata
- Department of Physics and Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan Waseda Bioscience Research Institute in Singapore, Waseda University, Helios, Singapore 138667
| | - Norio Fukuda
- Department of Cell Physiology and Department of Anesthesiology, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| |
Collapse
|
23
|
Arora R, Aistrup GL, Supple S, Frank C, Singh J, Tai S, Zhao A, Chicos L, Marszalec W, Guo A, Song LS, Wasserstrom JA. Regional distribution of T-tubule density in left and right atria in dogs. Heart Rhythm 2016; 14:273-281. [PMID: 27670628 DOI: 10.1016/j.hrthm.2016.09.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND The peculiarities of transverse tubule (T-tubule) morphology and distribution in the atrium-and how they contribute to excitation-contraction coupling-are just beginning to be understood. OBJECTIVES The objectives of this study were to determine T-tubule density in the intact, live right and left atria in a large animal and to determine intraregional differences in T-tubule organization within each atrium. METHODS Using confocal microscopy, T-tubules were imaged in both atria in intact, Langendorf-perfused normal dog hearts loaded with di-4-ANEPPS. T-tubules were imaged in large populations of myocytes from the endocardial surface of each atrium. Computerized data analysis was performed using a new MatLab (Mathworks, Natick, MA) routine, AutoTT. RESULTS There was a large percentage of myocytes that had no T-tubules in both atria with a higher percentage in the right atrium (25.1%) than in the left atrium (12.5%) (P < .02). The density of transverse and longitudinal T-tubule elements was low in cells that did contain T-tubules, but there were no significant differences in density between the left atrial appendage, the pulmonary vein-posterior left atrium, the right atrial appendage, and the right atrial free wall. In contrast, there were significant differences in sarcomere spacing and cell width between different regions of the atria. CONCLUSION There is a sparse T-tubule network in atrial myocytes throughout both dog atria, with significant numbers of myocytes in both atria-the right atrium more so than the left atrium-having no T-tubules at all. These regional differences in T-tubule distribution, along with differences in cell width and sarcomere spacing, may have implications for the emergence of substrate for atrial fibrillation.
Collapse
Affiliation(s)
- Rishi Arora
- Division of Cardiology, Department of Medicine, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois,.
| | - Gary L Aistrup
- Division of Cardiology, Department of Medicine, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Stephen Supple
- Division of Cardiology, Department of Medicine, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Caleb Frank
- Division of Cardiology, Department of Medicine, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jasleen Singh
- Division of Cardiology, Department of Medicine, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Shannon Tai
- Division of Cardiology, Department of Medicine, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Anne Zhao
- Division of Cardiology, Department of Medicine, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Laura Chicos
- Division of Cardiology, Department of Medicine, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - William Marszalec
- Division of Cardiology, Department of Medicine, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Ang Guo
- Division of Cardiology, University of Iowa School of Medicine, Iowa City, Iowa
| | - Long-Sheng Song
- Division of Cardiology, University of Iowa School of Medicine, Iowa City, Iowa
| | - J Andrew Wasserstrom
- Division of Cardiology, Department of Medicine, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
24
|
Shimozawa T, Hirokawa E, Kobirumaki-Shimozawa F, Oyama K, Shintani SA, Terui T, Kushida Y, Tsukamoto S, Fujii T, Ishiwata S, Fukuda N. In vivo cardiac nano-imaging: A new technology for high-precision analyses of sarcomere dynamics in the heart. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 124:31-40. [PMID: 27664770 DOI: 10.1016/j.pbiomolbio.2016.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/15/2016] [Accepted: 09/20/2016] [Indexed: 12/01/2022]
Abstract
The cardiac pump function is a result of a rise in intracellular Ca2+ and the ensuing sarcomeric contractions [i.e., excitation-contraction (EC) coupling] in myocytes in various locations of the heart. In order to elucidate the heart's mechanical properties under various settings, cardiac imaging is widely performed in today's clinical as well as experimental cardiology by using echocardiogram, magnetic resonance imaging and computed tomography. However, because these common techniques detect local myocardial movements at a spatial resolution of ∼100 μm, our knowledge on the sub-cellular mechanisms of the physiology and pathophysiology of the heart in vivo is limited. This is because (1) EC coupling occurs in the μm partition in a myocyte and (2) cardiac sarcomeres generate active force upon a length change of ∼100 nm on a beat-to-beat basis. Recent advances in optical technologies have enabled measurements of intracellular Ca2+ dynamics and sarcomere length displacements at high spatial and temporal resolution in the beating heart of living rodents. Future studies with these technologies are warranted to open a new era in cardiac research.
