1
|
Yun S, Kim JW, Park MJ, Song E, Jang SY, Jang A, Choi KM, Baik SH, Hwang HJ, Yoo HJ. GPR40-full agonist AM1638 alleviates palmitate-induced oxidative damage in H9c2 cells via an AMPK-dependent pathway. BMB Rep 2025; 58:133-139. [PMID: 39757201 PMCID: PMC11955733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/10/2024] [Accepted: 07/04/2024] [Indexed: 01/07/2025] Open
Abstract
G protein-coupled receptor 40 (GPR40) is gaining recognition as a potential therapeutic target for several metabolic disturbances, such as hyperglycemia and excessive inflammation. GPR40 is expressed in various tissues, including the heart; however, its specific roles in cardiomyocytes remain unknown. The objective of the present study was to investigate whether treatment with AM1638, a GPR40-full agonist, reduces palmitate-mediated cell damage in H9c2 rat cardiomyocytes. AM1638 treatment increased the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and expression levels of the antioxidant molecules heme oxygenase-1 (HO-1) and nicotinamide adenine dinucleotide phosphate: quinone oxidoreductase-1 (NQO1). Palmitate-mediated superoxide production and levels of 4-hydroxynonenal, a biomarker of oxidative stress, decreased after treatment with AM1638. Notably, palmitate-mediated disruption of mitochondrial membrane potential, lower levels of mitochondrial complex protein, and failure of adenosine triphosphate production were all recovered by treatment with AM1638. Moreover, AM1638 blocked palmitate-mediated caspase-3 cleavage and nuclear fragmentation, thereby improving cell viability. However, these AM1638-mediated beneficial effects were abrogated by treatment with Compound C, an AMPK inhibitor. These results demonstrate that AM1638, a GPR40-full agonist, ameliorates palmitate-mediated oxidative stress in H9c2 cells in an AMPK-dependent manner. [BMB Reports 2025; 58(3): 133-139].
Collapse
Affiliation(s)
- SukHwan Yun
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea
| | - Joo Won Kim
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea
| | - Min Jeong Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Korea
| | - Eyun Song
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Korea
| | - Soo Yeon Jang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Korea
| | - Ahreum Jang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Korea
| | - Kyung Mook Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Korea
| | - Sei Hyun Baik
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Korea
| | - Hwan-Jin Hwang
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea
| | - Hye Jin Yoo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Korea
| |
Collapse
|
2
|
Ding YN, Wang HY, Chen XF, Tang X, Chen HZ. Roles of Sirtuins in Cardiovascular Diseases: Mechanisms and Therapeutics. Circ Res 2025; 136:524-550. [PMID: 40014680 DOI: 10.1161/circresaha.124.325440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Cardiovascular diseases (CVDs) are experiencing a rapid surge and are widely recognized as the leading cause of mortality in the current aging society. Given the multifactorial etiology of CVDs, understanding the intricate molecular and cellular mechanisms is imperative. Over the past 2 decades, many scientists have focused on Sirtuins, a family of nicotinamide adenine dinucleotide-dependent deacylases. Sirtuins are highly conserved across species, from yeasts to primates, and play a crucial role in linking aging and diseases. Sirtuins participate in nearly all key physiological and pathological processes, ranging from embryogenic development to stress response and aging. Abnormal expression and activity of Sirtuins exist in many aging-related diseases, while their activation has shown efficacy in mitigating these diseases (eg, CVDs). In terms of research, this field has maintained fast, sustained growth in recent years, from fundamental studies to clinical trials. In this review, we present a comprehensive, up-to-date discussion on the biological functions of Sirtuins and their roles in regulating cardiovascular biology and CVDs. Furthermore, we highlight the latest advancements in utilizing Sirtuin-activating compounds and nicotinamide adenine dinucleotide boosters as potential pharmacological targets for preventing and treating CVDs. The key unresolved issues in the field-from the chemicobiological regulation of Sirtuins to Sirtuin-targeted CVD investigations-are also discussed. This timely review could be critical in understanding the updated knowledge of Sirtuin biology in CVDs and facilitating the clinical accessibility of Sirtuin-targeting interventions.
Collapse
Affiliation(s)
- Yang-Nan Ding
- Department of Laboratory Medicine, Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, The Third Affiliated Hospital of Zhengzhou University, China (Y.-N.D.)
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (Y.-N.D., H.-Y.W., H.-Z.C.)
| | - Hui-Yu Wang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (Y.-N.D., H.-Y.W., H.-Z.C.)
- Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing (H.-Y.W., H.-Z.C.)
| | - Xiao-Feng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, China (X.-F.C.)
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, National Health Commission Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Children's Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu (X.T.)
| | - Hou-Zao Chen
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (Y.-N.D., H.-Y.W., H.-Z.C.)
- Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing (H.-Y.W., H.-Z.C.)
| |
Collapse
|
3
|
Burtscher J, Denti V, Gostner JM, Weiss AK, Strasser B, Hüfner K, Burtscher M, Paglia G, Kopp M, Dünnwald T. The interplay of NAD and hypoxic stress and its relevance for ageing. Ageing Res Rev 2025; 104:102646. [PMID: 39710071 DOI: 10.1016/j.arr.2024.102646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD) is an essential regulator of cellular metabolism and redox processes. NAD levels and the dynamics of NAD metabolism change with increasing age but can be modulated via the diet or medication. Because NAD metabolism is complex and its regulation still insufficiently understood, achieving specific outcomes without perturbing delicate balances through targeted pharmacological interventions remains challenging. NAD metabolism is also highly sensitive to environmental conditions and can be influenced behaviorally, e.g., by exercise. Changes in oxygen availability directly and indirectly affect NAD levels and may result from exposure to ambient hypoxia, increased oxygen demand during exercise, ageing or disease. Cellular responses to hypoxic stress involve rapid alterations in NAD metabolism and depend on many factors, including age, glucose status, the dose of the hypoxic stress and occurrence of reoxygenation phases, and exhibit complex time-courses. Here we summarize the known determinants of NAD-regulation by hypoxia and evaluate the role of NAD in hypoxic stress. We define the specific NAD responses to hypoxia and identify a great potential of the modulation of NAD metabolism regarding hypoxic injuries. In conclusion, NAD metabolism and cellular hypoxia responses are strongly intertwined and together mediate protective processes against hypoxic insults. Their interactions likely contribute to age-related changes and vulnerabilities. Targeting NAD homeostasis presents a promising avenue to prevent/treat hypoxic insults and - conversely - controlled hypoxia is a potential tool to regulate NAD homeostasis.
