1
|
Zhang Y, Seidel M, Rabesahala de Meritens C, Beckmann A, Ahmed S, Hurtz M, Lai FA, Zorio E, Parthimos D, Zissimopoulos S. Disparate molecular mechanisms in cardiac ryanodine receptor channelopathies. Front Mol Biosci 2024; 11:1505698. [PMID: 39777228 PMCID: PMC11703740 DOI: 10.3389/fmolb.2024.1505698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Aims Mutations in the cardiac ryanodine receptor (RyR2) are associated with catecholaminergic polymorphic ventricular tachycardia (CPVT). This study investigates the underlying molecular mechanisms for CPVT mutations within the RyR2 N-terminus domain (NTD). Methods and Results We consulted the high-resolution RyR2 structure in both open and closed configuration to identify mutations G357S/R407I and A77T, which lie within the NTD intra- and inter-subunit interface with the Core Solenoid (CSol), respectively. Their structural and functional roles were compared to R169L, a mutation that lies within the NTD-NTD inter-subunit interface. Using chemical cross-linking and co-immunoprecipitation assays, we show that R169L disrupts NTD tetramerization, while it does not alter the NTD-CSol interaction. Single cell Ca2+ imaging revealed that R169L increases the number of spontaneous Ca2+ transients and the proportion of oscillating cells, while reducing the Ca2+ store content. G357S and R407I do not affect NTD tetramerization, but they also do not alter the NTD-CSol interaction. Functionally, RyR2G357S-expressing cells have Ca2+ handling properties similar to RyR2WT. A77T enhances the NTD-CSol interaction, while it does not affect NTD tetramerization. Like R169L, A77T also increases the number of spontaneous Ca2+ transients and the proportion of oscillating cells, and it reduces the Ca2+ store content. However, unlike R169L that displays Ca2+ transients of normal amplitude and shorter duration, Ca2+ transients for A77T are of smaller amplitude and normal duration. Conclusion The NTD-CSol inter-subunit interface variant, A77T, produces a hyperactive channel by altering a different structure-function parameter to other CPVT mutations within the RyR2 NTD. Reduced NTD-NTD inter-subunit interaction and reinforced NTD inter-subunit interaction with CSol are distinct molecular mechanisms for gain-of-function RyR2 arrhythmogenic mutations.
Collapse
Affiliation(s)
- Yadan Zhang
- Swansea University Medical School, Institute of Life Science, Swansea, United Kingdom
| | - Monika Seidel
- Swansea University Medical School, Institute of Life Science, Swansea, United Kingdom
| | | | - Astrid Beckmann
- Swansea University Medical School, Institute of Life Science, Swansea, United Kingdom
| | - Syeda Ahmed
- Swansea University Medical School, Institute of Life Science, Swansea, United Kingdom
| | - Melanie Hurtz
- Swansea University Medical School, Institute of Life Science, Swansea, United Kingdom
| | - F. Anthony Lai
- College of Medicine and Biomedical Research Centre, Qatar University, Doha, Qatar
| | - Esther Zorio
- Inherited Cardiac Disease Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- CAFAMUSME Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Medicine Department, Universitat de València, Valencia, Spain
- Research group CB16/11/00261, Center for Biomedical Network Research on Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Dimitris Parthimos
- School of Medicine, Division of Cancer and Genetics, Cardiff University, Cardiff, United Kingdom
| | - Spyros Zissimopoulos
- Swansea University Medical School, Institute of Life Science, Swansea, United Kingdom
| |
Collapse
|
2
|
Shemarova I. The Dysfunction of Ca 2+ Channels in Hereditary and Chronic Human Heart Diseases and Experimental Animal Models. Int J Mol Sci 2023; 24:15682. [PMID: 37958665 PMCID: PMC10650855 DOI: 10.3390/ijms242115682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Chronic heart diseases, such as coronary heart disease, heart failure, secondary arterial hypertension, and dilated and hypertrophic cardiomyopathies, are widespread and have a fairly high incidence of mortality and disability. Most of these diseases are characterized by cardiac arrhythmias, conduction, and contractility disorders. Additionally, interruption of the electrical activity of the heart, the appearance of extensive ectopic foci, and heart failure are all symptoms of a number of severe hereditary diseases. The molecular mechanisms leading to the development of heart diseases are associated with impaired permeability and excitability of cell membranes and are mainly caused by the dysfunction of cardiac Ca2+ channels. Over the past 50 years, more than 100 varieties of ion channels have been found in the cardiovascular cells. The relationship between the activity of these channels and cardiac pathology, as well as the general cellular biological function, has been intensively studied on several cell types and experimental animal models in vivo and in situ. In this review, I discuss the origin of genetic Ca2+ channelopathies of L- and T-type voltage-gated calcium channels in humans and the role of the non-genetic dysfunctions of Ca2+ channels of various types: L-, R-, and T-type voltage-gated calcium channels, RyR2, including Ca2+ permeable nonselective cation hyperpolarization-activated cyclic nucleotide-gated (HCN), and transient receptor potential (TRP) channels, in the development of cardiac pathology in humans, as well as various aspects of promising experimental studies of the dysfunctions of these channels performed on animal models or in vitro.
Collapse
Affiliation(s)
- Irina Shemarova
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint-Petersburg, Russia
| |
Collapse
|
3
|
Qian Y, Zuo D, Xiong J, Yin Y, Qi R, Ma X, Yan A, Yang Y, Liu P, Zhang J, Tang K, Peng W, Xu Y, Liu Z. Arrhythmogenic mechanism of a novel ryanodine receptor mutation underlying sudden cardiac death. Europace 2023; 25:euad220. [PMID: 37466361 PMCID: PMC10374982 DOI: 10.1093/europace/euad220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/23/2023] [Indexed: 07/20/2023] Open
Abstract
AIMS The ryanodine receptor 2 (RyR2) is essential for cardiac muscle excitation-contraction coupling; dysfunctional RyR2 participates in the development of inherited arrhythmogenic cardiac disease. In this study, a novel RyR2 mutation A690E is identified from a patient with family inheritance of sudden cardiac death, and we aimed to investigate the pathogenic basis of the mutation. METHODS AND RESULTS We generated a mouse model that carried the A690E mutation. Mice were characterized by adrenergic-induced ventricular arrhythmias similar to clinical manifestation of the patient. Optical mapping studies revealed that isolated A690E hearts were prone to arrhythmogenesis and displayed frequency-dependence calcium transient alternans. Upon β-adrenoceptor challenge, the concordant alternans was shifted towards discordant alternans that favour triggering ectopic beats and Ca2+ re-entry; similar phenomenon was also found in the A690E cardiomyocytes. In addition, we found that A690E cardiomyocytes manifested abnormal Ca2+ release and electrophysiological disorders, including an increased sensitivity to cytosolic Ca2+, an elevated diastolic RyR2-mediated Ca2+ leak, and an imbalance between Ca2+ leak and reuptake. Structural analyses reveal that the mutation directly impacts RyR2-FK506 binding protein interaction. CONCLUSION In this study, we have identified a novel mutation in RyR2 that is associated with sudden cardiac death. By characterizing the function defects of mutant RyR2 in animal, whole heat, and cardiomyocytes, we demonstrated the pathogenic basis of the disease-causing mutation and provided a deeper mechanistic understanding of a life-threatening cardiac arrhythmia.
