1
|
Wang L, Xia G, Tang Y, Xu Y, Li Q, Chen Z, Wen T, Wei Y, Wei C, Zhou J. METTL14 Promotes Vascular Smooth Muscle Cell Proliferation and Neointima Formation via m6A Methylation TEAD1 mRNA. J Biochem Mol Toxicol 2025; 39:e70284. [PMID: 40358975 DOI: 10.1002/jbt.70284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/17/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025]
Abstract
Vascular smooth muscle cell (VSMC) proliferation and neointimal hyperplasia critically contribute to atherosclerosis and post-angioplasty restenosis. Building on our prior discovery that TEA domain transcription factor 1 (TEAD1) regulates VSMCs differentiation, we now investigate methyltransferase-like 14 (METTL14) in vascular remodeling. METTL14 expression was significantly upregulated in human carotid atherosclerotic plaques versus control arteries, correlating with VSMCs dedifferentiation. This pattern was recapitulated in murine wire-induced carotid injury models during neointima formation. Functionally, METTL14 overexpression suppressed contractile markers while accelerating proliferation and migration in human coronary artery smooth muscle cells (HCASMCs). Conversely, METTL14 knockdown attenuated injury-induced neointimal hyperplasia In Vivo. Mechanistically, METTL14 stabilizes TEAD1 mRNA through m6A modification at nucleotide 513, enhancing YAP1/TEAD1 signaling. Both 513nt mutation and TEAD1 inhibitor VT103 abolished METTL14-driven phenotypic changes, restoring VSMCs differentiation and suppressing proliferation. Collectively, our findings establish METTL14-mediated m6A modification of TEAD1 mRNA as a novel mechanism promoting vascular pathology, highlighting its therapeutic potential for cardiovascular diseases.
Collapse
Affiliation(s)
- Liang Wang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Hypertension Research Institute of Jiangxi Province, Nanchang, China
| | - Guojin Xia
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Hypertension Research Institute of Jiangxi Province, Nanchang, China
| | - Yan Tang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Hypertension Research Institute of Jiangxi Province, Nanchang, China
| | - Yuemei Xu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Hypertension Research Institute of Jiangxi Province, Nanchang, China
| | - Qing Li
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Hypertension Research Institute of Jiangxi Province, Nanchang, China
| | - Zhixing Chen
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Hypertension Research Institute of Jiangxi Province, Nanchang, China
| | - Tong Wen
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Cardiology, Central People's Hospital of Ji'an, Ji'an, China
| | - Yunfeng Wei
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Hypertension Research Institute of Jiangxi Province, Nanchang, China
| | - Chunying Wei
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Hypertension Research Institute of Jiangxi Province, Nanchang, China
| | - Jiamin Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Hypertension Research Institute of Jiangxi Province, Nanchang, China
| |
Collapse
|
2
|
Wu Y, Lee TH, Cheng OH, Peden EK, Li Q, Wang J, Huang F, Melancon MP, Sheikh-Hamad D, Wang T, Truong L, Mitch WE, Liang M, Cheng J. Interplay between Skeletal Muscle Catabolism and Remodeling of Arteriovenous Fistula by Yes-Associated Protein 1 (YAP1) Signaling. J Am Soc Nephrol 2025; 36:845-858. [PMID: 39883520 PMCID: PMC12059102 DOI: 10.1681/asn.0000000605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 01/13/2025] [Indexed: 01/31/2025] Open
Abstract
Key Points Atrophied muscle–derived myostatin stimulated mesenchymal stem cell differentiation and adverse arteriovenous (AV) fistula remodeling through yes-associated protein 1 (YAP1) activation. Treatment with myostatin peptibody inhibited muscle wasting and blocked mesenchymal stem cell activation and AV fistula fibrosis. A light-sensitive drug-release strategy was engineered for the periadventitial delivery of verteporfin to improve AV fistula patency. Background Arteriovenous (AV) fistulas are the preferred access for dialysis but have a high incidence of failure. The aim of this study was to understand the crosstalk between skeletal muscle catabolism and AV fistula maturation failure. Methods Skeletal muscle metabolism and AV fistula maturation were evaluated in mice with CKD. The roles of myostatin and yes-associated protein 1 (YAP1) in regulating the transdifferentiation of adventitial mesenchymal stem cells (MSCs) and intima hyperplasia in AV fistula were investigated. Nanoparticles carrying a YAP1 inhibitor, verteporfin, with light irradiation–controlled release were synthesized and applied to AV fistula. Results Increased trichrome signals and stenosis were observed in AV fistulas from mice treated with myostatin and from mice with CKD. By contrast, blocking myostatin function with an anti-myostatin peptibody not only improved body weight and muscle size in CKD mice but also decreased neointima formation in AV fistulas. In cultured MSCs, myostatin induced YAP1 expression, promoting the differentiation of MSCs into myofibroblasts and inducing extracellular matrix deposition. Red light irradiation–controlled release of verteporfin from nanoparticles blocked YAP1 activation and alleviated myostatin-induced MSC activation. Periadventitial application and red light irradiation of nanoparticles carrying verteporfin significantly suppressed stiffening and neointima formation in AV fistula. Conclusions CKD induced muscle wasting, leading to increased production of myostatin, which stimulated MSC activation and vascular fibrosis linked to AV fistula stenosis. YAP1 signaling was activated in these processes. Red light irradiation–controlled release of verteporfin offered a feasible approach for local vascular drug intervention to improve AV fistula maturation.