Collapse
Affiliation(s)
- Johannes Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria.
| | - Vanna Denti
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro, MB, Italy
| | - Johanna M Gostner
- Medical University of Innsbruck, Biocenter, Institute of Medical Biochemistry, Innsbruck, Austria
| | - Alexander Kh Weiss
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Barbara Strasser
- Ludwig Boltzmann Institute for Rehabilitation Research, Vienna, Austria; Faculty of Medicine, Sigmund Freud Private University, Vienna, Austria
| | - Katharina Hüfner
- Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, University Hospital for Psychiatry II, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Giuseppe Paglia
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro, MB, Italy
| | - Martin Kopp
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Tobias Dünnwald
- Institute for Sports Medicine, Alpine Medicine and Health Tourism (ISAG), UMIT TIROL - Private University for Health Sciences and Health Technology, Hall in Tirol, Austria
| |
Collapse
|
4
|
Kolotyeva NA, Groshkov AA, Rozanova NA, Berdnikov AK, Novikova SV, Komleva YK, Salmina AB, Illarioshkin SN, Piradov MA. Pathobiochemistry of Aging and Neurodegeneration: Deregulation of NAD+ Metabolism in Brain Cells. Biomolecules 2024; 14:1556. [PMID: 39766263 PMCID: PMC11673498 DOI: 10.3390/biom14121556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
NAD+ plays a pivotal role in energy metabolism and adaptation to external stimuli and stressful conditions. A significant reduction in intracellular NAD+ levels is associated with aging and contributes to the development of chronic cardiovascular, neurodegenerative, and metabolic diseases. It is of particular importance to maintain optimal levels of NAD+ in cells with high energy consumption, particularly in the brain. Maintaining the tissue level of NAD+ with pharmacological tools has the potential to slow down the aging process, to prevent the development of age-related diseases. This review covers key aspects of NAD+ metabolism in terms of brain metabolic plasticity, including NAD+ biosynthesis and degradation in different types of brain cells, as well as its contribution to the development of neurodegeneration and aging, and highlights up-to-date approaches to modulate NAD+ levels in brain cells.
Collapse
|
5
|
Norambuena-Soto I, Deng Y, Brenner C, Lavandero S, Wang ZV. NAD in pathological cardiac remodeling: Metabolic regulation and beyond. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167038. [PMID: 38281710 PMCID: PMC10922927 DOI: 10.1016/j.bbadis.2024.167038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/05/2024] [Accepted: 01/19/2024] [Indexed: 01/30/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD) coenzymes are carriers of high energy electrons in metabolism and also play critical roles in numerous signaling pathways. NAD metabolism is decreased in various cardiovascular diseases. Importantly, stimulation of NAD biosynthesis protects against heart disease under different pathological conditions. In this review, we describe pathways for both generation and catabolism of NAD coenzymes and the respective changes of these pathways in the heart under cardiac diseases, including pressure overload, myocardial infarction, cardiometabolic disease, cancer treatment cardiotoxicity, and heart failure. We next provide an update on the strategies and treatments to increase NAD levels, such as supplementation of NAD precursors, in the heart that prevent or reverse cardiomyopathy. We also introduce the approaches to manipulate NAD consumption enzymes to ameliorate cardiac disease. Finally, we discuss the mechanisms associated with improvements in cardiac function by NAD coenzymes, differentiating between mitochondria-dependent effects and those independent of mitochondrial metabolism.
Collapse
Affiliation(s)
- Ignacio Norambuena-Soto
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmacéuticas & Facultad Medicina, Universidad de Chile, Santiago 8380494, Chile
| | - Yingfeng Deng
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Charles Brenner
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmacéuticas & Facultad Medicina, Universidad de Chile, Santiago 8380494, Chile; Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8573, USA.
| | - Zhao V Wang
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
6
|
Li F, Wu C, Wang G. Targeting NAD Metabolism for the Therapy of Age-Related Neurodegenerative Diseases. Neurosci Bull 2024; 40:218-240. [PMID: 37253984 PMCID: PMC10838897 DOI: 10.1007/s12264-023-01072-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/10/2023] [Indexed: 06/01/2023] Open
Abstract
As the aging population continues to grow rapidly, age-related diseases are becoming an increasing burden on the healthcare system and a major concern for the well-being of elderly individuals. While aging is an inevitable process for all humans, it can be slowed down and age-related diseases can be treated or alleviated. Nicotinamide adenine dinucleotide (NAD) is a critical coenzyme or cofactor that plays a central role in metabolism and is involved in various cellular processes including the maintenance of metabolic homeostasis, post-translational protein modifications, DNA repair, and immune responses. As individuals age, their NAD levels decline, and this decrease has been suggested to be a contributing factor to the development of numerous age-related diseases, such as cancer, diabetes, cardiovascular diseases, and neurodegenerative diseases. In pursuit of healthy aging, researchers have investigated approaches to boost or maintain NAD levels. Here, we provide an overview of NAD metabolism and the role of NAD in age-related diseases and summarize recent progress in the development of strategies that target NAD metabolism for the treatment of age-related diseases, particularly neurodegenerative diseases.
Collapse
Affiliation(s)
- Feifei Li
- School of Pharmaceutical Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Chou Wu
- School of Pharmaceutical Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Gelin Wang
- School of Pharmaceutical Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
7
|
Xie J, Tian S, Zhang H, Feng C, Han Y, Dai H, Yan L. A Novel NQO1 Enzyme-Responsive Polyurethane Nanocarrier for Redox-Triggered Intracellular Drug Release. Biomacromolecules 2023; 24:2225-2236. [PMID: 37040694 DOI: 10.1021/acs.biomac.3c00134] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
The design of nano-drug delivery vehicles responsive to tumor microenvironment stimuli has become a crucial aspect in developing cancer therapy in recent years. Among them, the enzyme-responsive nano-drug delivery system is particularly effective, as it utilizes tumor-specific and highly expressed enzymes as precise targets, leading to increased drug release at the target sites, reduced nonspecific release, and improved efficacy while minimizing toxic side effects on normal tissues. NAD(P)H:quinone oxidoreductase 1 (NQO1) is an important reductase associated with cancer and is overexpressed in some cancer cells, particularly in lung and breast cancer. Thus, the design of nanocarriers with high selectivity and responsiveness to NQO1 is of great significance for tumor diagnosis and treatment. It has been reported that under physiological conditions, NQO1 can specifically reduce the trimethyl-locked benzoquinone structure through a two-electron reduction, resulting in rapid lactonization via an enzymatic reaction. Based on this, a novel reduction-sensitive polyurethane (PEG-PTU-PEG) block copolymer was designed and synthesized by copolymerizing diisocyanate, a reduction-sensitive monomer (TMBQ), and poly(ethylene glycol). The successful synthesis of monomers and polymers was verified by nuclear magnetic resonance (1H NMR) and gel permeation chromatography (GPC). Then, the PEG-PTU-PEG micelles were successfully prepared by self-assembly, and their reductive dissociation behavior in the presence of Na2S2O4 was verified by dynamic light scattering (DLS), 1H NMR, and GPC. Next, the model drug doxorubicin (DOX) was encapsulated into the hydrophobic core of this polyurethane micelles by microemulsion method. It was observed that the drug-loaded micelles could also achieve a redox response and rapidly release the encapsulated substances. In vitro cell experiments demonstrated that PEG-PTU-PEG micelles had good biocompatibility and a low hemolysis rate (<5%). Furthermore, in the presence of an NQO1 enzyme inhibitor (dicoumarol), lower drug release from micelles was observed in A549 and 4T1 cells by both fluorescence microscopy and flow cytometry assays, but not in NIH-3T3 control cells. Predictably, DOX-loaded micelles also showed lower cytotoxicity in 4T1 cells in the presence of NQO1 enzyme inhibitors. These results indicate that drug-loaded polyurethane micelles could accomplish specific drug release in the reducing environment in the presence of NQO1 enzymes. Therefore, this study provides a new option for the construction of polyurethane nanocarriers for precise targeting and reductive release, which could benefit the intracellular drug-specific release and precision therapy of tumors.
