1
|
Luna-Flores CH, Wang A, Cui Z, von Hellens J, Speight RE. An enhanced electron transport chain improved astaxanthin production in Phaffia rhodozyma. Biotechnol Bioeng 2023; 120:1382-1398. [PMID: 36639843 DOI: 10.1002/bit.28332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 01/01/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Astaxanthin (AX) is a carotenoid pigment with antioxidant properties widely used as a feed supplement. Wild-type strains of Phaffia rhodozyma naturally produce low AX yields, but we increased AX yields 50-fold in previous research using random mutagenesis of P. rhodozyma CBS6938 and fermentation optimization. On that study, genome changes were linked with phenotype, but relevant metabolic changes were not resolved. In this study, the wild-type and the superior P. rhodozyma mutant strains were grown in chemically defined media and instrumented fermenters. Differential kinetic, metabolomics, and transcriptomics data were collected. Our results suggest that carotenoid production was mainly associated with cell growth and had a positive regulation of central carbon metabolism metabolites, amino acids, and fatty acids. In the stationary phase, amino acids associated with the TCA cycle increased, but most of the fatty acids and central carbon metabolism metabolites decreased. TCA cycle metabolites were in abundance and media supplementation of citrate, malate, α-ketoglutarate, succinate, or fumarate increased AX production in the mutant strain. Transcriptomic data correlated with the metabolic and genomic data and found a positive regulation of genes associated with the electron transport chain suggesting this to be the main driver for improved AX production in the mutant strain.
Collapse
Affiliation(s)
- Carlos H Luna-Flores
- School of Biology and Environmental Science, Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology (QUT), Brisbane, Australia
| | | | - Zhenling Cui
- School of Biology and Environmental Science, Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology (QUT), Brisbane, Australia.,ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | | | - Robert E Speight
- School of Biology and Environmental Science, Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology (QUT), Brisbane, Australia.,ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| |
Collapse
|
2
|
Flores-Cotera LB, Chávez-Cabrera C, Martínez-Cárdenas A, Sánchez S, García-Flores OU. Deciphering the mechanism by which the yeast Phaffia rhodozyma responds adaptively to environmental, nutritional, and genetic cues. J Ind Microbiol Biotechnol 2021; 48:kuab048. [PMID: 34302341 PMCID: PMC8788774 DOI: 10.1093/jimb/kuab048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/16/2021] [Indexed: 11/13/2022]
Abstract
Phaffia rhodozyma is a basidiomycetous yeast that synthesizes astaxanthin (ASX), which is a powerful and highly valuable antioxidant carotenoid pigment. P. rhodozyma cells accrue ASX and gain an intense red-pink coloration when faced with stressful conditions such as nutrient limitations (e.g., nitrogen or copper), the presence of toxic substances (e.g., antimycin A), or are affected by mutations in the genes that are involved in nitrogen metabolism or respiration. Since cellular accrual of ASX occurs under a wide variety of conditions, this yeast represents a valuable model for studying the growth conditions that entail oxidative stress for yeast cells. Recently, we proposed that ASX synthesis can be largely induced by conditions that lead to reduction-oxidation (redox) imbalances, particularly the state of the NADH/NAD+ couple together with an oxidative environment. In this work, we review the multiple known conditions that elicit ASX synthesis expanding on the data that we formerly examined. When considered alongside the Mitchell's chemiosmotic hypothesis, the study served to rationalize the induction of ASX synthesis and other adaptive cellular processes under a much broader set of conditions. Our aim was to propose an underlying mechanism that explains how a broad range of divergent conditions converge to induce ASX synthesis in P. rhodozyma. The mechanism that links the induction of ASX synthesis with the occurrence of NADH/NAD+ imbalances may help in understanding how other organisms detect any of a broad array of stimuli or gene mutations, and then adaptively respond to activate numerous compensatory cellular processes.