Collapse
Affiliation(s)
- Yongdong Wu
- Section of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, Texas
- Department of Nephrology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Tae Hoon Lee
- Section of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, Texas
| | - Owen H. Cheng
- Section of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, Texas
| | - Eric K. Peden
- Department of Surgery, Houston Methodist Hospital, Houston, Texas
| | - Qingtian Li
- Section of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, Texas
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Fengzhang Huang
- Section of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, Texas
| | - Marites P. Melancon
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David Sheikh-Hamad
- Section of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, Texas
| | - Tao Wang
- Section of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, Texas
| | - Luan Truong
- Department of Pathology and Genomic medicine, Houston Methodist Hospital, Houston, Texas
| | - William E. Mitch
- Section of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, Texas
| | - Ming Liang
- Department of Nephrology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Jizhong Cheng
- Section of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
3
|
Zhang S, Zhao Y, Dong Z, Jin M, Lu Y, Xu M, Pan H, Zhou G, Xiao M. HIF-1α mediates hypertension and vascular remodeling in sleep apnea via hippo-YAP pathway activation. Mol Med 2024; 30:281. [PMID: 39732653 DOI: 10.1186/s10020-024-00987-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/03/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Sleep apnea syndrome (SAS) is associated with hypertension and vascular remodeling. Hypoxia-inducible factor-1α (HIF-1α) and the Hippo-YAP pathway are implicated in these processes, but their specific roles remain unclear. This study investigated the HIF-1α/Hippo-YAP pathway in SAS-related hypertension. METHODS We established a rat model of SAS-induced hypertension via chronic intermittent hypoxia (CIH). Rats were treated with siRNA targeting HIF-1α. Blood pressure, inflammation, oxidative stress, vascular remodeling, and VSMC function were assessed. In vitro experiments with A7r5 cells and human aortic smooth muscle cells (HAoSMCs) explored the effects of HIF-1α silencing and YAP1 overexpression. RESULTS Compared with the control group, the CIH group presented significant increases in both HIF-1α and YAP1 expression, which correlated with increased blood pressure and vascular changes. HIF-1α silencing reduced hypertension, oxidative stress, inflammation, and the severity of vascular remodeling. Specifically, siRNA treatment for HIF-1α normalized blood pressure, decreased the levels of oxidative damage markers (increased SOD and decreased MDA), and reversed the changes in the levels of inflammatory markers (decreased high-sensitivity C-reactive protein (hs-CRP), interleukin-6 (IL-6) and soluble E-selectin (sE-s)). Structural analyses revealed reduced vascular smooth muscle cell proliferation and collagen deposition, along with normalization of cellular markers, such as α-SMA and TGF-β1. Furthermore, the Hippo-YAP pathway appeared to mediate these effects, as evidenced by altered YAP1 expression and activity upon HIF-1α modulation. CONCLUSIONS Our findings demonstrate the significance of the HIF-1α/Hippo-YAP pathway in CIH-induced hypertension and vascular remodeling. HIF-1α contributes to these pathophysiological processes by promoting oxidative stress, inflammation, and aberrant VSMC behavior. Targeting this pathway could offer new therapeutic strategies for CIH-related cardiovascular complications in SAS patients.
Collapse
Affiliation(s)
- Shoude Zhang
- Department of Otorhinolaryngology/Head and Neck, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310020, Zhejiang, China
| | - Yuan Zhao
- Department of Otorhinolaryngology/Head and Neck, Aral Hospital, Xinjiang Corps, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Aral, 843399, Xinjiang, China
| | - Zhanwei Dong
- Department of Otorhinolaryngology/Head and Neck, Aral Hospital, Xinjiang Corps, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Aral, 843399, Xinjiang, China
| | - Mao Jin
- Department of Otorhinolaryngology/Head and Neck, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310020, Zhejiang, China.
| | - Ying Lu
- Department of Otorhinolaryngology/Head and Neck, The First People's Hospital of Lin'an District, Hangzhou, 311300, Zhejiang, China
| | - Mina Xu
- Department of Nursing, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020, Zhejiang, China
| | - Hong Pan
- Department of Otorhinolaryngology/Head and Neck, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310020, Zhejiang, China
| | - Guojin Zhou
- Department of Otorhinolaryngology/Head and Neck, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310020, Zhejiang, China
| | - Mang Xiao
- Department of Otorhinolaryngology/Head and Neck, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310020, Zhejiang, China
| |
Collapse
|
4
|
Kumariya S, Grano de Oro A, Nestor-Kalinoski AL, Joe B, Osman I. Gut microbiota-derived Metabolite, Shikimic Acid, inhibits vascular smooth muscle cell proliferation and migration. Biochem Pharmacol 2024; 229:116524. [PMID: 39251142 PMCID: PMC11929551 DOI: 10.1016/j.bcp.2024.116524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/25/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Gut microbiota dysbiosis is linked to vascular wall disease, but the mechanisms by which gut microbiota cross-talk with the host vascular cells remain largely unknown. Shikimic acid (SA) is a biochemical intermediate synthesized in plants and microorganisms, but not mammals. Surprisingly, recent metabolomic profiling data demonstrate that SA is detectable in human and murine blood. In this study, analyzing data from germ-free rats, we provide evidence in support of SA as a bona fide gut microbiota-derived metabolite, emphasizing its biological relevance. Since vascular cells are the first cells exposed to circulating metabolites, in this study, we examined, for the first time, the effects and potential underlying molecular mechanisms of SA on vascular smooth muscle cell (VSMC) proliferation and migration, which play a key role in occlusive vascular diseases, such as post-angioplasty restenosis and atherosclerosis. We found that SA inhibits the proliferation and migration of human coronary artery SMCs. At the molecular level, unexpectedly, we found that SA activates, rather than inhibits, multiple pro-mitogenic signaling pathways in VSMCs, such as ERK1/2, AKT, and mTOR/p70S6K. Conversely, we found that SA activates the anti-proliferative AMP-activated protein kinase (AMPK) in VSMCs, a key cellular energy sensor and regulator. However, loss-of-function experiments demonstrate that AMPK does not mediate the inhibitory effects of SA on VSMC proliferation. In conclusion, these studies demonstrate that a microbiota-derived metabolite, SA, inhibits VSMC proliferation and migration in vitro and prompt further evaluation of the possible underlying molecular mechanisms and the potential protective role in VSMC-related vascular wall disease in vivo.