Collapse
Affiliation(s)
- Togo Shimozawa
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Sinjuku-ku, Tokyo 162-8480, Japan
| | - Erisa Hirokawa
- Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Fuyu Kobirumaki-Shimozawa
- Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Kotaro Oyama
- Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Seine A Shintani
- Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takako Terui
- Department of Anesthesiology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Yasuharu Kushida
- Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Seiichi Tsukamoto
- Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Teruyuki Fujii
- Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Shin'ichi Ishiwata
- Department of Physics, Faculty of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Norio Fukuda
- Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| |
Collapse
|
25
|
Brandenburg S, Kohl T, Williams GSB, Gusev K, Wagner E, Rog-Zielinska EA, Hebisch E, Dura M, Didié M, Gotthardt M, Nikolaev VO, Hasenfuss G, Kohl P, Ward CW, Lederer WJ, Lehnart SE. Axial tubule junctions control rapid calcium signaling in atria. J Clin Invest 2016; 126:3999-4015. [PMID: 27643434 DOI: 10.1172/jci88241] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/09/2016] [Indexed: 11/17/2022] Open
Abstract
The canonical atrial myocyte (AM) is characterized by sparse transverse tubule (TT) invaginations and slow intracellular Ca2+ propagation but exhibits rapid contractile activation that is susceptible to loss of function during hypertrophic remodeling. Here, we have identified a membrane structure and Ca2+-signaling complex that may enhance the speed of atrial contraction independently of phospholamban regulation. This axial couplon was observed in human and mouse atria and is composed of voluminous axial tubules (ATs) with extensive junctions to the sarcoplasmic reticulum (SR) that include ryanodine receptor 2 (RyR2) clusters. In mouse AM, AT structures triggered Ca2+ release from the SR approximately 2 times faster at the AM center than at the surface. Rapid Ca2+ release correlated with colocalization of highly phosphorylated RyR2 clusters at AT-SR junctions and earlier, more rapid shortening of central sarcomeres. In contrast, mice expressing phosphorylation-incompetent RyR2 displayed depressed AM sarcomere shortening and reduced in vivo atrial contractile function. Moreover, left atrial hypertrophy led to AT proliferation, with a marked increase in the highly phosphorylated RyR2-pS2808 cluster fraction, thereby maintaining cytosolic Ca2+ signaling despite decreases in RyR2 cluster density and RyR2 protein expression. AT couplon "super-hubs" thus underlie faster excitation-contraction coupling in health as well as hypertrophic compensatory adaptation and represent a structural and metabolic mechanism that may contribute to contractile dysfunction and arrhythmias.
Collapse
|
26
|
Cho GW, Altamirano F, Hill JA. Chronic heart failure: Ca(2+), catabolism, and catastrophic cell death. Biochim Biophys Acta Mol Basis Dis 2016; 1862:763-777. [PMID: 26775029 DOI: 10.1016/j.bbadis.2016.01.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 12/28/2015] [Accepted: 01/06/2016] [Indexed: 12/12/2022]
Abstract
Robust successes have been achieved in recent years in conquering the acutely lethal manifestations of heart disease. Many patients who previously would have died now survive to enjoy happy and productive lives. Nevertheless, the devastating impact of heart disease continues unabated, as the spectrum of disease has evolved with new manifestations. In light of this ever-evolving challenge, insights that culminate in novel therapeutic targets are urgently needed. Here, we review fundamental mechanisms of heart failure, both with reduced (HFrEF) and preserved (HFpEF) ejection fraction. We discuss pathways that regulate cardiomyocyte remodeling and turnover, focusing on Ca(2+) signaling, autophagy, and apoptosis. In particular, we highlight recent insights pointing to novel connections among these events. We also explore mechanisms whereby potential therapeutic approaches targeting these processes may improve morbidity and mortality in the devastating syndrome of heart failure.