Collapse
Affiliation(s)
- Luis B Flores-Cotera
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México city 07360, México
| | - Cipriano Chávez-Cabrera
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México city 07360, México
| | - Anahi Martínez-Cárdenas
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México city 07360, México
| | - Sergio Sánchez
- Department of Molecular Biology and Biotechnology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México city 04510, México
| | - Oscar Ulises García-Flores
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México city 07360, México
| |
Collapse
|
3
|
Phaffia rhodozyma cultivation on structural and non-structural sugars from sweet sorghum for astaxanthin generation. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Golubeva LI, Shupletsov MS, Mashko SV. Metabolic Flux Analysis using 13C Isotopes: III. Significance for Systems Biology and Metabolic Engineering. APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683817090058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Hong M, Huang M, Chu J, Zhuang Y, Zhang S. Impacts of proline on the central metabolism of an industrial erythromycin-producing strain Saccharopolyspora erythraea via 13 C labeling experiments. J Biotechnol 2016; 231:1-8. [DOI: 10.1016/j.jbiotec.2016.05.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 10/21/2022]
|
6
|
Nidelet T, Brial P, Camarasa C, Dequin S. Diversity of flux distribution in central carbon metabolism of S. cerevisiae strains from diverse environments. Microb Cell Fact 2016; 15:58. [PMID: 27044358 PMCID: PMC4820951 DOI: 10.1186/s12934-016-0456-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/23/2016] [Indexed: 11/10/2022] Open
Abstract
Background S. cerevisiae has attracted considerable interest in recent years as a model for ecology and evolutionary biology, revealing a substantial genetic and phenotypic diversity. However, there is a lack of knowledge on the diversity of metabolic networks within this species. Results To identify the metabolic and evolutionary constraints that shape metabolic fluxes in S. cerevisiae, we used a dedicated constraint-based model to predict the central carbon metabolism flux distribution of 43 strains from different ecological origins, grown in wine fermentation conditions. In analyzing these distributions, we observed a highly contrasted situation in flux variability, with quasi-constancy of the glycolysis and ethanol synthesis yield yet high flexibility of other fluxes, such as the pentose phosphate pathway and acetaldehyde production. Furthermore, these fluxes with large variability showed multimodal distributions that could be linked to strain origin, indicating a convergence between genetic origin and flux phenotype. Conclusions Flux variability is pathway-dependent and, for some flux, a strain origin effect can be found. These data highlight the constraints shaping the yeast operative central carbon network and provide clues for the design of strategies for strain improvement. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0456-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thibault Nidelet
- SPO, INRA, SupAgro, Université de Montpellier, 34060, Montpellier, France.
| | - Pascale Brial
- SPO, INRA, SupAgro, Université de Montpellier, 34060, Montpellier, France
| | - Carole Camarasa
- SPO, INRA, SupAgro, Université de Montpellier, 34060, Montpellier, France
| | - Sylvie Dequin
- SPO, INRA, SupAgro, Université de Montpellier, 34060, Montpellier, France
| |
Collapse
|
7
|
Liu G, Zhang M, Mo T, He L, Zhang W, Yu Y, Zhang Q, Ding W. Metabolic flux analysis of the halophilic archaeon Haladaptatus paucihalophilus. Biochem Biophys Res Commun 2015; 467:1058-62. [PMID: 26441084 DOI: 10.1016/j.bbrc.2015.09.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 09/30/2015] [Indexed: 11/30/2022]
Abstract
This work reports the (13)C-assisted metabolic flux analysis of Haladaptatus paucihalophilus, a halophilic archaeon possessing an intriguing osmoadaption mechanism. We showed that the carbon flow is through the oxidative tricarboxylic acid (TCA) cycle whereas the reductive TCA cycle is not operative in H. paucihalophilus. In addition, both threonine and the citramalate pathways contribute to isoleucine biosynthesis, whereas lysine is synthesized through the diaminopimelate pathway and not through the α-aminoadipate pathway. Unexpected, the labeling patterns of glycine from the cells grown on [1-(13)C]pyruvate and [2-(13)C]pyruvate suggest that, unlike all the organisms investigated so far, in which glycine is produced exclusively from the serine hydroxymethyltransferase (SHMT) pathway, glycine biosynthesis in H. paucihalophilus involves different pathways including SHMT, threonine aldolase (TA) and the reverse reaction of glycine cleavage system (GCS), demonstrating for the first time that other pathways instead of SHMT can also make a significant contribution to the cellular glycine pool. Transcriptional analysis confirmed that both TA and GCS genes were transcribed in H. paucihalophilus, and the transcriptional level is independent of salt concentrations in the culture media. This study expands our understanding of amino acid biosynthesis and provides valuable insights into the metabolism of halophilic archaea.