Collapse
Affiliation(s)
- Jinhai Xie
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Shuangyu Tian
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Hanning Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Congshu Feng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Yingchao Han
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Lesan Yan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
8
|
Kawano I, Adamcova M. MicroRNAs in doxorubicin-induced cardiotoxicity: The DNA damage response. Front Pharmacol 2022; 13:1055911. [PMID: 36479202 PMCID: PMC9720152 DOI: 10.3389/fphar.2022.1055911] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/11/2022] [Indexed: 10/17/2023] Open
Abstract
Doxorubicin (DOX) is a chemotherapeutic drug widely used for cancer treatment, but its use is limited by cardiotoxicity. Although free radicals from redox cycling and free cellular iron have been predominant as the suggested primary pathogenic mechanism, novel evidence has pointed to topoisomerase II inhibition and resultant genotoxic stress as the more fundamental mechanism. Recently, a growing list of microRNAs (miRNAs) has been implicated in DOX-induced cardiotoxicity (DIC). This review summarizes miRNAs reported in the recent literature in the context of DIC. A particular focus is given to miRNAs that regulate cellular responses downstream to DOX-induced DNA damage, especially p53 activation, pro-survival signaling pathway inhibition (e.g., AMPK, AKT, GATA-4, and sirtuin pathways), mitochondrial dysfunction, and ferroptosis. Since these pathways are potential targets for cardioprotection against DOX, an understanding of how miRNAs participate is necessary for developing future therapies.
Collapse
Affiliation(s)
| | - Michaela Adamcova
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czechia
| |
Collapse
|
9
|
Yang HB, Yuan W, Li WD, Mao S. Selenium Supplementation Protects Against Arsenic-Trioxide-Induced Cardiotoxicity Via Reducing Oxidative Stress and Inflammation Through Increasing NAD + Pool. Biol Trace Elem Res 2022:10.1007/s12011-022-03478-y. [PMID: 36376713 DOI: 10.1007/s12011-022-03478-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/06/2022] [Indexed: 11/16/2022]
Abstract
Arsenic is an environmental contaminant, and accumulating evidence has indicated that exposure to arsenic can cause various diseases, especially cardiotoxicity. Selenium (Se) exerts a vital role in the regulation of multiple physiological activities. Recently, several studies highlighted that Se treatment can effectively antagonize the toxic effects induced by arsenic. However, the exact underlying effect and mechanism of Se on Arsenic-induced cardiotoxicity has not been explored. In the current study, the arsenic trioxide (ATO)-triggered heart damage mice model was used to explore whether Se exerts protective roles in ATO-related cardiotoxicity and its potential mechanism. Our data showed that Se treatment significantly alleviated ATO-mediated cardiotoxicity evidenced by increased weight, decreased myocardial damage markers, and improved heart functions in mice. Furthermore, we demonstrated that Se remarkably inhibited ATO-mediated oxidative stress and inflammatory responses in heart tissues. Mechanistically, we showed that Se upregulated the levels of NAD+ in cardiomyocytes of the mice challenged by ATO, and this effect involved in the activation of the NAD+ biosynthesis through the salvage pathway. Collectively, our findings demonstrated that Se protected against ATO-mediated cardiotoxicity by antioxidant and anti-inflammatory effects via increasing the NAD+ pool in mice.
Collapse
Affiliation(s)
- Hai-Bing Yang
- Department of Cardiology, Yingshang ChengDong Hospital, Yingli Road, Fuyang, 236000, China.
| | - Wei Yuan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Jie Fang Road 438, Zhenjiang, 212001, China
| | - Wei-Dong Li
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Jie Fang Road 438, Zhenjiang, 212001, China
| | - Shang Mao
- Department of Cardiology, Yingshang ChengDong Hospital, Yingli Road, Fuyang, 236000, China
| |
Collapse
|
10
|
Siegel D, Harris PS, Michel CR, de Cabo R, Fritz KS, Ross D. Redox state and the sirtuin deacetylases are major factors that regulate the acetylation status of the stress protein NQO1. Front Pharmacol 2022; 13:1015642. [DOI: 10.3389/fphar.2022.1015642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
The stress induced protein NQO1 can participate in a wide range of biological pathways which are dependent upon the interaction of NQO1 with protein targets. Many of the protein-protein interactions involving NQO1 have been shown to be regulated by the pyridine nucleotide redox balance. NQO1 can modify its conformation as a result of redox changes in pyridine nucleotides and sites on the C-terminal and helix seven regions of NQO1 have been identified as potential areas that may be involved in redox-dependent protein-protein interactions. Since post-translational modifications can modify the functionality of proteins, we examined whether redox-dependent conformational changes induced in NQO1 would alter lysine acetylation. Recombinant NQO1 was incubated with and without NADH then acetylated non-enzymatically by acetic anhydride or S-acetylglutathione (Ac-GSH). NQO1 acetylation was determined by immunoblot and site-specific lysine acetylation was quantified by mass spectrometry (MS). NQO1 was readily acetylated by acetic anhydride and Ac-GSH. Interestingly, despite a large number of lysine residues (9%) in NQO1 only a small subset of lysines were acetylated and the majority of these were located in or near the functional C-terminal or helix seven regions. Reduction of NQO1 by NADH prior to acetylation resulted in almost complete protection of NQO1 from lysine acetylation as confirmed by immunoblot analysis and MS. Lysines located within the redox-active C-terminus and helix seven regions were readily acetylated when NQO1 was in an oxidized conformation but were protected from acetylation when NQO1 was in the reduced conformation. To investigate regulatory mechanisms of enzymatic deacetylation, NQO1 was acetylated by Ac-GSH then exposed to purified sirtuins (SIRT 1-3) or histone deacetylase 6 (HDAC6). NQO1 could be deacetylated by all sirtuin isoforms and quantitative MS analysis performed using SIRT2 revealed very robust deacetylation of NQO1, specifically at K262 and K271 in the C-terminal region. No deacetylation of NQO1 by HDAC6 was detected. These data demonstrate that the same subset of key lysine residues in the C-terminal and helix seven regions of NQO1 undergo redox dependent acetylation and are regulated by sirtuin-mediated deacetylation.
Collapse
|
11
|
Kim HK, Kim M, Marquez JC, Jeong SH, Ko TH, Noh YH, Kha PT, Choi HM, Kim DH, Kim JT, Yang YI, Ko KS, Rhee BD, Shubina LK, Makarieva TN, Yashunsky DY, Gerbst AG, Nifantiev NE, Stonik VA, Han J. Novel GSK-3β Inhibitor Neopetroside A Protects Against Murine Myocardial Ischemia/Reperfusion Injury. JACC Basic Transl Sci 2022; 7:1102-1116. [PMID: 36687267 PMCID: PMC9849271 DOI: 10.1016/j.jacbts.2022.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 03/31/2022] [Accepted: 05/09/2022] [Indexed: 02/01/2023]
Abstract
Recent trends suggest novel natural compounds as promising treatments for cardiovascular disease. The authors examined how neopetroside A, a natural pyridine nucleoside containing an α-glycoside bond, regulates mitochondrial metabolism and heart function and investigated its cardioprotective role against ischemia/reperfusion injury. Neopetroside A treatment maintained cardiac hemodynamic status and mitochondrial respiration capacity and significantly prevented cardiac fibrosis in murine models. These effects can be attributed to preserved cellular and mitochondrial function caused by the inhibition of glycogen synthase kinase-3 beta, which regulates the ratio of nicotinamide adenine dinucleotide to nicotinamide adenine dinucleotide, reduced, through activation of the nuclear factor erythroid 2-related factor 2/NAD(P)H quinone oxidoreductase 1 axis in a phosphorylation-independent manner.
