1
|
Vignolle GA, Bauerstätter P, Schönthaler S, Nöhammer C, Olischar M, Berger A, Kasprian G, Langs G, Vierlinger K, Goeral K. Predicting Outcomes of Preterm Neonates Post Intraventricular Hemorrhage. Int J Mol Sci 2024; 25:10304. [PMID: 39408633 PMCID: PMC11477204 DOI: 10.3390/ijms251910304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Intraventricular hemorrhage (IVH) in preterm neonates presents a high risk for developing posthemorrhagic ventricular dilatation (PHVD), a severe complication that can impact survival and long-term outcomes. Early detection of PHVD before clinical onset is crucial for optimizing therapeutic interventions and providing accurate parental counseling. This study explores the potential of explainable machine learning models based on targeted liquid biopsy proteomics data to predict outcomes in preterm neonates with IVH. In recent years, research has focused on leveraging advanced proteomic technologies and machine learning to improve prediction of neonatal complications, particularly in relation to neurological outcomes. Machine learning (ML) approaches, combined with proteomics, offer a powerful tool to identify biomarkers and predict patient-specific risks. However, challenges remain in integrating large-scale, multiomic datasets and translating these findings into actionable clinical tools. Identifying reliable, disease-specific biomarkers and developing explainable ML models that clinicians can trust and understand are key barriers to widespread clinical adoption. In this prospective longitudinal cohort study, we analyzed 1109 liquid biopsy samples from 99 preterm neonates with IVH, collected at up to six timepoints over 13 years. Various explainable ML techniques-including statistical, regularization, deep learning, decision trees, and Bayesian methods-were employed to predict PHVD development and survival and to discover disease-specific protein biomarkers. Targeted proteomic analyses were conducted using serum and urine samples through a proximity extension assay capable of detecting low-concentration proteins in complex biofluids. The study identified 41 significant independent protein markers in the 1600 calculated ML models that surpassed our rigorous threshold (AUC-ROC of ≥0.7, sensitivity ≥ 0.6, and selectivity ≥ 0.6), alongside gestational age at birth, as predictive of PHVD development and survival. Both known biomarkers, such as neurofilament light chain (NEFL), and novel biomarkers were revealed. These findings underscore the potential of targeted proteomics combined with ML to enhance clinical decision-making and parental counseling, though further validation is required before clinical implementation.
Collapse
Affiliation(s)
- Gabriel A. Vignolle
- Center for Health & Bioresources, Competence Unit Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria; (G.A.V.); (P.B.); (S.S.); (C.N.); (K.V.)
| | - Priska Bauerstätter
- Center for Health & Bioresources, Competence Unit Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria; (G.A.V.); (P.B.); (S.S.); (C.N.); (K.V.)
| | - Silvia Schönthaler
- Center for Health & Bioresources, Competence Unit Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria; (G.A.V.); (P.B.); (S.S.); (C.N.); (K.V.)
| | - Christa Nöhammer
- Center for Health & Bioresources, Competence Unit Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria; (G.A.V.); (P.B.); (S.S.); (C.N.); (K.V.)
| | - Monika Olischar
- Comprehensive Center for Pediatrics, Department of Pediatrics and Adolescent Medicine, Division of Neonatology, Intensive Care and Neuropediatrics, Medical University of Vienna, 1090 Vienna, Austria; (M.O.); (A.B.)
| | - Angelika Berger
- Comprehensive Center for Pediatrics, Department of Pediatrics and Adolescent Medicine, Division of Neonatology, Intensive Care and Neuropediatrics, Medical University of Vienna, 1090 Vienna, Austria; (M.O.); (A.B.)
| | - Gregor Kasprian
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Neuro- and Musculosceletal Radiology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Georg Langs
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria;
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Klemens Vierlinger
- Center for Health & Bioresources, Competence Unit Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria; (G.A.V.); (P.B.); (S.S.); (C.N.); (K.V.)
| | - Katharina Goeral
- Comprehensive Center for Pediatrics, Department of Pediatrics and Adolescent Medicine, Division of Neonatology, Intensive Care and Neuropediatrics, Medical University of Vienna, 1090 Vienna, Austria; (M.O.); (A.B.)
| |
Collapse
|
2
|
Zhu J, Liu H, Gao R, Gong R, Wang J, Zhou D, Yu M, Li Y. Genetic-informed proteome-wide scan reveals potential causal plasma proteins for idiopathic pulmonary fibrosis. Thorax 2024; 79:878-882. [PMID: 38871465 DOI: 10.1136/thorax-2024-221398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease for which there are no reliable biomarkers or disease-modifying drugs. Here, we integrated human genomics and proteomics to investigate the causal associations between 2769 plasma proteins and IPF. Our Mendelian randomisation analysis identified nine proteins associated with IPF, of which three (FUT3, ADAM15 and USP28) were colocalised. ADAM15 emerged as the top candidate, supported by expression quantitative trait locus analysis in both blood and lung tissue. These findings provide novel insights into the aetiology of IPF and offer translational opportunities in response to the clinical challenges of this devastating disease.