Collapse
Affiliation(s)
- Guangxiu Liu
- Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, 730000, China
| | - Manxiao Zhang
- Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, 730000, China
| | - Tianlu Mo
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Lian He
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wei Zhang
- Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, 730000, China
| | - Yi Yu
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Qi Zhang
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| | - Wei Ding
- Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, 730000, China; Department of Chemistry, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
8
|
Study on the relationship between intracellular metabolites and astaxanthin accumulation during Phaffia rhodozyma fermentation. ELECTRON J BIOTECHN 2015. [DOI: 10.1016/j.ejbt.2015.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
9
|
Martinez-Moya P, Niehaus K, Alcaíno J, Baeza M, Cifuentes V. Proteomic and metabolomic analysis of the carotenogenic yeast Xanthophyllomyces dendrorhous using different carbon sources. BMC Genomics 2015; 16:289. [PMID: 25887121 PMCID: PMC4404605 DOI: 10.1186/s12864-015-1484-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/25/2015] [Indexed: 11/27/2022] Open
Abstract
Background Astaxanthin is a potent antioxidant with increasing biotechnological interest. In Xanthophyllomyces dendrorhous, a natural source of this pigment, carotenogenesis is a complex process regulated through several mechanisms, including the carbon source. X. dendrorhous produces more astaxanthin when grown on a non-fermentable carbon source, while decreased astaxanthin production is observed in the presence of high glucose concentrations. In the present study, we used a comparative proteomic and metabolomic analysis to characterize the yeast response when cultured in minimal medium supplemented with glucose (fermentable) or succinate (non-fermentable). Results A total of 329 proteins were identified from the proteomic profiles, and most of these proteins were associated with carotenogenesis, lipid and carbohydrate metabolism, and redox and stress responses. The metabolite profiles revealed 92 metabolites primarily associated with glycolysis, the tricarboxylic acid cycle, amino acids, organic acids, sugars and phosphates. We determined the abundance of proteins and metabolites of the central pathways of yeast metabolism and examined the influence of these molecules on carotenogenesis. Similar to previous proteomic-stress response studies, we observed modulation of abundance from several redox, stress response, carbohydrate and lipid enzymes. Additionally, the accumulation of trehalose, absence of key ROS response enzymes, an increased abundance of the metabolites of the pentose phosphate pathway and tricarboxylic acid cycle suggested an association between the accumulation of astaxanthin and oxidative stress in the yeast. Moreover, we observed the increased abundance of late carotenogenesis enzymes during astaxanthin accumulation under succinate growth conditions. Conclusions The use of succinate as a carbon source in X. dendrorhous cultures increases the availability of acetyl-CoA for the astaxanthin production compared with glucose, likely reflecting the positive regulation of metabolic enzymes of the tricarboxylic acid and glyoxylate cycles. The high metabolite level generated in this pathway could increase the cellular respiration rate, producing reactive oxygen species, which induces carotenogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1484-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pilar Martinez-Moya
- Departamento de Ciencias Ecológicas, Centro de Biotecnologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| | - Karsten Niehaus
- Department of Proteome and Metabolome Research, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
| | - Jennifer Alcaíno
- Departamento de Ciencias Ecológicas, Centro de Biotecnologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Centro de Biotecnologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Centro de Biotecnologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
10
|
Fraatz MA, Naeve S, Hausherr V, Zorn H, Blank LM. A minimal growth medium for the basidiomycete Pleurotus sapidus for metabolic flux analysis. Fungal Biol Biotechnol 2014; 1:9. [PMID: 28955451 PMCID: PMC5611629 DOI: 10.1186/s40694-014-0009-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/13/2014] [Indexed: 01/27/2023] Open
Abstract