Collapse
Affiliation(s)
- Yunyun Qian
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Jingan District, Shanghai 200072, China
- Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, 36 Yunxin Road, Jingan District, Shanghai 200435, China
| | - Dongchuan Zuo
- Key Laboratory of Medical Electrophysiology, Institute of Cardiovascular Research, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Southwest Medical University, 1 Xianglin Road, Longmatan District, Luzhou 646000, China
- National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, 182 Chunhui Road, Longmatan District, Luzhou 646000, China
| | - Jing Xiong
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Jingan District, Shanghai 200072, China
- Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, 36 Yunxin Road, Jingan District, Shanghai 200435, China
| | - Yihen Yin
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Jingan District, Shanghai 200072, China
- Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, 36 Yunxin Road, Jingan District, Shanghai 200435, China
| | - Ruxi Qi
- Cryo-electron Microscopy Center, Southern University of Science and Technology, 1088 Xueyuan Road, Nanshan District, Shenzhen 518055, China
| | - Xiaomin Ma
- Cryo-electron Microscopy Center, Southern University of Science and Technology, 1088 Xueyuan Road, Nanshan District, Shenzhen 518055, China
| | - An Yan
- Cryo-electron Microscopy Center, Southern University of Science and Technology, 1088 Xueyuan Road, Nanshan District, Shenzhen 518055, China
| | - Yawen Yang
- Key Laboratory of Medical Electrophysiology, Institute of Cardiovascular Research, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Southwest Medical University, 1 Xianglin Road, Longmatan District, Luzhou 646000, China
| | - Ping Liu
- National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, 182 Chunhui Road, Longmatan District, Luzhou 646000, China
| | - Jingying Zhang
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Jingan District, Shanghai 200072, China
| | - Kai Tang
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Jingan District, Shanghai 200072, China
| | - Wenhui Peng
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Jingan District, Shanghai 200072, China
- Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, 36 Yunxin Road, Jingan District, Shanghai 200435, China
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Jingan District, Shanghai 200072, China
- Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, 36 Yunxin Road, Jingan District, Shanghai 200435, China
| | - Zheng Liu
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Jingan District, Shanghai 200072, China
- Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, 36 Yunxin Road, Jingan District, Shanghai 200435, China
- Cryo-electron Microscopy Center, Southern University of Science and Technology, 1088 Xueyuan Road, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
4
|
Alomar FA, Tian C, Bidasee SR, Venn ZL, Schroder E, Palermo NY, AlShabeeb M, Edagwa BJ, Payne JJ, Bidasee KR. HIV-Tat Exacerbates the Actions of Atazanavir, Efavirenz, and Ritonavir on Cardiac Ryanodine Receptor (RyR2). Int J Mol Sci 2022; 24:ijms24010274. [PMID: 36613717 PMCID: PMC9820108 DOI: 10.3390/ijms24010274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/05/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
The incidence of sudden cardiac death (SCD) in people living with HIV infection (PLWH), especially those with inadequate viral suppression, is high and the reasons for this remain incompletely characterized. The timely opening and closing of type 2 ryanodine receptor (RyR2) is critical for ensuring rhythmic cardiac contraction-relaxation cycles, and the disruption of these processes can elicit Ca2+ waves, ventricular arrhythmias, and SCD. Herein, we show that the HIV protein Tat (HIV-Tat: 0-52 ng/mL) and therapeutic levels of the antiretroviral drugs atazanavir (ATV: 0-25,344 ng/mL), efavirenz (EFV: 0-11,376 ng/mL), and ritonavir (RTV: 0-25,956 ng/mL) bind to and modulate the opening and closing of RyR2. Abacavir (0-14,315 ng/mL), bictegravir (0-22,469 ng/mL), Rilpivirine (0-14,360 ng/mL), and tenofovir disoproxil fumarate (0-18,321 ng/mL) did not alter [3H]ryanodine binding to RyR2. Pretreating RyR2 with low HIV-Tat (14 ng/mL) potentiated the abilities of ATV and RTV to bind to open RyR2 and enhanced their ability to bind to EFV to close RyR2. In silico molecular docking using a Schrodinger Prime protein-protein docking algorithm identified three thermodynamically favored interacting sites for HIV-Tat on RyR2. The most favored site resides between amino acids (AA) 1702-1963; the second favored site resides between AA 467-1465, and the third site resides between AA 201-1816. Collectively, these new data show that HIV-Tat, ATV, EFV, and RTV can bind to and modulate the activity of RyR2 and that HIV-Tat can exacerbate the actions of ATV, EFV, and RTV on RyR2. Whether the modulation of RyR2 by these agents increases the risk of arrhythmias and SCD remains to be explored.
Collapse
Affiliation(s)
- Fadhel A. Alomar
- Department of Pharmacology and Toxicology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Chengju Tian
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sean R. Bidasee
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zachary L. Venn
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Evan Schroder
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nicholas Y. Palermo
- Vice Chancellor for Research Cores, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohammad AlShabeeb
- Population Health Research Section, King Abdullah International Medical Research Center, King Saudi bin Abdulaziz University for Health Sciences, Riyadh 11426, Saudi Arabia
| | - Benson J. Edagwa
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jason J. Payne
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Keshore R. Bidasee
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Environment and Occupational Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Nebraska Redox Biology Center, Lincoln, NE 68588, USA
- Correspondence: ; Tel.: +402-559-9018; Fax: +402-559-7495
| |
Collapse
|
5
|
Sleiman Y, Lacampagne A, Meli AC. Correction: "Ryanopathies" and RyR2 dysfunctions: can we further decipher them using in vitro human disease models? Cell Death Dis 2022; 13:1014. [PMID: 36450727 PMCID: PMC9712522 DOI: 10.1038/s41419-022-05468-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Yvonne Sleiman
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Alain Lacampagne
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Albano C Meli
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France.