Collapse
Affiliation(s)
- Jiahao Zhu
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Houpu Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Rui Gao
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Ruicheng Gong
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Jing Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Dan Zhou
- Department of Big Data in Health Science, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Min Yu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yingjun Li
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
3
|
Faralli JA, Filla MS, Yang YF, Sun YY, Johns K, Keller KE, Peters DM. Digital spatial profiling of segmental outflow regions in trabecular meshwork reveals a role for ADAM15. PLoS One 2024; 19:e0298802. [PMID: 38394161 PMCID: PMC10889904 DOI: 10.1371/journal.pone.0298802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
In this study we used a spatial transcriptomics approach to identify genes specifically associated with either high or low outflow regions in the trabecular meshwork (TM) that could potentially affect aqueous humor outflow in vivo. High and low outflow regions were identified and isolated from organ cultured human anterior segments perfused with fluorescently-labeled 200 nm FluoSpheres. The NanoString GeoMx Digital Spatial Profiler (DSP) platform was then used to identified genes in the paraffin embedded tissue sections from within those regions. These transcriptome analyses revealed that 16 genes were statistically upregulated in high outflow regions and 57 genes were statistically downregulated in high outflow regions when compared to low outflow regions. Gene ontology enrichment analysis indicated that the top three biological categories of these differentially expressed genes were ECM/cell adhesion, signal transduction, and transcription. The ECM/cell adhesion genes that showed the largest differential expression (Log2FC ±1.5) were ADAM15, BGN, LDB3, and CRKL. ADAM15, which is a metalloproteinase that can bind integrins, was upregulated in high outflow regions, while the proteoglycan BGN and two genes associated with integrin signaling (LDB3, and CRKL) were downregulated. Immunolabeling studies supported the differential expression of ADAM15 and showed that it was specifically upregulated in high outflow regions along the inner wall of Schlemm's canal and in the juxtacanalicular (JCT) region of the TM. In addition to these genes, the studies showed that genes for decorin, a small leucine-rich proteoglycan, and the α8 integrin subunit were enriched in high outflow regions. These studies identify several novel genes that could be involved in segmental outflow, thus demonstrating that digital spatial profiling could be a useful approach for understanding segmental flow through the TM. Furthermore, this study suggests that changes in the expression of genes involved in regulating the activity and/or organization of the ECM and integrins in the TM are likely to be key players in segmental outflow.
Collapse
Affiliation(s)
- Jennifer A. Faralli
- Departments of Pathology & Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Mark S. Filla
- Departments of Pathology & Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Yong-Feng Yang
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Ying Ying Sun
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Kassidy Johns
- Departments of Pathology & Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Kate E. Keller
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Donna M. Peters
- Departments of Pathology & Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
- Ophthalmology & Visual Sciences, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
4
|
Grannemann C, Pabst A, Honert A, Schieren J, Martin C, Hank S, Böll S, Bläsius K, Düsterhöft S, Jahr H, Merkel R, Leube R, Babendreyer A, Ludwig A. Mechanical activation of lung epithelial cells through the ion channel Piezo1 activates the metalloproteinases ADAM10 and ADAM17 and promotes growth factor and adhesion molecule release. BIOMATERIALS ADVANCES 2023; 152:213516. [PMID: 37348330 DOI: 10.1016/j.bioadv.2023.213516] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/25/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
In the lung, pulmonary epithelial cells undergo mechanical stretching during ventilation. The associated cellular mechanoresponse is still poorly understood at the molecular level. Here, we demonstrate that activation of the mechanosensitive cation channel Piezo1 in a human epithelial cell line (H441) and in primary human lung epithelial cells induces the proteolytic activity of the metalloproteinases ADAM10 and ADAM17 at the plasma membrane. These ADAMs are known to convert cell surface expressed proteins into soluble and thereby play major roles in proliferation, barrier regulation and inflammation. We observed that chemical activation of Piezo1 promotes cleavage of substrates that are specific for either ADAM10 or ADAM17. Activation of Piezo1 also induced the synthesis and ADAM10/17-dependent release of the growth factor amphiregulin (AREG). In addition, junctional adhesion molecule A (JAM-A) was shed in an ADAM10/17-dependent manner resulting in a reduction of cell contacts. Stretching experiments combined with Piezo1 knockdown further demonstrated that mechanical activation promotes shedding via Piezo1. Most importantly, high pressure ventilation of murine lungs increased AREG and JAM-A release into the alveolar space, which was reduced by a Piezo1 inhibitor. Our study provides a novel link between stretch-induced Piezo1 activation and the activation of ADAM10 and ADAM17 in lung epithelium. This may help to understand acute respiratory distress syndrome (ARDS) which is induced by ventilation stress and goes along with perturbed epithelial permeability and release of growth factors.
Collapse
Affiliation(s)
- Caroline Grannemann
- Institute of Molecular Pharmacology, RWTH Aachen University, Aachen, Germany
| | - Alessa Pabst
- Institute of Molecular Pharmacology, RWTH Aachen University, Aachen, Germany
| | - Annika Honert
- Institute of Molecular Pharmacology, RWTH Aachen University, Aachen, Germany
| | - Jana Schieren
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Christian Martin
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Sophia Hank
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Svenja Böll
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Katharina Bläsius
- Institute of Molecular Pharmacology, RWTH Aachen University, Aachen, Germany
| | - Stefan Düsterhöft
- Institute of Molecular Pharmacology, RWTH Aachen University, Aachen, Germany
| | - Holger Jahr
- Institute of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Rudolf Merkel
- Institute of Biological Information Processing 2, Mechanobiology, Research Centre Juelich, Juelich, Germany
| | - Rudolf Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Aaron Babendreyer
- Institute of Molecular Pharmacology, RWTH Aachen University, Aachen, Germany.
| | - Andreas Ludwig
- Institute of Molecular Pharmacology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
5
|
Zhong X, Li Z, Xu Q, Peng H, Su Y, Le K, Shu Z, Liao Y, Ma Z, Pan X, Xu S, Zhou S. Short-chain acyl-CoA dehydrogenase is a potential target for the treatment of vascular remodelling. J Hypertens 2023; 41:775-793. [PMID: 36883465 DOI: 10.1097/hjh.0000000000003399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
OBJECTIVES Short-chain acyl-CoA dehydrogenase (SCAD), a key enzyme in the fatty acid oxidation process, is not only involved in ATP synthesis but also regulates the production of mitochondrial reactive oxygen species (ROS) and nitric oxide synthesis. The purpose of this study was to investigate the possible role of SCAD in hypertension-associated vascular remodelling. METHODS In-vivo experiments were performed on spontaneously hypertensive rats (SHRs, ages of 4 weeks to 20 months) and SCAD knockout mice. The aorta sections of hypertensive patients were used for measurement of SCAD expression. In-vitro experiments with t-butylhydroperoxide (tBHP), SCAD siRNA, adenovirus-SCAD (MOI 90) or shear stress (4, 15 dynes/cm 2 ) were performed using human umbilical vein endothelial cells (HUVECs). RESULTS Compared with age-matched Wistar rats, aortic SCAD expression decreased gradually in SHRs with age. In addition, aerobic exercise training for 8 weeks could significantly increase SCAD expression and enzyme activity in the aortas of SHRs while decreasing vascular remodelling in SHRs. SCAD knockout mice also exhibited aggravated vascular remodelling and cardiovascular dysfunction. Likewise, SCAD expression was also decreased in tBHP-induced endothelial cell apoptosis models and the aortas of hypertensive patients. SCAD siRNA caused HUVEC apoptosis in vitro , whereas adenovirus-mediated SCAD overexpression (Ad-SCAD) protected against HUVEC apoptosis. Furthermore, SCAD expression was decreased in HUVECs exposed to low shear stress (4 dynes/cm 2 ) and increased in HUVECs exposed to 15 dynes/cm 2 compared with those under static conditions. CONCLUSION SCAD is a negative regulator of vascular remodelling and may represent a novel therapeutic target for vascular remodelling.