Collapse
Affiliation(s)
- Sanjana Kumariya
- Department of Physiology and Pharmacology, Center for Hypertension and Personalized Medicine, University of Toledo, College of Medicine and Life Sciences, Toledo, OH, USA
| | - Arturo Grano de Oro
- Department of Physiology and Pharmacology, Center for Hypertension and Personalized Medicine, University of Toledo, College of Medicine and Life Sciences, Toledo, OH, USA
| | | | - Bina Joe
- Department of Physiology and Pharmacology, Center for Hypertension and Personalized Medicine, University of Toledo, College of Medicine and Life Sciences, Toledo, OH, USA
| | - Islam Osman
- Department of Physiology and Pharmacology, Center for Hypertension and Personalized Medicine, University of Toledo, College of Medicine and Life Sciences, Toledo, OH, USA.
| |
Collapse
|
5
|
Ma Q, He X, Wang X, Zhao G, Zhang Y, Su C, Wei M, Zhang K, Liu M, Zhu Y, He J. PTPN14 aggravates neointimal hyperplasia via boosting PDGFRβ signaling in smooth muscle cells. Nat Commun 2024; 15:7398. [PMID: 39191789 PMCID: PMC11350182 DOI: 10.1038/s41467-024-51881-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
Smooth muscle cell (SMC) phenotypic modulation, primarily driven by PDGFRβ signaling, is implicated in occlusive cardiovascular diseases. However, the promotive and restrictive regulation mechanism of PDGFRβ and the role of protein tyrosine phosphatase non-receptor type 14 (PTPN14) in neointimal hyperplasia remain unclear. Our study observes a marked upregulation of PTPN14 in SMCs during neointimal hyperplasia. PTPN14 overexpression exacerbates neointimal hyperplasia in a phosphatase activity-dependent manner, while SMC-specific deficiency of PTPN14 mitigates this process in mice. RNA-seq indicates that PTPN14 deficiency inhibits PDGFRβ signaling-induced SMC phenotypic modulation. Moreover, PTPN14 interacts with intracellular region of PDGFRβ and mediates its dephosphorylation on Y692 site. Phosphorylation of PDGFRβY692 negatively regulates PDGFRβ signaling activation. The levels of both PTPN14 and phospho-PDGFRβY692 are correlated with the degree of stenosis in human coronary arteries. Our findings suggest that PTPN14 serves as a critical modulator of SMCs, promoting neointimal hyperplasia. PDGFRβY692, dephosphorylated by PTPN14, acts as a self-inhibitory site for controlling PDGFRβ activation.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- Coronary Vessels/pathology
- Coronary Vessels/metabolism
- Hyperplasia/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neointima/metabolism
- Neointima/pathology
- Phosphorylation
- Protein Tyrosine Phosphatases, Non-Receptor/metabolism
- Protein Tyrosine Phosphatases, Non-Receptor/genetics
- Receptor, Platelet-Derived Growth Factor beta/metabolism
- Receptor, Platelet-Derived Growth Factor beta/genetics
- Signal Transduction
Collapse
Affiliation(s)
- Qiannan Ma
- Tianjin Key Laboratory of Metabolic Diseases, Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070, China
- Department of Endocrinology and Metabolism, Tianjin Research Institute of Endocrinology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xue He
- Tianjin Key Laboratory of Metabolic Diseases, Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070, China
| | - Xue Wang
- Tianjin Key Laboratory of Metabolic Diseases, Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070, China
| | - Guobing Zhao
- Tianjin Key Laboratory of Metabolic Diseases, Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070, China
| | - Yanhong Zhang
- Tianjin Key Laboratory of Metabolic Diseases, Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070, China
| | - Chao Su
- Division of Cardiovascular Surgery, Cardiac and Vascular Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518040, China
| | - Minxin Wei
- Division of Cardiovascular Surgery, Cardiac and Vascular Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518040, China
| | - Kai Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Research Institute of Endocrinology, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Yi Zhu
- Tianjin Key Laboratory of Metabolic Diseases, Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070, China.
- Department of Endocrinology and Metabolism, Tianjin Research Institute of Endocrinology, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Jinlong He
- Tianjin Key Laboratory of Metabolic Diseases, Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
6
|
Chen Y, Cui Y, Li M, Xia M, Xiang Q, Mao Y, Li H, Chen J, Zeng W, Zheng X, Peng J, Dai X, Tang Z. A novel mechanism of ferroptosis inhibition-enhanced atherosclerotic plaque stability: YAP1 suppresses vascular smooth muscle cell ferroptosis through GLS1. FASEB J 2024; 38:e23850. [PMID: 39091212 DOI: 10.1096/fj.202401251r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/05/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Abstract
Atherosclerosis is a leading cause of cardiovascular diseases (CVDs), often resulting in major adverse cardiovascular events (MACEs), such as myocardial infarction and stroke due to the rupture or erosion of vulnerable plaques. Ferroptosis, an iron-dependent form of cell death, has been implicated in the development of atherosclerosis. Despite its involvement in CVDs, the specific role of ferroptosis in atherosclerotic plaque stability remains unclear. In this study, we confirmed the presence of ferroptosis in unstable atherosclerotic plaques and demonstrated that the ferroptosis inhibitor ferrostatin-1 (Fer-1) stabilizes atherosclerotic plaques in apolipoprotein E knockout (Apoe-/-) mice. Using bioinformatic analysis combining RNA sequencing (RNA-seq) with single-cell RNA sequencing (scRNA-seq), we identified Yes-associated protein 1 (YAP1) as a potential key regulator of ferroptosis in vascular smooth muscle cells (VSMCs) of unstable plaques. In vitro, we found that YAP1 protects against oxidized low-density lipoprotein (oxLDL)-induced ferroptosis in VSMCs. Mechanistically, YAP1 exerts its anti-ferroptosis effects by regulating the expression of glutaminase 1 (GLS1) to promote the synthesis of glutamate (Glu) and glutathione (GSH). These findings establish a novel mechanism where the inhibition of ferroptosis promotes the stabilization of atherosclerotic plaques through the YAP1/GLS1 axis, attenuating VSMC ferroptosis. Thus, targeting the YAP1/GLS1 axis to suppress VSMC ferroptosis may represent a novel strategy for preventing and treating unstable atherosclerotic plaques.
