1
|
Puccini SJ, Healy CL, Harsch BA, Ahmed AR, Shearer GC, O’Connell TD. A Cell Autonomous Free fatty acid receptor 4 - ChemR23 Signaling Cascade Protects Cardiac Myocytes from Ischemic Injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.26.625260. [PMID: 39829927 PMCID: PMC11741238 DOI: 10.1101/2024.11.26.625260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Acute myocardial infarction (AMI) causes ischemic damage and cardiac remodeling that ultimately progresses into ischemic cardiomyopathy (ICM). Coronary revascularization reduces morbidity and mortality from an MI, however, reperfusion also induces oxidative stress that drives cardiac myocyte (CM) dysfunction and ICM. Oxidative stress in CMs leads to reactive oxygen species (ROS) production and mitochondrial damage. Free fatty acid receptor 4 (Ffar4) is a GPCR for long chain fatty acids (FA) that is expressed in multiple cell types including CMs. We have recently shown that CM-specific overexpression of Ffar4 protects the heart from systolic dysfunction in the context of ischemic injury. Mechanistically, in CMs, Ffar4 increases the levels of 18-hydroxyeicosapentaenoic acid (18-HEPE), an eicosapentaenoic acid (EPA)-derived, cardioprotective oxylipin (oxidatively modified FA). 18-HEPE is the precursor for resolvin E1 (RvE1), a cardioprotective, specialized pro-resolving mediator (SPM) that activates the GPCR ChemR23. We hypothesize Ffar4 in CMs protects the heart from oxidative stress and ischemic injury through activation of a CM-autonomous, Ffar4-ChemR23 cardioprotective signaling pathway. Here, we developed an in vitro hypoxia reoxygenation (H/R) model (3 hours of hypoxia, 17 hours of reoxygenation) in adult CMs as a model for ischemic injury. In adult CMs subjected to H/R, TUG-891, an Ffar4 agonist, attenuated ROS generation and TUG-891, 18-HEPE, and RvE1 protected CMs from H/R-induced cell death. More importantly, we found that the ChemR23 antagonist α-NETA prevented TUG-891 cytoprotection in adult CMs subjected to H/R, demonstrating that ChemR23 is required for Ffar4 cardioprotection. In summary, our data demonstrate co-expression of Ffar4 and ChemR23 in the same CM, that Ffar4, 18-HEPE, and RvE1 attenuate H/R-induced CM death, and that ChemR23 is required for Ffar4 cardioprotection in H/R support a CM-autonomous Ffar4-ChemR23 cardioprotective signaling pathway.
Collapse
Affiliation(s)
- Sara J. Puccini
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN
| | - Chastity L. Healy
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN
| | - Brian A. Harsch
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA
| | - Ahmed R. Ahmed
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN
| | - Gregory C. Shearer
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA
| | - Timothy D. O’Connell
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN
- Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, MN
| |
Collapse
|
2
|
Solana-Balaguer J, Garcia-Segura P, Campoy-Campos G, Chicote-González A, Fernández-Irigoyen J, Santamaría E, Pérez-Navarro E, Masana M, Alberch J, Malagelada C. Motor skill learning modulates striatal extracellular vesicles' content in a mouse model of Huntington's disease. Cell Commun Signal 2024; 22:321. [PMID: 38863004 PMCID: PMC11167907 DOI: 10.1186/s12964-024-01693-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024] Open
Abstract
Huntington's disease (HD) is a neurological disorder caused by a CAG expansion in the Huntingtin gene (HTT). HD pathology mostly affects striatal medium-sized spiny neurons and results in an altered cortico-striatal function. Recent studies report that motor skill learning, and cortico-striatal stimulation attenuate the neuropathology in HD, resulting in an amelioration of some motor and cognitive functions. During physical training, extracellular vesicles (EVs) are released in many tissues, including the brain, as a potential means for inter-tissue communication. To investigate how motor skill learning, involving acute physical training, modulates EVs crosstalk between cells in the striatum, we trained wild-type (WT) and R6/1 mice, the latter with motor and cognitive deficits, on the accelerating rotarod test, and we isolated their striatal EVs. EVs from R6/1 mice presented alterations in the small exosome population when compared to WT. Proteomic analyses revealed that striatal R6/1 EVs recapitulated signaling and energy deficiencies present in HD. Motor skill learning in R6/1 mice restored the amount of EVs and their protein content in comparison to naïve R6/1 mice. Furthermore, motor skill learning modulated crucial pathways in metabolism and neurodegeneration. All these data provide new insights into the pathogenesis of HD and put striatal EVs in the spotlight to understand the signaling and metabolic alterations in neurodegenerative diseases. Moreover, our results suggest that motor learning is a crucial modulator of cell-to-cell communication in the striatum.