Collapse
Affiliation(s)
- Xiaoyi Zhong
- School of Chinese Materia Medica, GuangDong Pharmaceutical University
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, GuangZhou, China
| | - Zhonghong Li
- School of Chinese Materia Medica, GuangDong Pharmaceutical University
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, GuangZhou, China
| | - Qingping Xu
- School of Chinese Materia Medica, GuangDong Pharmaceutical University
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, GuangZhou, China
| | - Huan Peng
- School of Chinese Materia Medica, GuangDong Pharmaceutical University
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, GuangZhou, China
| | - Yongshao Su
- School of Chinese Materia Medica, GuangDong Pharmaceutical University
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, GuangZhou, China
| | - Kang Le
- Sickle Cell Branch, National heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Zhaohui Shu
- School of Chinese Materia Medica, GuangDong Pharmaceutical University
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, GuangZhou, China
| | - Yingqin Liao
- School of Chinese Materia Medica, GuangDong Pharmaceutical University
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, GuangZhou, China
| | - Zhichao Ma
- School of Chinese Materia Medica, GuangDong Pharmaceutical University
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, GuangZhou, China
| | - Xuediao Pan
- School of Chinese Materia Medica, GuangDong Pharmaceutical University
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, GuangZhou, China
| | - Suowen Xu
- Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Sigui Zhou
- School of Chinese Materia Medica, GuangDong Pharmaceutical University
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, GuangZhou, China
| |
Collapse
|
6
|
Zanini F, Che X, Knutsen C, Liu M, Suresh NE, Domingo-Gonzalez R, Dou SH, Zhang D, Pryhuber GS, Jones RC, Quake SR, Cornfield DN, Alvira CM. Developmental diversity and unique sensitivity to injury of lung endothelial subtypes during postnatal growth. iScience 2023; 26:106097. [PMID: 36879800 PMCID: PMC9984561 DOI: 10.1016/j.isci.2023.106097] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/20/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
At birth, the lung is still immature, heightening susceptibility to injury but enhancing regenerative capacity. Angiogenesis drives postnatal lung development. Therefore, we profiled the transcriptional ontogeny and sensitivity to injury of pulmonary endothelial cells (EC) during early postnatal life. Although subtype speciation was evident at birth, immature lung EC exhibited transcriptomes distinct from mature counterparts, which progressed dynamically over time. Gradual, temporal changes in aerocyte capillary EC (CAP2) contrasted with more marked alterations in general capillary EC (CAP1) phenotype, including distinct CAP1 present only in the early alveolar lung expressing Peg3, a paternally imprinted transcription factor. Hyperoxia, an injury that impairs angiogenesis induced both common and unique endothelial gene signatures, dysregulated capillary EC crosstalk, and suppressed CAP1 proliferation while stimulating venous EC proliferation. These data highlight the diversity, transcriptomic evolution, and pleiotropic responses to injury of immature lung EC, possessing broad implications for lung development and injury across the lifespan.
Collapse
Affiliation(s)
- Fabio Zanini
- Prince of Wales Clinical School, Lowy Cancer Research Centre, University of New South Wales, Sydney, Kensington, NSW 2052, Australia
| | - Xibing Che
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Carsten Knutsen
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Min Liu
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nina E. Suresh
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Racquel Domingo-Gonzalez
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Steve H. Dou
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daoqin Zhang
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gloria S. Pryhuber
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Robert C. Jones
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Stephen R. Quake
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - David N. Cornfield
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cristina M. Alvira
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
7
|
Cheremkhina M, Klein S, Babendreyer A, Ludwig A, Schmitz-Rode T, Jockenhoevel S, Cornelissen CG, Thiebes AL. Influence of Aerosolization on Endothelial Cells for Efficient Cell Deposition in Biohybrid and Regenerative Applications. MICROMACHINES 2023; 14:575. [PMID: 36984982 PMCID: PMC10053765 DOI: 10.3390/mi14030575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/11/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
The endothelialization of gas exchange membranes can increase the hemocompatibility of extracorporeal membrane oxygenators and thus become a long-term lung replacement option. Cell seeding on large or uneven surfaces of oxygenator membranes is challenging, with cell aerosolization being a possible solution. In this study, we evaluated the endothelial cell aerosolization for biohybrid lung application. A Vivostat® system was used for the aerosolization of human umbilical vein endothelial cells with non-sprayed cells serving as a control. The general suitability was evaluated using various flow velocities, substrate distances and cell concentrations. Cells were analyzed for survival, apoptosis and necrosis levels. In addition, aerosolized and non-sprayed cells were cultured either static or under flow conditions in a dynamic microfluidic model. Evaluation included immunocytochemistry and gene expression via quantitative PCR. Cell survival for all tested parameters was higher than 90%. No increase in apoptosis and necrosis levels was seen 24 h after aerosolization. Spraying did not influence the ability of the endothelial cells to form a confluent cell layer and withstand shear stresses in a dynamic microfluidic model. Immunocytochemistry revealed typical expression of CD31 and von Willebrand factor with cobble-stone cell morphology. No change in shear stress-induced factors after aerosolization was reported by quantitative PCR analysis. With this study, we have shown the feasibility of endothelial cell aerosolization with no significant changes in cell behavior. Thus, this technique could be used for efficient the endothelialization of gas exchange membranes in biohybrid lung applications.