Collapse
MESH Headings
- Ferroptosis
- Animals
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Mice
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- YAP-Signaling Proteins/metabolism
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Humans
- Male
- Mice, Inbred C57BL
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/genetics
- Mice, Knockout
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Phenylenediamines/pharmacology
- Cyclohexylamines/pharmacology
- Apolipoproteins E/metabolism
- Apolipoproteins E/genetics
Collapse
Affiliation(s)
- Yanyu Chen
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, China
| | - Yuting Cui
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, China
- Department of Pathophysiology, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Man Li
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, China
| | - Mengdie Xia
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, China
| | - Qiong Xiang
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, China
| | - Yu Mao
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, China
| | - Hengjuan Li
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, China
| | - Jialin Chen
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, China
| | - Wen Zeng
- Shaoyang Branch of Key Laboratory for Arteriosclerology of Hunan Province, The Central Hospital of Shaoyang, Shaoyang, China
| | - Xilong Zheng
- Department of Biochemistry & Molecular Biology and Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Juan Peng
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, China
- Shaoyang Branch of Key Laboratory for Arteriosclerology of Hunan Province, The Central Hospital of Shaoyang, Shaoyang, China
| | - Xiaoyan Dai
- Clinical Research Institute, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhihan Tang
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, China
- Shaoyang Branch of Key Laboratory for Arteriosclerology of Hunan Province, The Central Hospital of Shaoyang, Shaoyang, China
| |
Collapse
|
7
|
Grano de Oro A, Kumariya S, Mell B, Zubcevic J, Joe B, Osman I. Spontaneous vascular dysfunction in Dahl salt-sensitive male rats raised without a high-salt diet. Physiol Rep 2024; 12:e16165. [PMID: 39048525 PMCID: PMC11268988 DOI: 10.14814/phy2.16165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
Dahl salt-sensitive (SS) rats fed a high-salt diet, but not low-salt, exhibit vascular dysfunction. Several substrains of SS rats exist that differ in their blood pressure phenotypes and salt sensitivity. The goal of this study was to investigate whether the John-Rapp-derived SS rat (SS/Jr), which exhibits spontaneous hypertension on a low-salt diet, presents with hallmarks of vascular dysfunction observed in another experimental model of hypertension independent of dietary salt, the spontaneously hypertensive rat (SHR). Endothelium-intact aortic rings and mesenteric resistance arteries were isolated from low-salt fed adult male SS/Jr rats and SHRs, or their respective controls, for isometric wire myography. Vessels were challenged with cumulative concentrations of various vasoactive substances, in the absence or presence of nitric oxide synthase or cyclooxygenase inhibitors. Despite showing some differences in their responses to various vasoactive substances, both SS/Jr rats and SHRs exhibited key features of vascular dysfunction, including endothelial dysfunction and hyperresponsiveness to vasocontractile agonists. In conclusion, this study provides evidence to support the utility of the SS/Jr rat strain maintained on a low-salt diet as a valid experimental model for vascular dysfunction, a key feature of human hypertension.
Collapse
Affiliation(s)
- Arturo Grano de Oro
- Department of Physiology and Pharmacology, Center for Hypertension and Personalized MedicineUniversity of Toledo, College of Medicine and Life SciencesToledoOhioUSA
| | - Sanjana Kumariya
- Department of Physiology and Pharmacology, Center for Hypertension and Personalized MedicineUniversity of Toledo, College of Medicine and Life SciencesToledoOhioUSA
| | - Blair Mell
- Department of Physiology and Pharmacology, Center for Hypertension and Personalized MedicineUniversity of Toledo, College of Medicine and Life SciencesToledoOhioUSA
| | - Jasenka Zubcevic
- Department of Physiology and Pharmacology, Center for Hypertension and Personalized MedicineUniversity of Toledo, College of Medicine and Life SciencesToledoOhioUSA
| | - Bina Joe
- Department of Physiology and Pharmacology, Center for Hypertension and Personalized MedicineUniversity of Toledo, College of Medicine and Life SciencesToledoOhioUSA
| | - Islam Osman
- Department of Physiology and Pharmacology, Center for Hypertension and Personalized MedicineUniversity of Toledo, College of Medicine and Life SciencesToledoOhioUSA
| |
Collapse
|
8
|
Elmarasi M, Elmakaty I, Elsayed B, Elsayed A, Zein JA, Boudaka A, Eid AH. Phenotypic switching of vascular smooth muscle cells in atherosclerosis, hypertension, and aortic dissection. J Cell Physiol 2024; 239:e31200. [PMID: 38291732 DOI: 10.1002/jcp.31200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/12/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Vascular smooth muscle cells (VSMCs) play a critical role in regulating vasotone, and their phenotypic plasticity is a key contributor to the pathogenesis of various vascular diseases. Two main VSMC phenotypes have been well described: contractile and synthetic. Contractile VSMCs are typically found in the tunica media of the vessel wall, and are responsible for regulating vascular tone and diameter. Synthetic VSMCs, on the other hand, are typically found in the tunica intima and adventitia, and are involved in vascular repair and remodeling. Switching between contractile and synthetic phenotypes occurs in response to various insults and stimuli, such as injury or inflammation, and this allows VSMCs to adapt to changing environmental cues and regulate vascular tone, growth, and repair. Furthermore, VSMCs can also switch to osteoblast-like and chondrocyte-like cell phenotypes, which may contribute to vascular calcification and other pathological processes like the formation of atherosclerotic plaques. This provides discusses the mechanisms that regulate VSMC phenotypic switching and its role in the development of vascular diseases. A better understanding of these processes is essential for the development of effective diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Mohamed Elmarasi
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ibrahim Elmakaty
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Basel Elsayed
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Abdelrahman Elsayed
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Jana Al Zein
- Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Ammar Boudaka
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
9
|
Wang L, Li H, Zheng Z, Li Y. Hsa_circ_0031891 targets miR-579-3p to enhance HMGB1 expression and regulate PDGF-BB-induced human aortic vascular smooth muscle cell proliferation, migration, and dedifferentiation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1093-1104. [PMID: 37606757 DOI: 10.1007/s00210-023-02663-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/06/2023] [Indexed: 08/23/2023]
Abstract
Atherosclerosis (AS) is an underlying cause of the majority of coronary artery disease (CAD), in which proliferation, migration, and dedifferentiation of vascular smooth muscle cells (VSMCs) exert vital roles. It has been reported that circular RNAs (circRNAs) are associated with the VSMCs function. Here, we undertook to explore the biological function and mechanism of hsa_circ_0031891 in a platelet-derived growth factor-BB (PDGF-BB)-induced AS cell model. Hsa_circ_0031891 and microRNA-579-3p (miR-579-3p) levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Cell proliferation and migration were detected using Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), wound healing, and transwell assay. Protein levels of alpha-smooth muscle actin (α-SMA), smooth muscle protein 22-α (SM22-α), Osteopontin, and High mobility group box-1 (HMGB1) were determined using western blot assay. After predicting via a variety of bioinformatics software, the binding between miR-579-3p and hsa_circ_0031891 or HMGB1 was validated using dual-luciferase reporter and RNA pull-down assays. Increased hsa_circ_0031891 and HMGB1 and reduced miR-579-3p were found in CAD patients and PDGF-BB-induced human aortic vascular smooth muscle cells (HA-VSMCs). Moreover, hsa_circ_0031891 deficiency relieved PDGF-BB-mediated HA-VSMC proliferation, migration, and dedifferentiation. Mechanically, hsa_circ_0031891 modulated HMGB1 expression via sponging miR-579-3p. Hsa_circ_0031891 boosted PDGF-BB-induced proliferation, migration, and dedifferentiation partly by regulating the miR-579-3p/HMGB1 axis, hinting at a feasible therapeutic strategy for AS.
