1
|
Perepletchikova D, Kuchur P, Basovich L, Khvorova I, Lobov A, Azarkina K, Aksenov N, Bozhkova S, Karelkin V, Malashicheva A. Endothelial-mesenchymal crosstalk drives osteogenic differentiation of human osteoblasts through Notch signaling. Cell Commun Signal 2025; 23:100. [PMID: 39972367 PMCID: PMC11841332 DOI: 10.1186/s12964-025-02096-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/08/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Angiogenesis and osteogenesis are closely interrelated. The interaction between endothelial and bone-forming cells, such as osteoblasts, is crucial for normal bone development and repair. Juxtacrine and paracrine mechanisms play key roles in cell differentiation towards the osteogenic direction, assuming the direct effect of endothelium on osteogenic differentiation. However, the mechanisms of this interplay have yet to be thoroughly studied. METHODS Isolated endothelial cells (EC) from human umbilical vein and human osteoblasts (OB) from the epiphysis of the femur or tibia were cultured in direct and indirect (separated by membrane) contact in vitro under the osteogenic differentiation conditions. Osteogenic differentiation was verified by RT-PCR, and alizarin red staining. Shotgun proteomics and RNA-sequencing were used to compare both EC and OB under different co-culture conditions to assess the mechanisms of EC-OB interplay. To verify the role of Notch signaling, experiments with Notch modulation in EC were performed by EC lentiviral transduction with further co-cultivation with OB. Additionally, the effect of Notch modulation in EC was assessed by RNA-sequencing. RESULTS EC have opposite effects on osteogenic differentiation depending on the co-culture conditions with OB. In direct contact, EC enhance osteogenic differentiation, but in indirect cultures, EC suppress it. Our proteotranscriptomic analysis revealed that the osteosuppressive effect is related to the action of paracrine factors secreted by EC, while the osteoinductive properties of EC are mediated by the Notch signaling pathway, which can be activated only upon a physical contact of EC with OB. Indeed, in the direct co-culture, the knockdown of Notch1 and Notch3 receptors in EC has an inhibitory effect on the OB osteogenic differentiation, whereas activation of Notch by intracellular domain of either Notch1 or Notch3 in EC has an inductive effect on the OB osteogenic differentiation. CONCLUSION The data indicate the dual role of the endothelium in regulating osteogenic differentiation and highlight the unique role of the Notch signaling pathway in inducing osteogenic differentiation during cell-to-cell interactions. The findings of the study emphasize the importance of intercellular communication in the regulation of osteoblast differentiation during bone development and maintenance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Svetlana Bozhkova
- Vreden National Medical Research Center of Traumatology and Orthopedics, Saint- Petersburg, Russia
| | - Vitaliy Karelkin
- Vreden National Medical Research Center of Traumatology and Orthopedics, Saint- Petersburg, Russia
| | | |
Collapse
|
2
|
Perepletchikova D, Malashicheva A. Communication between endothelial cells and osteoblasts in regulation of bone homeostasis: Notch players. Stem Cell Res Ther 2025; 16:56. [PMID: 39920854 PMCID: PMC11806792 DOI: 10.1186/s13287-025-04176-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/23/2025] [Indexed: 02/09/2025] Open
Abstract
Endothelial cells coat blood vessels and release molecular signals to affect the fate of other cells. Endothelial cells can adjust their behavior in response to the changing microenvironmental conditions. During bone regeneration, bone tissue cells release factors that promote blood vessel growth. Notch is a key signaling that regulates cell fate decisions in many tissues and plays an important role in bone tissue development and homeostasis. Understanding the interplay between angiogenesis and osteogenesis is currently a focus of research efforts in order to facilitate and improve osteogenesis when needed. Our review explores the cellular and molecular mechanisms including Notch-dependent endothelial-MSC communication that drive osteogenesis-angiogenesis processes and their effects on bone remodeling and repair.
Collapse
Affiliation(s)
| | - Anna Malashicheva
- Institute of Cytology Russian Academy of Science, St. Petersburg, Russia, 194064.
| |
Collapse
|
3
|
Wang X, Fu M, Wang W, Shu S, Zhang N, Zhao R, Chen X, Hua X, Wang X, Feng W, Wang X, Song J. Single-cell analysis reveals the loss of FABP4-positive proliferating valvular endothelial cells relates to functional mitral regurgitation. BMC Med 2024; 22:595. [PMID: 39707349 DOI: 10.1186/s12916-024-03791-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 11/20/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Functional mitral regurgitation (MR) is a common form of mitral valve dysfunction that often persists even after surgical intervention, requiring reoperation in some cases. To advance our understanding of the pathogenesis of functional MR, it is crucial to characterize the cellular composition of the mitral valve leaflet and identify molecular changes in each cell subtype within the mitral valves of MR patients. Therefore, we aimed to comprehensively examine the cellular and molecular components of mitral valves in patients with MR. METHODS We conducted a single-cell RNA sequencing (scRNA-seq) analysis of mitral valve leaflets extracted from six patients who underwent heart transplantation. The cohort comprised three individuals with moderate-to-severe functional MR (MR group) and three non-diseased controls (NC group). Bioinformatics was applied to identify cell types, delineate cell functions, and explore cellular developmental trajectories and interactions. Key findings from the scRNA-seq analysis were validated using pathological staining to visualize key markers in the mitral valve leaflets. Additionally, in vitro experiments with human primary valvular endothelial cells were conducted to further support our results. RESULTS Our study revealed that valve interstitial cells are critical for adaptive valve remodelling, as they secrete extracellular matrix proteins and promote fibrosis. We discovered an abnormal decrease in a subpopulation of FABP4 (fatty acid binding protein 4)-positive proliferating valvular endothelial cells. The trajectory analysis identifies this subcluster as the origin of VECs. Immunohistochemistry on the expanded cohort showed a reduction of FABP4-positive VECs in patients with functional MR. Intervention experiments with primary cells indicated that FABP4 promotes proliferation and migration in mitral valve VECs and enhances TGFβ-induced differentiation. CONCLUSIONS Our study presented a comprehensive assessment of the mitral valve cellular landscape of patients with MR and sheds light on the molecular changes occurring in human mitral valves during functional MR. We found a notable reduction in the proliferating endothelial cell subpopulation of valve leaflets, and FABP4 was identified as one of their markers. Therefore, FABP4 positive VECs served as proliferating endothelial cells relates to functional mitral regurgitation. These VECs exhibited high proliferative and differentiative properties. Their reduction was associated with the occurrence of functional MR.
Collapse
Affiliation(s)
- Xiaohu Wang
- Present Address: State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Beijing, Xi Cheng District, 100037, China
| | - Mengxia Fu
- Galactophore Department, Galactophore Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Weiteng Wang
- Present Address: State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Beijing, Xi Cheng District, 100037, China
| | - Songren Shu
- Present Address: State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Beijing, Xi Cheng District, 100037, China
- The Cardiomyopathy Research Group, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ningning Zhang
- Present Address: State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Beijing, Xi Cheng District, 100037, China
- The Cardiomyopathy Research Group, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruojin Zhao
- Present Address: State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Beijing, Xi Cheng District, 100037, China
| | - Xiao Chen
- Present Address: State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Beijing, Xi Cheng District, 100037, China
- The Cardiomyopathy Research Group, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiumeng Hua
- Present Address: State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Beijing, Xi Cheng District, 100037, China
- The Cardiomyopathy Research Group, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiovascular Surgery, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Wang
- Present Address: State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Beijing, Xi Cheng District, 100037, China
- The Cardiomyopathy Research Group, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiovascular Surgery, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Feng
- Present Address: State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Beijing, Xi Cheng District, 100037, China
- The Cardiomyopathy Research Group, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiovascular Surgery, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianqiang Wang
- Present Address: State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Beijing, Xi Cheng District, 100037, China.
- The Cardiomyopathy Research Group, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Department of Cardiovascular Surgery, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China.
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jiangping Song
- Present Address: State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Beijing, Xi Cheng District, 100037, China.
- The Cardiomyopathy Research Group, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Department of Cardiovascular Surgery, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China.
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Department of Cardiac Surgery, Fuwai Yunnan Hospital, Chinese Academy of Medical Sciences, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
4
|
Choudhury TZ, Greskovich SC, Girard HB, Rao AS, Budhathoki Y, Cameron EM, Conroy S, Li D, Zhao MT, Garg V. Impact of genetic factors on antioxidant rescue of maternal diabetes-associated congenital heart disease. JCI Insight 2024; 9:e183516. [PMID: 39437002 PMCID: PMC11623948 DOI: 10.1172/jci.insight.183516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
Congenital heart disease (CHD) affects approximately 1% of live births. Although genetic and environmental etiologic contributors have been identified, the majority of CHD lacks a definitive cause, suggesting the role of gene-environment interactions (GxEs) in disease pathogenesis. Maternal diabetes mellitus (matDM) is among the most prevalent environmental risk factors for CHD. However, there is a substantial knowledge gap in understanding how matDM acts upon susceptible genetic backgrounds to increase disease expressivity. Previously, we reported a GxE between Notch1 haploinsufficiency and matDM leading to increased CHD penetrance. Here, we demonstrate a cell lineage-specific effect of Notch1 haploinsufficiency in matDM-exposed embryos, implicating endothelial/endocardial tissues in the developing heart. We report impaired atrioventricular cushion morphogenesis in matDM-exposed Notch1+/- animals and show a synergistic effect of NOTCH1 haploinsufficiency and oxidative stress in dysregulation of gene regulatory networks critical for endocardial cushion morphogenesis in vitro. Mitigation of matDM-associated oxidative stress via superoxide dismutase 1 overexpression did not rescue CHD in Notch1-haploinsufficient mice compared to wild-type littermates. Our results show the combinatorial interaction of matDM-associated oxidative stress and a genetic predisposition, Notch1 haploinsufficiency, on cardiac development, supporting a GxE model for CHD etiology and suggesting that antioxidant strategies alone may be ineffective in genetically susceptible individuals.
Collapse
Affiliation(s)
- Talita Z. Choudhury
- Center for Cardiovascular Research, Abigail Wexner Research Institute, and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, Ohio, USA
| | - Sarah C. Greskovich
- Center for Cardiovascular Research, Abigail Wexner Research Institute, and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Holly B. Girard
- Center for Cardiovascular Research, Abigail Wexner Research Institute, and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Anupama S. Rao
- Center for Cardiovascular Research, Abigail Wexner Research Institute, and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Yogesh Budhathoki
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, Ohio, USA
| | - Emily M. Cameron
- Center for Cardiovascular Research, Abigail Wexner Research Institute, and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Sara Conroy
- Center for Perinatal Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics and
| | - Deqiang Li
- Center for Cardiovascular Research, Abigail Wexner Research Institute, and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics and
| | - Ming-Tao Zhao
- Center for Cardiovascular Research, Abigail Wexner Research Institute, and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics and
| | - Vidu Garg
- Center for Cardiovascular Research, Abigail Wexner Research Institute, and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics and
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
5
|
Wang X, Xu Y, Wang Y, Tang X, Zhou X, Lu W, Chen W, Li L, Zhou L, Ye J. S-Nitrosylation of NOTCH1 Regulates Mesenchymal Stem Cells Differentiation Into Hepatocyte-Like Cells by Inhibiting Notch Signalling Pathway. J Cell Mol Med 2024; 28:e70274. [PMID: 39656437 PMCID: PMC11629812 DOI: 10.1111/jcmm.70274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024] Open
Abstract
The differentiation of mesenchymal stem cells (MSCs) into hepatocyte-like cells (HLCs) is considered one of the most promising strategies for alternative hepatocyte transplantation to treat end-stage liver disease. To advance this method, it is crucial to gain a deeper understanding of the mechanisms governing hepatogenic differentiation. The study demonstrated that suppression of the intracellular domain release of the Notch pathway receptor via the γ-secretase inhibitor N-[(3, 5-difluorophenyl)acetyl]-L-alanyl-2-phenylglycine-1, 1-dimethylethyl ester (DAPT) significantly promotes the expression of hepatocyte-related genes and proteins in HLCs. Increased expression of intracellular inducible NO synthase (iNOS) during differentiation led to elevated endogenous NO production. Biotin switch assays revealed a gradual increase in S-nitrosylation (SNO)-NOTCH1 and a decrease in overall NOTCH1 expression during hepatogenic differentiation. The addition of the exogenous NO donor S-nitrosoglutathione (GSNO) and the SNO inhibitor dithiothreitol (DTT) further demonstrated that the elevated expression of SNO-NOTCH1 promotes the differentiation of MSCs into mature hepatocytes. Briefly, our results fully demonstrated that the modification of the extracellular domain of NOTCH1 by NO, leading to the formation of SNO-NOTCH1, significantly promotes hepatogenic differentiation by inhibiting the Notch signalling pathway. Our study highlights the critical role of SNO-NOTCH1 in regulating the Notch signalling pathway and offers new insights into the mechanisms driving this differentiation process.
Collapse
Affiliation(s)
- Xuesong Wang
- Subcenter for Stem Cell Clinical TranslationFirst Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxiChina
- School of Rehabilitation MedicineGannan Medical UniversityGanzhouJiangxiChina
- Ganzhou Key Laboratory of Stem Cell and Regenerative MedicineGanzhouJiangxiChina
| | - Yan Xu
- Subcenter for Stem Cell Clinical TranslationFirst Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxiChina
- School of Rehabilitation MedicineGannan Medical UniversityGanzhouJiangxiChina
- Ganzhou Key Laboratory of Stem Cell and Regenerative MedicineGanzhouJiangxiChina
| | - Yue Wang
- Subcenter for Stem Cell Clinical TranslationFirst Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxiChina
- College of Nursing, Gannan Medical UniversityGanzhouJiangxiChina
| | - Xingkun Tang
- Subcenter for Stem Cell Clinical TranslationFirst Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxiChina
- School of Rehabilitation MedicineGannan Medical UniversityGanzhouJiangxiChina
- Ganzhou Key Laboratory of Stem Cell and Regenerative MedicineGanzhouJiangxiChina
| | - Xiaolei Zhou
- Subcenter for Stem Cell Clinical TranslationFirst Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxiChina
- School of Rehabilitation MedicineGannan Medical UniversityGanzhouJiangxiChina
- Ganzhou Key Laboratory of Stem Cell and Regenerative MedicineGanzhouJiangxiChina
| | - Wenming Lu
- Subcenter for Stem Cell Clinical TranslationFirst Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxiChina
- School of Rehabilitation MedicineGannan Medical UniversityGanzhouJiangxiChina
- Ganzhou Key Laboratory of Stem Cell and Regenerative MedicineGanzhouJiangxiChina
| | - Wenjie Chen
- Subcenter for Stem Cell Clinical TranslationFirst Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxiChina
- School of Rehabilitation MedicineGannan Medical UniversityGanzhouJiangxiChina
| | - Lincai Li
- Subcenter for Stem Cell Clinical TranslationFirst Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxiChina
- Ganzhou Key Laboratory of Stem Cell and Regenerative MedicineGanzhouJiangxiChina
- Jiangxi Provincial Key Laboratory of Tissue EngineeringGannan Medical UniversityGanzhouJiangxiChina
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular DiseasesMinistry of Education, Gannan Medical UniversityGanzhouJiangxiChina
| | - Lin Zhou
- Subcenter for Stem Cell Clinical TranslationFirst Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxiChina
- Ganzhou Key Laboratory of Stem Cell and Regenerative MedicineGanzhouJiangxiChina
- Jiangxi Provincial Key Laboratory of Tissue EngineeringGannan Medical UniversityGanzhouJiangxiChina
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular DiseasesMinistry of Education, Gannan Medical UniversityGanzhouJiangxiChina
| | - Junsong Ye
- Subcenter for Stem Cell Clinical TranslationFirst Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxiChina
- Ganzhou Key Laboratory of Stem Cell and Regenerative MedicineGanzhouJiangxiChina
- Jiangxi Provincial Key Laboratory of Tissue EngineeringGannan Medical UniversityGanzhouJiangxiChina
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular DiseasesMinistry of Education, Gannan Medical UniversityGanzhouJiangxiChina
| |
Collapse
|
6
|
Chong T, Lan NSR, Courtney W, He A, Strange G, Playford D, Dwivedi G, Hillis GS, Ihdayhid AR. Medical Therapy to Prevent or Slow Progression of Aortic Stenosis: Current Evidence and Future Directions. Cardiol Rev 2024; 32:473-482. [PMID: 36961371 DOI: 10.1097/crd.0000000000000528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Degenerative aortic stenosis is a growing clinical problem owing to the high incidence in an aging population and its significant morbidity and mortality. Currently, aortic valve replacement remains the only treatment. Despite promising observational data, pharmacological management to slow or halt progression of aortic stenosis has remained elusive. Nevertheless, with a greater understanding of the mechanisms which underpin aortic stenosis, research has begun to explore novel treatment strategies. This review will explore the historical agents used to manage aortic stenosis and the emerging agents that are currently under investigation.