Collapse
Affiliation(s)
- Geoffrey W Cho
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Francisco Altamirano
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joseph A Hill
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
27
|
Cardiac voltage-gated calcium channel macromolecular complexes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1806-12. [PMID: 26707467 DOI: 10.1016/j.bbamcr.2015.12.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 11/21/2022]
Abstract
Over the past 20 years, a new field of research, called channelopathies, investigating diseases caused by ion channel dysfunction has emerged. Cardiac ion channels play an essential role in the generation of the cardiac action potential. Investigators have largely determined the physiological roles of different cardiac ion channels, but little is known about the molecular determinants of their regulation. The voltage-gated calcium channel Ca(v)1.2 shapes the plateau phase of the cardiac action potential and allows the influx of calcium leading to cardiomyocyte contraction. Studies suggest that the regulation of Ca(v)1.2 channels is not uniform in working cardiomyocytes. The notion of micro-domains containing Ca(v)1.2 channels and different calcium channel interacting proteins, called macro-molecular complex, has been proposed to explain these observations. The objective of this review is to summarize the currently known information on the Ca(v)1.2 macromolecular complexes in the cardiac cell and discuss their implication in cardiac function and disorder. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
|
28
|
Brandenburg S, Arakel EC, Schwappach B, Lehnart SE. The molecular and functional identities of atrial cardiomyocytes in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1882-93. [PMID: 26620800 DOI: 10.1016/j.bbamcr.2015.11.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/17/2015] [Accepted: 11/23/2015] [Indexed: 12/28/2022]
Abstract
Atrial cardiomyocytes are essential for fluid homeostasis, ventricular filling, and survival, yet their cell biology and physiology are incompletely understood. It has become clear that the cell fate of atrial cardiomyocytes depends significantly on transcription programs that might control thousands of differentially expressed genes. Atrial muscle membranes propagate action potentials and activate myofilament force generation, producing overall faster contractions than ventricular muscles. While atria-specific excitation and contractility depend critically on intracellular Ca(2+) signalling, voltage-dependent L-type Ca(2+) channels and ryanodine receptor Ca(2+) release channels are each expressed at high levels similar to ventricles. However, intracellular Ca(2+) transients in atrial cardiomyocytes are markedly heterogeneous and fundamentally different from ventricular cardiomyocytes. In addition, differential atria-specific K(+) channel expression and trafficking confer unique electrophysiological and metabolic properties. Because diseased atria have the propensity to perpetuate fast arrhythmias, we discuss our understanding about the cell-specific mechanisms that lead to metabolic and/or mitochondrial dysfunction in atrial fibrillation. Interestingly, recent work identified potential atria-specific mechanisms that lead to early contractile dysfunction and metabolic remodelling, suggesting highly interdependent metabolic, electrical, and contractile pathomechanisms. Hence, the objective of this review is to provide an integrated model of atrial cardiomyocytes, from tissue-specific cell properties, intracellular metabolism, and excitation-contraction (EC) coupling to early pathological changes, in particular metabolic dysfunction and tissue remodelling due to atrial fibrillation and aging. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Sören Brandenburg
- Heart Research Center Göttingen, University Medical Center Göttingen, 37075 Göttingen, Germany; Department of Cardiology & Pulmonology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Eric C Arakel
- Heart Research Center Göttingen, University Medical Center Göttingen, 37075 Göttingen, Germany; Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Blanche Schwappach
- Heart Research Center Göttingen, University Medical Center Göttingen, 37075 Göttingen, Germany; Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany; German Centre for Cardiovascular Research (DZHK) site Göttingen, 37075 Göttingen, Germany
| | - Stephan E Lehnart
- Heart Research Center Göttingen, University Medical Center Göttingen, 37075 Göttingen, Germany; Department of Cardiology & Pulmonology, University Medical Center Göttingen, 37075 Göttingen, Germany; German Centre for Cardiovascular Research (DZHK) site Göttingen, 37075 Göttingen, Germany.
| |
Collapse
|
29
|
Bootman MD, Rietdorf K. Atrial myocytes demonstrate the diversity of cardiac calcium signalling. Channels (Austin) 2015; 9:219-20. [PMID: 26542624 PMCID: PMC4826100 DOI: 10.1080/15384101.2015.1086203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2022] Open
Affiliation(s)
- Martin D Bootman
- a Department of Life , Health and Chemical Sciences, The Open University ; Milton Keynes , UK
| | - Katja Rietdorf
- a Department of Life , Health and Chemical Sciences, The Open University ; Milton Keynes , UK
| |
Collapse
|
30
|
Glukhov AV, Balycheva M, Sanchez-Alonso JL, Ilkan Z, Alvarez-Laviada A, Bhogal N, Diakonov I, Schobesberger S, Sikkel MB, Bhargava A, Faggian G, Punjabi PP, Houser SR, Gorelik J. Direct Evidence for Microdomain-Specific Localization and Remodeling of Functional L-Type Calcium Channels in Rat and Human Atrial Myocytes. Circulation 2015; 132:2372-84. [PMID: 26450916 PMCID: PMC4689179 DOI: 10.1161/circulationaha.115.018131] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 10/02/2015] [Indexed: 12/27/2022]
Abstract
Supplemental Digital Content is available in the text. Distinct subpopulations of L-type calcium channels (LTCCs) with different functional properties exist in cardiomyocytes. Disruption of cellular structure may affect LTCC in a microdomain-specific manner and contribute to the pathophysiology of cardiac diseases, especially in cells lacking organized transverse tubules (T-tubules) such as atrial myocytes (AMs).