Collapse
Affiliation(s)
- Long Wang
- Second Department of Cardiology, Gansu Second People's Hospital, Lanzhou, 730000, China
| | - Huacheng Li
- Medical Intervention Department, Qingyang Second People's Hospital, No. 2, Beijing Avenue, Xifeng District, Qingyang, 745000, China.
| | - Zhizhen Zheng
- Second Department of Cardiology, Gansu Second People's Hospital, Lanzhou, 730000, China
| | - Yongxiang Li
- Second Department of Cardiology, Gansu Second People's Hospital, Lanzhou, 730000, China
| |
Collapse
|
10
|
Wang L, Liu T, Zheng Y, Zhou J, Hua H, Kong L, Huang W, Peng X, Wen T. P4HA2-induced prolyl hydroxylation of YAP1 restricts vascular smooth muscle cell proliferation and neointima formation. Life Sci 2023; 330:122002. [PMID: 37549826 DOI: 10.1016/j.lfs.2023.122002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
Vascular smooth muscle cell (VSMC) proliferation and neointima formation play significant roles in atherosclerosis development and restenosis following percutaneous coronary intervention. Our team previously discovered that TEA domain transcription factor 1 (TEAD1) promotes vascular smooth muscle differentiation, which is necessary for vascular development. Conversely, aberrant YAP1 activation upregulates the platelet-derived growth factor receptor beta to encourage VSMC proliferation and neointima formation. In this study, we aimed to investigate the molecular mechanisms of YAP1/TEAD signaling during neointima formation. Our research focused on the prolyl 4-hydroxylase alpha 2 (P4HA2) and its downstream target, Yes-associated protein 1 (YAP1), in regulating VSMC differentiation and neointima formation. Our results indicated that P4HA2 reduction leads to VSMC dedifferentiation and promotes neointima formation after injury. Furthermore, we found that P4HA2-induced prolyl hydroxylation of YAP1 restricts its transcriptional activity, which is essential to maintaining VSMC differentiation. These findings suggest that targeting P4HA2-mediated prolyl hydroxylation of YAP1 may be a promising therapeutic approach to prevent injury-induced neointima formation in cardiovascular disease.
Collapse
Affiliation(s)
- Liang Wang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Hypertension Research Institute of Jiangxi Province, Nanchang, Jiangxi, 330006, China
| | - Ting Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yaofu Zheng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Hypertension Research Institute of Jiangxi Province, Nanchang, Jiangxi, 330006, China
| | - Jiamin Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Hypertension Research Institute of Jiangxi Province, Nanchang, Jiangxi, 330006, China
| | - Hexiang Hua
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Hypertension Research Institute of Jiangxi Province, Nanchang, Jiangxi, 330006, China
| | - Liming Kong
- Department of Outpatient clinic, The First Affiliated Hospital of Nanchang, University, Nanchang, Jiangxi 330006, China
| | - Weilin Huang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Hypertension Research Institute of Jiangxi Province, Nanchang, Jiangxi, 330006, China
| | - Xiaoping Peng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Hypertension Research Institute of Jiangxi Province, Nanchang, Jiangxi, 330006, China
| | - Tong Wen
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Hypertension Research Institute of Jiangxi Province, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
11
|
Xiong Y, Wang Y, Yang T, Luo Y, Xu S, Li L. Receptor Tyrosine Kinase: Still an Interesting Target to Inhibit the Proliferation of Vascular Smooth Muscle Cells. Am J Cardiovasc Drugs 2023; 23:497-518. [PMID: 37524956 DOI: 10.1007/s40256-023-00596-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/05/2023] [Indexed: 08/02/2023]
Abstract
Vascular smooth muscle cells (VSMCs) proliferation is a critical event that contributes to the pathogenesis of vascular remodeling such as hypertension, restenosis, and pulmonary hypertension. Increasing evidences have revealed that VSMCs proliferation is associated with the activation of receptor tyrosine kinases (RTKs) by their ligands, including the insulin-like growth factor receptor (IGFR), fibroblast growth factor receptor (FGFR), epidermal growth factor receptor (EGFR), vascular endothelial growth factor receptor (VEGFR), and platelet-derived growth factor receptor (PDGFR). Moreover, some receptor tyrosinase inhibitors (TKIs) have been found and can prevent VSMCs proliferation to attenuate vascular remodeling. Therefore, this review will describe recent research progress on the role of RTKs and their inhibitors in controlling VSMCs proliferation, which helps to better understand the function of VSMCs proliferation in cardiovascular events and is beneficial for the prevention and treatment of vascular disease.