Collapse
Affiliation(s)
- Travis Chong
- From the Department of Cardiology, Fiona Stanley Hospital, Perth, Australia
- Harry Perkins Institute of Medical Research, Perth, Australia
| | - Nick S R Lan
- From the Department of Cardiology, Fiona Stanley Hospital, Perth, Australia
- Harry Perkins Institute of Medical Research, Perth, Australia
- Internal Medicine, Medical School, The University of Western Australia, Perth, Australia
| | - William Courtney
- Internal Medicine, Medical School, The University of Western Australia, Perth, Australia
- Department of Cardiology, Royal Perth Hospital, Perth, Australia
| | - Albert He
- From the Department of Cardiology, Fiona Stanley Hospital, Perth, Australia
- Harry Perkins Institute of Medical Research, Perth, Australia
| | - Geoff Strange
- School of Medicine, University of Notre Dame, Fremantle, Australia
| | - David Playford
- School of Medicine, University of Notre Dame, Fremantle, Australia
| | - Girish Dwivedi
- From the Department of Cardiology, Fiona Stanley Hospital, Perth, Australia
- Harry Perkins Institute of Medical Research, Perth, Australia
- Internal Medicine, Medical School, The University of Western Australia, Perth, Australia
| | - Graham S Hillis
- Internal Medicine, Medical School, The University of Western Australia, Perth, Australia
- Department of Cardiology, Royal Perth Hospital, Perth, Australia
| | - Abdul Rahman Ihdayhid
- From the Department of Cardiology, Fiona Stanley Hospital, Perth, Australia
- Harry Perkins Institute of Medical Research, Perth, Australia
- Curtin Medical School, Curtin University, Perth, Australia
| |
Collapse
|
7
|
Huang Y, Wang C, Zhou T, Xie F, Liu Z, Xu H, Liu M, Wang S, Li L, Chi Q, Shi J, Dong N, Xu K. Lumican promotes calcific aortic valve disease through H3 histone lactylation. Eur Heart J 2024; 45:3871-3885. [PMID: 38976370 DOI: 10.1093/eurheartj/ehae407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/06/2023] [Accepted: 06/18/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND AND AIMS Valve interstitial cells (VICs) undergo a transition to intermediate state cells before ultimately transforming into the osteogenic cell population, which is a pivotal cellular process in calcific aortic valve disease (CAVD). Herein, this study successfully delineated the stages of VIC osteogenic transformation and elucidated a novel key regulatory role of lumican (LUM) in this process. METHODS Single-cell RNA-sequencing (scRNA-seq) from nine human aortic valves was used to characterize the pathological switch process and identify key regulatory factors. The in vitro, ex vivo, in vivo, and double knockout mice were constructed to further unravel the calcification-promoting effect of LUM. Moreover, the multi-omic approaches were employed to analyse the molecular mechanism of LUM in CAVD. RESULTS ScRNA-seq successfully delineated the process of VIC pathological transformation and highlighted the significance of LUM as a novel molecule in this process. The pro-calcification role of LUM is confirmed on the in vitro, ex vivo, in vivo level, and ApoE-/-//LUM-/- double knockout mice. The LUM induces osteogenesis in VICs via activation of inflammatory pathways and augmentation of cellular glycolysis, resulting in the accumulation of lactate. Subsequent investigation has unveiled a novel LUM driving histone modification, lactylation, which plays a role in facilitating valve calcification. More importantly, this study has identified two specific sites of histone lactylation, namely, H3K14la and H3K9la, which have been found to facilitate the process of calcification. The confirmation of these modification sites' association with the expression of calcific genes Runx2 and BMP2 has been achieved through ChIP-PCR analysis. CONCLUSIONS The study presents novel findings, being the first to establish the involvement of lumican in mediating H3 histone lactylation, thus facilitating the development of aortic valve calcification. Consequently, lumican would be a promising therapeutic target for intervention in the treatment of CAVD.
Collapse
Affiliation(s)
- Yuming Huang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chunli Wang
- Hubei Shizhen Laboratory, Wuhan 430065, China
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Tingwen Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fei Xie
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zongtao Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Haiying Xu
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Ming Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shunshun Wang
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Lanqing Li
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Qingjia Chi
- Department of Engineering Structure and Mechanics, School of Science, Wuhan University of Technology, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kang Xu
- Hubei Shizhen Laboratory, Wuhan 430065, China
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| |
Collapse
|
8
|
Le Nezet E, Marqueze-Pouey C, Guisle I, Clavel MA. Molecular Features of Calcific Aortic Stenosis in Female and Male Patients. CJC Open 2024; 6:1125-1137. [PMID: 39525825 PMCID: PMC11544188 DOI: 10.1016/j.cjco.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/06/2024] [Indexed: 11/16/2024] Open
Abstract
Over the past 15 years, sex-related differences in aortic valve (AV) stenosis (AS) have been highlighted, affecting various aspects of AS, such as the pathophysiology, AV lesions, left ventricle remodelling, and outcomes. Female patients were found to present a more profibrotic pattern of leaflet remodelling and/or thickening, whereas male patients have a preponderance of calcification within stenosed leaflets. The understanding of these sex differences is still limited, owing to the underrepresentation of female patients in many basic and clinical research studies and trials. A better understanding of sex differences in the pathophysiology of AS may highlight new therapeutic targets that potentially could be sex-specific. This review aims to summarize sex-related differences in AS, as discovered from basic research experiments, covering aspects of the disease ranging from leaflet composition to signalling pathways, sex hormones, genetics and/or transcriptomics, and potential sex-adapted medical treatments.
Collapse
Affiliation(s)
- Emma Le Nezet
- Institut universitaire de cardiologie et pneumologie de Québec [Quebec Heart & Lung Institute], Université Laval, Québec City, Québec, Canada
| | - Chloé Marqueze-Pouey
- Institut universitaire de cardiologie et pneumologie de Québec [Quebec Heart & Lung Institute], Université Laval, Québec City, Québec, Canada
| | - Isabelle Guisle
- Institut universitaire de cardiologie et pneumologie de Québec [Quebec Heart & Lung Institute], Université Laval, Québec City, Québec, Canada
| | - Marie-Annick Clavel
- Institut universitaire de cardiologie et pneumologie de Québec [Quebec Heart & Lung Institute], Université Laval, Québec City, Québec, Canada
| |
Collapse
|
9
|
Fan L, Yao D, Fan Z, Zhang T, Shen Q, Tong F, Qian X, Xu L, Jiang C, Dong N. Beyond VICs: Shedding light on the overlooked VECs in calcific aortic valve disease. Biomed Pharmacother 2024; 178:117143. [PMID: 39024838 DOI: 10.1016/j.biopha.2024.117143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
Calcific aortic valve disease (CAVD) is prevalent in developed nations and has emerged as a pressing global public health concern due to population aging. The precise etiology of this disease remains uncertain, and recent research has primarily focused on examining the role of valvular interstitial cells (VICs) in the development of CAVD. The predominant treatment options currently available involve open surgery and minimally invasive interventional surgery, with no efficacious pharmacological treatment. This article seeks to provide a comprehensive understanding of valvular endothelial cells (VECs) from the aspects of valvular endothelium-derived nitric oxide (NO), valvular endothelial mechanotransduction, valvular endothelial injury, valvular endothelial-mesenchymal transition (EndMT), and valvular neovascularization, which have received less attention, and aims to establish their role and interaction with VICs in CAVD. The ultimate goal is to provide new perspectives for the investigation of non-invasive treatment options for this disease.
Collapse
Affiliation(s)
- Lin Fan
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dingyi Yao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengfeng Fan
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tailong Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Shen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuqiang Tong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingyu Qian
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Chen Jiang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
10
|
Guruji V, Zhou YQ, Tang M, Mirzaei Z, Ding Y, Elbatarny M, Latifi N, Simmons CA. Identification of congenital aortic valve malformations in juvenile natriuretic peptide receptor 2-deficient mice using high-frequency ultrasound. Am J Physiol Heart Circ Physiol 2024; 327:H56-H66. [PMID: 38758128 PMCID: PMC11381018 DOI: 10.1152/ajpheart.00769.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/19/2024] [Accepted: 05/05/2024] [Indexed: 05/18/2024]
Abstract
Mouse models of congenital aortic valve malformations are useful for studying disease pathobiology, but most models have incomplete penetrance [e.g., ∼2 to 77% prevalence of bicuspid aortic valves (BAVs) across multiple models]. For longitudinal studies of pathologies associated with BAVs and other congenital valve malformations, which manifest over months in mice, it is operationally inefficient, economically burdensome, and ethically challenging to enroll large numbers of mice in studies without first identifying those with valvular abnormalities. To address this need, we established and validated a novel in vivo high-frequency (30 MHz) ultrasound imaging protocol capable of detecting aortic valvular malformations in juvenile mice. Fifty natriuretic peptide receptor 2 heterozygous mice on a low-density lipoprotein receptor-deficient background (Npr2+/-;Ldlr-/-; 32 males and 18 females) were imaged at 4 and 8 wk of age. Fourteen percent of the Npr2+/-;Ldlr-/- mice exhibited features associated with aortic valve malformations, including 1) abnormal transaortic flow patterns on color Doppler (recirculation and regurgitation), 2) peak systolic flow velocities distal to the aortic valves reaching or surpassing ∼1,250 mm/s by pulsed-wave Doppler, and 3) putative fusion of cusps along commissures and abnormal movement elucidated by two-dimensional (2-D) imaging with ultrahigh temporal resolution. Valves with these features were confirmed by ex vivo gross anatomy and histological visualization to have thickened cusps, partial fusions, or Sievers type-0 bicuspid valves. This ultrasound imaging protocol will enable efficient, cost effective, and humane implementation of studies of congenital aortic valvular abnormalities and associated pathologies in a wide range of mouse models.NEW & NOTEWORTHY We developed a high-frequency ultrasound imaging protocol for diagnosing congenital aortic valve structural abnormalities in 4-wk-old mice. Our protocol defines specific criteria to distinguish mice with abnormal aortic valves from those with normal tricuspid valves using color Doppler, pulsed-wave Doppler, and two-dimensional (2-D) imaging with ultrahigh temporal resolution. This approach enables early identification of valvular abnormalities for efficient and ethical experimental design of longitudinal studies of congenital valve diseases and associated pathologies in mice.
Collapse
Affiliation(s)
- Vrushali Guruji
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Translational Biology and Engineering Program, Ted Rogers Center for Heart Research, Toronto, Ontario, Canada
| | - Yu-Qing Zhou
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Translational Biology and Engineering Program, Ted Rogers Center for Heart Research, Toronto, Ontario, Canada
| | - Mingyi Tang
- Translational Biology and Engineering Program, Ted Rogers Center for Heart Research, Toronto, Ontario, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Zahra Mirzaei
- Translational Biology and Engineering Program, Ted Rogers Center for Heart Research, Toronto, Ontario, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Yu Ding
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Translational Biology and Engineering Program, Ted Rogers Center for Heart Research, Toronto, Ontario, Canada
| | - Malak Elbatarny
- Translational Biology and Engineering Program, Ted Rogers Center for Heart Research, Toronto, Ontario, Canada
- Division of Cardiac Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Neda Latifi
- Translational Biology and Engineering Program, Ted Rogers Center for Heart Research, Toronto, Ontario, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Engineering, University of South Florida, Tampa, Florida, United States
| | - Craig A Simmons
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Translational Biology and Engineering Program, Ted Rogers Center for Heart Research, Toronto, Ontario, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Han D, Zhou T, Li L, Ma Y, Chen S, Yang C, Ma N, Song M, Zhang S, Wu J, Cao F, Wang Y. AVCAPIR: A Novel Procalcific PIWI-Interacting RNA in Calcific Aortic Valve Disease. Circulation 2024; 149:1578-1597. [PMID: 38258575 DOI: 10.1161/circulationaha.123.065213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND Calcification of the aortic valve leads to increased leaflet stiffness and consequently results in the development of calcific aortic valve disease (CAVD). However, the underlying molecular and cellular mechanisms of calcification remain unclear. Here, we identified a novel aortic valve calcification-associated PIWI-interacting RNA (piRNA; AVCAPIR) that increases valvular calcification and promotes CAVD progression. METHODS Using piRNA sequencing, we identified piRNAs contributing to the pathogenesis of CAVD that we termed AVCAPIRs. High-cholesterol diet-fed ApoE-/- mice with AVCAPIR knockout were used to examine the role of AVCAPIR in aortic valve calcification (AVC). Gain- and loss-of-function assays were conducted to determine the role of AVCAPIR in the induced osteogenic differentiation of human valvular interstitial cells. To dissect the mechanisms underlying AVCAPIR-elicited procalcific effects, we performed various analyses, including an RNA pulldown assay followed by liquid chromatography-tandem mass spectrometry, methylated RNA immunoprecipitation sequencing, and RNA sequencing. RNA pulldown and RNA immunoprecipitation assays were used to study piRNA interactions with proteins. RESULTS We found that AVCAPIR was significantly upregulated during AVC and exhibited potential diagnostic value for CAVD. AVCAPIR deletion markedly ameliorated AVC in high-cholesterol diet-fed ApoE-/- mice, as shown by reduced thickness and calcium deposition in the aortic valve leaflets, improved echocardiographic parameters (decreased peak transvalvular jet velocity and mean transvalvular pressure gradient, as well as increased aortic valve area), and diminished levels of osteogenic markers (Runx2 and Osterix) in aortic valves. These results were confirmed in osteogenic medium-induced human valvular interstitial cells. Using unbiased protein-RNA screening and molecular validation, we found that AVCAPIR directly interacts with FTO (fat mass and obesity-associated protein), subsequently blocking its N6-methyladenosine demethylase activity. Further transcriptomic and N6-methyladenosine modification epitranscriptomic screening followed by molecular validation confirmed that AVCAPIR hindered FTO-mediated demethylation of CD36 mRNA transcripts, thus enhancing CD36 mRNA stability through the N6-methyladenosine reader IGF2BP1 (insulin-like growth factor 2 mRNA binding protein 1). In turn, the AVCAPIR-dependent increase in CD36 stabilizes its binding partner PCSK9 (proprotein convertase subtilisin/kexin type 9), a procalcific gene, at the protein level, which accelerates the progression of AVC. CONCLUSIONS We identified a novel piRNA that induced AVC through an RNA epigenetic mechanism and provide novel insights into piRNA-directed theranostics in CAVD.
Collapse
Affiliation(s)
- Dong Han
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China (D.H., T.Z., S.C., C.Y., J.W., Y.W.)