Collapse
Affiliation(s)
- Maria Cheremkhina
- Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Forckenbeckstraße 55, 52074 Aachen, Germany
- Aachen-Maastricht Institute for Biobased Materials, Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Sarah Klein
- Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Forckenbeckstraße 55, 52074 Aachen, Germany
- Aachen-Maastricht Institute for Biobased Materials, Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Aaron Babendreyer
- Institute of Molecular Pharmacology, University Hospital RWTH Aachen, Wendlingweg 2, 52074 Aachen, Germany
| | - Andreas Ludwig
- Institute of Molecular Pharmacology, University Hospital RWTH Aachen, Wendlingweg 2, 52074 Aachen, Germany
| | - Thomas Schmitz-Rode
- Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Forckenbeckstraße 55, 52074 Aachen, Germany
| | - Stefan Jockenhoevel
- Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Forckenbeckstraße 55, 52074 Aachen, Germany
- Aachen-Maastricht Institute for Biobased Materials, Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Christian G. Cornelissen
- Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Forckenbeckstraße 55, 52074 Aachen, Germany
- Department of Pneumology and Internal Intensive Care Medicine, Medical Clinic V, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Anja Lena Thiebes
- Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Forckenbeckstraße 55, 52074 Aachen, Germany
- Aachen-Maastricht Institute for Biobased Materials, Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| |
Collapse
|
8
|
Effects of shear stress on vascular endothelial functions in atherosclerosis and potential therapeutic approaches. Biomed Pharmacother 2023; 158:114198. [PMID: 36916427 DOI: 10.1016/j.biopha.2022.114198] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/09/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023] Open
Abstract
Different blood flow patterns in the arteries can alter the adaptive phenotype of vascular endothelial cells (ECs), thereby affecting the functions of ECs and are directly associated with the occurrence of lesions in the early stages of atherosclerosis (AS). Atherosclerotic plaques are commonly found at curved or bifurcated arteries, where the blood flow pattern is dominated by oscillating shear stress (OSS). OSS can induce ECs to transform into pro-inflammatory phenotypes, increase cellular inflammation, oxidative stress response, mitochondrial dysfunction, metabolic abnormalities and endothelial permeability, thereby promoting the progression of AS. On the other hand, the straight artery has a stable laminar shear stress (LSS), which promotes the transformation of ECs into an anti-inflammatory phenotype, improves endothelial cell function, thereby inhibits atherosclerotic progression. ECs have the ability to actively sense, integrate, and convert mechanical stimuli by shear stress into biochemical signals that further induces intracellular changes (such as the opening and closing of ion channels, activation and transcription of signaling pathways). Here we not only outline the relationship between functions of vascular ECs and different forms of fluid shear stress in AS, but also aim to provide new solutions for potential atherosclerotic therapies targeting intracellular mechanical transductions.
Collapse
|
9
|
Kilic T, Okuno K, Eguchi S, Kassiri Z. Disintegrin and Metalloproteinases (ADAMs [A Disintegrin and Metalloproteinase] and ADAMTSs [ADAMs With a Thrombospondin Motif]) in Aortic Aneurysm. Hypertension 2022; 79:1327-1338. [PMID: 35543145 DOI: 10.1161/hypertensionaha.122.17963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aortic aneurysm is a complex pathology that can be lethal if not detected in time. Although several molecular mechanisms and pathways have been identified to be involved in aortic aneurysm development and growth, the current lack of an effective pharmacological treatment highlights the need for a more thorough understanding of the factors that regulate the remodeling of the aortic wall in response to triggers that lead to aneurysm formation. This task is further complicated by the regional heterogeneity of the aorta and that thoracic and abdominal aortic aneurysm are distinct pathologies with different risk factors and distinct course of progression. ADAMs (a disintegrin and metalloproteinases) and ADAMTS (ADAMs with a thrombospondin motif) are proteinases that share similarities with other proteinases but possess unique and diverse properties that place them in a category of their own. In this review, we discuss what is known on how ADAMs and ADAMTSs are altered in abdominal aortic aneurysm and thoracic aortic aneurysm in patients, in different animal models, and their role in regulating the function of different vascular and inflammatory cell types. A full understanding of the role of ADAMs and ADAMTSs in aortic aneurysm will help reveal a more complete understanding of the underlying mechanism driving aneurysm formation, which will help towards developing an effective treatment in preventing or limiting the growth of aortic aneurysm.
Collapse
Affiliation(s)
- Tolga Kilic
- Department of Physiology, Cardiovascular Research Center, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada (T.K., Z.K.)
| | - Keisuke Okuno
- Cardiovascular Research Center and Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (K.O., S.E.)
| | - Satoru Eguchi
- Cardiovascular Research Center and Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (K.O., S.E.)
| | - Zamaneh Kassiri
- Department of Physiology, Cardiovascular Research Center, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada (T.K., Z.K.)
| |
Collapse
|
10
|
Lee J, Seo EJ, Yoon YH. Rhegmatogenous retinal detachment induces more severe macular capillary changes than central serous chorioretinopathy. Sci Rep 2022; 12:7018. [PMID: 35488123 PMCID: PMC9054837 DOI: 10.1038/s41598-022-11062-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/06/2022] [Indexed: 11/10/2022] Open
Abstract
To investigate hemodynamic changes in macula-off rhegmatogenous retinal detachment (RRD) and its impact on visual prognosis by comparing with central serous chorioretinopathy (CSC). Using optical coherence tomography angiography (OCTA), vascular density in the superficial capillary plexus and deep capillary plexus (DCP) was retrospectively compared with that in contralateral unaffected eyes in macula-off RRD and CSC eyes. In RRD eyes, pre- and postoperative ultra-widefield (UWF) fluorescein angiography (FA) were obtained to analyze vascular changes. In OCTA, both macula-off RRD and CSC eyes showed less density in macular DCP, compared to the unaffected fellow eyes. Compared to CSC, eyes affected by macula-off RRD showed a reduction in DCP vascular density and an increase in foveal avascular zone area, although it had a much shorter macular detachment period. In macula-off RRD, less density of DCP was strongly correlated with longer duration of detachment, greater ellipsoid zone disruption, and poor visual recovery. In UWF-FA, detached retina showed capillary hypoperfusion, venous stasis and leakage, which were improved after reattachment. In conclusion, macular capillary loss of flow, which was associated with photoreceptor disruption, correlated with duration of detachment in RRD. Early reattachment and reperfusion are required for minimizing macular vasculature and photoreceptor damage in macula-off RRD.