| |
Collapse
|
6
|
Zhang Y, Rabesahala de Meritens C, Beckmann A, Lai FA, Zissimopoulos S. Defective ryanodine receptor N-terminus inter-subunit interaction is a common mechanism in neuromuscular and cardiac disorders. Front Physiol 2022; 13:1032132. [PMID: 36311249 PMCID: PMC9597452 DOI: 10.3389/fphys.2022.1032132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/28/2022] [Indexed: 07/28/2023] Open
Abstract
The ryanodine receptor (RyR) is a homotetrameric channel mediating sarcoplasmic reticulum Ca2+ release required for skeletal and cardiac muscle contraction. Mutations in RyR1 and RyR2 lead to life-threatening malignant hyperthermia episodes and ventricular tachycardia, respectively. In this brief report, we use chemical cross-linking to demonstrate that pathogenic RyR1 R163C and RyR2 R169Q mutations reduce N-terminus domain (NTD) tetramerization. Introduction of positively-charged residues (Q168R, M399R) in the NTD-NTD inter-subunit interface normalizes RyR2-R169Q NTD tetramerization. These results indicate that perturbation of NTD-NTD inter-subunit interactions is an underlying molecular mechanism in both RyR1 and RyR2 pathophysiology. Importantly, our data provide proof of concept that stabilization of this critical RyR1/2 structure-function parameter offers clear therapeutic potential.
Collapse
Affiliation(s)
- Yadan Zhang
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | | | - Astrid Beckmann
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - F. Anthony Lai
- College of Medicine and Biomedical Research Centre, Qatar University, Doha, Qatar
| | - Spyros Zissimopoulos
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| |
Collapse
|
7
|
Wan JF, Wang G, Qin FY, Huang DL, Wang Y, Su AL, Zhang HP, Liu Y, Zeng SY, Wei CL, Cheng YX, Liu J. Z16b, a natural compound from Ganoderma cochlear is a novel RyR2 stabilizer preventing catecholaminergic polymorphic ventricular tachycardia. Acta Pharmacol Sin 2022; 43:2340-2350. [PMID: 35190699 PMCID: PMC9433431 DOI: 10.1038/s41401-022-00870-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/17/2022] [Indexed: 01/18/2023]
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited, lethal ventricular arrhythmia triggered by catecholamines. Mutations in genes that encode cardiac ryanodine receptor (RyR2) and proteins that regulate RyR2 activity cause enhanced diastolic Ca2+ release (leak) through the RyR2 channels, resulting in CPVT. Current therapies for CPVT are limited. We found that Z16b, a meroterpenoid isolated from Ganoderma cochlear, inhibited Ca2+ spark frequency (CaSF) in R2474S/ + cardiomyocytes in a dose-dependent manner, with an IC50 of 3.2 μM. Z16b also dose-dependently suppressed abnormal post-pacing Ca2+ release events. Intraperitoneal injection (i.p.) of epinephrine and caffeine stimulated sustained ventricular tachycardia in all R2474S/+ mice, while pretreatment with Z16b (0.5 mg/kg, i.p.) prevented ventricular arrhythmia in 9 of 10 mice, and Z16b administration immediately after the onset of VT abolished sVT in 9 of 12 mice. Of translational significance, Z16b significantly inhibited CaSF and abnormal Ca2+ release events in human CPVT iPS-CMs. Mechanistically, Z16b interacts with RyR2, enhancing the "zipping" state of the N-terminal and central domains of RyR2. A molecular docking simulation and point mutation and pulldown assays identified Z16b forms hydrogen bonds with Arg626, His1670, and Gln2126 in RyR2 as a triangle shape that anchors the NTD and CD interaction and thus stabilizes RyR2 in a tight "zipping" conformation. Our findings support that Z16b is a novel RyR2 stabilizer that can prevent CPVT. It may also serve as a lead compound with a new scaffold for the design of safer and more efficient drugs for treating CPVT.
Collapse
Affiliation(s)
- Jiang-Fan Wan
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, 518000, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Gang Wang
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, 518000, China
| | - Fu-Ying Qin
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, 518000, China
| | - Dan-Ling Huang
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, 518000, China
| | - Yan Wang
- Center for Translation Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518000, China
| | - Ai-Ling Su
- Center for Translation Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518000, China
| | - Hai-Ping Zhang
- Center for High Performance Computing, Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518000, China
| | - Yang Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, China
| | - Shao-Yin Zeng
- Guangdong Provincial key laboratory of South China Structure Heart Disease, Department of Pediatric Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, China
| | - Chao-Liang Wei
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, 518000, China
| | - Yong-Xian Cheng
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, 518000, China.
| | - Jie Liu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, 518000, China.
| |
Collapse
|
8
|
Shen R, Zuo D, Chen K, Yin Y, Tang K, Hou S, Han B, Xu Y, Liu Z, Chen H. K2P1 leak cation channels contribute to ventricular ectopic beats and sudden death under hypokalemia. FASEB J 2022; 36:e22455. [PMID: 35899468 DOI: 10.1096/fj.202200707r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/28/2022] [Accepted: 07/06/2022] [Indexed: 11/11/2022]
Abstract
Hypokalemia causes ectopic heartbeats, but the mechanisms underlying such cardiac arrhythmias are not understood. In reduced serum K+ concentrations that occur under hypokalemia, K2P1 two-pore domain K+ channels change ion selectivity and switch to conduct inward leak cation currents, which cause aberrant depolarization of resting potential and induce spontaneous action potential of human cardiomyocytes. K2P1 is expressed in the human heart but not in mouse hearts. We test the hypothesis that K2P1 leak cation channels contribute to ectopic heartbeats under hypokalemia, by analysis of transgenic mice, which conditionally express induced K2P1 specifically in hearts, mimicking K2P1 channels in the human heart. Conditional expression of induced K2P1 specifically in the heart of hypokalemic mice results in multiple types of ventricular ectopic beats including single and multiple ventricular premature beats as well as ventricular tachycardia and causes sudden death. In isolated mouse hearts that express induced K2P1, sustained ventricular fibrillation occurs rapidly after perfusion with low K+ concentration solutions that mimic hypokalemic conditions. These observed phenotypes occur rarely in control mice or in the hearts that lack K2P1 expression. K2P1-expressing mouse cardiomyocytes of transgenic mice much more frequently fire abnormal single and/or rhythmic spontaneous action potential in hypokalemic conditions, compared to wild type mouse cardiomyocytes without K2P1 expression. These findings confirm that K2P1 leak cation channels induce ventricular ectopic beats and sudden death of transgenic mice with hypokalemia and imply that K2P1 leak cation channels may play a critical role in human ectopic heartbeats under hypokalemia.