- National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing, China (D.H., Y.M., F.C.)
| | - Tingwen Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China (D.H., T.Z., S.C., C.Y., J.W., Y.W.)
| | - Lifu Li
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou China (L.L.)
| | - Yan Ma
- National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing, China (D.H., Y.M., F.C.)
| | - Shiqi Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China (D.H., T.Z., S.C., C.Y., J.W., Y.W.)
| | - Chunguang Yang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China (D.H., T.Z., S.C., C.Y., J.W., Y.W.)
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China (C.Y.)
| | - Ning Ma
- School of Basic Medical Sciences, Guangzhou Laboratory, Guangzhou Medical University, China (N.M.)
| | - Moshi Song
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China (M.S.)
| | - Shaoshao Zhang
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China (S.Z.)
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China (D.H., T.Z., S.C., C.Y., J.W., Y.W.)
| | - Feng Cao
- National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing, China (D.H., Y.M., F.C.)
| | - Yongjun Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China (D.H., T.Z., S.C., C.Y., J.W., Y.W.)
| |
Collapse
|
12
|
Liu Z, Wang K, Jiang C, Chen Y, Liu F, Xie M, Yim WY, Yao D, Qian X, Chen S, Shi J, Xu K, Wang Y, Dong N. Morusin Alleviates Aortic Valve Calcification by Inhibiting Valve Interstitial Cell Senescence Through Ccnd1/Trim25/Nrf2 Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307319. [PMID: 38502885 PMCID: PMC11132047 DOI: 10.1002/advs.202307319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/21/2024] [Indexed: 03/21/2024]
Abstract
The senescence of aortic valve interstitial cells (VICs) plays a critical role in the progression of calcific aortic valve disease (CAVD). However, the precise mechanisms underlying the senescence of VICs remain unclear, demanding the identification of a novel target to mitigate this process. Previous studies have highlighted the anti-aging potential of morusin. Thus, this study aimed to explore the therapeutic potential of morusin in CAVD. Cellular experiments reveal that morusin effectively suppresses cellular senescence and cause a shift toward osteogenic differentiation of VICs in vitro. Mechanistically, morusin activate the Nrf2-mediated antiaging signaling pathway by downregulating CCND1 expression and aiding Keap1 degradation through Trim 25. This activation lead to the upregulated expression of antioxidant genes, thus reducing reactive oxygen species production and thereby preventing VIC osteogenic differentiation. In vivo experiments in ApoE-/- mice on a high-fat Western diet demonstrate the positive effect of morusin in mitigating aortic valve calcification. These findings emphasize the antiaging properties of morusin and its potential as a therapeutic agent for CAVD.
Collapse
Affiliation(s)
- Zongtao Liu
- Department of Cardiovascular SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Kan Wang
- Department of Cardiovascular SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Chen Jiang
- Department of Cardiovascular SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yuqi Chen
- Department of Cardiovascular SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Fayuan Liu
- Department of Cardiovascular SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Minghui Xie
- Department of Cardiovascular SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Wai Yen Yim
- Department of Cardiovascular SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Dingyi Yao
- Department of Cardiovascular SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Xingyu Qian
- Department of Cardiovascular SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Shiqi Chen
- Department of Cardiovascular SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Jiawei Shi
- Department of Cardiovascular SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Kang Xu
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine ProcessingSchool of PharmacyHubei University of Chinese MedicineWuhan430065China
- Hubei Shizhen LaboratoryWuhan430065China
| | - Yixuan Wang
- Department of Cardiovascular SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Key Laboratory of Organ TransplantationMinistry of EducationNHC Key Laboratory of Organ TransplantationKey Laboratory of Organ TransplantationChinese Academy of Medical SciencesWuhan430022China
| | - Nianguo Dong
- Department of Cardiovascular SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Key Laboratory of Organ TransplantationMinistry of EducationNHC Key Laboratory of Organ TransplantationKey Laboratory of Organ TransplantationChinese Academy of Medical SciencesWuhan430022China
| |
Collapse
|
13
|
Azimi-Boulali J, Mahler GJ, Murray BT, Huang P. Multiscale computational modeling of aortic valve calcification. Biomech Model Mechanobiol 2024; 23:581-599. [PMID: 38093148 DOI: 10.1007/s10237-023-01793-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/13/2023] [Indexed: 03/26/2024]
Abstract
Calcific aortic valve disease (CAVD) is a common cardiovascular disease that affects millions of people worldwide. The disease is characterized by the formation of calcium nodules on the aortic valve leaflets, which can lead to stenosis and heart failure if left untreated. The pathogenesis of CAVD is still not well understood, but involves several signaling pathways, including the transforming growth factor beta (TGF β ) pathway. In this study, we developed a multiscale computational model for TGF β -stimulated CAVD. The model framework comprises cellular behavior dynamics, subcellular signaling pathways, and tissue-level diffusion fields of pertinent chemical species, where information is shared among different scales. Processes such as endothelial to mesenchymal transition (EndMT), fibrosis, and calcification are incorporated. The results indicate that the majority of myofibroblasts and osteoblast-like cells ultimately die due to lack of nutrients as they become trapped in areas with higher levels of fibrosis or calcification, and they subsequently act as sources for calcium nodules, which contribute to a polydispersed nodule size distribution. Additionally, fibrosis and calcification processes occur more frequently in regions closer to the endothelial layer where the cell activity is higher. Our results provide insights into the mechanisms of CAVD and TGF β signaling and could aid in the development of novel therapeutic approaches for CAVD and other related diseases such as cancer. More broadly, this type of modeling framework can pave the way for unraveling the complexity of biological systems by incorporating several signaling pathways in subcellular models to simulate tissue remodeling in diseases involving cellular mechanobiology.
Collapse
Affiliation(s)
- Javid Azimi-Boulali
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY, 13902, USA
| | - Gretchen J Mahler
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902, USA
| | - Bruce T Murray
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY, 13902, USA
| | - Peter Huang
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY, 13902, USA.
| |
Collapse
|
14
|
Chakrabarti M, Chattha A, Nair A, Jiao K, Potts JD, Wang L, Branch S, Harrelson S, Khan S, Azhar M. Hippo Signaling Mediates TGFβ-Dependent Transcriptional Inputs in Cardiac Cushion Mesenchymal Cells to Regulate Extracellular Matrix Remodeling. J Cardiovasc Dev Dis 2023; 10:483. [PMID: 38132651 PMCID: PMC10744298 DOI: 10.3390/jcdd10120483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
The transforming growth factor beta (TGFβ) and Hippo signaling pathways are evolutionarily conserved pathways that play a critical role in cardiac fibroblasts during embryonic development, tissue repair, and fibrosis. TGFβ signaling and Hippo signaling are also important for cardiac cushion remodeling and septation during embryonic development. Loss of TGFβ2 in mice causes cardiac cushion remodeling defects resulting in congenital heart disease. In this study, we used in vitro molecular and pharmacologic approaches in the cushion mesenchymal cell line (tsA58-AVM) and investigated if the Hippo pathway acts as a mediator of TGFβ2 signaling. Immunofluorescence staining showed that TGFβ2 induced nuclear translocation of activated SMAD3 in the cushion mesenchymal cells. In addition, the results indicate increased nuclear localization of Yes-associated protein 1 (YAP1) following a similar treatment of TGFβ2. In collagen lattice formation assays, the TGFβ2 treatment of cushion cells resulted in an enhanced collagen contraction compared to the untreated cushion cells. Interestingly, verteporfin, a YAP1 inhibitor, significantly blocked the ability of cushion cells to contract collagen gel in the absence or presence of exogenously added TGFβ2. To confirm the molecular mechanisms of the verteporfin-induced inhibition of TGFβ2-dependent extracellular matrix (ECM) reorganization, we performed a gene expression analysis of key mesenchymal genes involved in ECM remodeling in heart development and disease. Our results confirm that verteporfin significantly decreased the expression of α-smooth muscle actin (Acta2), collagen 1a1 (Col1a1), Ccn1 (i.e., Cyr61), and Ccn2 (i.e., Ctgf). Western blot analysis indicated that verteporfin treatment significantly blocked the TGFβ2-induced activation of SMAD2/3 in cushion mesenchymal cells. Collectively, these results indicate that TGFβ2 regulation of cushion mesenchymal cell behavior and ECM remodeling is mediated by YAP1. Thus, the TGFβ2 and Hippo pathway integration represents an important step in understanding the etiology of congenital heart disease.
Collapse
Affiliation(s)
- Mrinmay Chakrabarti
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29202, USA; (M.C.); (A.C.); (A.N.); (J.D.P.)
| | - Ahad Chattha
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29202, USA; (M.C.); (A.C.); (A.N.); (J.D.P.)
| | - Abhijith Nair
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29202, USA; (M.C.); (A.C.); (A.N.); (J.D.P.)
| | - Kai Jiao
- Center for Biotechnology & Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Jay D. Potts
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29202, USA; (M.C.); (A.C.); (A.N.); (J.D.P.)
| | - Lianming Wang
- Department of Statistics, University of South Carolina, Columbia, SC 29208, USA;
| | - Scotty Branch
- KOR Life Sciences, KOR Medical, and Vikor Scientific, Charleston, SC 29403, USA; (S.B.); (S.H.); (S.K.)
| | - Shea Harrelson
- KOR Life Sciences, KOR Medical, and Vikor Scientific, Charleston, SC 29403, USA; (S.B.); (S.H.); (S.K.)
| | - Saeed Khan
- KOR Life Sciences, KOR Medical, and Vikor Scientific, Charleston, SC 29403, USA; (S.B.); (S.H.); (S.K.)
| | - Mohamad Azhar
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29202, USA; (M.C.); (A.C.); (A.N.); (J.D.P.)
- William Jennings Bryan Dorn VA Medical Center, Columbia, SC 29202, USA
| |
Collapse
|
15
|
Datta S, Cao W, Skillman M, Wu M. Hypoplastic Left Heart Syndrome: Signaling & Molecular Perspectives, and the Road Ahead. Int J Mol Sci 2023; 24:15249. [PMID: 37894928 PMCID: PMC10607600 DOI: 10.3390/ijms242015249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/07/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Hypoplastic left heart syndrome (HLHS) is a lethal congenital heart disease (CHD) affecting 8-25 per 100,000 neonates globally. Clinical interventions, primarily surgical, have improved the life expectancy of the affected subjects substantially over the years. However, the etiological basis of HLHS remains fundamentally unclear to this day. Based upon the existing paradigm of studies, HLHS exhibits a multifactorial mode of etiology mediated by a complicated course of genetic and signaling cascade. This review presents a detailed outline of the HLHS phenotype, the prenatal and postnatal risks, and the signaling and molecular mechanisms driving HLHS pathogenesis. The review discusses the potential limitations and future perspectives of studies that can be undertaken to address the existing scientific gap. Mechanistic studies to explain HLHS etiology will potentially elucidate novel druggable targets and empower the development of therapeutic regimens against HLHS in the future.
Collapse
Affiliation(s)
| | | | | | - Mingfu Wu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (S.D.); (W.C.); (M.S.)
| |
Collapse
|
16
|
Snyder Y, Jana S. Strategies for Development of Synthetic Heart Valve Tissue Engineering Scaffolds. PROGRESS IN MATERIALS SCIENCE 2023; 139:101173. [PMID: 37981978 PMCID: PMC10655624 DOI: 10.1016/j.pmatsci.2023.101173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The current clinical solutions, including mechanical and bioprosthetic valves for valvular heart diseases, are plagued by coagulation, calcification, nondurability, and the inability to grow with patients. The tissue engineering approach attempts to resolve these shortcomings by producing heart valve scaffolds that may deliver patients a life-long solution. Heart valve scaffolds serve as a three-dimensional support structure made of biocompatible materials that provide adequate porosity for cell infiltration, and nutrient and waste transport, sponsor cell adhesion, proliferation, and differentiation, and allow for extracellular matrix production that together contributes to the generation of functional neotissue. The foundation of successful heart valve tissue engineering is replicating native heart valve architecture, mechanics, and cellular attributes through appropriate biomaterials and scaffold designs. This article reviews biomaterials, the fabrication of heart valve scaffolds, and their in-vitro and in-vivo evaluations applied for heart valve tissue engineering.
Collapse
Affiliation(s)
- Yuriy Snyder
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| | - Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
17
|
Ho YC, Geng X, O’Donnell A, Ibarrola J, Fernandez-Celis A, Varshney R, Subramani K, Azartash-Namin ZJ, Kim J, Silasi R, Wylie-Sears J, Alvandi Z, Chen L, Cha B, Chen H, Xia L, Zhou B, Lupu F, Burkhart HM, Aikawa E, Olson LE, Ahamed J, López-Andrés N, Bischoff J, Yutzey KE, Srinivasan RS. PROX1 Inhibits PDGF-B Expression to Prevent Myxomatous Degeneration of Heart Valves. Circ Res 2023; 133:463-480. [PMID: 37555328 PMCID: PMC10487359 DOI: 10.1161/circresaha.123.323027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND Cardiac valve disease is observed in 2.5% of the general population and 10% of the elderly people. Effective pharmacological treatments are currently not available, and patients with severe cardiac valve disease require surgery. PROX1 (prospero-related homeobox transcription factor 1) and FOXC2 (Forkhead box C2 transcription factor) are transcription factors that are required for the development of lymphatic and venous valves. We found that PROX1 and FOXC2 are expressed in a subset of valvular endothelial cells (VECs) that are located on the downstream (fibrosa) side of cardiac valves. Whether PROX1 and FOXC2 regulate cardiac valve development and disease is not known. METHODS We used histology, electron microscopy, and echocardiography to investigate the structure and functioning of heart valves from Prox1ΔVEC mice in which Prox1 was conditionally deleted from VECs. Isolated valve endothelial cells and valve interstitial cells were used to identify the molecular mechanisms in vitro, which were tested in vivo by RNAScope, additional mouse models, and pharmacological approaches. The significance of our findings was tested by evaluation of human samples of mitral valve prolapse and aortic valve insufficiency. RESULTS Histological analysis revealed that the aortic and mitral valves of Prox1ΔVEC mice become progressively thick and myxomatous. Echocardiography revealed that the aortic valves of Prox1ΔVEC mice are stenotic. FOXC2 was downregulated and PDGF-B (platelet-derived growth factor-B) was upregulated in the VECs of Prox1ΔVEC mice. Conditional knockdown of FOXC2 and conditional overexpression of PDGF-B in VECs recapitulated the phenotype of Prox1ΔVEC mice. PDGF-B was also increased in mice lacking FOXC2 and in human mitral valve prolapse and insufficient aortic valve samples. Pharmacological inhibition of PDGF-B signaling with imatinib partially ameliorated the valve defects of Prox1ΔVEC mice. CONCLUSIONS PROX1 antagonizes PDGF-B signaling partially via FOXC2 to maintain the extracellular matrix composition and prevent myxomatous degeneration of cardiac valves.
Collapse
Affiliation(s)
- Yen-Chun Ho
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (Y.-C.H., X.G., R.V., K.S., Z.J.A.-N., J.K., R.S., L.C., B.C., L.X., F.L., L.E.O., J.A., R.S.S.)
| | - Xin Geng
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (Y.-C.H., X.G., R.V., K.S., Z.J.A.-N., J.K., R.S., L.C., B.C., L.X., F.L., L.E.O., J.A., R.S.S.)
- Now with Sanegene Bio, Woburn, MA (X.G.)
| | - Anna O’Donnell
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH (A.O., K.E.Y.)
| | - Jaime Ibarrola
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (J.I.)