Collapse
Affiliation(s)
- Junyeop Lee
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, South Korea
| | - Eoi Jong Seo
- Department of Ophthalmology, College of Medicine, Chungbuk National University Hospital, Chungbuk National University, 776 Sunhwan-1-ro, Seowon-gu, Cheongju, 28644, South Korea
| | - Young Hee Yoon
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, South Korea.
| |
Collapse
|
11
|
Zeng Y, Du X, Yao X, Qiu Y, Jiang W, Shen J, Li L, Liu X. Mechanism of cell death of endothelial cells regulated by mechanical forces. J Biomech 2021; 131:110917. [PMID: 34952348 DOI: 10.1016/j.jbiomech.2021.110917] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/26/2022]
Abstract
Cell death of endothelial cells (ECs) is a common devastating consequence of various vascular-related diseases. Atherosclerosis, hypertension, sepsis, diabetes, cerebral ischemia and cardiac ischemia/reperfusion injury, and chronic kidney disease remain major causes of morbidity and mortality worldwide, in which ECs are constantly subjected to a great amount of dynamic changed mechanical forces including shear stress, extracellular matrix stiffness, mechanical stretch and microgravity. A thorough understanding of the regulatory mechanisms by which the mechanical forces controlled the cell deaths including apoptosis, autophagy, and pyroptosis is crucial for the development of new therapeutic strategies. In the present review, experimental and clinical data highlight that nutrient depletion, oxidative stress, tumor necrosis factor-α, high glucose, lipopolysaccharide, and homocysteine possess cytotoxic effects in many tissues and induce apoptosis of ECs, and that sphingosine-1-phosphate protects ECs. Nevertheless, EC apoptosis in the context of those artificial microenvironments could be enhanced, reduced or even reversed along with the alteration of patterns of shear stress. An appropriate level of autophagy diminishes EC apoptosis to some extent, in addition to supporting cell survival upon microenvironment challenges. The intervention of pyroptosis showed a profound effect on atherosclerosis. Further cell and animal studies are required to ascertain whether the alterations in the levels of cell deaths and their associated regulatory mechanisms happen at local lesion sites with considerable mechanical force changes, for preventing senescence and cell deaths in the vascular-related diseases.
Collapse
Affiliation(s)
- Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Xiaoqiang Du
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xinghong Yao
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yan Qiu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenli Jiang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Junyi Shen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Liang Li
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
12
|
Janczi T, Meier F, Fehrl Y, Kinne RW, Böhm B, Burkhardt H. A Novel Pro-Inflammatory Mechanosensing Pathway Orchestrated by the Disintegrin Metalloproteinase ADAM15 in Synovial Fibroblasts. Cells 2021; 10:cells10102705. [PMID: 34685689 PMCID: PMC8534551 DOI: 10.3390/cells10102705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022] Open
Abstract
Mechanotransduction is elicited in cells upon the perception of physical forces transmitted via the extracellular matrix in their surroundings and results in signaling events that impact cellular functions. This physiological process is a prerequisite for maintaining the integrity of diarthrodial joints, while excessive loading is a factor promoting the inflammatory mechanisms of joint destruction. Here, we describe a mechanotransduction pathway in synovial fibroblasts (SF) derived from the synovial membrane of inflamed joints. The functionality of this pathway is completely lost in the absence of the disintegrin metalloproteinase ADAM15 strongly upregulated in SF. The mechanosignaling events involve the Ca2+-dependent activation of c-Jun-N-terminal kinases, the subsequent downregulation of long noncoding RNA HOTAIR, and upregulation of the metabolic energy sensor sirtuin-1. This afferent loop of the pathway is facilitated by ADAM15 via promoting the cell membrane density of the constitutively cycling mechanosensitive transient receptor potential vanilloid 4 calcium channels. In addition, ADAM15 reinforces the Src-mediated activation of pannexin-1 channels required for the enhanced release of ATP, a mediator of purinergic inflammation, which is increasingly produced upon sirtuin-1 induction.
Collapse
Affiliation(s)
- Tomasz Janczi
- Division of Rheumatology, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60590 Frankfurt am Main, Germany; (T.J.); (F.M.); (Y.F.)
| | - Florian Meier
- Division of Rheumatology, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60590 Frankfurt am Main, Germany; (T.J.); (F.M.); (Y.F.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60590 Frankfurt am Main, Germany
| | - Yuliya Fehrl
- Division of Rheumatology, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60590 Frankfurt am Main, Germany; (T.J.); (F.M.); (Y.F.)
| | - Raimund W. Kinne
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, 07607 Eisenberg, Germany;
| | - Beate Böhm
- Division of Rheumatology, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60590 Frankfurt am Main, Germany; (T.J.); (F.M.); (Y.F.)
- Correspondence: (B.B.); (H.B.)
| | - Harald Burkhardt
- Division of Rheumatology, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60590 Frankfurt am Main, Germany; (T.J.); (F.M.); (Y.F.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60590 Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, 60590 Frankfurt am Main, Germany
- Correspondence: (B.B.); (H.B.)
| |
Collapse
|
13
|
Chi Q, Hu X, Liu Z, Han Y, Tao D, Xu S, Li S. H 2S exposure induces cell death in the broiler thymus via the ROS-initiated JNK/MST1/FOXO1 pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112488. [PMID: 34246945 DOI: 10.1016/j.ecoenv.2021.112488] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Hydrogen sulfide (H2S) is a common toxic gas in chicken houses that endangers the health of poultry. Harbin has a cold climate in winter, and the conflict between heat preservation and ventilation in poultry houses is obvious. In this study, we investigated the H2S content in chicken houses during winter in Harbin and found that the H2S concentration exceeded the national standard in individual chicken houses. Then, a model of H2S exposure was established in an environmental simulation chamber. We also developed a NaHS exposure model of chicken peripheral blood lymphocytes in vitro. Proteomics analysis was used to reveal the toxicology of thymus injury in broilers, the FOXO signaling pathway was determined to be significantly enriched, ROS bursts and JNK/MST1/FOXO1 pathway activation induced by H2S exposure were detected, and ROS played an important switch role in the JNK/MST1/FOXO1 pathway. In addition, H2S exposure-induced thymus cell death involved immune dysregulation. Overall, the present study adds data for H2S contents in chicken houses, provides new findings for the mechanism of H2S poisoning and reveals a new regulatory pathway in immune injury.