Background Pleurotus sapidus secretes a huge enzymatic repertoire including hydrolytic and oxidative enzymes and is an example for higher basidiomycetes being interesting for biotechnology. The complex growth media used for submerged cultivation limit basic physiological analyses of this group of organisms. Using undefined growth media, only little insights into the operation of central carbon metabolism and biomass formation, i.e., the interplay of catabolic and anabolic pathways, can be gained. Results The development of a chemically defined growth medium allowed rapid growth of P. sapidus in submerged cultures. As P. sapidus grew extremely slow in salt medium, the co-utilization of amino acids using 13C-labelled glucose was investigated by gas chromatography–mass spectrometry (GC-MS) analysis. While some amino acids were synthesized up to 90% in vivo from glucose (e.g., alanine), asparagine and/or aspartate were predominantly taken up from the medium. With this information in hand, a defined yeast free salt medium containing aspartate and ammonium nitrate as a nitrogen source was developed. The observed growth rates of P. sapidus were well comparable with those previously published for complex media. Importantly, fast growth could be observed for 4 days at least, up to cell wet weights (CWW) of 400 g L-1. The chemically defined medium was used to carry out a 13C-based metabolic flux analysis, and the in vivo reactions rates in the central carbon metabolism of P. sapidus were investigated. The results revealed a highly respiratory metabolism with high fluxes through the pentose phosphate pathway and TCA cycle. Conclusions The presented chemically defined growth medium enables researchers to study the metabolism of P. sapidus, significantly enlarging the analytical capabilities. Detailed studies on the production of extracellular enzymes and of secondary metabolites of P. sapidus may be designed based on the reported data. Electronic supplementary material The online version of this article (doi:10.1186/s40694-014-0009-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marco A Fraatz
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 58, Giessen, 35392 Germany
| | - Stefanie Naeve
- Laboratory of Technical Biochemistry, TU Dortmund, Dortmund, 44221 Germany
| | - Vanessa Hausherr
- IfADo - Leibniz Research Center for Working Environment and Human Factors, Ardeystr. 67, Dortmund, 44139 Germany
| | - Holger Zorn
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 58, Giessen, 35392 Germany
| | - Lars M Blank
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringer Weg 1, Aachen, 52074 Germany
| |
Collapse
|
11
|
LI MC, HUANG MZ, LIU YW, CHU J, ZHUANG YP, ZHANG SL. Accurate Determination of 13C Isotopic Abundance of Free Intracellular Amino acids with Low Concentration by GC-MS-Selective Ion Monitoring Method. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2014. [DOI: 10.1016/s1872-2040(14)60771-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Wang ZJ, Wang P, Liu YW, Zhang YM, Chu J, Huang MZ, Zhuang YP, Zhang SL. Metabolic flux analysis of the central carbon metabolism of the industrial vitamin B12 producing strain Pseudomonas denitrificans using 13C-labeled glucose. J Taiwan Inst Chem Eng 2012. [DOI: 10.1016/j.jtice.2011.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
13
|
Christen S, Sauer U. Intracellular characterization of aerobic glucose metabolism in seven yeast species by 13C flux analysis and metabolomics. FEMS Yeast Res 2011; 11:263-72. [PMID: 21205161 DOI: 10.1111/j.1567-1364.2010.00713.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Key distinguishing characteristics of yeast glucose metabolism are the relative proportions of fermentation and respiration. Crabtree-positive yeast species exhibit a respirofermentative metabolism, whereas aerobic species respire fully without secretion of fermentation byproducts. Physiological data suggest a gradual transition in different species between these two states. Here, we investigate whether this gradual transition also occurs at the intracellular level by quantifying the intracellular metabolism of Saccharomyces cerevisiae, Saccharomyces bayanus, Saccharomyces exiguus, Kluyveromyces thermotolerans, Yarrowia lipolytica, Pichia angusta and Candida rugosa by (13)C-flux analysis and metabolomics. Different from the extracellular physiology, the intracellular fluxes through the tricarboxylic acid cycle fall into two classes where the aerobic species exhibit much higher respiratory fluxes at otherwise similar glycolytic fluxes. More generally, we found the intracellular metabolite concentrations to be primarily species-specific. The sole exception of a metabolite-flux correlation in a species-overarching manner was found for fructose-1,6-bisphosphate and dihydroxyacetone-phosphate, indicating a conservation of the functional properties around these two metabolites.