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain (J.I., A.F.-C., N.L.-A., R.S.S.)
| | - Amaya Fernandez-Celis
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain (J.I., A.F.-C., N.L.-A., R.S.S.)
| | - Rohan Varshney
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (Y.-C.H., X.G., R.V., K.S., Z.J.A.-N., J.K., R.S., L.C., B.C., L.X., F.L., L.E.O., J.A., R.S.S.)
| | - Kumar Subramani
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (Y.-C.H., X.G., R.V., K.S., Z.J.A.-N., J.K., R.S., L.C., B.C., L.X., F.L., L.E.O., J.A., R.S.S.)
| | - Zheila J. Azartash-Namin
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (Y.-C.H., X.G., R.V., K.S., Z.J.A.-N., J.K., R.S., L.C., B.C., L.X., F.L., L.E.O., J.A., R.S.S.)
| | - Jang Kim
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (Y.-C.H., X.G., R.V., K.S., Z.J.A.-N., J.K., R.S., L.C., B.C., L.X., F.L., L.E.O., J.A., R.S.S.)
- Department of Cell Biology, University of Oklahoma Health Sciences Center (J.K.)
| | - Robert Silasi
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (Y.-C.H., X.G., R.V., K.S., Z.J.A.-N., J.K., R.S., L.C., B.C., L.X., F.L., L.E.O., J.A., R.S.S.)
| | - Jill Wylie-Sears
- Vascular Biology Program, Boston Children's Hospital, Boston, MA (J.W.-S., Z.A., H.C., J.B.)
| | - Zahra Alvandi
- Vascular Biology Program, Boston Children's Hospital, Boston, MA (J.W.-S., Z.A., H.C., J.B.)
| | - Lijuan Chen
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (Y.-C.H., X.G., R.V., K.S., Z.J.A.-N., J.K., R.S., L.C., B.C., L.X., F.L., L.E.O., J.A., R.S.S.)
| | - Boksik Cha
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (Y.-C.H., X.G., R.V., K.S., Z.J.A.-N., J.K., R.S., L.C., B.C., L.X., F.L., L.E.O., J.A., R.S.S.)
- Now with Daegu Gyeongbuk Medical Innovation Foundation, Republic of Korea (B.C.)
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Boston, MA (J.W.-S., Z.A., H.C., J.B.)
| | - Lijun Xia
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (Y.-C.H., X.G., R.V., K.S., Z.J.A.-N., J.K., R.S., L.C., B.C., L.X., F.L., L.E.O., J.A., R.S.S.)
| | - Bin Zhou
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY (B.Z.)
| | - Florea Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (Y.-C.H., X.G., R.V., K.S., Z.J.A.-N., J.K., R.S., L.C., B.C., L.X., F.L., L.E.O., J.A., R.S.S.)
| | - Harold M. Burkhart
- Oklahoma Children’s Hospital, University of Oklahoma Health Heart Center, Oklahoma City, OK (H.M.B.)
| | - Elena Aikawa
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Boston, MA (E.A.)
| | - Lorin E. Olson
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (Y.-C.H., X.G., R.V., K.S., Z.J.A.-N., J.K., R.S., L.C., B.C., L.X., F.L., L.E.O., J.A., R.S.S.)
| | - Jasimuddin Ahamed
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (Y.-C.H., X.G., R.V., K.S., Z.J.A.-N., J.K., R.S., L.C., B.C., L.X., F.L., L.E.O., J.A., R.S.S.)
| | - Natalia López-Andrés
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain (J.I., A.F.-C., N.L.-A., R.S.S.)
| | - Joyce Bischoff
- Vascular Biology Program, Boston Children's Hospital, Boston, MA (J.W.-S., Z.A., H.C., J.B.)
| | - Katherine E. Yutzey
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH (A.O., K.E.Y.)
| | - R. Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (Y.-C.H., X.G., R.V., K.S., Z.J.A.-N., J.K., R.S., L.C., B.C., L.X., F.L., L.E.O., J.A., R.S.S.)
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain (J.I., A.F.-C., N.L.-A., R.S.S.)
| |
Collapse
|
18
|
Wang L, Lu X, Chopp M, Li C, Zhang Y, Szalad A, Liu XS, Zhang ZG. Comparative proteomic analysis of exosomes derived from endothelial cells and Schwann cells. PLoS One 2023; 18:e0290155. [PMID: 37594969 PMCID: PMC10437921 DOI: 10.1371/journal.pone.0290155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/02/2023] [Indexed: 08/20/2023] Open
Abstract
Exosomes derived from endothelial cells and Schwann cells have been employed as novel treatments of neurological diseases, including peripheral neuropathy. Exosomal cargo plays a critical role in mediating recipient cell function. In this study, we thus performed a comprehensive proteomic analysis of exosomes derived from healthy mouse dermal microvascular endothelial cells (EC-Exo) and healthy mouse Schwann cells (SC-Exo). We detected 1,817and 1,579 proteins in EC-Exo and SC-Exo, respectively. Among them, 1506 proteins were present in both EC-Exo and SC-Exo, while 311 and 73 proteins were detected only in EC-Exo and SC-Exo, respectively. Bioinformatic analysis revealed that EC-Exo enriched proteins were involved in neurovascular function, while SC-Exo enriched proteins were related to lipid metabolism. Western blot analysis of 14 enriched proteins revealed that EC-Exo contained proteins involved in mediating endothelial function such as delta-like 4 (DLL4) and endothelial NOS (NOS3), whereas SC-Exo had proteins involved in mediating glial function such as apolipoprotein A-I (APOA1) and phospholipid transfer protein (PLTP). Collectively, the present study identifies differences in the cargo protein profiles of EC-Exo and SC-Exo, thus providing new molecular insights into their biological functions for the treatment of peripheral neuropathy.
Collapse
Affiliation(s)
- Lei Wang
- Department of Neurology, Henry Ford Health, Detroit, Michigan, United States of America
| | - XueRong Lu
- Department of Neurology, Henry Ford Health, Detroit, Michigan, United States of America
| | - Michael Chopp
- Department of Neurology, Henry Ford Health, Detroit, Michigan, United States of America
- Department of Physics, Oakland University, Rochester, Michigan, United States of America
| | - Chao Li
- Department of Neurology, Henry Ford Health, Detroit, Michigan, United States of America
| | - Yi Zhang
- Department of Neurology, Henry Ford Health, Detroit, Michigan, United States of America
| | - Alexandra Szalad
- Department of Neurology, Henry Ford Health, Detroit, Michigan, United States of America
| | - Xian Shuang Liu
- Department of Neurology, Henry Ford Health, Detroit, Michigan, United States of America
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Health, Detroit, Michigan, United States of America
| |
Collapse
|
19
|
Tessler I, Albuisson J, Piñeiro-Sabarís R, Verstraeten A, Kamber Kaya HE, Siguero-Álvarez M, Goudot G, MacGrogan D, Luyckx I, Shpitzen S, Levin G, Kelman G, Reshef N, Mananet H, Holdcraft J, Muehlschlegel JD, Peloso GM, Oppenheim O, Cheng C, Mazzella JM, Andelfinger G, Mital S, Eriksson P, Billon C, Heydarpour M, Dietz HC, Jeunemaitre X, Leitersdorf E, Sprinzak D, Blacklow SC, Body SC, Carmi S, Loeys B, de la Pompa JL, Gilon D, Messas E, Durst R. Novel Association of the NOTCH Pathway Regulator MIB1 Gene With the Development of Bicuspid Aortic Valve. JAMA Cardiol 2023; 8:721-731. [PMID: 37405741 PMCID: PMC10323766 DOI: 10.1001/jamacardio.2023.1469] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 04/21/2023] [Indexed: 07/06/2023]
Abstract
Importance Nonsyndromic bicuspid aortic valve (nsBAV) is the most common congenital heart valve malformation. BAV has a heritable component, yet only a few causative genes have been identified; understanding BAV genetics is a key point in developing personalized medicine. Objective To identify a new gene for nsBAV. Design, Setting, and Participants This was a comprehensive, multicenter, genetic association study based on candidate gene prioritization in a familial cohort followed by rare and common association studies in replication cohorts. Further validation was done using in vivo mice models. Study data were analyzed from October 2019 to October 2022. Three cohorts of patients with BAV were included in the study: (1) the discovery cohort was a large cohort of inherited cases from 29 pedigrees of French and Israeli origin; (2) the replication cohort 1 for rare variants included unrelated sporadic cases from various European ancestries; and (3) replication cohort 2 was a second validation cohort for common variants in unrelated sporadic cases from Europe and the US. Main Outcomes and Measures To identify a candidate gene for nsBAV through analysis of familial cases exome sequencing and gene prioritization tools. Replication cohort 1 was searched for rare and predicted deleterious variants and genetic association. Replication cohort 2 was used to investigate the association of common variants with BAV. Results A total of 938 patients with BAV were included in this study: 69 (7.4%) in the discovery cohort, 417 (44.5%) in replication cohort 1, and 452 (48.2%) in replication cohort 2. A novel human nsBAV gene, MINDBOMB1 homologue MIB1, was identified. MINDBOMB1 homologue (MIB1) is an E3-ubiquitin ligase essential for NOTCH-signal activation during heart development. In approximately 2% of nsBAV index cases from the discovery and replication 1 cohorts, rare MIB1 variants were detected, predicted to be damaging, and were significantly enriched compared with population-based controls (2% cases vs 0.9% controls; P = .03). In replication cohort 2, MIB1 risk haplotypes significantly associated with nsBAV were identified (permutation test, 1000 repeats; P = .02). Two genetically modified mice models carrying Mib1 variants identified in our cohort showed BAV on a NOTCH1-sensitized genetic background. Conclusions and Relevance This genetic association study identified the MIB1 gene as associated with nsBAV. This underscores the crucial role of the NOTCH pathway in the pathophysiology of BAV and its potential as a target for future diagnostic and therapeutic intervention.
Collapse
Affiliation(s)
- Idit Tessler
- Cardiology Department, Hadassah Medical Center, Jerusalem, Israel
- Sheba Medical Center, Ramat Gan, Israel
- Faculty of Medicine, the Hebrew University, Jerusalem, Israel
- Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Juliette Albuisson
- Genetics Department, Assistance Publique–Hȏpitaux de Paris, Hôpital Européen Georges Pompidou, National Referral Center for Rare Vascular Diseases, VASCERN MSA European Reference Center, Paris, France
- Université Paris Cité, INSERM, U970 PARCC, Paris, France
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer –UNICANCER, Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon, France
| | - Rebeca Piñeiro-Sabarís
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Aline Verstraeten
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hatem Elif Kamber Kaya
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Marcos Siguero-Álvarez
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Guillaume Goudot
- Université Paris Cité, INSERM, U970 PARCC, Paris, France
- Vascular Medicine Department, Assistance Publique–Hȏpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
- French Research Consortium RHU STOP-AS, Rouen, France
| | - Donal MacGrogan
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Ilse Luyckx
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Shoshana Shpitzen
- Cardiology Department, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, the Hebrew University, Jerusalem, Israel
- Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Galina Levin
- Cardiology Department, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, the Hebrew University, Jerusalem, Israel
- Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Guy Kelman
- Faculty of Medicine, the Hebrew University, Jerusalem, Israel
- The Jerusalem Center for Personalized Computational Medicine, Jerusalem, Israel
| | - Noga Reshef
- Faculty of Medicine, the Hebrew University, Jerusalem, Israel
- The Jerusalem Center for Personalized Computational Medicine, Jerusalem, Israel
| | - Hugo Mananet
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer –UNICANCER, Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon, France
| | - Jake Holdcraft
- Department of Anesthesiology, Boston University School of Medicine, Boston, Massachusetts
| | | | - Gina M. Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Olya Oppenheim
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Charles Cheng
- Université Paris Cité, INSERM, U970 PARCC, Paris, France
- Vascular Medicine Department, Assistance Publique–Hȏpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
- French Research Consortium RHU STOP-AS, Rouen, France
| | - Jean-Michael Mazzella
- Université Paris Cité, INSERM, U970 PARCC, Paris, France
- Vascular Medicine Department, Assistance Publique–Hȏpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Gregor Andelfinger
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Université de Montreal, Montreal, Quebec, Canada
| | - Seema Mital
- Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Per Eriksson
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital, Solna, Sweden
| | - Clarisse Billon
- Genetics Department, Assistance Publique–Hȏpitaux de Paris, Hôpital Européen Georges Pompidou, National Referral Center for Rare Vascular Diseases, VASCERN MSA European Reference Center, Paris, France
- Université Paris Cité, INSERM, U970 PARCC, Paris, France
| | - Mahyar Heydarpour
- Department of Medicine, Division of Endocrinology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Harry C. Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xavier Jeunemaitre
- Université Paris Cité, INSERM, U970 PARCC, Paris, France
- Vascular Medicine Department, Assistance Publique–Hȏpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Eran Leitersdorf
- Cardiology Department, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, the Hebrew University, Jerusalem, Israel
- Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Sprinzak
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Stephen C. Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Simon C. Body
- Department of Anesthesiology, Boston University School of Medicine, Boston, Massachusetts
| | - Shai Carmi
- Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bart Loeys
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - José Luis de la Pompa
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Dan Gilon
- Cardiology Department, Hadassah Medical Center, Jerusalem, Israel
| | - Emmanuel Messas
- Université Paris Cité, INSERM, U970 PARCC, Paris, France
- Vascular Medicine Department, Assistance Publique–Hȏpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
- French Research Consortium RHU STOP-AS, Rouen, France
| | - Ronen Durst
- Cardiology Department, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, the Hebrew University, Jerusalem, Israel
- Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Aortic valve disease is a leading global cause of morbidity and mortality, posing an increasing burden on society. Advances in next-generation technologies and disease models over the last decade have further delineated the genetic and molecular factors that might be exploited in development of therapeutics for affected patients. This review describes several advances in the molecular and genetic understanding of AVD, focusing on bicuspid aortic valve (BAV) and calcific aortic valve disease (CAVD). RECENT FINDINGS Genomic studies have identified a myriad of genes implicated in the development of BAV, including NOTCH1 , SMAD6 and ADAMTS19 , along with members of the GATA and ROBO gene families. Similarly, several genes associated with the initiation and progression of CAVD, including NOTCH1 , LPA , PALMD , IL6 and FADS1/2 , serve as the launching point for emerging clinical trials. SUMMARY These new insights into the genetic contributors of AVD have offered new avenues for translational disease investigation, bridging molecular discoveries to emergent pharmacotherapeutic options. Future studies aimed at uncovering new genetic associations and further defining implicated molecular pathways are fuelling the new wave of drug discovery.
Collapse
Affiliation(s)
- Ruth L. Ackah
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Jun Yasuhara
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Vidu Garg
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
21
|
Shu L, Yuan Z, Li F, Cai Z. Oxidative stress and valvular endothelial cells in aortic valve calcification. Biomed Pharmacother 2023; 163:114775. [PMID: 37116353 DOI: 10.1016/j.biopha.2023.114775] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/15/2023] [Accepted: 04/23/2023] [Indexed: 04/30/2023] Open
Abstract
Calcified aortic valve disease (CAVD) is a common cardiovascular disease in elderly individuals. Although it was previously considered a degenerative disease, it is, in fact, a progressive disease involving multiple mechanisms. Aortic valve endothelial cells, which cover the outermost layer of the aortic valve and are directly exposed to various pathogenic factors, play a significant role in the onset and progression of CAVD. Hemodynamic changes can directly damage the structure and function of valvular endothelial cells (VECs). This leads to inflammatory infiltration and oxidative stress, which promote the progression of CAVD. VECs can regulate the pathological differentiation of valvular interstitial cells (VICs) through NO and thus affect the process of CAVD. Under the influence of pathological factors, VECs can also be transformed into VICs through EndMT, and then the pathological differentiation of VICs eventually leads to the formation of calcification. This review discusses the role of VECs, especially the role of oxidative stress in VECs, in the process of aortic valve calcification.