Collapse
Affiliation(s)
- Rongrong Shen
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, Shanghai, China
| | - Dongchuan Zuo
- Key Laboratory of Medical Electrophysiology, Institute of Cardiovascular Research, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Southwest Medical University, Luzhou, China.,Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Kuihao Chen
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA.,Department of Pharmacology, Ningbo University School of Medicine, Ningbo, China
| | - Yiheng Yin
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, Shanghai, China
| | - Kai Tang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, Shanghai, China
| | - Shangwei Hou
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Han
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, Shanghai, China
| | - Zheng Liu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, Shanghai, China.,Cryo-Electron Microscopy Center, Southern University of Science and Technology, Shenzhen, China
| | - Haijun Chen
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| |
Collapse
|
9
|
Leung J, Lee S, Zhou J, Jeevaratnam K, Lakhani I, Radford D, Coakley-Youngs E, Pay L, Çinier G, Altinsoy M, Behnoush AH, Mahmoudi E, Matusik PT, Bazoukis G, Garcia-Zamora S, Zeng S, Chen Z, Xia Y, Liu T, Tse G. Clinical Characteristics, Genetic Findings and Arrhythmic Outcomes of Patients with Catecholaminergic Polymorphic Ventricular Tachycardia from China: A Systematic Review. Life (Basel) 2022; 12:1104. [PMID: 35892906 PMCID: PMC9330865 DOI: 10.3390/life12081104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a rare inherited cardiac ion channelopathy. The present study aims to examine the clinical characteristics, genetic basis, and arrhythmic outcomes of CPVT patients from China to elucidate the difference between CPVT patients in Asia and Western countries. METHODS PubMed and Embase were systematically searched for case reports or series reporting on CPVT patients from China until 19 February 2022 using the keyword: "Catecholaminergic Polymorphic Ventricular Tachycardia" or "CPVT", with the location limited to: "China" or "Hong Kong" or "Macau" in Embase, with no language or publication-type restriction. Articles that did not state a definite diagnosis of CPVT and articles with duplicate cases found in larger cohorts were excluded. All the included publications in this review were critically appraised based on the Joanna Briggs Institute Critical Appraisal Checklist. Clinical characteristics, genetic findings, and the primary outcome of spontaneous ventricular tachycardia/ventricular fibrillation (VT/VF) were analyzed. RESULTS A total of 58 unique cases from 15 studies (median presentation age: 8 (5.0-11.8) years old) were included. All patients, except one, presented at or before 19 years of age. There were 56 patients (96.6%) who were initially symptomatic. Premature ventricular complexes (PVCs) were present in 44 out of 51 patients (86.3%) and VT in 52 out of 58 patients (89.7%). Genetic tests were performed on 54 patients (93.1%) with a yield of 87%. RyR2, CASQ2, TERCL, and SCN10A mutations were found in 35 (71.4%), 12 (24.5%), 1 (0.02%) patient, and 1 patient (0.02%), respectively. There were 54 patients who were treated with beta-blockers, 8 received flecainide, 5 received amiodarone, 2 received verapamil and 2 received propafenone. Sympathectomy (n = 10), implantable cardioverter-defibrillator implantation (n = 8) and ablation (n = 1) were performed. On follow-up, 13 patients developed VT/VF. CONCLUSION This was the first systematic review of CPVT patients from China. Most patients had symptoms on initial presentation, with syncope as the presenting complaint. RyR2 mutation accounts for more than half of the CPVT cases, followed by CASQ2, TERCL and SCN10A mutations.
Collapse
Affiliation(s)
- Justin Leung
- Cardiac Electrophysiology Unit, Cardiovascular Analytics Group, China-UK Collaboration, Hong Kong, China; (J.L.); (S.L.); (I.L.)
| | - Sharen Lee
- Cardiac Electrophysiology Unit, Cardiovascular Analytics Group, China-UK Collaboration, Hong Kong, China; (J.L.); (S.L.); (I.L.)
| | - Jiandong Zhou
- School of Data Science, City University of Hong Kong, Hong Kong, China;
| | - Kamalan Jeevaratnam
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK;
| | - Ishan Lakhani
- Cardiac Electrophysiology Unit, Cardiovascular Analytics Group, China-UK Collaboration, Hong Kong, China; (J.L.); (S.L.); (I.L.)
| | - Danny Radford
- Kent and Medway Medical School, Canterbury CT2 7FS, UK; (D.R.); (E.C.-Y.)
| | | | - Levent Pay
- Department of Cardiology, Dr Siyami Ersek Thoracic and Cardiovascular Surgery Training and Research Hospital, Istanbul 34147, Turkey; (L.P.); (G.Ç.)
| | - Göksel Çinier
- Department of Cardiology, Dr Siyami Ersek Thoracic and Cardiovascular Surgery Training and Research Hospital, Istanbul 34147, Turkey; (L.P.); (G.Ç.)
| | - Meltem Altinsoy
- Department of Cardiology, University of Health Sciences, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara 06145, Turkey;
| | - Amir Hossein Behnoush
- Universal Scientific Education and Research Network (USERN), Tehran University of Medical Sciences, Tehran 1416643931, Iran; (A.H.B.); (E.M.)
| | - Elham Mahmoudi
- Universal Scientific Education and Research Network (USERN), Tehran University of Medical Sciences, Tehran 1416643931, Iran; (A.H.B.); (E.M.)
| | - Paweł T. Matusik
- Department of Electrocardiology, Institute of Cardiology, Jagiellonian University Medical College, John Paul II Hospital, 31-202 Kraków, Poland;
| | - George Bazoukis
- Department of Cardiology, Larnaca General Hospital, Larnaca 6301, Cyprus;
- Medical School, University of Nicosia, Nicosia 2408, Cyprus
| | - Sebastian Garcia-Zamora
- Cardiac Intensive Care Unit, Department of Cardiology, Delta Clinic, Rosario S2000, Argentina;
| | - Shaoying Zeng
- Department of Pediatric Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China;
| | - Ziliang Chen
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China;
| | - Yunlong Xia
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian 116014, China;
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China;
| | - Gary Tse
- Cardiac Electrophysiology Unit, Cardiovascular Analytics Group, China-UK Collaboration, Hong Kong, China; (J.L.); (S.L.); (I.L.)