Collapse
Affiliation(s)
- Yilin Xiong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China
| | - Yan Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China
| | - Tao Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China
| | - Yunmei Luo
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China
| | - Shangfu Xu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China
| | - Lisheng Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China.
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
12
|
Zhou D, Ha HC, Yang G, Jang JM, Park BK, Fu Z, Shin IC, Kim DK. Hyaluronic acid and proteoglycan link protein 1 suppresses platelet‑derived growth factor-BB-induced proliferation, migration, and phenotypic switching of vascular smooth muscle cells. BMB Rep 2023; 56:445-450. [PMID: 37401239 PMCID: PMC10471460 DOI: 10.5483/bmbrep.2023-0088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 04/03/2024] Open
Abstract
The development of atherosclerotic cardiovascular disease is associated with the phenotypic switching of vascular smooth muscle cells (SMCs) from a contractile to a synthetic state, leading to cell migration and proliferation. Platelet‑derived growth factor‑BB (PDGF‑BB) modulates this de-differentiation by initiating a number of biological processes. In this study, we show that gene expression of hyaluronic acid (HA) and proteoglycan link protein 1 (HAPLN1) was upregulated during differentiation of human aortic SMCs (HASMCs) into a contractile state, but downregulated upon during PDGF-BB-induced dedifferentiation. This is the first study showing that the treatment of HASMCs with full-length recombinant human HAPLN1 (rhHAPLN1) significantly reversed PDGF-BB-induced decrease in the protein levels of contractile markers (SM22α, α-SMA, calponin, and SM-MHC), and inhibited the proliferation and migration of HASMCs induced by PDGF-BB. Furthermore, our results show that rhHAPLN1 significantly inhibited the phosphorylation of FAK, AKT, STAT3, p38 MAPK and Raf mediated by the binding of PDGF-BB to PDGFRβ. Together, these results indicated that rhHAPLN1 can suppress the PDGF-BB-stimulated phenotypic switching and subsequent de-differentiation of HASMCs, highlighting its potential as a novel therapeutic target for atherosclerosis and other vascular diseases. [BMB Reports 2023; 56(8): 445-450].
Collapse
Affiliation(s)
- Dan Zhou
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Korea
| | - Hae Chan Ha
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Goowon Yang
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Korea
| | - Ji Min Jang
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Korea
| | - Bo Kyung Park
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Zhicheng Fu
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Korea
| | - In Chul Shin
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Korea
| | - Dae Kyong Kim
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Korea
| |
Collapse
|
13
|
Zhou D, Ha HC, Yang G, Jang JM, Park BK, Fu Z, Shin IC, Kim DK. Hyaluronic acid and proteoglycan link protein 1 suppresses platelet‑derived growth factor-BB-induced proliferation, migration, and phenotypic switching of vascular smooth muscle cells. BMB Rep 2023; 56:445-450. [PMID: 37401239 PMCID: PMC10471460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/05/2023] Open
Abstract
The development of atherosclerotic cardiovascular disease is associated with the phenotypic switching of vascular smooth muscle cells (SMCs) from a contractile to a synthetic state, leading to cell migration and proliferation. Platelet‑derived growth factor‑BB (PDGF‑BB) modulates this de-differentiation by initiating a number of biological processes. In this study, we show that gene expression of hyaluronic acid (HA) and proteoglycan link protein 1 (HAPLN1) was upregulated during differentiation of human aortic SMCs (HASMCs) into a contractile state, but downregulated upon during PDGF-BB-induced dedifferentiation. This is the first study showing that the treatment of HASMCs with full-length recombinant human HAPLN1 (rhHAPLN1) significantly reversed PDGF-BB-induced decrease in the protein levels of contractile markers (SM22α, α-SMA, calponin, and SM-MHC), and inhibited the proliferation and migration of HASMCs induced by PDGF-BB. Furthermore, our results show that rhHAPLN1 significantly inhibited the phosphorylation of FAK, AKT, STAT3, p38 MAPK and Raf mediated by the binding of PDGF-BB to PDGFRβ. Together, these results indicated that rhHAPLN1 can suppress the PDGF-BB-stimulated phenotypic switching and subsequent de-differentiation of HASMCs, highlighting its potential as a novel therapeutic target for atherosclerosis and other vascular diseases. [BMB Reports 2023; 56(8): 445-450].
Collapse
Affiliation(s)
- Dan Zhou
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Korea
| | - Hae Chan Ha
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Goowon Yang
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Korea
| | - Ji Min Jang
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Korea
| | - Bo Kyung Park
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Zhicheng Fu
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Korea
| | - In Chul Shin
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Korea
| | - Dae Kyong Kim
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Korea
| |
Collapse
|
14
|
Li P, Ma L, Zhan W, Xie D, Hong G, Deng M, Wu Z, Lin P, Yan L, Lu Z, Li C, Lin H. Exosome-like Nanovesicles Derived from the Mucilage of Pinctada Martensii Exhibit Antitumor Activity against 143B Osteosarcoma Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:26227-26240. [PMID: 37226779 DOI: 10.1021/acsami.2c21485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Osteosarcoma is prone to metastasis and has a low long-term survival rate. The drug treatment of osteosarcoma, side effects of treatment drugs, and prognosis of patients with lung metastasis continue to present significant challenges, and the efficacy of drugs used in the treatment of osteosarcoma remains low. The development of new therapeutic drugs is urgently needed. In this study, we successfully isolated Pinctada martensii mucilage exosome-like nanovesicles (PMMENs). Our findings demonstrated that PMMENs inhibited the viability and proliferation of 143B cells, induced apoptosis, and inhibited cell proliferation by suppressing the activation of the ERK1/2 and Wnt signaling pathways. Furthermore, PMMENs inhibited cell migration and invasion by downregulating N-cadherin, vimentin, and matrix metalloprotease-2 protein expression levels. Transcriptomic and metabolomic analyses revealed that differential genes were co-enriched with differential metabolites in cancer signaling pathways. These results suggest that PMMENs may exert anti-tumor activity by targeting the ERK1/2 and Wnt signaling pathways. Moreover, tumor xenograft model experiments showed that PMMENs can inhibit the growth of osteosarcoma in mice. Thus, PMMENs may be a potential anti-osteosarcoma drug.