Collapse
Affiliation(s)
- Li Shu
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, Zhejiang, China
| | - Zhen Yuan
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, Zhejiang, China
| | - Fei Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, Hubei, China.
| | - Zhejun Cai
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, Zhejiang, China.
| |
Collapse
|
22
|
Dupuis LE, Evins SE, Abell MC, Blakley ME, Horkey SL, Barth JL, Kern CB. Increased Proteoglycanases in Pulmonary Valves after Birth Correlate with Extracellular Matrix Maturation and Valve Sculpting. J Cardiovasc Dev Dis 2023; 10:27. [PMID: 36661922 PMCID: PMC9865826 DOI: 10.3390/jcdd10010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 01/13/2023] Open
Abstract
Increased mechanical forces on developing cardiac valves drive formation of the highly organized extracellular matrix (ECM) providing tissue integrity and promoting cell behavior and signaling. However, the ability to investigate the response of cardiac valve cells to increased mechanical forces is challenging and remains poorly understood. The developmental window from birth (P0) to postnatal day 7 (P7) when biomechanical forces on the pulmonary valve (PV) are altered due to the initiation of blood flow to the lungs was evaluated in this study. Grossly enlarged PV, in mice deficient in the proteoglycan protease ADAMTS5, exhibited a transient phenotypic rescue from postnatal day 0 (P0) to P7; the Adamts5-/- aortic valves (AV) did not exhibit a phenotypic correction. We hypothesized that blood flow, initiated to the lungs at birth, alters mechanical load on the PV and promotes ECM maturation. In the Adamts5-/- PV, there was an increase in localization of the proteoglycan proteases ADAMTS1, MMP2, and MMP9 that correlated with reduced Versican (VCAN). At birth, Decorin (DCN), a Collagen I binding, small leucine-rich proteoglycan, exhibited complementary stratified localization to VCAN in the wild type at P0 but colocalized with VCAN in Adamts5-/- PV; concomitant with the phenotypic rescue at P7, the PVs in Adamts5-/- mice exhibited stratification of VCAN and DCN similar to wild type. This study indicates that increased mechanical forces on the PV at birth may activate ECM proteases to organize specialized ECM layers during cardiac valve maturation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Christine B. Kern
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
23
|
Yasuhara J, Schultz K, Bigelow AM, Garg V. Congenital aortic valve stenosis: from pathophysiology to molecular genetics and the need for novel therapeutics. Front Cardiovasc Med 2023; 10:1142707. [PMID: 37187784 PMCID: PMC10175644 DOI: 10.3389/fcvm.2023.1142707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Congenital aortic valve stenosis (AVS) is one of the most common valve anomalies and accounts for 3%-6% of cardiac malformations. As congenital AVS is often progressive, many patients, both children and adults, require transcatheter or surgical intervention throughout their lives. While the mechanisms of degenerative aortic valve disease in the adult population are partially described, the pathophysiology of adult AVS is different from congenital AVS in children as epigenetic and environmental risk factors play a significant role in manifestations of aortic valve disease in adults. Despite increased understanding of genetic basis of congenital aortic valve disease such as bicuspid aortic valve, the etiology and underlying mechanisms of congenital AVS in infants and children remain unknown. Herein, we review the pathophysiology of congenitally stenotic aortic valves and their natural history and disease course along with current management strategies. With the rapid expansion of knowledge of genetic origins of congenital heart defects, we also summarize the literature on the genetic contributors to congenital AVS. Further, this increased molecular understanding has led to the expansion of animal models with congenital aortic valve anomalies. Finally, we discuss the potential to develop novel therapeutics for congenital AVS that expand on integration of these molecular and genetic advances.
Collapse
Affiliation(s)
- Jun Yasuhara
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
- Heart Center, Nationwide Children’s Hospital, Columbus, OH, United States
- Correspondence: Jun Yasuhara Vidu Garg
| | - Karlee Schultz
- Medical Student Research Program, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Amee M. Bigelow
- Heart Center, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Vidu Garg
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
- Heart Center, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States
- Correspondence: Jun Yasuhara Vidu Garg
| |
Collapse
|
24
|
Majumdar U, Choudhury TZ, Manivannan S, Ueyama Y, Basu M, Garg V. Single-cell RNA-sequencing analysis of aortic valve interstitial cells demonstrates the regulation of integrin signaling by nitric oxide. Front Cardiovasc Med 2022; 9:742850. [PMID: 36386365 PMCID: PMC9640371 DOI: 10.3389/fcvm.2022.742850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/30/2022] [Indexed: 11/22/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is an increasingly prevalent condition among the elderly population that is associated with significant morbidity and mortality. Insufficient understanding of the underlying disease mechanisms has hindered the development of pharmacologic therapies for CAVD. Recently, we described nitric oxide (NO) mediated S-nitrosylation as a novel mechanism for preventing the calcific process. We demonstrated that NO donor or an S-nitrosylating agent, S-nitrosoglutathione (GSNO), inhibits spontaneous calcification in porcine aortic valve interstitial cells (pAVICs) and this was supported by single-cell RNA sequencing (scRNAseq) that demonstrated NO donor and GSNO inhibited myofibroblast activation of pAVICs. Here, we investigated novel signaling pathways that are critical for the calcification of pAVICs that are altered by NO and GSNO by performing an in-depth analysis of the scRNA-seq dataset. Transcriptomic analysis revealed 1,247 differentially expressed genes in pAVICs after NO donor or GSNO treatment compared to untreated cells. Pathway-based analysis of the differentially expressed genes revealed an overrepresentation of the integrin signaling pathway, along with the Rho GTPase, Wnt, TGF-β, and p53 signaling pathways. We demonstrate that ITGA8 and VCL, two of the identified genes from the integrin signaling pathway, which are known to regulate cell-extracellular matrix (ECM) communication and focal adhesion, were upregulated in both in vitro and in vivo calcific conditions. Reduced expression of these genes after treatment with NO donor suggests that NO inhibits calcification by targeting myofibroblast adhesion and ECM remodeling. In addition, withdrawal of NO donor after 3 days of exposure revealed that NO-mediated transcriptional and translational regulation is a transient event and requires continuous NO exposure to inhibit calcification. Overall, our data suggest that NO and S-nitrosylation regulate the integrin signaling pathway to maintain healthy cell-ECM interaction and prevent CAVD.
Collapse
Affiliation(s)
- Uddalak Majumdar
- Center for Cardiovascular Research, Nationwide Children’s Hospital, Columbus, OH, United States
- The Heart Center, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Talita Z. Choudhury
- Center for Cardiovascular Research, Nationwide Children’s Hospital, Columbus, OH, United States
- The Heart Center, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Sathiyanarayanan Manivannan
- Center for Cardiovascular Research, Nationwide Children’s Hospital, Columbus, OH, United States
- The Heart Center, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Yukie Ueyama
- Center for Cardiovascular Research, Nationwide Children’s Hospital, Columbus, OH, United States
- The Heart Center, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Madhumita Basu
- Center for Cardiovascular Research, Nationwide Children’s Hospital, Columbus, OH, United States
- The Heart Center, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Vidu Garg
- Center for Cardiovascular Research, Nationwide Children’s Hospital, Columbus, OH, United States
- The Heart Center, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
25
|
Hill JC, Billaud M, Richards TD, Kotlarczyk MP, Shiva S, Phillippi JA, Gleason TG. Layer-specific Nos3 expression and genotypic distribution in bicuspid aortic valve aortopathy. Eur J Cardiothorac Surg 2022; 62:ezac237. [PMID: 35460403 PMCID: PMC9615433 DOI: 10.1093/ejcts/ezac237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/08/2022] [Accepted: 03/29/2022] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES We hypothesized that expression and activity of nitric oxide synthase-3 enzyme (Nos3) in bicuspid aortic valve (BAV) aortopathy are related to tissue layer and Nos3 genotype. METHODS Gene expression of Nos3 and platelet and endothelial cell adhesion molecule-1 (Pecam1) and NOS activity were measured in intima-containing media and adventitial specimens of ascending aortic tissue. The presence of 2 Nos3 single-nucleotide polymorphisms (SNPs; -786T/C and 894G/T) was determined for non-aneurysmal (NA) and aneurysmal patients with BAV (n = 40, 89, respectively); patients with tricuspid aortic valve (TAV) and aneurysm (n = 151); and NA patients with TAV (n = 100). RESULTS Elevated Nos3 relative to Pecam1 and reduced Pecam1 relative to a housekeeping gene were observed within intima-containing aortic specimens from BAV patients when compared with TAV patients. Lower Nos3 in the adventitia of aneurysmal specimens was noted when compared with specimens of NA aorta, independent of valve morphology. NOS activity was similar among cohorts in media/intima and decreased in the diseased adventitia, relative to control patients. Aneurysmal BAV patients exhibited an under-representation of the wild-type genotype for -786 SNP. No differences in genotype distribution were noted for 894 SNP. Primary intimal endothelial cells from patients with at least 1 C allele at -786 SNP exhibited lower Nos3 when compared with wild-type cells. CONCLUSIONS These findings of differential Nos3 in media/intima versus adventitia depending on valve morphology or aneurysm reveal new information regarding aneurysmal pathophysiology and support our ongoing assertion that there are distinct mechanisms giving rise to ascending aortopathy in BAV and TAV patients.
Collapse
Affiliation(s)
- Jennifer C Hill
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marie Billaud
- Department of Surgery, Division of Thoracic and Cardiac Surgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Tara D Richards
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mary P Kotlarczyk
- Department of Medicine, Division of Geriatric Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sruti Shiva
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Julie A Phillippi
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thomas G Gleason
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
26
|
Integrin-Linked Kinase Expression in Human Valve Endothelial Cells Plays a Protective Role in Calcific Aortic Valve Disease. Antioxidants (Basel) 2022; 11:antiox11091736. [PMID: 36139812 PMCID: PMC9495882 DOI: 10.3390/antiox11091736] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is highly prevalent during aging. CAVD initiates with endothelial dysfunction, leading to lipid accumulation, inflammation, and osteogenic transformation. Integrin-linked kinase (ILK) participates in the progression of cardiovascular diseases, such as endothelial dysfunction and atherosclerosis. However, ILK role in CAVD is unknown. First, we determined that ILK expression is downregulated in aortic valves from patients with CAVD compared to non-CAVD, especially at the valve endothelium, and negatively correlated with calcification markers. Silencing ILK expression in human valve endothelial cells (siILK-hVECs) induced endothelial-to-mesenchymal transition (EndMT) and promoted a switch to an osteoblastic phenotype; SiILK-hVECs expressed increased RUNX2 and developed calcified nodules. siILK-hVECs exhibited decreased NO production and increased nitrosative stress, suggesting valvular endothelial dysfunction. NO treatment of siILK-hVECs prevented VEC transdifferentiation, while treatment with an eNOS inhibitor mimicked ILK-silencing induction of EndMT. Accordingly, NO treatment inhibited VEC calcification. Mechanistically, siILK-hVECs showed increased Smad2 phosphorylation, suggesting a TGF-β-dependent mechanism, and NO treatment decreased Smad2 activation and RUNX2. Experiments performed in eNOS KO mice confirmed the involvement of the ILK-eNOS signaling pathway in valve calcification, since aortic valves from these animals showed decreased ILK expression, increased RUNX2, and calcification. Our study demonstrated that ILK endothelial expression participates in human CAVD development by preventing endothelial osteogenic transformation.
Collapse
|
27
|
Hsu CPD, Tchir A, Mirza A, Chaparro D, Herrera RE, Hutcheson JD, Ramaswamy S. Valve Endothelial Cell Exposure to High Levels of Flow Oscillations Exacerbates Valve Interstitial Cell Calcification. Bioengineering (Basel) 2022; 9:bioengineering9080393. [PMID: 36004918 PMCID: PMC9405348 DOI: 10.3390/bioengineering9080393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/03/2022] [Accepted: 08/12/2022] [Indexed: 12/02/2022] Open
Abstract
The aortic valve facilitates unidirectional blood flow to the systemic circulation between the left cardiac ventricle and the aorta. The valve’s biomechanical function relies on thin leaflets to adequately open and close over the cardiac cycle. A monolayer of valve endothelial cells (VECs) resides on the outer surface of the aortic valve leaflet. Deeper within the leaflet are sublayers of valve interstitial cells (VICs). Valve tissue remodeling involves paracrine signaling between VECs and VICs. Aortic valve calcification can result from abnormal paracrine communication between these two cell types. VECs are known to respond to hemodynamic stimuli, and, specifically, flow abnormalities can induce VEC dysfunction. This dysfunction can subsequently change the phenotype of VICs, leading to aortic valve calcification. However, the relation between VEC-exposed flow oscillations under pulsatile flow to the progression of aortic valve calcification by VICs remains unknown. In this study, we quantified the level of flow oscillations that VECs were exposed to under dynamic culture and then immersed VICs in VEC-conditioned media. We found that VIC-induced calcification was augmented under maximum flow oscillations, wherein the flow was fully forward for half the cardiac cycle period and fully reversed for the other half. We were able to computationally correlate this finding to specific regions of the aortic valve that experience relatively high flow oscillations and that have been shown to be associated with severe calcified deposits. These findings establish a basis for future investigations on engineering calcified human valve tissues and its potential for therapeutic discovery of aortic valve calcification.
Collapse
Affiliation(s)
- Chia-Pei Denise Hsu
- Department of Biomedical Engineering, Florida International University, Miami, FL 33199, USA
| | - Alexandra Tchir
- Department of Biomedical Engineering, Florida International University, Miami, FL 33199, USA
| | - Asad Mirza
- Department of Biomedical Engineering, Florida International University, Miami, FL 33199, USA
| | - Daniel Chaparro
- Department of Biomedical Engineering, Florida International University, Miami, FL 33199, USA
| | - Raul E. Herrera
- Miami Cardiac & Vascular Institute, Baptist Health South Florida, Miami, FL 33199, USA
| | - Joshua D. Hutcheson
- Department of Biomedical Engineering, Florida International University, Miami, FL 33199, USA
- Correspondence: (J.D.H.); (S.R.)
| | - Sharan Ramaswamy
- Department of Biomedical Engineering, Florida International University, Miami, FL 33199, USA
- Correspondence: (J.D.H.); (S.R.)
| |
Collapse
|
28
|
Novelli M, Masini M, Vecoli C, Moscato S, Funel N, Pippa A, Mattii L, Ippolito C, Campani D, Neglia D, Masiello P. Dysregulated insulin secretion is associated with pancreatic β-cell hyperplasia and direct acinar-β-cell trans-differentiation in partially eNOS-deficient mice. Physiol Rep 2022; 10:e15425. [PMID: 35986504 PMCID: PMC9391603 DOI: 10.14814/phy2.15425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/11/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023] Open
Abstract
eNOS-deficient mice were previously shown to develop hypertension and metabolic alterations associated with insulin resistance either in standard dietary conditions (eNOS-/- homozygotes) or upon high-fat diet (HFD) (eNOS+/- heterozygotes). In the latter heterozygote model, the present study investigated the pancreatic morphological changes underlying the abnormal glycometabolic phenotype. C57BL6 wild type (WT) and eNOS+/- mice were fed with either chow or HFD for 16 weeks. After being longitudinally monitored for their metabolic state after 8 and 16 weeks of diet, mice were euthanized and fragments of pancreas were processed for histological, immuno-histochemical and ultrastructural analyses. HFD-fed WT and eNOS+/- mice developed progressive glucose intolerance and insulin resistance. Differently from WT animals, eNOS+/- mice showed a blunted insulin response to a glucose load, regardless of the diet regimen. Such dysregulation of insulin secretion was associated with pancreatic β-cell hyperplasia, as shown by larger islet fractional area and β-cell mass, and higher number of extra-islet β-cell clusters than in chow-fed WT animals. In addition, only in the pancreas of HFD-fed eNOS+/- mice, there was ultrastructural evidence of a number of hybrid acinar-β-cells, simultaneously containing zymogen and insulin granules, suggesting the occurrence of a direct exocrine-endocrine transdifferentiation process, plausibly triggered by metabolic stress associated to deficient endothelial NO production. As suggested by confocal immunofluorescence analysis of pancreatic histological sections, inhibition of Notch-1 signaling, likely due to a reduced NO availability, is proposed as a novel mechanism that could favor both β-cell hyperplasia and acinar-β-cell transdifferentiation in eNOS-deficient mice with impaired insulin response to a glucose load.