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK;
- Kent and Medway Medical School, Canterbury CT2 7FS, UK; (D.R.); (E.C.-Y.)
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China;
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian 116014, China;
| |
Collapse
|
10
|
Hadiatullah H, He Z, Yuchi Z. Structural Insight Into Ryanodine Receptor Channelopathies. Front Pharmacol 2022; 13:897494. [PMID: 35677449 PMCID: PMC9168041 DOI: 10.3389/fphar.2022.897494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022] Open
Abstract
The ryanodine receptors (RyRs) are large cation-selective ligand-gated channels that are expressed in the sarcoplasmic reticulum (SR) membrane. They mediate the controlled release of Ca2+ from SR and play an important role in many cellular processes. The mutations in RyRs are associated with several skeletal muscle and cardiac conditions, including malignant hyperthermia (MH), central core disease (CCD), catecholaminergic polymorphic ventricular tachycardia (CPVT), and arrhythmogenic right ventricular dysplasia (ARVD). Recent breakthroughs in structural biology including cryo-electron microscopy (EM) and X-ray crystallography allowed the determination of a number of near-atomic structures of RyRs, including wildtype and mutant structures as well as the structures in complex with different modulating molecules. This allows us to comprehend the physiological gating and regulatory mechanisms of RyRs and the underlying pathological mechanisms of the disease-causing mutations. In this review, based on the insights gained from the available high-resolution structures of RyRs, we address several questions: 1) what are the gating mechanisms of different RyR isoforms; 2) how RyRs are regulated by multiple channel modulators, including ions, small molecules, and regulatory proteins; 3) how do disease-causing mutations affect the structure and function of RyRs; 4) how can these structural information aid in the diagnosis of the related diseases and the development of pharmacological therapies.
Collapse
Affiliation(s)
- Hadiatullah Hadiatullah
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhao He
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- *Correspondence: Zhiguang Yuchi,
| |
Collapse
|
11
|
TECRL deficiency results in aberrant mitochondrial function in cardiomyocytes. Commun Biol 2022; 5:470. [PMID: 35577932 PMCID: PMC9110732 DOI: 10.1038/s42003-022-03414-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/26/2022] [Indexed: 11/20/2022] Open
Abstract
Sudden cardiac death (SCD) caused by ventricular arrhythmias is the leading cause of mortality of cardiovascular disease. Mutation in TECRL, an endoplasmic reticulum protein, was first reported in catecholaminergic polymorphic ventricular tachycardia during which a patient succumbed to SCD. Using loss- and gain-of-function approaches, we investigated the role of TECRL in murine and human cardiomyocytes. Tecrl (knockout, KO) mouse shows significantly aggravated cardiac dysfunction, evidenced by the decrease of ejection fraction and fractional shortening. Mechanistically, TECRL deficiency impairs mitochondrial respiration, which is characterized by reduced adenosine triphosphate production, increased fatty acid synthase (FAS) and reactive oxygen species production, along with decreased MFN2, p-AKT (Ser473), and NRF2 expressions. Overexpression of TECRL induces mitochondrial respiration, in PI3K/AKT dependent manner. TECRL regulates mitochondrial function mainly through PI3K/AKT signaling and the mitochondrial fusion protein MFN2. Apoptosis inducing factor (AIF) and cytochrome C (Cyc) is released from the mitochondria into the cytoplasm after siTECRL infection, as demonstrated by immunofluorescent staining and western blotting. Herein, we propose a previously unrecognized TECRL mechanism in regulating CPVT and may provide possible support for therapeutic target in CPVT. The endoplasmic reticulum protein TECRL promotes mitochondrial function in cardiomyocytes and its knockout in mice leads to cardiac dysfunction, decreased mitochondria function, and elevated levels of reactive oxygen species.
Collapse
|
12
|
Hu J, Gao X, Chen L, Zhou T, Du Z, Jiang J, Wei L, Zhang Z. A novel mutation in ryanodine receptor 2 ( RYR2) genes at c.12670G>T associated with focal epilepsy in a 3-year-old child. Front Pediatr 2022; 10:1022268. [PMID: 36340715 PMCID: PMC9627620 DOI: 10.3389/fped.2022.1022268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Ryanodine receptor 2 (RYR2) encodes a component of a calcium channel. RYR2 variants were well-reported to be associated with catecholaminergic polymorphic ventricular tachycardia (CPVT), but rarely reported in epilepsy cases. Here, we present a novel heterozygous mutation of RYR2 in a child with focal epilepsy. METHODS At the age of 2 years and 7 months, the patient experienced seizures, such as eye closure, tooth clenching, clonic jerking and hemifacial spasm, as well as abnormal electroencephalogram (EEG). Then, he was analyzed by whole-exome sequencing (WES). The mutations of both the proband and his parents were further confirmed by Sanger sequencing. The pathogenicity of the variant was further assessed by population-based variant frequency screening, evolutionary conservation comparison, and American Association for Medical Genetics and Genomics (ACMG) scoring. RESULTS WES sequencing revealed a novel heterozygous truncating mutation [c.12670G > T, p.(Glu4224*), NM_001035.3] in RYR2 gene of the proband. Sanger sequencing confirmed that this mutation was inherited from his mother. This novel variant was predicted to be damaging by different bioinformatics methods. Cardiac investigation showed that the proband had no structural abnormalities, but sinus tachycardia. CONCLUSION We proposed that RYR2 is a potential candidate gene for focal epilepsy, and epilepsy patients carried with RYR2 variants should be given more attention, even if they do not show cardiac abnormalities.