Collapse
Affiliation(s)
- Qianru Chi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xueyuan Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhaoyi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yanfei Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Dayong Tao
- College of Animal Science, Tarim University, Alar, Xinjiang Uygur Autonomous Region 843300, China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; College of Animal Science, Tarim University, Alar, Xinjiang Uygur Autonomous Region 843300, China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
14
|
Expression of the Metalloproteinase ADAM8 Is Upregulated in Liver Inflammation Models and Enhances Cytokine Release In Vitro. Mediators Inflamm 2021; 2021:6665028. [PMID: 33814981 PMCID: PMC7987468 DOI: 10.1155/2021/6665028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 11/17/2022] Open
Abstract
Acute and chronic liver inflammation is driven by cytokine and chemokine release from various cell types in the liver. Here, we report that the induction of inflammatory mediators is associated with a yet undescribed upregulation of the metalloproteinase ADAM8 in different murine hepatitis models. We further show the importance of ADAM8 expression for the production of inflammatory mediators in cultured liver cells. As a model of acute inflammation, we investigated liver tissue from lipopolysaccharide- (LPS-) treated mice in which ADAM8 expression was markedly upregulated compared to control mice. In vitro, stimulation with LPS enhanced ADAM8 expression in murine and human endothelial and hepatoma cell lines as well as in primary murine hepatocytes. The enhanced ADAM8 expression was associated with an upregulation of TNF-α and IL-6 expression and release. Inhibition studies indicate that the cytokine response of hepatoma cells to LPS depends on the activity of ADAM8 and that signalling by TNF-α can contribute to these ADAM8-dependent effects. The role of ADAM8 was further confirmed with primary hepatocytes from ADAM8 knockout mice in which TNF-α and IL-6 induction and release were considerably attenuated. As a model of chronic liver injury, we studied liver tissue from mice undergoing high-fat diet-induced steatohepatitis and again observed upregulation of ADAM8 mRNA expression compared to healthy controls. In vitro, ADAM8 expression was upregulated in hepatoma, endothelial, and stellate cell lines by various mediators of steatohepatitis including fatty acid (linoleic-oleic acid), IL-1β, TNF-α, IFN-γ, and TGF-β. Upregulation of ADAM8 was associated with the induction and release of proinflammatory cytokines (TNF-α and IL-6) and chemokines (CX3CL1). Finally, knockdown of ADAM8 expression in all tested cell types attenuated the release of these mediators. Thus, ADAM8 is upregulated in acute and chronic liver inflammation and is able to promote inflammation by enhancing expression and release of inflammatory mediators.
Collapse
|
15
|
Awan T, Babendreyer A, Mahmood Alvi A, Düsterhöft S, Lambertz D, Bartsch JW, Liedtke C, Ludwig A. Expression levels of the metalloproteinase ADAM8 critically regulate proliferation, migration and malignant signalling events in hepatoma cells. J Cell Mol Med 2021; 25:1982-1999. [PMID: 33314720 PMCID: PMC7882935 DOI: 10.1111/jcmm.16015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common metastatic tumours. Tumour growth and metastasis depend on the induction of cell proliferation and migration by various mediators. Here, we report that the A Disintegrin and Metalloproteinase (ADAM) 8 is highly expressed in murine HCC tissues as well as in murine and human hepatoma cell lines Hepa1-6 and HepG2, respectively. To establish a dose-dependent role of different ADAM8 expression levels for HCC progression, ADAM8 expression was either reduced via shRNA- or siRNA-mediated knockdown or increased by using a retroviral overexpression vector. These two complementary approaches revealed that ADAM8 expression levels correlated positively with proliferation, clonogenicity, migration and matrix invasion and negatively with apoptosis of hepatoma cells. Furthermore, the analysis of pro-migratory and proliferative signalling pathways revealed that ADAM8 expression level was positively associated with expression of β1 integrin as well as with the activation of focal adhesion kinase (FAK), mitogen-activated protein kinase (MAPK), Src kinase and Rho A GTPase. Finally, up-regulation of promigatory signalling and cell migration was also seen with a proteolytically inactive ADAM8 mutant. These findings reveal that ADAM8 is critically up-regulated in hepatoma cells contributes to cell proliferation and survival and furthermore induces pro-migratory signalling pathways independently of its proteolytic activity. By this, ADAM8 can promote cell functions most relevant for HCC growth and metastasis.
Collapse
Affiliation(s)
- Tanzeela Awan
- Institute of Molecular PharmacologyRWTH Aachen UniversityAachenGermany
| | - Aaron Babendreyer
- Institute of Molecular PharmacologyRWTH Aachen UniversityAachenGermany
| | - Abid Mahmood Alvi
- Institute of Molecular PharmacologyRWTH Aachen UniversityAachenGermany
| | - Stefan Düsterhöft
- Institute of Molecular PharmacologyRWTH Aachen UniversityAachenGermany
| | - Daniela Lambertz
- Department of Medicine IIIUniversity Hospital RWTH Aachen UniversityAachenGermany
| | - Jörg W. Bartsch
- Department of NeurosurgeryPhilipps University MarburgUniversity Hospital MarburgMarburgGermany
| | - Christian Liedtke
- Department of Medicine IIIUniversity Hospital RWTH Aachen UniversityAachenGermany
| | - Andreas Ludwig
- Institute of Molecular PharmacologyRWTH Aachen UniversityAachenGermany
| |
Collapse
|
16
|
Yang CY, Chanalaris A, Bonelli S, McClurg O, Hiles GL, Cates AL, Zarebska JM, Vincent TL, Day ML, Müller SA, Lichtenthaler SF, Nagase H, Scilabra SD, Troeberg L. Interleukin 13 (IL-13)-regulated expression of the chondroprotective metalloproteinase ADAM15 is reduced in aging cartilage. OSTEOARTHRITIS AND CARTILAGE OPEN 2020; 2:100128. [PMID: 33381768 PMCID: PMC7762825 DOI: 10.1016/j.ocarto.2020.100128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022] Open
Abstract
Objective The adamalysin metalloproteinase 15 (ADAM15) has been shown to protect against development of osteoarthritis in mice. Here, we have investigated factors that control ADAM15 levels in cartilage. Design Secretomes from wild-type and Adam15−/− chondrocytes were compared by label-free quantitative mass spectrometry. mRNA was isolated from murine knee joints, either with or without surgical induction of osteoarthritis on male C57BL/6 mice, and the expression of Adam15 and other related genes quantified by RT-qPCR. ADAM15 in human normal and osteoarthritic cartilage was investigated similarly and by fluorescent immunohistochemistry. Cultured HTB94 chondrosarcoma cells were treated with various anabolic and catabolic stimuli, and ADAM15 mRNA and protein levels evaluated. Results There were no significant differences in the secretomes of chondrocytes from WT and Adam15−/− cartilage. Expression of ADAM15 was not altered in either human or murine osteoarthritic cartilage relative to disease-free controls. However, expression of ADAM15 was markedly reduced upon aging in both species, to the extent that expression in joints of 18-month-old mice was 45-fold lower than in that 4.5-month-old animals. IL-13 increased expression of ADAM15 in HTB94 cells by 2.5-fold, while modulators of senescence and autophagy pathways had no effect. Expression of Il13 in the joint was reduced with aging, suggesting this cytokine may control ADAM15 levels in the joint. Conclusion Expression of the chondroprotective metalloproteinase ADAM15 is reduced in aging human and murine joints, possibly due to a concomitant reduction in IL-13 expression. We thus propose IL-13 as a novel factor contributing to increased osteoarthritis risk upon aging.