Collapse
Affiliation(s)
- Michela Novelli
- Department of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| | - Matilde Masini
- Department of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| | - Cecilia Vecoli
- Institute of Clinical PhysiologyNational Research Council (CNR)PisaItaly
| | - Stefania Moscato
- Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
- Interdepartmental Research Centre "Nutraceuticals and Food for Health"University of PisaPisaItaly
| | - Niccola Funel
- Department of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| | - Anna Pippa
- Institute of Clinical PhysiologyNational Research Council (CNR)PisaItaly
| | - Letizia Mattii
- Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
- Interdepartmental Research Centre "Nutraceuticals and Food for Health"University of PisaPisaItaly
| | - Chiara Ippolito
- Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Daniela Campani
- Department of Surgical, Medical and Molecular Pathology, and Critical Care MedicineUniversity of PisaPisaItaly
| | - Danilo Neglia
- Cardiovascular DepartmentFondazione Toscana Gabriele Monasterio per la Ricerca Medica e di Sanità PubblicaPisaItaly
| | - Pellegrino Masiello
- Department of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| |
Collapse
|
29
|
Phua K, Chew NWS, Kong WKF, Tan RS, Ye L, Poh KK. The mechanistic pathways of oxidative stress in aortic stenosis and clinical implications. Theranostics 2022; 12:5189-5203. [PMID: 35836811 PMCID: PMC9274751 DOI: 10.7150/thno.71813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/03/2022] [Indexed: 02/06/2023] Open
Abstract
Despite the elucidation of the pathways behind the development of aortic stenosis (AS), there remains no effective medical treatment to slow or reverse its progress. Instead, the gold standard of care in severe or symptomatic AS is replacement of the aortic valve. Oxidative stress is implicated, both directly as well as indirectly, in lipid infiltration, inflammation and fibro-calcification, all of which are key processes underlying the pathophysiology of degenerative AS. This culminates in the breakdown of the extracellular matrix, differentiation of the valvular interstitial cells into an osteogenic phenotype, and finally, calcium deposition as well as thickening of the aortic valve. Oxidative stress is thus a promising and potential therapeutic target for the treatment of AS. Several studies focusing on the mitigation of oxidative stress in the context of AS have shown some success in animal and in vitro models, however similar benefits have yet to be seen in clinical trials. Statin therapy, once thought to be the key to the treatment of AS, has yielded disappointing results, however newer lipid lowering therapies may hold some promise. Other potential therapies, such as manipulation of microRNAs, blockade of the renin-angiotensin-aldosterone system and the use of dipeptidylpeptidase-4 inhibitors will also be reviewed.
Collapse
Affiliation(s)
- Kailun Phua
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore, Singapore
| | - Nicholas WS Chew
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore, Singapore,✉ Corresponding authors: A/Prof Kian-Keong Poh, . Dr Nicholas Chew, MBChB, MMED (Singapore), MRCP (UK) . Department of Cardiology, National University Heart Centre Singapore, National University Health System, Singapore. 1E Kent Ridge Rd, NUHS Tower Block, Level 9, Singapore 119228. Fax: (65) 68722998 Telephone: (65) 67722476
| | - William KF Kong
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore, Singapore
| | - Ru-San Tan
- Department of Cardiology, National Heart Centre Singapore, Singapore, 169609, Singapore
| | - Lei Ye
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, 169609, Singapore
| | - Kian-Keong Poh
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore, Singapore,Yong Loo Lin School of Medicine, National University of Singapore, Singapore,✉ Corresponding authors: A/Prof Kian-Keong Poh, . Dr Nicholas Chew, MBChB, MMED (Singapore), MRCP (UK) . Department of Cardiology, National University Heart Centre Singapore, National University Health System, Singapore. 1E Kent Ridge Rd, NUHS Tower Block, Level 9, Singapore 119228. Fax: (65) 68722998 Telephone: (65) 67722476
| |
Collapse
|
30
|
Strategies for development of decellularized heart valve scaffolds for tissue engineering. Biomaterials 2022; 288:121675. [DOI: 10.1016/j.biomaterials.2022.121675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 01/01/2023]
|
31
|
Greenberg HZE, Zhao G, Shah AM, Zhang M. Role of oxidative stress in calcific aortic valve disease and its therapeutic implications. Cardiovasc Res 2022; 118:1433-1451. [PMID: 33881501 PMCID: PMC9074995 DOI: 10.1093/cvr/cvab142] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is the end result of active cellular processes that lead to the progressive fibrosis and calcification of aortic valve leaflets. In western populations, CAVD is a significant cause of cardiovascular morbidity and mortality, and in the absence of effective drugs, it will likely represent an increasing disease burden as populations age. As there are currently no pharmacological therapies available for preventing, treating, or slowing the development of CAVD, understanding the mechanisms underlying the initiation and progression of the disease is important for identifying novel therapeutic targets. Recent evidence has emerged of an important causative role for reactive oxygen species (ROS)-mediated oxidative stress in the pathophysiology of CAVD, inducing the differentiation of valve interstitial cells into myofibroblasts and then osteoblasts. In this review, we focus on the roles and sources of ROS driving CAVD and consider their potential as novel therapeutic targets for this debilitating condition.
Collapse
Affiliation(s)
- Harry Z E Greenberg
- Department of Cardiology, Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Guoan Zhao
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Henan, China
| | - Ajay M Shah
- Department of Cardiology, Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Min Zhang
- Department of Cardiology, Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| |
Collapse
|
32
|
Wang S, Yu H, Gao J, Chen J, He P, Zhong H, Tan X, Staines KA, Macrae VE, Fu X, Jiang L, Zhu D. PALMD regulates aortic valve calcification via altered glycolysis and NF-κB-mediated inflammation. J Biol Chem 2022; 298:101887. [PMID: 35367413 PMCID: PMC9065630 DOI: 10.1016/j.jbc.2022.101887] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/25/2022] Open
Abstract
Recent genome-wide association and transcriptome-wide association studies have identified an association between the PALMD locus, encoding palmdelphin, a protein involved in myoblast differentiation, and calcific aortic valve disease (CAVD). Nevertheless, the function and underlying mechanisms of PALMD in CAVD remain unclear. We herein investigated whether and how PALMD affects the pathogenesis of CAVD using clinical samples from CAVD patients and a human valve interstitial cell (hVIC) in vitro calcification model. We showed that PALMD was upregulated in calcified regions of human aortic valves and calcified hVICs. Furthermore, silencing of PALMD reduced hVIC in vitro calcification, osteogenic differentiation, and apoptosis, whereas overexpression of PALMD had the opposite effect. RNA-Seq of PALMD-depleted hVICs revealed that silencing of PALMD reduced glycolysis and nuclear factor-κB (NF-κB)–mediated inflammation in hVICs and attenuated tumor necrosis factor α–induced monocyte adhesion to hVICs. Having established the role of PALMD in hVIC glycolysis, we examined whether glycolysis itself could regulate hVIC osteogenic differentiation and inflammation. Intriguingly, the inhibition of PFKFB3-mediated glycolysis significantly attenuated osteogenic differentiation and inflammation of hVICs. However, silencing of PFKFB3 inhibited PALMD-induced hVIC inflammation, but not osteogenic differentiation. Finally, we showed that the overexpression of PALMD enhanced hVIC osteogenic differentiation and inflammation, as opposed to glycolysis, through the activation of NF-κB. The present study demonstrates that the genome-wide association– and transcriptome-wide association–identified CAVD risk gene PALMD may promote CAVD development through regulation of glycolysis and NF-κB–mediated inflammation. We propose that targeting PALMD-mediated glycolysis may represent a novel therapeutic strategy for treating CAVD.
Collapse
Affiliation(s)
- Siying Wang
- Department of Basic Medical Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China; Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hongjiao Yu
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, China
| | - Jun Gao
- Department of Basic Medical Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Jiaxin Chen
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Pengcheng He
- Guangdong Provincial Geriatrics Institute, and Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hui Zhong
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiao Tan
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Katherine A Staines
- Centre for Stress and Age-Related Disease, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Vicky E Macrae
- Functional Genetics and Development, The Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - Xiaodong Fu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Lei Jiang
- Guangdong Provincial Geriatrics Institute, and Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Dongxing Zhu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
33
|
Liu Z, Dong N, Hui H, Wang Y, Liu F, Xu L, Liu M, Rao Z, Yuan Z, Shang Y, Feng J, Cai Z, Li F. Endothelial cell-derived tetrahydrobiopterin prevents aortic valve calcification. Eur Heart J 2022; 43:1652-1664. [PMID: 35139535 DOI: 10.1093/eurheartj/ehac037] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 01/05/2022] [Accepted: 01/20/2022] [Indexed: 11/14/2022] Open
Abstract
AIMS Tetrahydrobiopterin (BH4) is a critical determinant of the biological function of endothelial nitric oxide synthase. The present study was to investigate the role of valvular endothelial cell (VEC)-derived BH4 in aortic valve calcification. METHODS AND RESULTS Plasma and aortic valve BH4 concentrations and the BH4:BH2 ratio were significantly lower in calcific aortic valve disease patients than in controls. There was a significant decrease of the two key enzymes of BH4 biosynthesis, guanosine 5'-triphosphate cyclohydrolase I (GCH1) and dihydrofolate reductase (DHFR), in calcified aortic valves compared with the normal ones. Endothelial cell-specific deficiency of Gch1 in Apoe-/- (Apoe-/-Gch1fl/flTie2Cre) mice showed a marked increase in transvalvular peak jet velocity, calcium deposition, runt-related transcription factor 2 (Runx2), dihydroethidium (DHE), and 3-nitrotyrosine (3-NT) levels in aortic valve leaflets compared with Apoe-/-Gch1fl/fl mice after a 24-week western diet (WD) challenge. Oxidized LDL (ox-LDL) induced osteoblastic differentiation of valvular interstitial cells (VICs) co-cultured with either si-GCH1- or si-DHFR-transfected VECs, while the effects could be abolished by BH4 supplementation. Deficiency of BH4 in VECs caused peroxynitrite formation increase and 3-NT protein increase under ox-LDL stimulation in VICs. SIN-1, the peroxynitrite generator, significantly up-regulated alkaline phosphatase (ALP) and Runx2 expression in VICs via tyrosine nitration of dynamin-related protein 1 (DRP1) at Y628. Finally, folic acid (FA) significantly attenuated aortic valve calcification in WD-fed Apoe-/- mice through increasing DHFR and salvaging BH4 biosynthesis. CONCLUSION The reduction in endothelial-dependent BH4 levels promoted peroxynitrite formation, which subsequently resulted in DRP1 tyrosine nitration and osteoblastic differentiation of VICs, thereby leading to aortic valve calcification. Supplementation of FA in diet attenuated hypercholesterolaemia-induced aortic valve calcification by salvaging BH4 bioavailability.
Collapse
Affiliation(s)
- Zongtao Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, Hubei, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, Hubei, China
| | - Haipeng Hui
- Department of Cardiology, the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, 28# Fuxing Road, Beijing 100853, China
| | - Yixuan Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, Hubei, China
| | - Fayun Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, Hubei, China
| | - Li Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, Hubei, China
| | - Ming Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, Hubei, China
| | - Zhenqi Rao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, Hubei, China
| | - Zhen Yuan
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, Zhejiang, China
| | - Yuqiang Shang
- Department of Cardiovascular Surgery, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, Hubei, China
| | - Jun Feng
- Department of Emergency and Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Zhejun Cai
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, Zhejiang, China
| | - Fei Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, Hubei, China
| |
Collapse
|
34
|
Jung JJ, Ahmad AA, Rajendran S, Wei L, Zhang J, Toczek J, Nie L, Kukreja G, Salarian M, Gona K, Ghim M, Chakraborty R, Martin KA, Tellides G, Heistad D, Sadeghi MM. Differential BMP Signaling Mediates the Interplay Between Genetics and Leaflet Numbers in Aortic Valve Calcification. JACC Basic Transl Sci 2022; 7:333-345. [PMID: 35540096 PMCID: PMC9079798 DOI: 10.1016/j.jacbts.2021.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/27/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022]
Abstract
Expression of a neuropilin-like protein, DCBLD2, is reduced in human calcific aortic valve disease (CAVD). DCBLD2-deficient mice develop bicuspid aortic valve (BAV) and CAVD, which is more severe in BAV mice compared with tricuspid littermates. In vivo and in vitro studies link this observation to up-regulated bone morphogenic protein (BMP)2 expression in the presence of DCBLD2 down-regulation, and enhanced BMP2 signaling in BAV, indicating that a combination of genetics and BAV promotes aortic valve calcification and stenosis. This pathway may be a therapeutic target to prevent CAVD progression in BAV.
Collapse
Key Words
- BAV, bicuspid aortic valve
- BMP, bone morphogenic protein
- CAVD, calcific aortic valve disease
- DCBLD2, discoidin, CUB and LCCL domain containing 2
- EC, endothelial cell
- RT-PCR, reverse-transcription polymerase chain reaction
- SMAD, homolog of Caenorhabditis elegans Sma and the Drosophila mad, mothers against decapentaplegic
- TAV, tricuspid aortic valve
- VIC, valvular interstitial cell
- WT, wild type
- aortic stenosis
- aortic valve
- bicuspid aortic valve
- calcification
- mouse models
- pVIC, porcine valvular interstitial cell
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Jae-Joon Jung
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Azmi A. Ahmad
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Saranya Rajendran
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Linyan Wei
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Jiasheng Zhang
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Jakub Toczek
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Lei Nie
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Gunjan Kukreja
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Mani Salarian
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Kiran Gona
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Mean Ghim
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Raja Chakraborty
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kathleen A. Martin
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - George Tellides
- VA Connecticut Healthcare System, West Haven, Connecticut, USA
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Donald Heistad
- Division of Cardiovascular Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Mehran M. Sadeghi
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- VA Connecticut Healthcare System, West Haven, Connecticut, USA
- Address for correspondence: Dr Mehran M. Sadeghi, Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale School of Medicine, 300 George Street, Room 770G, New Haven, Connecticut 06511, USA.
| |
Collapse
|
35
|
Dayawansa NH, Baratchi S, Peter K. Uncoupling the Vicious Cycle of Mechanical Stress and Inflammation in Calcific Aortic Valve Disease. Front Cardiovasc Med 2022; 9:783543. [PMID: 35355968 PMCID: PMC8959593 DOI: 10.3389/fcvm.2022.783543] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 02/15/2022] [Indexed: 12/24/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is a common acquired valvulopathy, which carries a high burden of mortality. Chronic inflammation has been postulated as the predominant pathophysiological process underlying CAVD. So far, no effective medical therapies exist to halt the progression of CAVD. This review aims to outline the known pathways of inflammation and calcification in CAVD, focussing on the critical roles of mechanical stress and mechanosensing in the perpetuation of valvular inflammation. Following initiation of valvular inflammation, dysregulation of proinflammatory and osteoregulatory signalling pathways stimulates endothelial-mesenchymal transition of valvular endothelial cells (VECs) and differentiation of valvular interstitial cells (VICs) into active myofibroblastic and osteoblastic phenotypes, which in turn mediate valvular extracellular matrix remodelling and calcification. Mechanosensitive signalling pathways convert mechanical forces experienced by valve leaflets and circulating cells into biochemical signals and may provide the positive feedback loop that promotes acceleration of disease progression in the advanced stages of CAVD. Mechanosensing is implicated in multiple aspects of CAVD pathophysiology. The mechanosensitive RhoA/ROCK and YAP/TAZ systems are implicated in aortic valve leaflet mineralisation in response to increased substrate stiffness. Exposure of aortic valve leaflets, endothelial cells and platelets to high shear stress results in increased expression of mediators of VIC differentiation. Upregulation of the Piezo1 mechanoreceptor has been demonstrated to promote inflammation in CAVD, which normalises following transcatheter valve replacement. Genetic variants and inhibition of Notch signalling accentuate VIC responses to altered mechanical stresses. The study of mechanosensing pathways has revealed promising insights into the mechanisms that perpetuate inflammation and calcification in CAVD. Mechanotransduction of altered mechanical stresses may provide the sought-after coupling link that drives a vicious cycle of chronic inflammation in CAVD. Mechanosensing pathways may yield promising targets for therapeutic interventions and prognostic biomarkers with the potential to improve the management of CAVD.