Collapse
Affiliation(s)
- Peng Li
- Stem Cell Research and Cellular Therapy Center, Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, P. R. China
| | - Lihua Ma
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, P. R. China
- College of Food Science and Technology, Guangdong Ocean University, Zhangjiang 518108, P. R. China
| | - Weiqiang Zhan
- Stem Cell Research and Cellular Therapy Center, Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, P. R. China
| | - Dong Xie
- Stem Cell Research and Cellular Therapy Center, Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, P. R. China
| | - Guanhao Hong
- Stem Cell Research and Cellular Therapy Center, Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, P. R. China
| | - Mingzhu Deng
- Stem Cell Research and Cellular Therapy Center, Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, P. R. China
| | - Zijie Wu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, P. R. China
- College of Food Science and Technology, Guangdong Ocean University, Zhangjiang 518108, P. R. China
| | - Peichun Lin
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, P. R. China
| | - Linhong Yan
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, P. R. China
- College of Food Science and Technology, Guangdong Ocean University, Zhangjiang 518108, P. R. China
| | - Zifan Lu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, P. R. China
| | - Chengyong Li
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, P. R. China
| | - Hao Lin
- Stem Cell Research and Cellular Therapy Center, Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, P. R. China
| |
Collapse
|
15
|
Wang Z, Quan Y, Hu M, Xu Y, Chen Y, Jin P, Ma J, Chen X, Fan J, Fan X, Gong Y, Li M, Wang Y. VGLL4-TEAD1 promotes vascular smooth muscle cell differentiation from human pluripotent stem cells via TET2. J Mol Cell Cardiol 2023; 176:21-32. [PMID: 36657637 DOI: 10.1016/j.yjmcc.2023.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/21/2022] [Accepted: 01/13/2023] [Indexed: 01/18/2023]
Abstract
The Hippo signaling pathway plays a critical role in cardiovascular development and stem cell differentiation. Using microarray profiling, we found that the Hippo pathway components vestigial-like family member 4 (VGLL4) and TEA domain transcription factor 1 (TEAD1) were upregulated during vascular smooth muscle cell (VSMC) differentiation from H1 ESCs (H1 embryonic stem cells). To further explore the role and molecular mechanisms of VGLL4 in regulating VSMC differentiation, we generated a VGLL4-knockdown H1 ESC line (heterozygous knockout) using the CRISPR/Cas9 system and found that VGLL4 knockdown inhibited VSMC specification. In contrast, overexpression of VGLL4 using the PiggyBac transposon system facilitated VSMC differentiation. We confirmed that this effect was mediated via TEAD1 and VGLL4 interaction. In addition, bioinformatics analysis revealed that Ten-eleven-translocation 2 (TET2), a DNA dioxygenase, is a target of TEAD1, and a luciferase assay further verified that TET2 is the target of the VGLL4-TEAD1 complex. Indeed, TET2 overexpression promoted VSMC marker gene expression and countered the VGLL4 knockdown-mediated inhibitory effects on VSMC differentiation. In summary, we revealed a novel role of VGLL4 in promoting VSMC differentiation from hESCs and identified TET2 as a new target of the VGLL4-TEAD1 complex, which may demethylate VSMC marker genes and facilitate VSMC differentiation. This study provides new insights into the VGLL4-TEAD1-TET2 axis in VSMC differentiation and vascular development.
Collapse
Affiliation(s)
- Zuxuan Wang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Yingyi Quan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Minjie Hu
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Yubin Xu
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Yuhao Chen
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Peifeng Jin
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Jianshe Ma
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Xiufang Chen
- Cardiac Regeneration Research Institute, School of Basic Medical Science, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Junming Fan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Xiaofang Fan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Yongsheng Gong
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Ming Li
- Cardiac Regeneration Research Institute, School of Basic Medical Science, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Yongyu Wang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China; Cardiac Regeneration Research Institute, School of Basic Medical Science, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China.
| |
Collapse
|
16
|
Gokula V, Terrero D, Joe B. Six Decades of History of Hypertension Research at the University of Toledo: Highlighting Pioneering Contributions in Biochemistry, Genetics, and Host-Microbiota Interactions. Curr Hypertens Rep 2022; 24:669-685. [PMID: 36301488 PMCID: PMC9708772 DOI: 10.1007/s11906-022-01226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW The study aims to capture the history and lineage of hypertension researchers from the University of Toledo in Ohio and showcase their collective scientific contributions dating from their initial discoveries of the physiology of adrenal and renal systems and genetics regulating blood pressure (BP) to its more contemporary contributions including microbiota and metabolomic links to BP regulation. RECENT FINDINGS The University of Toledo College of Medicine and Life Sciences (UTCOMLS), previously known as the Medical College of Ohio, has contributed significantly to our understanding of the etiology of hypertension. Two of the scientists, Patrick Mulrow and John Rapp from UTCOMLS, have been recognized with the highest honor, the Excellence in Hypertension award from the American Heart Association for their pioneering work on the physiology and genetics of hypertension, respectively. More recently, Bina Joe has continued their legacy in the basic sciences by uncovering previously unknown novel links between microbiota and metabolites to the etiology of hypertension, work that has been recognized by the American Heart Association with multiple awards. On the clinical research front, Christopher Cooper and colleagues lead the CORAL trials and contributed importantly to the investigations on renal artery stenosis treatment paradigms. Hypertension research at this institution has not only provided these pioneering insights, but also grown careers of scientists as leaders in academia as University Presidents and Deans of Medical Schools. Through the last decade, the university has expanded its commitment to Hypertension research as evident through the development of the Center for Hypertension and Precision Medicine led by Bina Joe as its founding Director. Hypertension being the top risk factor for cardiovascular diseases, which is the leading cause of human mortality, is an important area of research in multiple international universities. The UTCOMLS is one such university which, for the last 6 decades, has made significant contributions to our current understanding of hypertension. This review is a synthesis of this rich history. Additionally, it also serves as a collection of audio archives by more recent faculty who are also prominent leaders in the field of hypertension research, including John Rapp, Bina Joe, and Christopher Cooper, which are cataloged at Interviews .