Collapse
Affiliation(s)
- Alexey V Glukhov
- From Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, United Kingdom (A.V.G., M.B., J.L.S.-A., Z.I., A.A.-L., N.B., I.D., S.S., M.B.S., A.B., P.P.P., J.G.); University of Verona, School of Medicine, Verona, Italy (M.B., G.F.); Department of Cardiothoracic Surgery, Hammersmith Hospital, National Heart and Lung Institute, Imperial College London, United Kingdom (P.P.P.); and Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (S.R.H.)
| | - Marina Balycheva
- From Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, United Kingdom (A.V.G., M.B., J.L.S.-A., Z.I., A.A.-L., N.B., I.D., S.S., M.B.S., A.B., P.P.P., J.G.); University of Verona, School of Medicine, Verona, Italy (M.B., G.F.); Department of Cardiothoracic Surgery, Hammersmith Hospital, National Heart and Lung Institute, Imperial College London, United Kingdom (P.P.P.); and Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (S.R.H.)
| | - Jose L Sanchez-Alonso
- From Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, United Kingdom (A.V.G., M.B., J.L.S.-A., Z.I., A.A.-L., N.B., I.D., S.S., M.B.S., A.B., P.P.P., J.G.); University of Verona, School of Medicine, Verona, Italy (M.B., G.F.); Department of Cardiothoracic Surgery, Hammersmith Hospital, National Heart and Lung Institute, Imperial College London, United Kingdom (P.P.P.); and Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (S.R.H.)
| | - Zeki Ilkan
- From Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, United Kingdom (A.V.G., M.B., J.L.S.-A., Z.I., A.A.-L., N.B., I.D., S.S., M.B.S., A.B., P.P.P., J.G.); University of Verona, School of Medicine, Verona, Italy (M.B., G.F.); Department of Cardiothoracic Surgery, Hammersmith Hospital, National Heart and Lung Institute, Imperial College London, United Kingdom (P.P.P.); and Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (S.R.H.)
| | - Anita Alvarez-Laviada
- From Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, United Kingdom (A.V.G., M.B., J.L.S.-A., Z.I., A.A.-L., N.B., I.D., S.S., M.B.S., A.B., P.P.P., J.G.); University of Verona, School of Medicine, Verona, Italy (M.B., G.F.); Department of Cardiothoracic Surgery, Hammersmith Hospital, National Heart and Lung Institute, Imperial College London, United Kingdom (P.P.P.); and Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (S.R.H.)
| | - Navneet Bhogal
- From Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, United Kingdom (A.V.G., M.B., J.L.S.-A., Z.I., A.A.-L., N.B., I.D., S.S., M.B.S., A.B., P.P.P., J.G.); University of Verona, School of Medicine, Verona, Italy (M.B., G.F.); Department of Cardiothoracic Surgery, Hammersmith Hospital, National Heart and Lung Institute, Imperial College London, United Kingdom (P.P.P.); and Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (S.R.H.)
| | - Ivan Diakonov
- From Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, United Kingdom (A.V.G., M.B., J.L.S.-A., Z.I., A.A.-L., N.B., I.D., S.S., M.B.S., A.B., P.P.P., J.G.); University of Verona, School of Medicine, Verona, Italy (M.B., G.F.); Department of Cardiothoracic Surgery, Hammersmith Hospital, National Heart and Lung Institute, Imperial College London, United Kingdom (P.P.P.); and Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (S.R.H.)