Collapse
Key Words
- ATP, adenosine triphosphate
- GSK-3, glycogen synthase kinase–3
- GSK-3β inhibition
- I/R, ischemia/reperfusion
- MI, myocardial infarction
- NAD+, nicotinamide adenine dinucleotide
- NADH, nicotinamide adenine dinucleotide, reduced
- NPS A
- NPS A, neopetroside A
- Nqo1, NAD(P)H:quinone oxidoreductase 1
- Nrf2, nuclear factor erythroid 2–related factor 2
- OCR, oxygen consumption rate
- ischemia/reperfusion injury
- mPTP, mitochondrial permeability transition pore
- mTOR, mammalian target of rapamycin
- marine pyridine α-nucleoside
- mitochondria
Collapse
Affiliation(s)
- Hyoung Kyu Kim
- Cardiovascular and Metabolic Disease Center, Inje University, Busan, South Korea,Department of Health Sciences and Technology, Graduate School, Inje University, Busan, South Korea
| | - Min Kim
- Cardiovascular and Metabolic Disease Center, Inje University, Busan, South Korea,Department of Physiology, BK Plus Project Team, College of Medicine, Inje University, Busan, South Korea
| | - Jubert C. Marquez
- Cardiovascular and Metabolic Disease Center, Inje University, Busan, South Korea,Department of Health Sciences and Technology, Graduate School, Inje University, Busan, South Korea
| | - Seung Hun Jeong
- Cardiovascular and Metabolic Disease Center, Inje University, Busan, South Korea,Department of Physiology, BK Plus Project Team, College of Medicine, Inje University, Busan, South Korea
| | - Tae Hee Ko
- Cardiovascular and Metabolic Disease Center, Inje University, Busan, South Korea,Department of Physiology, BK Plus Project Team, College of Medicine, Inje University, Busan, South Korea
| | - Yeon Hee Noh
- Cardiovascular and Metabolic Disease Center, Inje University, Busan, South Korea,Department of Physiology, BK Plus Project Team, College of Medicine, Inje University, Busan, South Korea
| | - Pham Trong Kha
- Cardiovascular and Metabolic Disease Center, Inje University, Busan, South Korea,Department of Physiology, BK Plus Project Team, College of Medicine, Inje University, Busan, South Korea
| | - Ha Min Choi
- Cardiovascular and Metabolic Disease Center, Inje University, Busan, South Korea,Department of Physiology, BK Plus Project Team, College of Medicine, Inje University, Busan, South Korea
| | - Dong Hyun Kim
- Department of Pharmacology and Pharmaco-Genomics Research Center, College of Medicine, Inje University, Busan, South Korea
| | - Jong Tae Kim
- Paik Institute for Clinical Research, Inje University College of Medicine, Busan, South Korea
| | - Young Il Yang
- Paik Institute for Clinical Research, Inje University College of Medicine, Busan, South Korea
| | - Kyung Soo Ko
- Cardiovascular and Metabolic Disease Center, Inje University, Busan, South Korea,Department of Health Sciences and Technology, Graduate School, Inje University, Busan, South Korea
| | - Byoung Doo Rhee
- Cardiovascular and Metabolic Disease Center, Inje University, Busan, South Korea,Department of Health Sciences and Technology, Graduate School, Inje University, Busan, South Korea
| | - Larisa K. Shubina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Vladivostok, Russia
| | - Tatyana N. Makarieva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Vladivostok, Russia
| | - Dmitry Y. Yashunsky
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexey G. Gerbst
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Valentin A. Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Vladivostok, Russia
| | - Jin Han
- Cardiovascular and Metabolic Disease Center, Inje University, Busan, South Korea,Department of Health Sciences and Technology, Graduate School, Inje University, Busan, South Korea,Department of Physiology, BK Plus Project Team, College of Medicine, Inje University, Busan, South Korea,Address for correspondence: Dr Jin Han, National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47393, South Korea.
| |
Collapse
|
12
|
Lee SH, Kim HJ, Oh GS, Lee SB, Khadka D, Cao W, Choe SK, Shim H, Kim CD, Kwak TH, So HS. Augmentation of NAD + by Dunnione Ameliorates Imiquimod-Induced Psoriasis-Like Dermatitis in Mice. J Inflamm Res 2022; 15:4623-4636. [PMID: 35991005 PMCID: PMC9386739 DOI: 10.2147/jir.s372543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/07/2022] [Indexed: 11/23/2022] Open
Abstract
Background Dunnione has anti-inflammatory properties arising from its ability to alter the ratio of NAD+/NADH through NAD(P)H quinone oxidoreductase 1 (NQO1) enzymatic action, followed by subsequent inhibition of NF-κB and inflammatory cytokines. Psoriasis is a chronic, inflammatory skin disorder in which the IL-23/Th17 axis plays an important role in inflammation. However, it is unclear whether modulation of NAD+ levels affects psoriasis, such as skin inflammation. Therefore, in this study, we investigated the effect of NAD+/NADH ratio modulation on imiquimod (IMQ)-induced, psoriasis-like skin inflammation in mice. Methods Psoriasis-like skin inflammation was generated by daily topical application of IMQ cream. The severity of dermatitis was assessed using the Psoriasis Area Severity Index (PASI) and histochemistry. Expression of inflammatory cytokines was detected by enzyme-linked immunosorbent assay and quantitative PCR. Acetylation of NF-κB p65 and STAT3 was determined by Western blotting. Results Dunnione improved IMQ-induced epidermal hyperplasia and inflammation, consistent with decreased levels of inflammatory cytokines (IL-17, IL-22, and IL-23) in skin lesions. Moreover, we found that an increase in the NAD+/NADH ratio by dunnione restored SIRT1 activity, thereby reduced imiquimod-induced STAT3 acetylation, which modulates the expression of psoriasis-promoting inflammatory cytokines, such as IL-17, IL-22, and IL-23. Conclusion Pharmacological modulation of cellular NAD+ levels could be a promising therapeutic approach for psoriasis-like skin disease.