Collapse
Affiliation(s)
- Nalin H. Dayawansa
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, VIC, Australia
- Department of Medicine, Monash University, Melbourne, VIC, Australia
| | - Sara Baratchi
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Karlheinz Peter
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, VIC, Australia
- Department of Medicine, Monash University, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
36
|
Cardiac Calcifications: Phenotypes, Mechanisms, Clinical and Prognostic Implications. BIOLOGY 2022; 11:biology11030414. [PMID: 35336788 PMCID: PMC8945469 DOI: 10.3390/biology11030414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/21/2022] [Accepted: 03/07/2022] [Indexed: 12/20/2022]
Abstract
There is a growing interest in arterial and heart valve calcifications, as these contribute to cardiovascular outcome, and are leading predictors of cardiovascular and kidney diseases. Cardiovascular calcifications are often considered as one disease, but, in effect, they represent multifaced disorders, occurring in different milieus and biological phenotypes, following different pathways. Herein, we explore each different molecular process, its relative link with the specific clinical condition, and the current therapeutic approaches to counteract calcifications. Thus, first, we explore the peculiarities between vascular and valvular calcium deposition, as this occurs in different tissues, responds differently to shear stress, has specific etiology and time courses to calcification. Then, we differentiate the mechanisms and pathways leading to hyperphosphatemic calcification, typical of the media layer of the vessel and mainly related to chronic kidney diseases, to those of inflammation, typical of the intima vascular calcification, which predominantly occur in atherosclerotic vascular diseases. Finally, we examine calcifications secondary to rheumatic valve disease or other bacterial lesions and those occurring in autoimmune diseases. The underlying clinical conditions of each of the biological calcification phenotypes and the specific opportunities of therapeutic intervention are also considered and discussed.
Collapse
|
37
|
Lozano-Velasco E, Garcia-Padilla C, del Mar Muñoz-Gallardo M, Martinez-Amaro FJ, Caño-Carrillo S, Castillo-Casas JM, Sanchez-Fernandez C, Aranega AE, Franco D. Post-Transcriptional Regulation of Molecular Determinants during Cardiogenesis. Int J Mol Sci 2022; 23:ijms23052839. [PMID: 35269981 PMCID: PMC8911333 DOI: 10.3390/ijms23052839] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/19/2022] [Accepted: 02/26/2022] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular development is initiated soon after gastrulation as bilateral precardiac mesoderm is progressively symmetrically determined at both sides of the developing embryo. The precardiac mesoderm subsequently fused at the embryonic midline constituting an embryonic linear heart tube. As development progress, the embryonic heart displays the first sign of left-right asymmetric morphology by the invariably rightward looping of the initial heart tube and prospective embryonic ventricular and atrial chambers emerged. As cardiac development progresses, the atrial and ventricular chambers enlarged and distinct left and right compartments emerge as consequence of the formation of the interatrial and interventricular septa, respectively. The last steps of cardiac morphogenesis are represented by the completion of atrial and ventricular septation, resulting in the configuration of a double circuitry with distinct systemic and pulmonary chambers, each of them with distinct inlets and outlets connections. Over the last decade, our understanding of the contribution of multiple growth factor signaling cascades such as Tgf-beta, Bmp and Wnt signaling as well as of transcriptional regulators to cardiac morphogenesis have greatly enlarged. Recently, a novel layer of complexity has emerged with the discovery of non-coding RNAs, particularly microRNAs and lncRNAs. Herein, we provide a state-of-the-art review of the contribution of non-coding RNAs during cardiac development. microRNAs and lncRNAs have been reported to functional modulate all stages of cardiac morphogenesis, spanning from lateral plate mesoderm formation to outflow tract septation, by modulating major growth factor signaling pathways as well as those transcriptional regulators involved in cardiac development.
Collapse
Affiliation(s)
- Estefania Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Carlos Garcia-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Department of Anatomy, Embryology and Zoology, School of Medicine, University of Extremadura, 06006 Badajoz, Spain
| | - Maria del Mar Muñoz-Gallardo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Francisco Jose Martinez-Amaro
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Sheila Caño-Carrillo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Juan Manuel Castillo-Casas
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Cristina Sanchez-Fernandez
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Amelia E. Aranega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
- Correspondence:
| |
Collapse
|
38
|
Mazur P, Kopytek M, Ząbczyk M, Undas A, Natorska J. Towards Personalized Therapy of Aortic Stenosis. J Pers Med 2021; 11:1292. [PMID: 34945764 PMCID: PMC8708539 DOI: 10.3390/jpm11121292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022] Open
Abstract
Calcific aortic stenosis (CAS) is the most common cause of acquired valvular heart disease in adults with no available pharmacological treatment to inhibit the disease progression to date. This review provides an up-to-date overview of current knowledge of molecular mechanisms underlying CAS pathobiology and the related treatment pathways. Particular attention is paid to current randomized trials investigating medical treatment of CAS, including strategies based on lipid-lowering and antihypertensive therapies, phosphate and calcium metabolism, and novel therapeutic targets such as valvular oxidative stress, coagulation proteins, matrix metalloproteinases, and accumulation of advanced glycation end products.
Collapse
Affiliation(s)
- Piotr Mazur
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, MN 55902, USA;
- Institute of Cardiology, Jagiellonian University Medical College, 80 Pradnicka St, 31-202 Kraków, Poland; (M.K.); (M.Z.); (A.U.)
| | - Magdalena Kopytek
- Institute of Cardiology, Jagiellonian University Medical College, 80 Pradnicka St, 31-202 Kraków, Poland; (M.K.); (M.Z.); (A.U.)
- Center for Research and Medical Technologies, John Paul II Hospital, 31-202 Kraków, Poland
| | - Michał Ząbczyk
- Institute of Cardiology, Jagiellonian University Medical College, 80 Pradnicka St, 31-202 Kraków, Poland; (M.K.); (M.Z.); (A.U.)
- Center for Research and Medical Technologies, John Paul II Hospital, 31-202 Kraków, Poland
| | - Anetta Undas
- Institute of Cardiology, Jagiellonian University Medical College, 80 Pradnicka St, 31-202 Kraków, Poland; (M.K.); (M.Z.); (A.U.)
- Center for Research and Medical Technologies, John Paul II Hospital, 31-202 Kraków, Poland
| | - Joanna Natorska
- Institute of Cardiology, Jagiellonian University Medical College, 80 Pradnicka St, 31-202 Kraków, Poland; (M.K.); (M.Z.); (A.U.)
- Center for Research and Medical Technologies, John Paul II Hospital, 31-202 Kraków, Poland
| |
Collapse
|
39
|
Nordquist EM, Dutta P, Kodigepalli KM, Mattern C, McDermott MR, Trask AJ, LaHaye S, Lindner V, Lincoln J. Tgfβ1-Cthrc1 Signaling Plays an Important Role in the Short-Term Reparative Response to Heart Valve Endothelial Injury. Arterioscler Thromb Vasc Biol 2021; 41:2923-2942. [PMID: 34645278 PMCID: PMC8612994 DOI: 10.1161/atvbaha.121.316450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/23/2021] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Aortic valve disease is a common worldwide health burden with limited treatment options. Studies have shown that the valve endothelium is critical for structure-function relationships, and disease is associated with its dysfunction, damage, or injury. Therefore, therapeutic targets to maintain a healthy endothelium or repair damaged endothelial cells could hold promise. In this current study, we utilize a surgical mouse model of heart valve endothelial cell injury to study the short-term response at molecular and cellular levels. The goal is to determine if the native heart valve exhibits a reparative response to injury and identify the mechanisms underlying this process. Approach and Results: Mild aortic valve endothelial injury and abrogated function was evoked by inserting a guidewire down the carotid artery of young (3 months) and aging (16-18 months) wild-type mice. Short-term cellular responses were examined at 6 hours, 48 hours, and 4 weeks following injury, whereas molecular profiles were determined after 48 hours by RNA-sequencing. Within 48 hours following endothelial injury, young wild-type mice restore endothelial barrier function in association with increased cell proliferation, and upregulation of transforming growth factor beta 1 (Tgfβ1) and the glycoprotein, collagen triple helix repeat containing 1 (Cthrc1). Interestingly, this beneficial response to injury was not observed in aging mice with known underlying endothelial dysfunction. CONCLUSIONS Data from this study suggests that the healthy valve has the capacity to respond to mild endothelial injury, which in short term has beneficial effects on restoring endothelial barrier function through acute activation of the Tgfβ1-Cthrc1 signaling axis and cell proliferation.
Collapse
Affiliation(s)
- Emily M. Nordquist
- Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA
- Department of Pediatrics, Section of Pediatric Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA
- The Herma Heart Institute, Children’s Wisconsin, Milwaukee, WI, USA
| | - Punashi Dutta
- Department of Pediatrics, Section of Pediatric Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA
- The Herma Heart Institute, Children’s Wisconsin, Milwaukee, WI, USA
| | - Karthik M. Kodigepalli
- Department of Pediatrics, Section of Pediatric Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA
- The Herma Heart Institute, Children’s Wisconsin, Milwaukee, WI, USA
| | - Carol Mattern
- Department of Pediatrics, Section of Pediatric Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA
- The Herma Heart Institute, Children’s Wisconsin, Milwaukee, WI, USA
| | - Michael R. McDermott
- Center for Cardiovascular Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Aaron J. Trask
- Center for Cardiovascular Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Stephanie LaHaye
- The Institute for Genomic Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Volkhard Lindner
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, USA
| | - Joy Lincoln
- Department of Pediatrics, Section of Pediatric Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA
- The Herma Heart Institute, Children’s Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
40
|
Deb N, Lacerda CMR. Valvular Endothelial Cell Response to the Mechanical Environment-A Review. Cell Biochem Biophys 2021; 79:695-709. [PMID: 34661855 DOI: 10.1007/s12013-021-01039-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/02/2021] [Indexed: 01/08/2023]
Abstract
Heart valve leaflets are complex structures containing valve endothelial cells, interstitial cells, and extracellular matrix. Heart valve endothelial cells sense mechanical stimuli, and communicate amongst themselves and the surrounding cells and extracellular matrix to maintain tissue homeostasis. In the presence of abnormal mechanical stimuli, endothelial cell communication is triggered in defense and such processes may eventually lead to cardiac disease progression. This review focuses on the role of mechanical stimuli on heart valve endothelial surfaces-from heart valve development and maintenance of tissue integrity to disease progression with related signal pathways involved in this process.
Collapse
Affiliation(s)
- Nandini Deb
- Jasper Department of Chemical Engineering, The University of Texas at Tyler, 3900 University Blvd, Tyler, 75799, TX, US
| | - Carla M R Lacerda
- Jasper Department of Chemical Engineering, The University of Texas at Tyler, 3900 University Blvd, Tyler, 75799, TX, US.
| |
Collapse
|
41
|
Kraler S, Blaser MC, Aikawa E, Camici GG, Lüscher TF. Calcific aortic valve disease: from molecular and cellular mechanisms to medical therapy. Eur Heart J 2021; 43:683-697. [PMID: 34849696 DOI: 10.1093/eurheartj/ehab757] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/12/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is a highly prevalent condition that comprises a disease continuum, ranging from microscopic changes to profound fibro-calcific leaflet remodelling, culminating in aortic stenosis, heart failure, and ultimately premature death. Traditional risk factors, such as hypercholesterolaemia and (systolic) hypertension, are shared among atherosclerotic cardiovascular disease and CAVD, yet the molecular and cellular mechanisms differ markedly. Statin-induced low-density lipoprotein cholesterol lowering, a remedy highly effective for secondary prevention of atherosclerotic cardiovascular disease, consistently failed to impact CAVD progression or to improve patient outcomes. However, recently completed phase II trials provide hope that pharmaceutical tactics directed at other targets implicated in CAVD pathogenesis offer an avenue to alter the course of the disease non-invasively. Herein, we delineate key players of CAVD pathobiology, outline mechanisms that entail compromised endothelial barrier function, and promote lipid homing, immune-cell infiltration, and deranged phospho-calcium metabolism that collectively perpetuate a pro-inflammatory/pro-osteogenic milieu in which valvular interstitial cells increasingly adopt myofibro-/osteoblast-like properties, thereby fostering fibro-calcific leaflet remodelling and eventually resulting in left ventricular outflow obstruction. We provide a glimpse into the most promising targets on the horizon, including lipoprotein(a), mineral-binding matrix Gla protein, soluble guanylate cyclase, dipeptidyl peptidase-4 as well as candidates involved in regulating phospho-calcium metabolism and valvular angiotensin II synthesis and ultimately discuss their potential for a future therapy of this insidious disease.
Collapse
Affiliation(s)
- Simon Kraler
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland.,University Heart Center, Department of Cardiology, University Hospital, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Mark C Blaser
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA.,Center for Excellence in Vascular Biology, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Ave Louis Pasteur, NRB7, Boston, MA 02115, USA
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland.,University Heart Center, Department of Cardiology, University Hospital, Rämistrasse 100, 8091 Zurich, Switzerland.,Department of Research and Education, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland.,Heart Division, Royal Brompton & Harefield Hospitals, Sydney Street, London SW3 6NP, UK.,National Heart and Lung Institute, Imperial College, Guy Scadding Building, Dovehouse Street, London SW3 6LY, UK
| |
Collapse
|
42
|
Choudhury TZ, Majumdar U, Basu M, Garg V. Impact of maternal hyperglycemia on cardiac development: Insights from animal models. Genesis 2021; 59:e23449. [PMID: 34498806 PMCID: PMC8599640 DOI: 10.1002/dvg.23449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022]
Abstract
Congenital heart disease (CHD) is the leading cause of birth defect-related death in infants and is a global pediatric health concern. While the genetic causes of CHD have become increasingly recognized with advances in genome sequencing technologies, the etiology for the majority of cases of CHD is unknown. The maternal environment during embryogenesis has a profound impact on cardiac development, and numerous environmental factors are associated with an elevated risk of CHD. Maternal diabetes mellitus (matDM) is associated with up to a fivefold increased risk of having an infant with CHD. The rising prevalence of diabetes mellitus has led to a growing interest in the use of experimental diabetic models to elucidate mechanisms underlying this associated risk for CHD. The purpose of this review is to provide a comprehensive summary of rodent models that are being used to investigate alterations in cardiac developmental pathways when exposed to a maternal diabetic setting and to summarize the key findings from these models. The majority of studies in the field have utilized the chemically induced model of matDM, but recent advances have also been made using diet based and genetic models. Each model provides an opportunity to investigate unique aspects of matDM and is invaluable for a comprehensive understanding of the molecular and cellular mechanisms underlying matDM-associated CHD.