Collapse
Affiliation(s)
- Junji Hu
- Department of Neurology, Zibo Changguo Hospital, Zibo, China
| | - Xueping Gao
- Yinfeng Gene Technology Co., Ltd., Jinan, China
| | - Longchang Chen
- Department of Neurology, Zibo Changguo Hospital, Zibo, China
| | - Tianshu Zhou
- The First Clinical College, Hubei University of Medicine, Shiyan, China
| | - Zhaoli Du
- Yinfeng Gene Technology Co., Ltd., Jinan, China
| | | | - Lei Wei
- Department of Center for Reproductive Medicine, TaiHe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhijun Zhang
- Department of Center for Reproductive Medicine, TaiHe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
13
|
Kamga MVK, Reppel M, Hescheler J, Nguemo F. Modeling genetic cardiac channelopathies using induced pluripotent stem cells - Status quo from an electrophysiological perspective. Biochem Pharmacol 2021; 192:114746. [PMID: 34461117 DOI: 10.1016/j.bcp.2021.114746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022]
Abstract
Long QT syndrome (LQTS), Brugada syndrome (BrS), and catecholaminergic polymorphic ventricular tachycardia (CPVT) are genetic diseases of the heart caused by mutations in specific cardiac ion channels and are characterized by paroxysmal arrhythmias, which can deteriorate into ventricular fibrillation. In LQTS3 and BrS different mutations in the SCN5A gene lead to a gain-or a loss-of-function of the voltage-gated sodium channel Nav1.5, respectively. Although sharing the same gene mutation, these syndromes are characterized by different clinical manifestations and functional perturbations and in some cases even present an overlapping clinical phenotype. Several studies have shown that Na+ current abnormalities in LQTS3 and BrS can also cause Ca2+-signaling aberrancies in cardiomyocytes (CMs). Abnormal Ca2+ homeostasis is also the main feature of CPVT which is mostly caused by heterozygous mutations in the RyR2 gene. Large numbers of disease-causing mutations were identified in RyR2 and SCN5A but it is not clear how different variants in the SCN5A gene produce different clinical syndromes and if in CPVT Ca2+ abnormalities and drug sensitivities vary depending on the mutation site in the RyR2. These questions can now be addressed by using patient-specific in vitro models of these diseases based on induced pluripotent stem cells (iPSCs). In this review, we summarize different insights gained from these models with a focus on electrophysiological perturbations caused by different ion channel mutations and discuss how will this knowledge help develop better stratification and more efficient personalized therapies for these patients.
Collapse
Affiliation(s)
- Michelle Vanessa Kapchoup Kamga
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Michael Reppel
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, 50931 Cologne, Germany; Praxis für Kardiologie und Angiologie, Landsberg am Lech, Germany
| | - Jürgen Hescheler
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Filomain Nguemo
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
14
|
Kallas D, Lamba A, Roston TM, Arslanova A, Franciosi S, Tibbits GF, Sanatani S. Pediatric Catecholaminergic Polymorphic Ventricular Tachycardia: A Translational Perspective for the Clinician-Scientist. Int J Mol Sci 2021; 22:ijms22179293. [PMID: 34502196 PMCID: PMC8431429 DOI: 10.3390/ijms22179293] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a rare and potentially lethal inherited arrhythmia disease characterized by exercise or emotion-induced bidirectional or polymorphic ventricular tachyarrhythmias. The median age of disease onset is reported to be approximately 10 years of age. The majority of CPVT patients have pathogenic variants in the gene encoding the cardiac ryanodine receptor, or calsequestrin 2. These lead to mishandling of calcium in cardiomyocytes resulting in after-depolarizations, and ventricular arrhythmias. Disease severity is particularly pronounced in younger individuals who usually present with cardiac arrest and arrhythmic syncope. Risk stratification is imprecise and long-term prognosis on therapy is unknown despite decades of research focused on pediatric CPVT populations. The purpose of this review is to summarize contemporary data on pediatric CPVT, highlight knowledge gaps and present future research directions for the clinician-scientist to address.
Collapse
Affiliation(s)
- Dania Kallas
- British Columbia Children’s Hospital Heart Center, 1F9-4480 Oak St., Vancouver, BC V6H 3V4, Canada; (D.K.); (A.L.); (T.M.R.); (S.F.)
| | - Avani Lamba
- British Columbia Children’s Hospital Heart Center, 1F9-4480 Oak St., Vancouver, BC V6H 3V4, Canada; (D.K.); (A.L.); (T.M.R.); (S.F.)
| | - Thomas M. Roston
- British Columbia Children’s Hospital Heart Center, 1F9-4480 Oak St., Vancouver, BC V6H 3V4, Canada; (D.K.); (A.L.); (T.M.R.); (S.F.)
- Clinician-Investigator Program, University of British Columbia, 2016-1874 East Mall, Vancouver, BC V6T 1Z1, Canada
| | - Alia Arslanova
- Cellular and Regenerative Medicine Centre, British Columbia Children’s Hospital Research Institute, 938 W 28th Ave, Vancouver, BC V5Z 4H4, Canada; (A.A.); (G.F.T.)
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada
| | - Sonia Franciosi
- British Columbia Children’s Hospital Heart Center, 1F9-4480 Oak St., Vancouver, BC V6H 3V4, Canada; (D.K.); (A.L.); (T.M.R.); (S.F.)
| | - Glen F. Tibbits
- Cellular and Regenerative Medicine Centre, British Columbia Children’s Hospital Research Institute, 938 W 28th Ave, Vancouver, BC V5Z 4H4, Canada; (A.A.); (G.F.T.)
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada
| | - Shubhayan Sanatani
- British Columbia Children’s Hospital Heart Center, 1F9-4480 Oak St., Vancouver, BC V6H 3V4, Canada; (D.K.); (A.L.); (T.M.R.); (S.F.)
- Correspondence:
| |
Collapse
|
15
|
Yamazawa T, Ogawa H, Murayama T, Yamaguchi M, Oyamada H, Suzuki J, Kurebayashi N, Kanemaru K, Oguchi K, Sakurai T, Iino M. Insights into channel modulation mechanism of RYR1 mutants using Ca2+ imaging and molecular dynamics. J Gen Physiol 2021; 152:132759. [PMID: 31841587 PMCID: PMC7034096 DOI: 10.1085/jgp.201812235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 07/31/2019] [Accepted: 11/05/2019] [Indexed: 12/01/2022] Open
Abstract
Molecular bases of pathogenic enhancement of Ca2+ release channel activities in RYR1 carrying disease-associated mutations at the N-terminal region were studied. Functional studies and MD simulation revealed that the interactions between domains have a strong correlation with channel activity. Type 1 ryanodine receptor (RYR1) is a Ca2+ release channel in the sarcoplasmic reticulum in skeletal muscle and plays an important role in excitation–contraction coupling. Mutations in the RYR1 gene cause severe muscle diseases such as malignant hyperthermia (MH), which is a disorder of CICR via RYR1. Thus far, >300 mutations in RYR1 have been reported in patients with MH. However, owing to a lack of comprehensive analysis of the structure–function relationship of mutant RYR1, the mechanism remains largely unknown. Here, we combined functional studies and molecular dynamics (MD) simulations of RYR1 bearing disease-associated mutations at the N-terminal region. When expressed in HEK293 cells, the mutant RYR1 caused abnormalities in Ca2+ homeostasis. MD simulations of WT and mutant RYR1s were performed using crystal structure of the N-terminal domain (NTD) monomer, consisting of A, B, and C domains. We found that the mutations located around the interdomain region differentially affected hydrogen bonds/salt bridges. Particularly, mutations at R402, which increase the open probability of the channel, cause clockwise rotation of BC domains with respect to the A domain by alteration of the interdomain interactions. Similar results were also obtained with artificial mutations that mimic alteration of the interactions. Our results reveal the importance of interdomain interactions within the NTD in the regulation of the RYR1 channel and provide insights into the mechanism of MH caused by the mutations at the NTD.