Collapse
Affiliation(s)
- Seung Hoon Lee
- Department of Microbiology, Wonkwang University School of Medicine, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Hyung-Jin Kim
- Department of Microbiology, Wonkwang University School of Medicine, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Gi-Su Oh
- Department of Microbiology, Wonkwang University School of Medicine, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Su-Bin Lee
- Department of Microbiology, Wonkwang University School of Medicine, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Dipendra Khadka
- Department of Microbiology, Wonkwang University School of Medicine, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Wal Cao
- Department of Microbiology, Wonkwang University School of Medicine, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Seong-Kyu Choe
- Department of Microbiology, Wonkwang University School of Medicine, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Hyeok Shim
- Department of Hemato-Oncology, Wonkwang University School of Medicine, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Chang-Deok Kim
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Tae Hwan Kwak
- R&D Center, NADIANBIO Ltd, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Hong-Seob So
- Department of Microbiology, Wonkwang University School of Medicine, Iksan, Jeonbuk, 54538, Republic of Korea.,R&D Center, NADIANBIO Ltd, Iksan, Jeonbuk, 54538, Republic of Korea
| |
Collapse
|
13
|
Nicotinamide mononucleotide ameliorates adriamycin-induced renal damage by epigenetically suppressing the NMN/NAD consumers mediated by Twist2. Sci Rep 2022; 12:13712. [PMID: 35962139 PMCID: PMC9374671 DOI: 10.1038/s41598-022-18147-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/05/2022] [Indexed: 11/08/2022] Open
Abstract
The activation of nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase, Sirt1, after the administration of nicotinamide mononucleotide (NMN) suppresses many diseases. However, the role of NMN and Sirt1 in focal glomerulosclerosis (FSGS) has not yet been elucidated. This study aimed to assess the protective effect of NMN treatment in mice with adriamycin (ADR)-induced FSGS. Transient short-term NMN treatment was administered to 8-week-old ADR- or saline-treated BALB/c mice (Cont group) for 14 consecutive days. NMN alleviated the increase in urinary albumin excretion in the ADR-treated mice. NMN treatment mitigated glomerulosclerosis and ameliorated the reduced Sirt1 expression and elevated Claudin-1 expression in the kidneys of the mice. Moreover, this treatment improved the decrease in histone methylation and the expression level of Dnmt1 and increased the concentration of NAD+ in the kidney. Dnmt1 epigenetically suppressed the expression of the NMN-consuming enzyme nicotinamide mononucleotide adenyltransferase1 (Nmnat1) by methylating the E-box in the promoter region and repressing the NAD-consuming enzyme PARP1. Additionally, NMN downregulated the expression of Nmnat1 in the ADR-treated mice. Short-term NMN treatment in FSGS has epigenetic renal protective effects through the upregulation of Sirt1 and suppression of the NAD and NMN consumers. The present study presents a novel treatment paradigm for FSGS.
Collapse
|
14
|
Yang Y, Liu Y, Wang Y, Chao Y, Zhang J, Jia Y, Tie J, Hu D. Regulation of SIRT1 and Its Roles in Inflammation. Front Immunol 2022; 13:831168. [PMID: 35359990 PMCID: PMC8962665 DOI: 10.3389/fimmu.2022.831168] [Citation(s) in RCA: 225] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/15/2022] [Indexed: 12/28/2022] Open
Abstract
The silent information regulator sirtuin 1 (SIRT1) protein, a highly conserved NAD+-dependent deacetylase belonging to the sirtuin family, is a post-translational regulator that plays a role in modulating inflammation. SIRT1 affects multiple biological processes by deacetylating a variety of proteins including histones and non-histone proteins. Recent studies have revealed intimate links between SIRT1 and inflammation, while alterations to SIRT1 expression and activity have been linked to inflammatory diseases. In this review, we summarize the mechanisms that regulate SIRT1 expression, including upstream activators and suppressors that operate on the transcriptional and post-transcriptional levels. We also summarize factors that influence SIRT1 activity including the NAD+/NADH ratio, SIRT1 binding partners, and post-translational modifications. Furthermore, we underscore the role of SIRT1 in the development of inflammation by commenting on the proteins that are targeted for deacetylation by SIRT1. Finally, we highlight the potential for SIRT1-based therapeutics for inflammatory diseases.
Collapse
Affiliation(s)
- Yunshu Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yang Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yunwei Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yongyi Chao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jinxin Zhang
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yanhui Jia
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jun Tie
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
15
|
Cao W, Zhu MY, Lee SH, Lee SB, Kim HJ, Park BO, Yoon CH, Khadka D, Oh GS, Shim H, Kwak TH, So HS. Modulation of Cellular NAD + Attenuates Cancer-Associated Hypercoagulability and Thrombosis via the Inhibition of Tissue Factor and Formation of Neutrophil Extracellular Traps. Int J Mol Sci 2021; 22:ijms222112085. [PMID: 34769515 PMCID: PMC8584923 DOI: 10.3390/ijms222112085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 12/22/2022] Open
Abstract
Cancer-associated thrombosis is the second-leading cause of mortality in patients with cancer and presents a poor prognosis, with a lack of effective treatment strategies. NAD(P)H quinone oxidoreductase 1 (NQO1) increases the cellular nicotinamide adenine dinucleotide (NAD+) levels by accelerating the oxidation of NADH to NAD+, thus playing important roles in cellular homeostasis, energy metabolism, and inflammatory responses. Using a murine orthotopic 4T1 breast cancer model, in which multiple thrombi are generated in the lungs at the late stage of cancer development, we investigated the effects of regulating the cellular NAD+ levels on cancer-associated thrombosis. In this study, we show that dunnione (a strong substrate of NQO1) attenuates the prothrombotic state and lung thrombosis in tumor-bearing mice by inhibiting the expression of tissue factor and formation of neutrophil extracellular traps (NETs). Dunnione increases the cellular NAD+ levels in lung tissues of tumor-bearing mice to restore the declining sirtuin 1 (SIRT1) activity, thus deacetylating nuclear factor-kappa B (NF-κB) and preventing the overexpression of tissue factor in bronchial epithelial and vascular endothelial cells. In addition, we demonstrated that dunnione abolishes the ability of neutrophils to generate NETs by suppressing histone acetylation and NADPH oxidase (NOX) activity. Overall, our results reveal that the regulation of cellular NAD+ levels by pharmacological agents may inhibit pulmonary embolism in tumor-bearing mice, which may potentially be used as a viable therapeutic approach for the treatment of cancer-associated thrombosis.
Collapse
Affiliation(s)
- Wa Cao
- Center for Metabolic Function Regulation and Department of Microbiology, School of Medicine, Wonkwang University, Iksan 54538, Jeonbuk, Korea; (W.C.); (M.-Y.Z.); (S.-H.L.); (S.-B.L.)
| | - Meng-Yu Zhu
- Center for Metabolic Function Regulation and Department of Microbiology, School of Medicine, Wonkwang University, Iksan 54538, Jeonbuk, Korea; (W.C.); (M.-Y.Z.); (S.-H.L.); (S.-B.L.)
| | - Seung-Hoon Lee
- Center for Metabolic Function Regulation and Department of Microbiology, School of Medicine, Wonkwang University, Iksan 54538, Jeonbuk, Korea; (W.C.); (M.-Y.Z.); (S.-H.L.); (S.-B.L.)
| | - Su-Bin Lee
- Center for Metabolic Function Regulation and Department of Microbiology, School of Medicine, Wonkwang University, Iksan 54538, Jeonbuk, Korea; (W.C.); (M.-Y.Z.); (S.-H.L.); (S.-B.L.)
| | - Hyung-Jin Kim
- NADIANBIO Ltd., R201-1, Business Incubation Center, 460 Iksan-daero, Iksan 54538, Jeonbuk, Korea; (H.-J.K.); (B.-O.P.); (C.-H.Y.); (D.K.); (G.-S.O.); (T.-H.K.)