Collapse
Affiliation(s)
- Talita Z. Choudhury
- Center for Cardiovascular Research and Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205, United States
- Graduate Program in Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH 43210, United States
| | - Uddalak Majumdar
- Center for Cardiovascular Research and Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205, United States
| | - Madhumita Basu
- Center for Cardiovascular Research and Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, United States
| | - Vidu Garg
- Center for Cardiovascular Research and Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, United States
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
43
|
Kern CB. Excess Provisional Extracellular Matrix: A Common Factor in Bicuspid Aortic Valve Formation. J Cardiovasc Dev Dis 2021; 8:92. [PMID: 34436234 PMCID: PMC8396938 DOI: 10.3390/jcdd8080092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
A bicuspid aortic valve (BAV) is the most common cardiac malformation, found in 0.5% to 2% of the population. BAVs are present in approximately 50% of patients with severe aortic stenosis and are an independent risk factor for aortic aneurysms. Currently, there are no therapeutics to treat BAV, and the human mutations identified to date represent a relatively small number of BAV patients. However, the discovery of BAV in an increasing number of genetically modified mice is advancing our understanding of molecular pathways that contribute to BAV formation. In this study, we utilized the comparison of BAV phenotypic characteristics between murine models as a tool to advance our understanding of BAV formation. The collation of murine BAV data indicated that excess versican within the provisional extracellular matrix (P-ECM) is a common factor in BAV development. While the percentage of BAVs is low in many of the murine BAV models, the remaining mutant mice exhibit larger and more amorphous tricuspid AoVs, also with excess P-ECM compared to littermates. The identification of common molecular characteristics among murine BAV models may lead to BAV therapeutic targets and biomarkers of disease progression for this highly prevalent and heterogeneous cardiovascular malformation.
Collapse
Affiliation(s)
- Christine B Kern
- Department of Regenerative Medicine and Cell Biology, 171 Ashley Avenue, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
44
|
Nakano H, Fajardo VM, Nakano A. The role of glucose in physiological and pathological heart formation. Dev Biol 2021; 475:222-233. [PMID: 33577830 PMCID: PMC8107118 DOI: 10.1016/j.ydbio.2021.01.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/30/2020] [Accepted: 01/29/2021] [Indexed: 02/08/2023]
Abstract
Cells display distinct metabolic characteristics depending on its differentiation stage. The fuel type of the cells serves not only as a source of energy but also as a driver of differentiation. Glucose, the primary nutrient to the cells, is a critical regulator of rapidly growing embryos. This metabolic change is a consequence as well as a cause of changes in genetic program. Disturbance of fetal glucose metabolism such as in diabetic pregnancy is associated with congenital heart disease. In utero hyperglycemia impacts the left-right axis establishment, migration of cardiac neural crest cells, conotruncal formation and mesenchymal formation of the cardiac cushion during early embryogenesis and causes cardiac hypertrophy in late fetal stages. In this review, we focus on the role of glucose in cardiogenesis and the molecular mechanisms underlying heart diseases associated with hyperglycemia.
Collapse
Affiliation(s)
- Haruko Nakano
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Viviana M Fajardo
- Department of Pediatrics, Division of Neonatology and Developmental Biology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Atsushi Nakano
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
45
|
Wang Y, Han D, Zhou T, Chen C, Cao H, Zhang JZ, Ma N, Liu C, Song M, Shi J, Jin X, Cao F, Dong N. DUSP26 induces aortic valve calcification by antagonizing MDM2-mediated ubiquitination of DPP4 in human valvular interstitial cells. Eur Heart J 2021; 42:2935-2951. [PMID: 34179958 DOI: 10.1093/eurheartj/ehab316] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/21/2021] [Accepted: 05/07/2021] [Indexed: 12/21/2022] Open
Abstract
AIMS The morbidity and mortality rates of calcific aortic valve disease (CAVD) remain high while treatment options are limited. Here, we evaluated the role and therapeutic value of dual-specificity phosphatase 26 (DUSP26) in CAVD. METHODS AND RESULTS Microarray profiling of human calcific aortic valves and normal controls demonstrated that DUSP26 was significantly up-regulated in calcific aortic valves. ApoE-/- mice fed a normal diet or a high cholesterol diet (HCD) were infected with adeno-associated virus serotype 2 carrying DUSP26 short-hairpin RNA to examine the effects of DUSP26 silencing on aortic valve calcification. DUSP26 silencing ameliorated aortic valve calcification in HCD-treated ApoE-/- mice, as evidenced by reduced thickness and calcium deposition in the aortic valve leaflets, improved echocardiographic parameters (decreased peak transvalvular jet velocity and mean transvalvular pressure gradient, as well as increased aortic valve area), and decreased levels of osteogenic markers (Runx2, osterix, and osteocalcin) in the aortic valves. These results were confirmed in osteogenic medium-induced human valvular interstitial cells. Immunoprecipitation, liquid chromatography-tandem mass spectrometry, and functional assays revealed that dipeptidyl peptidase-4 (DPP4) interacted with DUSP26 to mediate the procalcific effects of DUSP26. High N6-methyladenosine levels up-regulated DUSP26 in CAVD; in turn, DUSP26 activated DPP4 by antagonizing mouse double minute 2-mediated ubiquitination and degradation of DPP4, thereby promoting CAVD progression. CONCLUSION DUSP26 promotes aortic valve calcification by inhibiting DPP4 degradation. Our findings identify a previously unrecognized mechanism of DPP4 up-regulation in CAVD, suggesting that DUSP26 silencing or inhibition is a viable therapeutic strategy to impede CAVD progression.
Collapse
Affiliation(s)
- Yongjun Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277# Jiefang Avenue, Wuhan, Hubei 430022, China
| | - Dong Han
- National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, 28# Fuxing Road, Beijing 100853, China
| | - Tingwen Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277# Jiefang Avenue, Wuhan, Hubei 430022, China
| | - Cheng Chen
- Institute of Geriatrics, National Clinical Research Center for Geriatrics Disease, Chinese PLA General Hospital, 28# Fuxing Road, Beijing 100853, China
| | - Hong Cao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277# Jiefang Avenue, Wuhan, Hubei 430022, China
| | - Joe Z Zhang
- Stanford Cardiovascular Institute, Stanford School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Ning Ma
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 96# Xingdao South Road, Haizhu District, Guangzhou, Guangdong 510320, China
| | - Chun Liu
- Stanford Cardiovascular Institute, Stanford School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Moshi Song
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, 1# Beichen West Road, Beijing 100101, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277# Jiefang Avenue, Wuhan, Hubei 430022, China
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, 139# Renmin middle road, Changsha, Hunan 410011, China
| | - Feng Cao
- National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, 28# Fuxing Road, Beijing 100853, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277# Jiefang Avenue, Wuhan, Hubei 430022, China
| |
Collapse
|
46
|
Wang Y, Fang Y, Lu P, Wu B, Zhou B. NOTCH Signaling in Aortic Valve Development and Calcific Aortic Valve Disease. Front Cardiovasc Med 2021; 8:682298. [PMID: 34239905 PMCID: PMC8259786 DOI: 10.3389/fcvm.2021.682298] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/14/2021] [Indexed: 01/05/2023] Open
Abstract
NOTCH intercellular signaling mediates the communications between adjacent cells involved in multiple biological processes essential for tissue morphogenesis and homeostasis. The NOTCH1 mutations are the first identified human genetic variants that cause congenital bicuspid aortic valve (BAV) and calcific aortic valve disease (CAVD). Genetic variants affecting other genes in the NOTCH signaling pathway may also contribute to the development of BAV and the pathogenesis of CAVD. While CAVD occurs commonly in the elderly population with tri-leaflet aortic valve, patients with BAV have a high risk of developing CAVD at a young age. This observation indicates an important role of NOTCH signaling in the postnatal homeostasis of the aortic valve, in addition to its prenatal functions during aortic valve development. Over the last decade, animal studies, especially with the mouse models, have revealed detailed information in the developmental etiology of congenital aortic valve defects. In this review, we will discuss the molecular and cellular aspects of aortic valve development and examine the embryonic pathogenesis of BAV. We will focus our discussions on the NOTCH signaling during the endocardial-to-mesenchymal transformation (EMT) and the post-EMT remodeling of the aortic valve. We will further examine the involvement of the NOTCH mutations in the postnatal development of CAVD. We will emphasize the deleterious impact of the embryonic valve defects on the homeostatic mechanisms of the adult aortic valve for the purpose of identifying the potential therapeutic targets for disease intervention.
Collapse
Affiliation(s)
- Yidong Wang
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yuan Fang
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Pengfei Lu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Bingruo Wu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Bin Zhou
- Departments of Genetics, Pediatrics (Pediatric Genetic Medicine), and Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, United States
- The Einstein Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
47
|
Kazik HB, Kandail HS, LaDisa JF, Lincoln J. Molecular and Mechanical Mechanisms of Calcification Pathology Induced by Bicuspid Aortic Valve Abnormalities. Front Cardiovasc Med 2021; 8:677977. [PMID: 34124206 PMCID: PMC8187581 DOI: 10.3389/fcvm.2021.677977] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
Bicuspid aortic valve (BAV) is a congenital defect affecting 1-2% of the general population that is distinguished from the normal tricuspid aortic valve (TAV) by the existence of two, rather than three, functional leaflets (or cusps). BAV presents in different morphologic phenotypes based on the configuration of cusp fusion. The most common phenotypes are Type 1 (containing one raphe), where fusion between right coronary and left coronary cusps (BAV R/L) is the most common configuration followed by fusion between right coronary and non-coronary cusps (BAV R/NC). While anatomically different, BAV R/L and BAV R/NC configurations are both associated with abnormal hemodynamic and biomechanical environments. The natural history of BAV has shown that it is not necessarily the primary structural malformation that enforces the need for treatment in young adults, but the secondary onset of premature calcification in ~50% of BAV patients, that can lead to aortic stenosis. While an underlying genetic basis is a major pathogenic contributor of the structural malformation, recent studies have implemented computational models, cardiac imaging studies, and bench-top methods to reveal BAV-associated hemodynamic and biomechanical alterations that likely contribute to secondary complications. Contributions to the field, however, lack support for a direct link between the external valvular environment and calcific aortic valve disease in the setting of BAV R/L and R/NC BAV. Here we review the literature of BAV hemodynamics and biomechanics and discuss its previously proposed contribution to calcification. We also offer means to improve upon previous studies in order to further characterize BAV and its secondary complications.
Collapse
Affiliation(s)
- Hail B. Kazik
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, United States
| | | | - John F. LaDisa
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, United States
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- Section of Pediatric Cardiology, The Herma Heart Institute, Children's Wisconsin, Milwaukee, WI, United States
| | - Joy Lincoln
- Section of Pediatric Cardiology, The Herma Heart Institute, Children's Wisconsin, Milwaukee, WI, United States
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
48
|
Abstract
Calcific aortic valve disease sits at the confluence of multiple world-wide epidemics of aging, obesity, diabetes, and renal dysfunction, and its prevalence is expected to nearly triple over the next 3 decades. This is of particularly dire clinical relevance, as calcific aortic valve disease can progress rapidly to aortic stenosis, heart failure, and eventually premature death. Unlike in atherosclerosis, and despite the heavy clinical toll, to date, no pharmacotherapy has proven effective to halt calcific aortic valve disease progression, with invasive and costly aortic valve replacement representing the only treatment option currently available. This substantial gap in care is largely because of our still-limited understanding of both normal aortic valve biology and the key regulatory mechanisms that drive disease initiation and progression. Drug discovery is further hampered by the inherent intricacy of the valvular microenvironment: a unique anatomic structure, a complex mixture of dynamic biomechanical forces, and diverse and multipotent cell populations collectively contributing to this currently intractable problem. One promising and rapidly evolving tactic is the application of multiomics approaches to fully define disease pathogenesis. Herein, we summarize the application of (epi)genomics, transcriptomics, proteomics, and metabolomics to the study of valvular heart disease. We also discuss recent forays toward the omics-based characterization of valvular (patho)biology at single-cell resolution; these efforts promise to shed new light on cellular heterogeneity in healthy and diseased valvular tissues and represent the potential to efficaciously target and treat key cell subpopulations. Last, we discuss systems biology- and network medicine-based strategies to extract meaning, mechanisms, and prioritized drug targets from multiomics datasets.
Collapse
Affiliation(s)
- Mark C. Blaser
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Simon Kraler
- Center for Molecular Cardiology, University of Zurich, Schlieren, CH
| | - Thomas F. Lüscher
- Center for Molecular Cardiology, University of Zurich, Schlieren, CH
- Heart Division, Royal Brompton & Harefield Hospitals, London, UK
- National Heart and Lung Institute, Imperial College, London, UK
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Excellence in Vascular Biology, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
49
|
Abstract
Aortic stenosis (AS) remains one of the most common forms of valve disease, with significant impact on patient survival. The disease is characterized by left ventricular outflow obstruction and encompasses a series of stenotic lesions starting from the left ventricular outflow tract to the descending aorta. Obstructions may be subvalvar, valvar, or supravalvar and can be present at birth (congenital) or acquired later in life. Bicuspid aortic valve, whereby the aortic valve forms with two instead of three cusps, is the most common cause of AS in younger patients due to primary anatomic narrowing of the valve. In addition, the secondary onset of premature calcification, likely induced by altered hemodynamics, further obstructs left ventricular outflow in bicuspid aortic valve patients. In adults, degenerative AS involves progressive calcification of an anatomically normal, tricuspid aortic valve and is attributed to lifelong exposure to multifactoral risk factors and physiological wear-and-tear that negatively impacts valve structure-function relationships. AS continues to be the most frequent valvular disease that requires intervention, and aortic valve replacement is the standard treatment for patients with severe or symptomatic AS. While the positive impacts of surgical interventions are well documented, the financial burden, the potential need for repeated procedures, and operative risks are substantial. In addition, the clinical management of asymptomatic patients remains controversial. Therefore, there is a critical need to develop alternative approaches to prevent the progression of left ventricular outflow obstruction, especially in valvar lesions. This review summarizes our current understandings of AS cause; beginning with developmental origins of congenital valve disease, and leading into the multifactorial nature of AS in the adult population.
Collapse
Affiliation(s)
- Punashi Dutta
- The Herma Heart Institute, Section of Pediatric Cardiology, Children's Wisconsin, Milwaukee, WI (P.D., J.F.J., H.K., J.L.).,Department of Pediatrics, Medical College of Wisconsin, Milwaukee (P.D., J.F.J., J.L.)
| | - Jeanne F James
- The Herma Heart Institute, Section of Pediatric Cardiology, Children's Wisconsin, Milwaukee, WI (P.D., J.F.J., H.K., J.L.).,Department of Pediatrics, Medical College of Wisconsin, Milwaukee (P.D., J.F.J., J.L.)
| | - Hail Kazik
- The Herma Heart Institute, Section of Pediatric Cardiology, Children's Wisconsin, Milwaukee, WI (P.D., J.F.J., H.K., J.L.).,Department of Biomedical Engineering, Marquette University & Medical College of Wisconsin, Milwaukee (H.K.)
| | - Joy Lincoln
- The Herma Heart Institute, Section of Pediatric Cardiology, Children's Wisconsin, Milwaukee, WI (P.D., J.F.J., H.K., J.L.).,Department of Pediatrics, Medical College of Wisconsin, Milwaukee (P.D., J.F.J., J.L.)
| |
Collapse
|
50
|
Driscoll K, Cruz AD, Butcher JT. Inflammatory and Biomechanical Drivers of Endothelial-Interstitial Interactions in Calcific Aortic Valve Disease. Circ Res 2021; 128:1344-1370. [PMID: 33914601 DOI: 10.1161/circresaha.121.318011] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Calcific aortic valve disease is dramatically increasing in global burden, yet no therapy exists outside of prosthetic replacement. The increasing proportion of younger and more active patients mandates alternative therapies. Studies suggest a window of opportunity for biologically based diagnostics and therapeutics to alleviate or delay calcific aortic valve disease progression. Advancement, however, has been hampered by limited understanding of the complex mechanisms driving calcific aortic valve disease initiation and progression towards clinically relevant interventions.
Collapse
Affiliation(s)
| | - Alexander D Cruz
- Meinig School of Biomedical Engineering, Cornell University, Ithaca NY
| | | |
Collapse
|