Collapse
Affiliation(s)
- C Y Yang
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, United Kingdom
| | - A Chanalaris
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, United Kingdom
| | - S Bonelli
- Fondazione Ri.MED - ISMETT, Department of Research, Via Ernesto Tricomi 5, 90145, Palermo, Italy
| | - O McClurg
- Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, Rosalind Franklin Road, Norwich, NR4 7UQ, United Kingdom
| | - G Lorenzatti Hiles
- Division of Urologic Oncology, Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - A L Cates
- Division of Urologic Oncology, Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - J Miotla Zarebska
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, United Kingdom
| | - T L Vincent
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, United Kingdom
| | - M L Day
- Division of Urologic Oncology, Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - S A Müller
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - S F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany
| | - H Nagase
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, United Kingdom
| | - S D Scilabra
- Fondazione Ri.MED - ISMETT, Department of Research, Via Ernesto Tricomi 5, 90145, Palermo, Italy.,German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - L Troeberg
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, United Kingdom.,Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, Rosalind Franklin Road, Norwich, NR4 7UQ, United Kingdom
| |
Collapse
|
17
|
Babendreyer A, Ludwig A. Mechanic Forces Promote Brain Endothelial Activation by SARS-CoV-2 Spike Protein. Stroke 2020; 52:271-273. [PMID: 33161848 DOI: 10.1161/strokeaha.120.033119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Aaron Babendreyer
- Institute of Molecular Pharmacology, RWTH Aachen University, Germany
| | - Andreas Ludwig
- Institute of Molecular Pharmacology, RWTH Aachen University, Germany
| |
Collapse
|
18
|
Helle E, Ampuja M, Antola L, Kivelä R. Flow-Induced Transcriptomic Remodeling of Endothelial Cells Derived From Human Induced Pluripotent Stem Cells. Front Physiol 2020; 11:591450. [PMID: 33178051 PMCID: PMC7593792 DOI: 10.3389/fphys.2020.591450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/16/2020] [Indexed: 12/31/2022] Open
Abstract
The vascular system is essential for the development and function of all organs and tissues in our body. The molecular signature and phenotype of endothelial cells (EC) are greatly affected by blood flow-induced shear stress, which is a vital component of vascular development and homeostasis. Recent advances in differentiation of ECs from human induced pluripotent stem cells (hiPSC) have enabled development of in vitro experimental models of the vasculature containing cells from healthy individuals or from patients harboring genetic variants or diseases of interest. Here we have used hiPSC-derived ECs and bulk- and single-cell RNA sequencing to study the effect of flow on the transcriptomic landscape of hiPSC-ECs and their heterogeneity. We demonstrate that hiPS-ECs are plastic and they adapt to flow by expressing known flow-induced genes. Single-cell RNA sequencing showed that flow induced a more homogenous and homeostatically more stable EC population compared to static cultures, as genes related to cell polarization, barrier formation and glucose and fatty acid transport were induced. The hiPS-ECs increased both arterial and venous markers when exposed to flow. Interestingly, while in general there was a greater increase in the venous markers, one cluster with more arterial-like hiPS-ECs was detected. Single-cell RNA sequencing revealed that not all hiPS-ECs are similar even after sorting, but exposing them to flow increases their homogeneity. Since hiPS-ECs resemble immature ECs and demonstrate high plasticity in response to flow, they provide an excellent model to study vascular development.