| | - Byung-Ouk Park
- NADIANBIO Ltd., R201-1, Business Incubation Center, 460 Iksan-daero, Iksan 54538, Jeonbuk, Korea; (H.-J.K.); (B.-O.P.); (C.-H.Y.); (D.K.); (G.-S.O.); (T.-H.K.)
| | - Cheol-Hwan Yoon
- NADIANBIO Ltd., R201-1, Business Incubation Center, 460 Iksan-daero, Iksan 54538, Jeonbuk, Korea; (H.-J.K.); (B.-O.P.); (C.-H.Y.); (D.K.); (G.-S.O.); (T.-H.K.)
| | - Dipendra Khadka
- NADIANBIO Ltd., R201-1, Business Incubation Center, 460 Iksan-daero, Iksan 54538, Jeonbuk, Korea; (H.-J.K.); (B.-O.P.); (C.-H.Y.); (D.K.); (G.-S.O.); (T.-H.K.)
| | - Gi-Su Oh
- NADIANBIO Ltd., R201-1, Business Incubation Center, 460 Iksan-daero, Iksan 54538, Jeonbuk, Korea; (H.-J.K.); (B.-O.P.); (C.-H.Y.); (D.K.); (G.-S.O.); (T.-H.K.)
| | - Hyeok Shim
- Internal Medicine, School of Medicine, Wonkwang University, Iksan 54538, Jeonbuk, Korea;
| | - Tae-Hwan Kwak
- NADIANBIO Ltd., R201-1, Business Incubation Center, 460 Iksan-daero, Iksan 54538, Jeonbuk, Korea; (H.-J.K.); (B.-O.P.); (C.-H.Y.); (D.K.); (G.-S.O.); (T.-H.K.)
| | - Hong-Seob So
- Center for Metabolic Function Regulation and Department of Microbiology, School of Medicine, Wonkwang University, Iksan 54538, Jeonbuk, Korea; (W.C.); (M.-Y.Z.); (S.-H.L.); (S.-B.L.)
- Correspondence:
| |
Collapse
|
16
|
Nishi M, Wang PY, Hwang PM. Cardiotoxicity of Cancer Treatments: Focus on Anthracycline Cardiomyopathy. Arterioscler Thromb Vasc Biol 2021; 41:2648-2660. [PMID: 34587760 PMCID: PMC8551037 DOI: 10.1161/atvbaha.121.316697] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/16/2021] [Indexed: 12/19/2022]
Abstract
Significant progress has been made in developing new treatments and refining the use of preexisting ones against cancer. Their successful use and the longer survival of cancer patients have been associated with reports of new cardiotoxicities and the better characterization of the previously known cardiac complications. Immunotherapies with monoclonal antibodies against specific cancer-promoting genes, chimeric antigen receptor T cells, and immune checkpoint inhibitors have been developed to fight cancer cells, but they can also show off-target effects on the heart. Some of these cardiotoxicities are thought to be due to nonspecific immune activation and inflammatory damage. Unlike immunotherapy-associated cardiotoxicities which are relatively new entities, there is extensive literature on anthracycline-induced cardiomyopathy. Here, we provide a brief overview of the cardiotoxicities of immunotherapies for the purpose of distinguishing them from anthracycline cardiomyopathy. This is especially relevant as the expansion of oncological treatments presents greater diagnostic challenges in determining the cause of cardiac dysfunction in cancer survivors with a history of multiple cancer treatments including anthracyclines and immunotherapies administered concurrently or serially over time. We then provide a focused review of the mechanisms proposed to underlie the development of anthracycline cardiomyopathy based on experimental data mostly in mouse models. Insights into its pathogenesis may stimulate the development of new strategies to identify patients who are susceptible to anthracycline cardiomyopathy while permitting low cardiac risk patients to receive optimal treatment for their cancer.
Collapse
Affiliation(s)
- Masahiro Nishi
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Ping-Yuan Wang
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Paul M Hwang
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
17
|
Li D, Yang Y, Wang S, He X, Liu M, Bai B, Tian C, Sun R, Yu T, Chu X. Role of acetylation in doxorubicin-induced cardiotoxicity. Redox Biol 2021; 46:102089. [PMID: 34364220 PMCID: PMC8350499 DOI: 10.1016/j.redox.2021.102089] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/23/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
As a potent chemotherapeutic agent, doxorubicin (DOX) is widely used for the treatment of a variety of cancers However, its clinical utility is limited by dose-dependent cardiotoxicity, and pathogenesis has traditionally been attributed to the formation of reactive oxygen species (ROS). Accordingly, the prevention of DOX-induced cardiotoxicity is an indispensable goal to optimize therapeutic regimens and reduce morbidity. Acetylation is an emerging and important epigenetic modification regulated by histone deacetylases (HDACs) and histone acetyltransferases (HATs). Despite extensive studies of the molecular basis and biological functions of acetylation, the application of acetylation as a therapeutic target for cardiotoxicity is in the initial stage, and further studies are required to clarify the complex acetylation network and improve the clinical management of cardiotoxicity. In this review, we summarize the pivotal functions of HDACs and HATs in DOX-induced oxidative stress, the underlying mechanisms, the contributions of noncoding RNAs (ncRNAs) and exercise-mediated deacetylases to cardiotoxicity. Furthermore, we describe research progress related to several important SIRT activators and HDAC inhibitors with potential clinical value for chemotherapy and cardiotoxicity. Collectively, a comprehensive understanding of specific roles and recent developments of acetylation in doxorubicin-induced cardiotoxicity will provide a basis for improved treatment outcomes in cancer and cardiovascular diseases.
Collapse
Affiliation(s)
- Daisong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yanyan Yang
- Department of Immunology, Basic Medicine School, Qingdao University, Qingdao, 266071, China
| | - Shizhong Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Xiangqin He
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Meixin Liu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Baochen Bai
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Chao Tian
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Ruicong Sun
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Basic Medicine School, Qingdao University, 38 Deng Zhou Road, Qingdao, 266021, China.
| | - Xianming Chu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China; Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266071, China.
| |
Collapse
|
18
|
Rashid MH, Babu D, Siraki AG. Interactions of the antioxidant enzymes NAD(P)H: Quinone oxidoreductase 1 (NQO1) and NRH: Quinone oxidoreductase 2 (NQO2) with pharmacological agents, endogenous biochemicals and environmental contaminants. Chem Biol Interact 2021; 345:109574. [PMID: 34228969 DOI: 10.1016/j.cbi.2021.109574] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/17/2021] [Accepted: 07/01/2021] [Indexed: 01/11/2023]
Abstract
NAD(P)H Quinone Oxidoreductase 1 (NQO1) is an antioxidant enzyme that catalyzes the two-electron reduction of several different classes of quinone-like compounds (quinones, quinone imines, nitroaromatics, and azo dyes). One-electron reduction of quinone or quinone-like metabolites is considered to generate semiquinones to initiate redox cycling that is responsible for the generation of reactive oxygen species and oxidative stress and may contribute to the initiation of adverse drug reactions and adverse health effects. On the other hand, the two-electron reduction of quinoid compounds appears important for drug activation (bioreductive activation) via chemical rearrangement or autoxidation. Two-electron reduction decreases quinone levels and opportunities for the generation of reactive species that can deplete intracellular thiol pools. Also, studies have shown that induction or depletion (knockout) of NQO1 were associated with decreased or increased susceptibilities to oxidative stress, respectively. Moreover, another member of the quinone reductase family, NRH: Quinone Oxidoreductase 2 (NQO2), has a significant functional and structural similarity with NQO1. The activity of both antioxidant enzymes, NQO1 and NQO2, becomes critically important when other detoxification pathways are exhausted. Therefore, this article summarizes the interactions of NQO1 and NQO2 with different pharmacological agents, endogenous biochemicals, and environmental contaminants that would be useful in the development of therapeutic approaches to reduce the adverse drug reactions as well as protection against quinone-induced oxidative damage. Also, future directions and areas of further study for NQO1 and NQO2 are discussed.