Collapse
Affiliation(s)
- Stefan Christen
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
14
|
Biotechnological production of astaxanthin with Phaffia rhodozyma/Xanthophyllomyces dendrorhous. Appl Microbiol Biotechnol 2010; 89:555-71. [PMID: 21046372 DOI: 10.1007/s00253-010-2976-6] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 10/19/2010] [Accepted: 10/19/2010] [Indexed: 12/18/2022]
Abstract
The oxygenated β-carotene derivative astaxanthin exhibits outstanding colouring, antioxidative and health-promoting properties and is mainly found in the marine environment. To satisfy the growing demand for this ketocarotenoid in the feed, food and cosmetics industries, there are strong efforts to develop economically viable bioprocesses alternative to the current chemical synthesis. However, up to now, natural astaxanthin from Haematococcus pluvialis, Phaffia rhodozyma or Paracoccus carotinifaciens has not been cost competitive with chemically synthesized astaxanthin, thus only serving niche applications. This review illuminates recent advances made in elucidating astaxanthin biosynthesis in P. rhodozyma. It intensely focuses on strategies to increase astaxanthin titers in the heterobasidiomycetous yeast by genetic engineering of the astaxanthin pathway, random mutagenesis and optimization of fermentation processes. This review emphasizes the potential of P. rhodozyma for the biotechnological production of astaxanthin in comparison to other natural sources such as the microalga H. pluvialis, other fungi and transgenic plants and to chemical synthesis.
Collapse
|
15
|
Rodríguez-Sáiz M, de la Fuente JL, Barredo JL. Xanthophyllomyces dendrorhous for the industrial production of astaxanthin. Appl Microbiol Biotechnol 2010; 88:645-58. [PMID: 20711573 DOI: 10.1007/s00253-010-2814-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 08/02/2010] [Accepted: 08/02/2010] [Indexed: 11/26/2022]
Abstract
Astaxanthin is a red xanthophyll (oxygenated carotenoid) with large importance in the aquaculture, pharmaceutical, and food industries. The green alga Haematococcus pluvialis and the heterobasidiomycetous yeast Xanthophyllomyces dendrorhous are currently known as the main microorganisms useful for astaxanthin production at the industrial scale. The improvement of astaxanthin titer by microbial fermentation is a requirement to be competitive with the synthetic manufacture by chemical procedures, which at present is the major source in the market. In this review, we show how the isolation of new strains of X. dendrorhous from the environment, the selection of mutants by the classical methods of random mutation and screening, and the rational metabolic engineering, have provided improved strains with higher astaxanthin productivity. To reduce production costs and enhance competitiveness from an industrial point of view, low-cost raw materials from industrial and agricultural origin have been adopted to get the maximal astaxanthin productivity. Finally, fermentation parameters have been studied in depth, both at flask and fermenter scales, to get maximal astaxanthin titers of 4.7 mg/g dry cell matter (420 mg/l) when X. dendrorhous was fermented under continuous white light. The industrial scale-up of this biotechnological process will provide a cost-effective method, alternative to synthetic astaxanthin, for the commercial exploitation of the expensive astaxanthin (about $2,500 per kilogram of pure astaxanthin).
Collapse
Affiliation(s)
- Marta Rodríguez-Sáiz
- R&D Biology, Antibióticos S.A., Avenida de Antibióticos 59-61, 24009 León, Spain
| | | | | |
Collapse
|
16
|
ATP-citrate lyase activity and carotenoid production in batch cultures of Phaffia rhodozyma under nitrogen-limited and nonlimited conditions. Appl Microbiol Biotechnol 2009; 85:1953-60. [PMID: 19809811 DOI: 10.1007/s00253-009-2271-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 09/18/2009] [Accepted: 09/21/2009] [Indexed: 10/20/2022]
Abstract
ATP-citrate lyase (ACL) is the key cytoplasmic enzyme which supplies acetyl-CoA for fatty acids in oleaginous yeast. Although it has been suggested that fatty acid and carotenoid biosynthesis may have a common source of acetyl-CoA in Phaffia rhodozyma, the source for carotenoids is currently unknown. The purpose of this work was to analyze the development of ACL activity during batch cultures of P. rhodozyma under ammonium-limited and nonammonium-limited conditions and study its possible relationship with carotenoid synthesis. Every experiment showed carotenoid accumulation linked to an increasing ACL activity. Moreover, the ACL activity increased with dissolved oxygen (DO), i.e., ACL responded to DO in a similar way as carotenoid synthesis. Additionally, in the ammonium-limited culture, ACL activity increased upon ammonium depletion. However, the contribution to carotenoid accumulation in that case was negligible. This suggests that P. rhodozyma has developed two components of ACL, each one responsive to a different environmental stimulus, i.e., DO and ammonium depletion. The role of each component is still unknown; however, considering that the former responds to DO and the known role of carotenoids as antioxidants, it may be a provider of acetyl-CoA for carotenoid synthesis.