Collapse
Affiliation(s)
- Veda Gokula
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo College of Medicine and Life Sciences, Block Health Science Building, 3000 Arlington Ave, Toledo, OH, 43614-2598, USA
| | - David Terrero
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy, University of Toledo, Toledo, OH, USA
| | - Bina Joe
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo College of Medicine and Life Sciences, Block Health Science Building, 3000 Arlington Ave, Toledo, OH, 43614-2598, USA.
| |
Collapse
|
17
|
Wu Y, Chen M, Chen Z, Shu J, Zhang L, Hu J, Yu H, Huang K, Liang M. Theaflavin-3,3′-Digallate from Black Tea Inhibits Neointima Formation Through Suppression of the PDGFRβ Pathway in Vascular Smooth Muscle Cells. Front Pharmacol 2022; 13:861319. [PMID: 35903325 PMCID: PMC9315285 DOI: 10.3389/fphar.2022.861319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/02/2022] [Indexed: 01/19/2023] Open
Abstract
The abnormal neointima formation caused by the phenotypic switching of vascular smooth cells (VSMCs) into a synthetic state plays a key role in the pathogenesis of various vascular diseases, including atherosclerosis and postangioplasty restenosis. Theaflavin-3,3′-digallate (TF3) in black tea has been reported to exert antiinflammatory and anticancer effects, but its role in neointima formation remains unclear. Here, we delineated a remarkable effect of TF3 in suppressing neointima formation of VSMCs in vivo as well as the ability of primary rat aortic smooth cells (RASMCs) to proliferate and migrate in vitro. Further study confirmed that the effects of TF3 on PDGF-BB–induced RASMCs were due to reduced phosphorylation of PDGFRβ, which led to the repression of downstream pathways. We concluded that TF3 may act as a repressor in the progression of neointima formation and serve as a potential therapeutic candidate for excessive phenotypic switching of VSMCs.
Collapse
Affiliation(s)
- Yichen Wu
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Chen
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, China
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Wuhan, China
| | - Zilong Chen
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiangcheng Shu
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Luoying Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jiong Hu
- Department of Histology and Embryology School of Basic Medicine, Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
| | - Hongjun Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, China
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Wuhan, China
- *Correspondence: Kai Huang, ; Minglu Liang,
| | - Minglu Liang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, China
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Wuhan, China
- *Correspondence: Kai Huang, ; Minglu Liang,
| |
Collapse
|
18
|
Emmi A, Stocco E, Boscolo-Berto R, Contran M, Belluzzi E, Favero M, Ramonda R, Porzionato A, Ruggieri P, De Caro R, Macchi V. Infrapatellar Fat Pad-Synovial Membrane Anatomo-Fuctional Unit: Microscopic Basis for Piezo1/2 Mechanosensors Involvement in Osteoarthritis Pain. Front Cell Dev Biol 2022; 10:886604. [PMID: 35837327 PMCID: PMC9274201 DOI: 10.3389/fcell.2022.886604] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/09/2022] [Indexed: 01/15/2023] Open
Abstract
The Infrapatellar Fat Pad (IFP) is a fibro-adipose tissue of the knee recently reconsidered as part of a single anatomo-functional unit (AFU) together with the synovial membrane (SM). Several evidence support the role of this unit in the mechanisms that trigger and perpetuate the onset and progression of osteoarthritis (OA) disease. Additionally, the contribution of IFP-SM AFU in OA-associated pain has also been supposed, but this assumption still needs to be fully elucidated. Within this context, the recent discovery of the mechanoceptive Piezo ion channels (i.e., Piezo1 and Piezo2) in mammals and consciousness on their role in mediating both mechanoceptive and inflammatory stimuli could shed some light on knee OA pain, as well as on the process leading from acute to chronic nociceptive responses. For this purpose, the IFP-SM AFUs of both healthy donors (non-OA IFP-SM AFUs, n = 10) and OA patients (OA IFP-SM AFUs, n = 10) were processed by histology and immunohistochemistry. After the attribution of a histopathological score to IFP-SM AFUs to confirm intrinsic differences between the two groups, the specimens were investigated for the expression and localization/distribution pattern of the mechanosensors Piezo1 and Piezo2. In addition, the presence of monocytes/macrophages (CD68), peripheral nerve endings (PGP9.5) and neoangiogenesis signs (YAP1) was evaluated for a broad tissue characterization. The study results lead to a better description of the IFP-SM AFU microscopic features in both healthy and pathological conditions, highlighting peculiar differences in the study cohort. Specifically, immunopositivity towards Piezo1/2, CD68 and YAP1 markers was detected at vessels level in the OA- IFP-SM AFUs compartments, differently from the non-OA-group. A correlation with pain was also inferred, paving the way for the identification of new and effective molecules in OA management.
Collapse
Affiliation(s)
- Aron Emmi
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
| | - Elena Stocco
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
| | - Rafael Boscolo-Berto
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
| | - Martina Contran
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
| | - Elisa Belluzzi
- Musculoskeletal Pathology and Oncology Laboratory, Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, Padova, Italy
- Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, Padova, Italy
| | - Marta Favero
- Rheumatology Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
- Internal Medicine I, Cà Foncello Hospital, Treviso, Italy
| | - Roberta Ramonda
- Musculoskeletal Pathology and Oncology Laboratory, Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, Padova, Italy
| | - Andrea Porzionato
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
| | - Pietro Ruggieri
- Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, Padova, Italy
| | - Raffaele De Caro
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
- *Correspondence: Raffaele De Caro,
| | - Veronica Macchi
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
| |
Collapse
|