Collapse
Affiliation(s)
- Júlia Solana-Balaguer
- Departament de Biomedicina, Institut de Neurociències, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Casanova 143, North Wing, 3rd Floor, Barcelona, Catalonia, 08036, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain.
| | - Pol Garcia-Segura
- Departament de Biomedicina, Institut de Neurociències, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Casanova 143, North Wing, 3rd Floor, Barcelona, Catalonia, 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Genís Campoy-Campos
- Departament de Biomedicina, Institut de Neurociències, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Casanova 143, North Wing, 3rd Floor, Barcelona, Catalonia, 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Almudena Chicote-González
- Departament de Biomedicina, Institut de Neurociències, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Casanova 143, North Wing, 3rd Floor, Barcelona, Catalonia, 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | | | - Enrique Santamaría
- Proteored-ISCIII, Proteomics Unit, Departamento de Salud, UPNA, Navarrabiomed, Pamplona, IdiSNA, Spain
| | - Esther Pérez-Navarro
- Departament de Biomedicina, Institut de Neurociències, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Casanova 143, North Wing, 3rd Floor, Barcelona, Catalonia, 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mercè Masana
- Departament de Biomedicina, Institut de Neurociències, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Casanova 143, North Wing, 3rd Floor, Barcelona, Catalonia, 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jordi Alberch
- Departament de Biomedicina, Institut de Neurociències, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Casanova 143, North Wing, 3rd Floor, Barcelona, Catalonia, 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Cristina Malagelada
- Departament de Biomedicina, Institut de Neurociències, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Casanova 143, North Wing, 3rd Floor, Barcelona, Catalonia, 08036, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain.
| |
Collapse
|
3
|
Ma X, Cao F, Cui J, Li X, Yin Z, Wu Y, Wang Q. Orexin B protects dopaminergic neurons from 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity associated with reduced extracellular signal-regulated kinase phosphorylation. Mol Biol Rep 2024; 51:669. [PMID: 38787465 DOI: 10.1007/s11033-024-09587-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND The loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) is a major pathological hallmark of Parkinson's disease (PD). Orexin B (OXB) has been reported to promote the growth of DA neurons. However, the roles of OXB in the degeneration of DA neurons still remained not fully clear. METHODS An in vivo PD model was constructed by administrating 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in mice. Pole test was performed to investigate the motor function of mice and the number of DA neurons was detected by immunofluorescence (IF). A PD cell model was established by treating SH-SY5Y cells with 1-methyl-4-phenylpyridinium (MPP+). OXB was added to the culture medium 2 h after MPP + treatment. Microscopic analysis was carried out to investigate the function of OXB in the cell model of PD 24 h after MPP + challenge. RNA-Seq analysis of the PD cell model was performed to explore the possible mechanisms. Western blot was used to detect the phosphorylation levels of extracellular signal-regulated kinase (ERK). RESULTS OXB significantly decreased the DA neurons death caused by MPTP, alleviated MPP+-induced neurotoxicity in SH-SY5Y cells, and robustly enhanced the weight and motor ability of PD mice. Besides, RNA-Seq analysis demonstrated that the mitogen-activated protein kinase (MAPK) pathway was involved in the pathology of PD. Furthermore, MPP + led to increased levels of phosphorylation of ERK (p-ERK), OXB treatment significantly decreased the levels of p-ERK in MPP+-treated SH-SY5Y cells. CONCLUSIONS This study demonstrated that OXB exerts a neuroprotective role associated with reduced ERK phosphorylation in the PD model. This suggests that OXB may have therapeutic potential for treatment of PD.