Collapse
Affiliation(s)
- Toshiko Yamazawa
- Department of Molecular Physiology, The Jikei University School of Medicine, Tokyo, Japan.,Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Haruo Ogawa
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Takashi Murayama
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Maki Yamaguchi
- Department of Molecular Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hideto Oyamada
- Department of Pharmacology, School of Medicine, Showa University, Tokyo, Japan
| | - Junji Suzuki
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Physiology, University of California, San Francisco, San Francisco, CA
| | - Nagomi Kurebayashi
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazunori Kanemaru
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Cellular and Molecular Pharmacology, Nihon University School of Medicine, Tokyo, Japan
| | - Katsuji Oguchi
- Department of Pharmacology, School of Medicine, Showa University, Tokyo, Japan
| | - Takashi Sakurai
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Masamitsu Iino
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Cellular and Molecular Pharmacology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
16
|
Bauerová-Hlinková V, Hajdúchová D, Bauer JA. Structure and Function of the Human Ryanodine Receptors and Their Association with Myopathies-Present State, Challenges, and Perspectives. Molecules 2020; 25:molecules25184040. [PMID: 32899693 PMCID: PMC7570887 DOI: 10.3390/molecules25184040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 01/28/2023] Open
Abstract
Cardiac arrhythmias are serious, life-threatening diseases associated with the dysregulation of Ca2+ influx into the cytoplasm of cardiomyocytes. This dysregulation often arises from dysfunction of ryanodine receptor 2 (RyR2), the principal Ca2+ release channel. Dysfunction of RyR1, the skeletal muscle isoform, also results in less severe, but also potentially life-threatening syndromes. The RYR2 and RYR1 genes have been found to harbor three main mutation “hot spots”, where mutations change the channel structure, its interdomain interface properties, its interactions with its binding partners, or its dynamics. In all cases, the result is a defective release of Ca2+ ions from the sarcoplasmic reticulum into the myocyte cytoplasm. Here, we provide an overview of the most frequent diseases resulting from mutations to RyR1 and RyR2, briefly review some of the recent experimental structural work on these two molecules, detail some of the computational work describing their dynamics, and summarize the known changes to the structure and function of these receptors with particular emphasis on their N-terminal, central, and channel domains.
Collapse
|
17
|
Ogawa H, Kurebayashi N, Yamazawa T, Murayama T. Regulatory mechanisms of ryanodine receptor/Ca 2+ release channel revealed by recent advancements in structural studies. J Muscle Res Cell Motil 2020; 42:291-304. [PMID: 32040690 PMCID: PMC8332584 DOI: 10.1007/s10974-020-09575-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
Abstract
Ryanodine receptors (RyRs) are huge homotetrameric Ca2+ release channels localized to the sarcoplasmic reticulum. RyRs are responsible for the release of Ca2+ from the SR during excitation–contraction coupling in striated muscle cells. Recent revolutionary advancements in cryo-electron microscopy have provided a number of near-atomic structures of RyRs, which have enabled us to better understand the architecture of RyRs. Thus, we are now in a new era understanding the gating, regulatory and disease-causing mechanisms of RyRs. Here we review recent advances in the elucidation of the structures of RyRs, especially RyR1 in skeletal muscle, and their mechanisms of regulation by small molecules, associated proteins and disease-causing mutations.
Collapse
Affiliation(s)
- Haruo Ogawa
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan.
| | - Nagomi Kurebayashi
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
| | - Toshiko Yamazawa
- Department of Molecular Physiology, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Takashi Murayama
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
| |
Collapse
|
18
|
Toya T, Ito K, Kagami K, Osaki A, Sato A, Kimura T, Horii S, Yasuda R, Namba T, Ido Y, Nagatomo Y, Hayashi K, Masaki N, Yada H, Adachi T. Impact of oxidative posttranslational modifications of SERCA2 on heart failure exacerbation in young patients with non-ischemic cardiomyopathy: A pilot study. IJC HEART & VASCULATURE 2020; 26:100437. [PMID: 31763443 PMCID: PMC6864308 DOI: 10.1016/j.ijcha.2019.100437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/30/2019] [Accepted: 11/02/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND Oxidative posttranslational modifications (OPTM) impair the function of Sarcoplasmic/endoplasmic reticulum (SR) calcium (Ca2+) ATPase (SERCA) 2 and trigger cytosolic Ca2+ dysregulation. We investigated the extent of OPTM of SERCA2 in patients with non-ischemic cardiomyopathy (NICM). METHODS AND RESULTS Endomyocardial biopsy (EMB) was obtained in 40 consecutive patients with NICM. Total expression and OPTM of SERCA2, including sulfonylation at cysteine-674 (S-SERCA2) and nitration at tyrosine-294/295 (N-SERCA2), were examined by immunohistochemical analysis. S-SERCA2 increased in the presence of late gadolinium enhancement on cardiac magnetic resonance imaging. S-SERCA2/SERCA2 and N-SERCA2/SERCA2 correlated with cardiac fibrosis evaluated by Masson's trichrome staining of EMB. SERCA2 expression modestly increased in parallel with an upward trend in OPTM of SERCA2 with aging. This tendency became prominent only in patients aged >65 years. OPTM of SERCA2 positively correlated with brain natriuretic peptide (BNP) values only in patients aged ≤65 years. Composite major adverse cardiac events (MACE) increased more in the high OPTM group of younger patients; however, MACE-free survival was similar irrespective of the extent of OPTM in older patients. CONCLUSIONS OPTM of SERCA2 correlate with myocardial fibrosis in NICM. In younger patients, OPTM of SERCA2 correlate with elevated BNP and increased composite MACE.