Collapse
Affiliation(s)
- Emmi Helle
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- New Children’s Hospital, and Pediatric Research Center Helsinki University Hospital, Helsinki, Finland
| | - Minna Ampuja
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Laura Antola
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Riikka Kivelä
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Wihuri Research Institute, Helsinki, Finland
| |
Collapse
|
19
|
Zhou H, Tu Q, Zhang Y, Xie HQ, Shuai QY, Huang XC, Fu J, Cao Z. Shear stress improves the endothelial progenitor cell function via the CXCR7/ERK pathway axis in the coronary artery disease cases. BMC Cardiovasc Disord 2020; 20:403. [PMID: 32894067 PMCID: PMC7487552 DOI: 10.1186/s12872-020-01681-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Dysfunction in the late Endothelial Progenitor Cells (EPCs) is responsible for endothelial repair in patients with Coronary Artery Disease (CAD), and the shear stress is beneficial for EPCs function. However, the impact of shear stress on the capacity of EPCs in CAD patients has not been elucidated yet. The C-X-C chemokine receptor 7/extracellular signal-regulated kinase (CXCR7)/(ERK) pathways are identified to regulate EPCs function in CAD patients. Here, we hypothesize that shear stress upregulates the CXCR7/ERK pathways, which restore the EPCs function in CAD patients. METHODS The human Peripheral Blood Mononuclear Cells (PBMCs) were collected from healthy adults and CAD patients and then used for EPCs cultivation. The Lv-siRNA for human CXCR7 was transfected into induced EPCs isolated from the CAD patients. Meanwhile, the EPCs from CAD patients were subjected to shear stress generated by a biomimetic device. Next, the cell viability, migration, tube formation, and apoptosis were detected by CCK-8, Transwell assay, Matrigel, and flow cytometry, respectively. Also, the CXCR7/ERK pathways in human EPCs were analyzed by Western blotting and qRT-PCR. RESULT Compared to the EPCs collected from normal adults, the CAD patient-derived EPCs showed reduced in vitro vasculogenic capacity. Also, the level of CXCR7 in CAD patient-derived EPCs was significantly reduced compared to the EPCs of healthy subjects. Meanwhile, the extracellular signal-regulated kinase (ERK), which represents a CXCR7 downstream signaling pathway, had decreased phosphorylation level. The shear stress treatment augmented the CXCR7 expression and also elevated ERK phosphorylation, which is comparable to the up-regulation of CAD patient-derived EPCs function. Further, the small interfering RNA (siRNA)-mediated CXCR7 knockdown diminished the enhanced migration, adhesion, and tube formation capacity of shear stress treated CAD patient-derived EPCs. CONCLUSION Up-regulation of the CXCR7/ERK pathways by shear stress can be a promising new target in enhancing the vasculogenic ability of CAD patient-derived EPCs.
Collapse
Affiliation(s)
- Hua Zhou
- Department of Medical Ultrasound, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Qiang Tu
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yan Zhang
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Hua Qiang Xie
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Qing Yun Shuai
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xiao Chuan Huang
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Jie Fu
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Zheng Cao
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| |
Collapse
|
20
|
Guo W, Li Y, Pang W, Shen H. Exosomes: A Potential Therapeutic Tool Targeting Communications between Tumor Cells and Macrophages. Mol Ther 2020; 28:1953-1964. [PMID: 32563274 PMCID: PMC7474264 DOI: 10.1016/j.ymthe.2020.06.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/21/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Exosomes comprise extracellular vesicles (EVs) with diameters between 30 and 150 nm. They transfer proteins, RNA, and other molecules from cell to cell, playing an important role in the interactions between cells. The tumor microenvironment (TME) has been found to contain various cells and molecules that have an important impact on tumor development. In the TME, macrophages have been found to have an important relationship with tumor cells, with tumors recruiting and inducing macrophages to become tumor-associated macrophages (TAMs), which promote tumor development. Recently, exosomes have been found to play a critical role in the interaction between tumor cells and macrophages. Thus, in this review, we summarize the roles and mechanisms of exosomes in the interaction between tumor cells and macrophages and the potential methods by which exosomes are used to target the communication between tumor cells and macrophages to treat cancer.
Collapse
Affiliation(s)
- Weihua Guo
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yashan Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wei Pang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
21
|
Seifert A, Wozniak J, Düsterhöft S, Kasparek P, Sedlacek R, Dreschers S, Orlikowsky TW, Yildiz D, Ludwig A. The iRhom2/ADAM17 Axis Attenuates Bacterial Uptake by Phagocytes in a Cell Autonomous Manner. Int J Mol Sci 2020; 21:ijms21175978. [PMID: 32825187 PMCID: PMC7503280 DOI: 10.3390/ijms21175978] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 12/31/2022] Open
Abstract
Uptake of bacteria by phagocytes is a crucial step in innate immune defence. Members of the disintegrin and metalloproteinase (ADAM) family critically control the immune response by limited proteolysis of surface expressed mediator molecules. Here, we investigated the significance of ADAM17 and its regulatory adapter molecule iRhom2 for bacterial uptake by phagocytes. Inhibition of metalloproteinase activity led to increased phagocytosis of pHrodo labelled Gram-negative and -positive bacteria (E. coli and S. aureus, respectively) by human and murine monocytic cell lines or primary phagocytes. Bone marrow-derived macrophages showed enhanced uptake of heat-inactivated and living E. coli when they lacked either ADAM17 or iRhom2 but not upon ADAM10-deficiency. In monocytic THP-1 cells, corresponding short hairpin RNA (shRNA)-mediated knockdown confirmed that ADAM17, but not ADAM10, promoted phagocytosis of E. coli. The augmented bacterial uptake occurred in a cell autonomous manner and was accompanied by increased release of the chemokine CXCL8, less TNFα release and only minimal changes in the surface expression of the receptors TNFR1, TLR6 and CD36. Inhibition experiments indicated that the enhanced bacterial phagocytosis after ADAM17 knockdown was partially dependent on TNFα-activity but not on CXCL8. This novel role of ADAM17 in bacterial uptake needs to be considered in the development of ADAM17 inhibitors as therapeutics.
Collapse
Affiliation(s)
- Anke Seifert
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (A.S.); (J.W.); (S.D.)
| | - Justyna Wozniak
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (A.S.); (J.W.); (S.D.)
| | - Stefan Düsterhöft
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (A.S.); (J.W.); (S.D.)
| | - Petr Kasparek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 25250 Vestec, Czech Republic; (P.K.); (R.S.)
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 25250 Vestec, Czech Republic; (P.K.); (R.S.)
| | - Stephan Dreschers
- Department of Neonatology, University Children’s Hospital, 52074 Aachen, Germany; (S.D.); (T.W.O.)
| | - Thorsten W. Orlikowsky
- Department of Neonatology, University Children’s Hospital, 52074 Aachen, Germany; (S.D.); (T.W.O.)
| | - Daniela Yildiz
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (A.S.); (J.W.); (S.D.)
- Institute of Experimental and Clinical Pharmacology and Toxicology, PZMS, ZHMB, Saarland University, 66424 Homburg, Germany
- Correspondence: (D.Y.); (A.L.); Tel.: +49-241-8035771 (A.L.); Fax: +49-241-8082433 (A.L.)
| | - Andreas Ludwig
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (A.S.); (J.W.); (S.D.)
- Correspondence: (D.Y.); (A.L.); Tel.: +49-241-8035771 (A.L.); Fax: +49-241-8082433 (A.L.)
| |
Collapse
|