Collapse
Affiliation(s)
- Xiaodan Ma
- Institute of Mental Health, Jining Medical University, Jining, Shandong, 272067, China
| | - Fei Cao
- Institute of Mental Health, Jining Medical University, Jining, Shandong, 272067, China
- Xiamen Key Laboratory of Translational Medical of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, 361000, China
| | - Jing Cui
- Institute of Mental Health, Jining Medical University, Jining, Shandong, 272067, China
| | - Xuezhi Li
- Institute of Mental Health, Jining Medical University, Jining, Shandong, 272067, China
| | - Zuojuan Yin
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yili Wu
- Institute of Mental Health, Jining Medical University, Jining, Shandong, 272067, China.
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| | - Qinqin Wang
- Institute of Mental Health, Jining Medical University, Jining, Shandong, 272067, China.
| |
Collapse
|
4
|
Bourque K, Jones-Tabah J, Pétrin D, Martin RD, Tanny JC, Hébert TE. Comparing the signaling and transcriptome profiling landscapes of human iPSC-derived and primary rat neonatal cardiomyocytes. Sci Rep 2023; 13:12248. [PMID: 37507481 PMCID: PMC10382583 DOI: 10.1038/s41598-023-39525-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023] Open
Abstract
The inaccessibility of human cardiomyocytes significantly hindered years of cardiovascular research efforts. To overcome these limitations, non-human cell sources were used as proxies to study heart function and associated diseases. Rodent models became increasingly acceptable surrogates to model the human heart either in vivo or through in vitro cultures. More recently, due to concerns regarding animal to human translation, including cross-species differences, the use of human iPSC-derived cardiomyocytes presented a renewed opportunity. Here, we conducted a comparative study, assessing cellular signaling through cardiac G protein-coupled receptors (GPCRs) in rat neonatal cardiomyocytes (RNCMs) and human induced pluripotent stem cell-derived cardiomyocytes. Genetically encoded biosensors were used to explore GPCR-mediated nuclear protein kinase A (PKA) and extracellular signal-regulated kinase 1/ 2 (ERK1/2) activities in both cardiomyocyte populations. To increase data granularity, a single-cell analytical approach was conducted. Using automated high content microscopy, our analyses of nuclear PKA and ERK1/2 signaling revealed distinct response clusters in rat and human cardiomyocytes. In line with this, bulk RNA-seq revealed key differences in the expression patterns of GPCRs, G proteins and downstream effector expression levels. Our study demonstrates that human stem cell-derived models of the cardiomyocyte offer distinct advantages for understanding cellular signaling in the heart.
Collapse
Affiliation(s)
- Kyla Bourque
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Jace Jones-Tabah
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Darlaine Pétrin
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Ryan D Martin
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Jason C Tanny
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada.