Collapse
Affiliation(s)
- Md Harunur Rashid
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada; Institute of Food and Radiation Biology, Bangladesh Atomic Energy Commission, Bangladesh
| | - Dinesh Babu
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Arno G Siraki
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada.
| |
Collapse
|
19
|
Dong H, Hao L, Zhang W, Zhong W, Guo W, Yue R, Sun X, Zhou Z. Activation of AhR-NQO1 Signaling Pathway Protects Against Alcohol-Induced Liver Injury by Improving Redox Balance. Cell Mol Gastroenterol Hepatol 2021; 12:793-811. [PMID: 34082111 PMCID: PMC8340139 DOI: 10.1016/j.jcmgh.2021.05.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Aryl hydrocarbon receptor (AhR) is a liver-enriched xenobiotic receptor that plays important role in detoxification response in liver. This study aimed to investigate how AhR signaling may impact the pathogenesis of alcohol-related liver disease (ALD). METHODS Chronic alcohol feeding animal studies were conducted with mouse models of hepatocyte-specific AhR knockout (AhRΔhep) and NAD(P)H quinone dehydrogenase 1 (NQO1) overexpression, and dietary supplementation of the AhR ligand indole-3-carbinol. Cell studies were conducted to define the causal role of AhR and NQO1 in regulation of redox balance and apoptosis. RESULTS Chronic alcohol consumption induced AhR activation and nuclear enrichment of NQO1 in hepatocytes of both alcoholic hepatitis patients and ALD mice. AhR deficiency exacerbated alcohol-induced liver injury, along with reduction of NQO1. Consistently, in vitro studies demonstrated that NQO1 expression was dependent on AhR. However, alcohol-induced NQO1 nuclear translocation was triggered by decreased cellular oxidized nicotinamide adenine dinucleotide (NAD+)-to-NADH ratio, rather than by AhR activation. Furthermore, both in vitro and in vivo overexpression NQO1 prevented alcohol-induced hepatic NAD+ depletion, thereby enhancing activities of NAD+-dependent enzymes and reversing alcohol-induced liver injury. In addition, therapeutic targeting of AhR in the liver with dietary indole-3-carbinol supplementation efficiently reversed alcoholic liver injury by AhR-NQO1 signaling activation. CONCLUSIONS This study demonstrated that AhR activation is a protective response to counteract alcohol-induced hepatic NAD+ depletion through induction of NQO1, and targeting the hepatic AhR-NQO1 pathway may serve as a novel therapeutic approach for ALD.
Collapse
Affiliation(s)
- Haibo Dong
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina
| | - Liuyi Hao
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina
| | - Wenliang Zhang
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina
| | - Wei Zhong
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina,Department of Nutrition, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina
| | - Wei Guo
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina
| | - Ruichao Yue
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina
| | - Xinguo Sun
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina
| | - Zhanxiang Zhou
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina,Department of Nutrition, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina,Correspondence Address correspondence to: Zhanxiang Zhou, PhD, Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, 500 Laureate Way, Suite 4226, Kannapolis, North Carolina 28081. fax: (704) 250-5809.
| |
Collapse
|
20
|
Luo LF, Qin LY, Wang JX, Guan P, Wang N, Ji ES. Astragaloside IV Attenuates the Myocardial Injury Caused by Adriamycin by Inhibiting Autophagy. Front Pharmacol 2021; 12:669782. [PMID: 34108879 PMCID: PMC8184095 DOI: 10.3389/fphar.2021.669782] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Astragaloside IV (ASIV) is the main active component of Astragalus, and can ameliorate cardiomyocyte hypertrophy, apoptosis and fibrosis. In this experiment, we studied how ASIV reduces the cardiotoxicity caused by adriamycin and protects the heart. To this end, rats were randomly divided into the control, ADR, ADR + ASIV and ASIV groups (n = 6). Echocardiography was used to observe cardiac function, HE staining was used to observe myocardial injury, TUNEL staining was used to observe myocardial cell apoptosis, and immunofluorescence and Western blotting was used to observe relevant proteins expression. Experiments have shown that adriamycin can damage heart function in rats, and increase the cell apoptosis index, autophagy level and oxidative stress level. Further results showed that ADR can inhibit the PI3K/Akt pathway. ASIV treatment can significantly improve the cardiac function of rats treated with ADR and regulate autophagy, oxidative stress and apoptosis. Our findings indicate that ASIV may reduce the heart damage caused by adriamycin by activating the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Li-Fei Luo
- Department of Physiology, School of Basic Medical Sciences, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Lu-Yun Qin
- Department of Physiology, School of Basic Medical Sciences, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jian-Xin Wang
- Department of Physiology, School of Basic Medical Sciences, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Peng Guan
- Department of Physiology, School of Basic Medical Sciences, Hebei University of Chinese Medicine, Shijiazhuang, China.,Department of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Na Wang
- Department of Physiology, School of Basic Medical Sciences, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - En-Sheng Ji
- Department of Physiology, School of Basic Medical Sciences, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
21
|
Role of PGC-1α in the Mitochondrial NAD + Pool in Metabolic Diseases. Int J Mol Sci 2021; 22:ijms22094558. [PMID: 33925372 PMCID: PMC8123861 DOI: 10.3390/ijms22094558] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondria play vital roles, including ATP generation, regulation of cellular metabolism, and cell survival. Mitochondria contain the majority of cellular nicotinamide adenine dinucleotide (NAD+), which an essential cofactor that regulates metabolic function. A decrease in both mitochondria biogenesis and NAD+ is a characteristic of metabolic diseases, and peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) orchestrates mitochondrial biogenesis and is involved in mitochondrial NAD+ pool. Here we discuss how PGC-1α is involved in the NAD+ synthesis pathway and metabolism, as well as the strategy for increasing the NAD+ pool in the metabolic disease state.