| | - Sophie Schobesberger
- From Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, United Kingdom (A.V.G., M.B., J.L.S.-A., Z.I., A.A.-L., N.B., I.D., S.S., M.B.S., A.B., P.P.P., J.G.); University of Verona, School of Medicine, Verona, Italy (M.B., G.F.); Department of Cardiothoracic Surgery, Hammersmith Hospital, National Heart and Lung Institute, Imperial College London, United Kingdom (P.P.P.); and Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (S.R.H.)
| | - Markus B Sikkel
- From Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, United Kingdom (A.V.G., M.B., J.L.S.-A., Z.I., A.A.-L., N.B., I.D., S.S., M.B.S., A.B., P.P.P., J.G.); University of Verona, School of Medicine, Verona, Italy (M.B., G.F.); Department of Cardiothoracic Surgery, Hammersmith Hospital, National Heart and Lung Institute, Imperial College London, United Kingdom (P.P.P.); and Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (S.R.H.)
| | - Anamika Bhargava
- From Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, United Kingdom (A.V.G., M.B., J.L.S.-A., Z.I., A.A.-L., N.B., I.D., S.S., M.B.S., A.B., P.P.P., J.G.); University of Verona, School of Medicine, Verona, Italy (M.B., G.F.); Department of Cardiothoracic Surgery, Hammersmith Hospital, National Heart and Lung Institute, Imperial College London, United Kingdom (P.P.P.); and Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (S.R.H.)
| | - Giuseppe Faggian
- From Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, United Kingdom (A.V.G., M.B., J.L.S.-A., Z.I., A.A.-L., N.B., I.D., S.S., M.B.S., A.B., P.P.P., J.G.); University of Verona, School of Medicine, Verona, Italy (M.B., G.F.); Department of Cardiothoracic Surgery, Hammersmith Hospital, National Heart and Lung Institute, Imperial College London, United Kingdom (P.P.P.); and Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (S.R.H.)
| | - Prakash P Punjabi
- From Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, United Kingdom (A.V.G., M.B., J.L.S.-A., Z.I., A.A.-L., N.B., I.D., S.S., M.B.S., A.B., P.P.P., J.G.); University of Verona, School of Medicine, Verona, Italy (M.B., G.F.); Department of Cardiothoracic Surgery, Hammersmith Hospital, National Heart and Lung Institute, Imperial College London, United Kingdom (P.P.P.); and Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (S.R.H.)
| | - Steven R Houser
- From Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, United Kingdom (A.V.G., M.B., J.L.S.-A., Z.I., A.A.-L., N.B., I.D., S.S., M.B.S., A.B., P.P.P., J.G.); University of Verona, School of Medicine, Verona, Italy (M.B., G.F.); Department of Cardiothoracic Surgery, Hammersmith Hospital, National Heart and Lung Institute, Imperial College London, United Kingdom (P.P.P.); and Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (S.R.H.)
| | - Julia Gorelik
- From Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, United Kingdom (A.V.G., M.B., J.L.S.-A., Z.I., A.A.-L., N.B., I.D., S.S., M.B.S., A.B., P.P.P., J.G.); University of Verona, School of Medicine, Verona, Italy (M.B., G.F.); Department of Cardiothoracic Surgery, Hammersmith Hospital, National Heart and Lung Institute, Imperial College London, United Kingdom (P.P.P.); and Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (S.R.H.).
| |
Collapse
|
31
|
Orchard CH, Bryant SM, James AF. Do t-tubules play a role in arrhythmogenesis in cardiac ventricular myocytes? J Physiol 2013; 591:4141-7. [PMID: 23652596 DOI: 10.1113/jphysiol.2013.254540] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The transverse (t-) tubules of mammalian ventricular myocytes are invaginations of the surface membrane. The function of many of the key proteins involved in excitation-contraction coupling is located predominantly at the t-tubules, which thus form a Ca(2+)-handling micro-environment that is central to the normal rapid activation and relaxation of the ventricular myocyte. Although cellular arrhythmogenesis shares many ion flux pathways with normal excitation-contraction coupling, the role of the t-tubules in such arrhythmogenesis has not previously been considered. In this brief review we consider how the location and co-location of proteins at the t-tubules may contribute to the generation of arrhythmogenic delayed and early afterdepolarisations, and how the loss of t-tubules that occurs during heart failure may alter the generation of such arrhythmias, as well as contributing to other types of arrhythmia as a result of changes of electrical heterogeneity within the whole heart.
Collapse
Affiliation(s)
- C H Orchard
- C. H. Orchard: University of Bristol, School of Physiology and Pharmacology, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK.
| | | | | |
Collapse
|