| |
Collapse
|
5
|
Jong YI, Harmon SK, O'Malley KL. GPCR
Signaling from Intracellular Membranes. GPCRS AS THERAPEUTIC TARGETS 2022:216-298. [DOI: 10.1002/9781119564782.ch8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
6
|
Wanjiang W, Xin C, Yaxing C, Jie W, Hongyan Z, Fei N, Chengmin L, Chengjian F, Jichao Y, Jiangkai L. Curcumin Improves Human Umbilical Cord-Derived Mesenchymal Stem Cell Survival via ERK1/2 Signaling and Promotes Motor Outcomes After Spinal Cord Injury. Cell Mol Neurobiol 2022; 42:1241-1252. [PMID: 33247374 PMCID: PMC11441298 DOI: 10.1007/s10571-020-01018-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/18/2020] [Indexed: 11/28/2022]
Abstract
Human umbilical cord-derived mesenchymal stem cell (hUC-MSC) transplantation is thought to be a promising strategy for treating spinal cord injury (SCI). However, the low survival rate of transplanted hUC-MSCs limits their clinical application in cell replacement therapy. Curcumin can suppress inflammation after SCI; however, it remains unknown whether curcumin can modulate the survival of transplanted hUC-MSCs. In this study, to investigate whether curcumin could strengthen the therapeutic effects of hUC-MSC transplantation on SCI, we induced hUC-MSC apoptosis with TNF-α, transplanted hUC-MSC into SCI rats, and assessed the antiapoptotic effect and mechanism of curcumin. LDH release analysis and flow cytometry demonstrated that TNF-α led to hUC-MSC apoptosis and that curcumin increased the hUC-MSC survival rate in a dose-dependent manner. In addition, we showed that the phosphorylation levels of ERK1/2, JNK, and P38 were upregulated in apoptotic hUC-MSCs, while curcumin increased the phosphorylation of ERK1/2 but did not activate JNK or P38, and these effects were reversed by the p42/44 antagonist U0126. Furthermore, we found that the motor function scores and number of surviving HNA-positive cells were significantly increased after curcumin and hUC-MSC transplantation therapy 8 weeks post-SCI, while U0126 markedly attenuated these effects. These data confirmed that curcumin suppressed hUC-MSC apoptosis through the ERK1/2 signaling pathway and that combined curcumin and hUC-MSC treatment improved motor function in rats after SCI. The current research provides a strong basis for hUC-MSC replacement therapy in conjunction with curcumin in the treatment and management of SCI in humans.
Collapse
Affiliation(s)
- Wu Wanjiang
- Department of Neurosurgery, Institute of Neurosurgery, Key Laboratory of Neurotrauma Prevention and Treatment, Army Medical University), Southwest Hospital, Third Military Medical University, 29 Gaotanyan Street, Chongqing, 400038, China
| | - Chen Xin
- Department of Neurosurgery, Institute of Neurosurgery, Key Laboratory of Neurotrauma Prevention and Treatment, Army Medical University), Southwest Hospital, Third Military Medical University, 29 Gaotanyan Street, Chongqing, 400038, China
| | - Chen Yaxing
- Department of Neurosurgery, Institute of Neurosurgery, Key Laboratory of Neurotrauma Prevention and Treatment, Army Medical University), Southwest Hospital, Third Military Medical University, 29 Gaotanyan Street, Chongqing, 400038, China
| | - Wang Jie
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Chongqing, 400038, China
| | - Zhang Hongyan
- Department of Neurosurgery, Institute of Neurosurgery, Key Laboratory of Neurotrauma Prevention and Treatment, Army Medical University), Southwest Hospital, Third Military Medical University, 29 Gaotanyan Street, Chongqing, 400038, China
| | - Ni Fei
- Department of Field Nursing, School of Nursing, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ling Chengmin
- Department of Neurosurgery, Institute of Neurosurgery, Key Laboratory of Neurotrauma Prevention and Treatment, Army Medical University), Southwest Hospital, Third Military Medical University, 29 Gaotanyan Street, Chongqing, 400038, China
| | - Feng Chengjian
- Department of Medical Engineering, 958th Hospital of the People's Liberation Army, Chongqing, 400038, China
| | - Yuan Jichao
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Chongqing, 400038, China.
| | - Lin Jiangkai
- Department of Neurosurgery, Institute of Neurosurgery, Key Laboratory of Neurotrauma Prevention and Treatment, Army Medical University), Southwest Hospital, Third Military Medical University, 29 Gaotanyan Street, Chongqing, 400038, China.