Collapse
|
22
|
Luo LF, Guan P, Qin LY, Wang JX, Wang N, Ji ES. Astragaloside IV inhibits adriamycin-induced cardiac ferroptosis by enhancing Nrf2 signaling. Mol Cell Biochem 2021; 476:2603-2611. [PMID: 33656642 DOI: 10.1007/s11010-021-04112-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/12/2021] [Indexed: 02/08/2023]
Abstract
Astragaloside IV (AsIV), an active ingredient isolated from traditional Chinese medicine astragalus membranaceus, is beneficial to cardiovascular health. This study aimed to characterize the functional role of AsIV against adriamycin (ADR)-induced cardiomyopathy. Here, healthy rats were treated with ADR and/or AsIV for 35 days. We found that AsIV protected the rats against ADR-induced cardiomyopathy characterized by myocardial fibrosis and cardiac dysfunction. Meanwhile, ADR increased type I and III collagens, TGF-β, NOX2, and NOX4 expression and SMAD2/3 activity in the left ventricles of rats, while those effects were countered by AsIV through suppressing oxidative stress. Moreover, ADR was found to promote cardiac ferroptosis, whereas administration of AsIV attenuated the process via activating Nrf2 signaling pathway and the subsequent GPx4 expression increasing. These results suggest that AsIV might play a protective role against ADR-induced myocardial fibrosis, which may partly attribute to its anti-ferroptotic action by enhancing Nrf2 signaling.
Collapse
Affiliation(s)
- Li-Fei Luo
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Peng Guan
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China.,College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Lu-Yun Qin
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Jian-Xin Wang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Na Wang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China.
| | - En-Sheng Ji
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China.
| |
Collapse
|
23
|
Packer M. Uric Acid Is a Biomarker of Oxidative Stress in the Failing Heart: Lessons Learned from Trials With Allopurinol and SGLT2 Inhibitors. J Card Fail 2020; 26:977-984. [PMID: 32890737 DOI: 10.1016/j.cardfail.2020.08.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022]
Abstract
Hyperuricemia increases the risk of heart failure, and higher levels of serum uric acid are seen in patients who have worse ventricular function, functional capacity, and prognosis. Heart failure is also accompanied by an upregulation of xanthine oxidase, the enzyme that catalyzes the formation of uric acid and a purported source of reactive oxygen species. However, the available evidence does not support the premise that either uric acid or the activation of xanthine oxidase has direct injurious effects on the heart in the clinical setting. Xanthine oxidase inhibitors (allopurinol and oxypurinol) have had little benefit and may exert detrimental effects in patients with chronic heart failure in randomized controlled trials, and the more selective and potent inhibitor febuxostat increases the risk of cardiovascular death more than allopurinol. Instead, the available evidence indicates that changes in xanthine oxidase and uric acid are biomarkers of oxidative stress (particularly in heart failure) and that xanthine oxidase may provide an important source of nitric oxide that quenches the injurious effects of reactive oxygen species. A primary determinant of the cellular redox state is nicotinamide adenine dinucleotide, whose levels drive an inverse relationship between xanthine oxidase and sirtuin-1, a nutrient deprivation sensor that exerts important antioxidant and cardioprotective effects. Interestingly, sodium-glucose cotransporter 2 inhibitors induce a state of nutrient deprivation that includes activation of sirtuin-1, suppression of xanthine oxidase, and lowering of serum uric acid. The intermediary role of sirtuin-1 in both uric acid-lowering and cardioprotection may explain why, in mediation analyses of large-scale cardiovascular trials, the effect of sodium-glucose cotransporter 2 inhibitors to decrease serum uric acid is a major predictor of the ability of these drugs to decrease serious heart failure events.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, Texas and Imperial College, London, UK.
| |
Collapse
|
24
|
Shrishrimal S, Chatterjee A, Kosmacek EA, Davis PJ, McDonald JT, Oberley-Deegan RE. Manganese porphyrin, MnTE-2-PyP, treatment protects the prostate from radiation-induced fibrosis (RIF) by activating the NRF2 signaling pathway and enhancing SOD2 and sirtuin activity. Free Radic Biol Med 2020; 152:255-270. [PMID: 32222469 PMCID: PMC7276298 DOI: 10.1016/j.freeradbiomed.2020.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 12/13/2022]
Abstract
Radiation therapy is a frequently used treatment for prostate cancer patients. Manganese (III) meso-tetrakis (N-ethylpyridinium-2-yl) porphyrin (MnTE-2-PyP or T2E or BMX-010) and other similar manganese porphyrin compounds that scavenge superoxide molecules have been demonstrated to be effective radioprotectors and prevent the development of radiation-induced fibrosis (RIF). However, understanding the molecular pathway changes associated with these compounds remains limited for radioprotection. Recent RNA-sequencing data from our laboratory revealed that MnTE-2-PyP treatment activated the nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathway. Therefore, we hypothesize that MnTE-2-PyP protects the prostate from RIF by activating the NRF2 signaling pathway. We identified that MnTE-2-PyP is a post-translational activator of NRF2 signaling in prostate fibroblast cells, which plays a major role in fibroblast activation and myofibroblast differentiation. The mechanism of NRF2 activation involves an increase in hydrogen peroxide and a corresponding decrease in kelch-like ECH-associated protein 1 (KEAP1) levels. Activation of NRF2 signaling leads to an increase in expression of NAD(P)H dehydrogenase [quinone] 1 (NQO1), nicotinamide adenine dinucleotide (NAD+) levels, sirtuin activity (nuclear and mitochondrial), and superoxide dismutase 2 (SOD2) expression/activity. Increase in mitochondrial sirtuin activity correlates with a decrease in SOD2 (K122) acetylation. This decrease in SOD2 K122 acetylation correlates with an increase in SOD2 activity and mitochondrial superoxide scavenging capacity. Further, in human primary prostate fibroblast cells, the NRF2 pathway plays a major role in the fibroblast to myofibroblast transformation, which is responsible for the fibrotic phenotype. In the context of radiation protection, MnTE-2-PyP fails to prevent fibroblast to myofibroblast transformation in the absence of NRF2 signaling. Collectively, our results indicate that the activation of the NRF2 signaling pathway by MnTE-2-PyP is at least a partial mechanism of radioprotection in prostate fibroblast cells.
Collapse
Affiliation(s)
- Shashank Shrishrimal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Arpita Chatterjee
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Elizabeth A Kosmacek
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | | | - J Tyson McDonald
- Department of Physics, Hampton University, Hampton, VA, 23668, USA
| | - Rebecca E Oberley-Deegan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
25
|
Katsyuba E, Romani M, Hofer D, Auwerx J. NAD + homeostasis in health and disease. Nat Metab 2020; 2:9-31. [PMID: 32694684 DOI: 10.1038/s42255-019-0161-5] [Citation(s) in RCA: 369] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022]
Abstract
The conceptual evolution of nicotinamide adenine dinucleotide (NAD+) from being seen as a simple metabolic cofactor to a pivotal cosubstrate for proteins regulating metabolism and longevity, including the sirtuin family of protein deacylases, has led to a new wave of scientific interest in NAD+. NAD+ levels decline during ageing, and alterations in NAD+ homeostasis can be found in virtually all age-related diseases, including neurodegeneration, diabetes and cancer. In preclinical settings, various strategies to increase NAD+ levels have shown beneficial effects, thus starting a competitive race to discover marketable NAD+ boosters to improve healthspan and lifespan. Here, we review the basics of NAD+ biochemistry and metabolism, and its roles in health and disease, and we discuss current challenges and the future translational potential of NAD+ research.
Collapse
Affiliation(s)
- Elena Katsyuba
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Nagi Bioscience, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mario Romani
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Dina Hofer
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Thermo Fisher Scientific, Zug, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|