Collapse
Affiliation(s)
- Takumi Toya
- Department of Cardiology, National Defense Medical College, Tokorozawa, Saitama, Japan1
| | - Kei Ito
- Department of Cardiology, National Defense Medical College, Tokorozawa, Saitama, Japan1
| | - Kazuki Kagami
- Department of Cardiology, National Defense Medical College, Tokorozawa, Saitama, Japan1
| | - Ayumu Osaki
- Department of Cardiology, National Defense Medical College, Tokorozawa, Saitama, Japan1
| | - Atsushi Sato
- Department of Cardiology, National Defense Medical College, Tokorozawa, Saitama, Japan1
| | - Toyokazu Kimura
- Department of Cardiology, National Defense Medical College, Tokorozawa, Saitama, Japan1
| | - Shunpei Horii
- Department of Cardiology, National Defense Medical College, Tokorozawa, Saitama, Japan1
| | - Risako Yasuda
- Department of Cardiology, National Defense Medical College, Tokorozawa, Saitama, Japan1
| | - Takayuki Namba
- Department of Cardiology, National Defense Medical College, Tokorozawa, Saitama, Japan1
| | - Yasuo Ido
- Department of Cardiology, National Defense Medical College, Tokorozawa, Saitama, Japan1
| | - Yuji Nagatomo
- Department of Cardiology, National Defense Medical College, Tokorozawa, Saitama, Japan1
| | - Katsumi Hayashi
- Department of Radiology, National Defense Medical College, Tokorozawa, Saitama, Japan1
| | - Nobuyuki Masaki
- Department of Intensive Care Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan1
| | - Hirotaka Yada
- Department of Cardiology, National Defense Medical College, Tokorozawa, Saitama, Japan1
| | - Takeshi Adachi
- Department of Cardiology, National Defense Medical College, Tokorozawa, Saitama, Japan1
| |
Collapse
|
19
|
LPP and RYR2 Gene Polymorphisms Correlate with the Risk and the Prognosis of Astrocytoma. J Mol Neurosci 2019; 69:628-635. [DOI: 10.1007/s12031-019-01391-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 07/29/2019] [Indexed: 12/16/2022]
|
20
|
Ghorayeb N, Stein R, Daher DJ, Silveira ADD, Ritt LEF, Santos DFPD, Sierra APR, Herdy AH, Araújo CGSD, Colombo CSSDS, Kopiler DA, Lacerda FFRD, Lazzoli JK, Matos LDNJD, Leitão MB, Francisco RC, Alô ROB, Timerman S, Carvalho TD, Garcia TG. The Brazilian Society of Cardiology and Brazilian Society of Exercise and Sports Medicine Updated Guidelines for Sports and Exercise Cardiology - 2019. Arq Bras Cardiol 2019; 112:326-368. [PMID: 30916199 PMCID: PMC6424031 DOI: 10.5935/abc.20190048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Nabil Ghorayeb
- Instituto Dante Pazzanese de Cardiologia, São Paulo, SP - Brazil
- Hospital do Coração (HCor), Associação do Sanatório Sírio, São Paulo, SP - Brazil
- Programa de Pós-Graduação em Medicina do Esporte da Universidade Federal de São Paulo (UNIFESP), São Paulo, SP - Brazil
- Instituto de Assistência Médica ao Servidor Público Estadual (IAMSPE), São Paulo, SP - Brazil
| | - Ricardo Stein
- Programa de Pós-Graduação em Cardiologia e Ciências Cardiovasculares da Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS - Brazil
- Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (HCPA/UFRGS), Porto Alegre, RS - Brazil
- Vitta Centro de Bem Estar Físico, Porto Alegre, RS - Brazil
| | - Daniel Jogaib Daher
- Hospital do Coração (HCor), Associação do Sanatório Sírio, São Paulo, SP - Brazil
| | - Anderson Donelli da Silveira
- Programa de Pós-Graduação em Cardiologia e Ciências Cardiovasculares da Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS - Brazil
- Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (HCPA/UFRGS), Porto Alegre, RS - Brazil
- Vitta Centro de Bem Estar Físico, Porto Alegre, RS - Brazil
| | - Luiz Eduardo Fonteles Ritt
- Hospital Cárdio Pulmonar, Salvador, BA - Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, BA - Brazil
| | | | | | - Artur Haddad Herdy
- Instituto de Cardiologia de Santa Catarina, Florianópolis, SC - Brazil
- Clínica Cardiosport de Prevenção e Reabilitação, Florianópolis, SC - Brazil
| | | | - Cléa Simone Sabino de Souza Colombo
- Hospital do Coração (HCor), Associação do Sanatório Sírio, São Paulo, SP - Brazil
- Sports Cardiology, Cardiology Clinical Academic Group - St George's University of London,14 London - UK
| | - Daniel Arkader Kopiler
- Sociedade Brasileira de Medicina do Esporte e do Exercício (SBMEE), São Paulo, SP - Brazil
- Instituto Nacional de Cardiologia (INC), Rio de Janeiro, RJ - Brazil
| | - Filipe Ferrari Ribeiro de Lacerda
- Programa de Pós-Graduação em Cardiologia e Ciências Cardiovasculares da Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS - Brazil
| | - José Kawazoe Lazzoli
- Sociedade Brasileira de Medicina do Esporte e do Exercício (SBMEE), São Paulo, SP - Brazil
- Federação Internacional de Medicina do Esporte (FIMS), Lausanne - Switzerland
| | | | - Marcelo Bichels Leitão
- Sociedade Brasileira de Medicina do Esporte e do Exercício (SBMEE), São Paulo, SP - Brazil
| | - Ricardo Contesini Francisco
- Instituto Dante Pazzanese de Cardiologia, São Paulo, SP - Brazil
- Hospital do Coração (HCor), Associação do Sanatório Sírio, São Paulo, SP - Brazil
| | - Rodrigo Otávio Bougleux Alô
- Instituto Dante Pazzanese de Cardiologia, São Paulo, SP - Brazil
- Hospital Geral de São Mateus, São Paulo, SP - Brazil
| | - Sérgio Timerman
- Instituto do Coração da Faculdade de Medicina da Universidade de São Paulo (InCor-FMUSP), São Paulo, SP - Brazil
- Universidade Anhembi Morumbi, Laureate International Universities, São Paulo, SP - Brazil
| | - Tales de Carvalho
- Clínica Cardiosport de Prevenção e Reabilitação, Florianópolis, SC - Brazil
- Departamento de Ergometria e Reabilitação Cardiovascular da Sociedade Brasileira de Cardiologia (DERC/SBC), Rio de Janeiro, RJ - Brazil
- Universidade do Estado de Santa Catarina (UDESC), Florianópolis, SC - Brazil
| | - Thiago Ghorayeb Garcia
- Instituto Dante Pazzanese de Cardiologia, São Paulo, SP - Brazil
- Hospital do Coração (HCor), Associação do Sanatório Sírio, São Paulo, SP - Brazil
| |
Collapse
|