| |
Collapse
|
7
|
Liu Y, Wu M, Zhong C, Xu B, Kang L. M2-like macrophages transplantation protects against the doxorubicin-induced heart failure via mitochondrial transfer. Biomater Res 2022; 26:14. [PMID: 35410296 PMCID: PMC8996664 DOI: 10.1186/s40824-022-00260-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022] Open
Abstract
Aims The alternatively activated macrophages have shown a cardioprotective effect in heart failure. However, the effect of M2 adoptive transfer in non-ischemic heart failure is unknown. In this study, we evaluated the efficacy of M-CSF plus IL-4 induced M2-like macrophages transplantation in doxorubicin-induced cardiotoxicity. Methods Bone marrow mononuclear cells were polarized as CCR2+CD206+ M2-like macrophages by a combination of M-CSF plus IL-4 treatment. C57BL/6 mice received a single intraperitoneal injection of doxorubicin (15 mg/kg). The treatment group were treated with M2-like macrophages (1 × 10^6 cells per mouse; i.v.) once a week for 2 weeks. After 3 weeks, we examined the percentage of resident cells and cardiac function. Furthermore, we evaluated cardiac fibrosis, cardiomyocyte apoptosis and circulating inflammatory factors. Finally, we investigated the mitochondria transfer in vitro in a direct and indirect co-culture conditions. Results Cardiac function was significantly improved in doxorubicin-induced heart failure by adoptive transfer of M2-like macrophages. Besides, M2-like macrophages treatment attenuated cardiac fibrosis and cardiomyocyte apoptosis, as well as increased the level of circulating IL-4 and Th2 response. In vitro, M2-like macrophages could transfer mitochondria to injured cardiomyocytes in a direct and indirect way. Conclusions In our study, adoptive transfer of M2-like macrophages could protect against the doxorubicin-induced cardiotoxicity, which may be partly attributed to mitochondria transfer. And M2-like macrophages transplantation could become a treatment for non-ischemic heart failure in the clinical practice. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s40824-022-00260-y.
Collapse
Affiliation(s)
- Yihai Liu
- Department of Cardiology, Affiliated Drum Tower Hospital, Nanjing University Medical School, 321 Zhongshan Road, 210008, Nanjing, Jiangsu, China.,Department of Cardiology, Nanjing Drum Tower Hospital, Clinical School of Nanjing Medical University, 210008, Nanjing, Jiangsu, China
| | - Mingyue Wu
- Department of Cardiology, Affiliated Drum Tower Hospital, Nanjing University Medical School, 321 Zhongshan Road, 210008, Nanjing, Jiangsu, China
| | - Chongxia Zhong
- Department of Cardiology, Affiliated Drum Tower Hospital, Nanjing University Medical School, 321 Zhongshan Road, 210008, Nanjing, Jiangsu, China
| | - Biao Xu
- Department of Cardiology, Affiliated Drum Tower Hospital, Nanjing University Medical School, 321 Zhongshan Road, 210008, Nanjing, Jiangsu, China.
| | - Lina Kang
- Department of Cardiology, Affiliated Drum Tower Hospital, Nanjing University Medical School, 321 Zhongshan Road, 210008, Nanjing, Jiangsu, China.
| |
Collapse
|
8
|
Bourque K, Hawey C, Jiang A, Mazarura GR, Hébert TE. Biosensor-based profiling to track cellular signalling in patient-derived models of dilated cardiomyopathy. Cell Signal 2022; 91:110239. [PMID: 34990783 DOI: 10.1016/j.cellsig.2021.110239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/06/2021] [Accepted: 12/29/2021] [Indexed: 12/18/2022]
Abstract
Dilated cardiomyopathies (DCM) represent a diverse group of cardiovascular diseases impacting the structure and function of the myocardium. To better treat these diseases, we need to understand the impact of such cardiomyopathies on critical signalling pathways that drive disease progression downstream of receptors we often target therapeutically. Our understanding of cellular signalling events has progressed substantially in the last few years, in large part due to the design, validation and use of biosensor-based approaches to studying such events in cells, tissues and in some cases, living animals. Another transformative development has been the use of human induced pluripotent stem cells (hiPSCs) to generate disease-relevant models from individual patients. We highlight the importance of going beyond monocellular cultures to incorporate the influence of paracrine signalling mediators. Finally, we discuss the recent coalition of these approaches in the context of DCM. We discuss recent work in generating patient-derived models of cardiomyopathies and the utility of using signalling biosensors to track disease progression and test potential therapeutic strategies that can be later used to inform treatment options in patients.
Collapse
Affiliation(s)
- Kyla Bourque
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Cara Hawey
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Alyson Jiang
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Grace R Mazarura
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada.
| |
Collapse
|
9
|
ERK1/2: An Integrator of Signals That Alters Cardiac Homeostasis and Growth. BIOLOGY 2021; 10:biology10040346. [PMID: 33923899 PMCID: PMC8072600 DOI: 10.3390/biology10040346] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/24/2022]
Abstract
Integration of cellular responses to extracellular cues is essential for cell survival and adaptation to stress. Extracellular signal-regulated kinase (ERK) 1 and 2 serve an evolutionarily conserved role for intracellular signal transduction that proved critical for cardiomyocyte homeostasis and cardiac stress responses. Considering the importance of ERK1/2 in the heart, understanding how these kinases operate in both normal and disease states is critical. Here, we review the complexity of upstream and downstream signals that govern ERK1/2-dependent regulation of cardiac structure and function. Particular emphasis is given to cardiomyocyte hypertrophy as an outcome of ERK1/2 activation regulation in the heart.
Collapse
|
10
|
Myagmar BE, Ismaili T, Swigart PM, Raghunathan A, Baker AJ, Sahdeo S, Blevitt JM, Milla ME, Simpson PC. Coupling to Gq Signaling Is Required for Cardioprotection by an Alpha-1A-Adrenergic Receptor Agonist. Circ Res 2019; 125:699-706. [PMID: 31426700 DOI: 10.1161/circresaha.118.314416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Gq signaling in cardiac myocytes is classically considered toxic. Targeting Gq directly to test this is problematic, because cardiac myocytes have many Gq-coupled receptors. OBJECTIVE Test whether Gq coupling is required for the cardioprotective effects of an alpha-1A-AR (adrenergic receptor) agonist. METHODS AND RESULTS In recombinant cells, a mouse alpha-1A-AR with a 6-residue substitution in the third intracellular loop does not couple to Gq signaling. Here we studied a knockin mouse with this alpha-1A-AR mutation. Heart alpha-1A receptor levels and antagonist affinity in the knockin were identical to wild-type. In wild-type cardiac myocytes, the selective alpha-1A agonist A61603-stimulated phosphoinositide-phospholipase C and myocyte contraction. In myocytes with the alpha-1A knockin, both A61603 effects were absent, indicating that Gq coupling was absent. Surprisingly, A61603 activation of cardioprotective ERK (extracellular signal-regulated kinase) was markedly impaired in the KI mutant myocytes, and A61603 did not protect mutant myocytes from doxorubicin toxicity in vitro. Similarly, mice with the α1A KI mutation had increased mortality after transverse aortic constriction, and A61603 did not rescue cardiac function in mice with the Gq coupling-defective alpha-1A receptor. CONCLUSIONS Gq coupling is required for cardioprotection by an alpha-1A-AR agonist. Gq signaling can be adaptive.
Collapse
Affiliation(s)
- Bat-Erdene Myagmar
- From the VA Medical Center, San Francisco, CA (B.-E.M., P.M.S., A.R., A.J.B., P.C.S.).,University of California, San Francisco (B.-E.M., A.J.B., P.C.S.)
| | - Taylor Ismaili
- Janssen Research and Development, San Diego, CA (T.I., S.S., J.M.B.)
| | - Philip M Swigart
- From the VA Medical Center, San Francisco, CA (B.-E.M., P.M.S., A.R., A.J.B., P.C.S.)
| | - Anaha Raghunathan
- From the VA Medical Center, San Francisco, CA (B.-E.M., P.M.S., A.R., A.J.B., P.C.S.)
| | - Anthony J Baker
- From the VA Medical Center, San Francisco, CA (B.-E.M., P.M.S., A.R., A.J.B., P.C.S.).,University of California, San Francisco (B.-E.M., A.J.B., P.C.S.)
| | - Sunil Sahdeo
- Janssen Research and Development, San Diego, CA (T.I., S.S., J.M.B.)
| | | | | | - Paul C Simpson
- From the VA Medical Center, San Francisco, CA (B.-E.M., P.M.S., A.R., A.J.B., P.C.S.).,University of California, San Francisco (B.-E.M., A.J.B., P.C.S.)
| |
Collapse
|