Collapse
|
17
|
Abstract
Stable isotope, and in particular (13)C-based flux analysis, is the exclusive approach to experimentally quantify the integrated responses of metabolic networks. Here we describe a protocol that is based on growing microbes on (13)C-labeled glucose and subsequent gas chromatography mass spectrometric detection of (13)C-patterns in protein-bound amino acids. Relying on publicly available software packages, we then describe two complementary mathematical approaches to estimate either local ratios of converging fluxes or absolute fluxes through different pathways. As amino acids in cell protein are abundant and stable, this protocol requires a minimum of equipment and analytical expertise. Most other flux methods are variants of the principles presented here. A true alternative is the analytically more demanding dynamic flux analysis that relies on (13)C-pattern in free intracellular metabolites. The presented protocols take 5-10 d, have been used extensively in the past decade and are exemplified here for the central metabolism of Escherichia coli.
Collapse
Affiliation(s)
- Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
18
|
Iwatani S, Yamada Y, Usuda Y. Metabolic flux analysis in biotechnology processes. Biotechnol Lett 2008; 30:791-9. [DOI: 10.1007/s10529-008-9633-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 12/18/2007] [Accepted: 12/19/2007] [Indexed: 11/28/2022]
|
19
|
|
20
|
Abstract
SUMMARY
Many complex systems can be represented and analyzed as networks, and examples that have benefited from this approach span the natural sciences. For instance, we now know that systems as disparate as the World Wide Web, the Internet, scientific collaborations, food webs, protein interactions and metabolism all have common features in their organization, the most salient of which are their scale-free connectivity distributions and their small-world behavior. The recent availability of large-scale datasets that span the proteome or metabolome of an organism have made it possible to elucidate some of the organizational principles and rules that govern their function,robustness and evolution. We expect that combining the currently separate layers of information from gene regulatory networks, signal transduction networks, protein interaction networks and metabolic networks will dramatically enhance our understanding of cellular function and dynamics.
Collapse
Affiliation(s)
- Eivind Almaas
- Microbial Systems Biology, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, PO Box 808, L-452, Livermore, CA 94550, USA.
| |
Collapse
|
21
|
Abstract
Fluxome analysis aims at the quantitative analysis of in vivo carbon fluxes in metabolic networks, i. e. intracellular activities of enzymes and pathways. It allows investigating the effects of genetic or environmental modifications and thus precisely provides a global perspective on the integrated genetic and metabolic regulation within the intact metabolic network. The experimental and computational approaches developed in this area have revealed fascinating insights into metabolic properties of various biological systems. Most of the comprehensive approaches for metabolic flux studies today involve isotopic tracer studies and GC-MS for measurement of the labeling pattern of metabolites. Initially developed and applied mainly in the field of biomedicine these GC-MS based metabolic flux approaches have been substantially extended and optimized during recent years and today display a key technology in metabolic physiology and biotechnology.
Collapse
Affiliation(s)
- Christoph Wittmann
- Biochemical Engineering Institute, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
22
|
Abstract
This review presents an overview of the dynamically developing field of mass spectrometry-based metabolomics. Metabolomics aims at the comprehensive and quantitative analysis of wide arrays of metabolites in biological samples. These numerous analytes have very diverse physico-chemical properties and occur at different abundance levels. Consequently, comprehensive metabolomics investigations are primarily a challenge for analytical chemistry and specifically mass spectrometry has vast potential as a tool for this type of investigation. Metabolomics require special approaches for sample preparation, separation, and mass spectrometric analysis. Current examples of those approaches are described in this review. It primarily focuses on metabolic fingerprinting, a technique that analyzes all detectable analytes in a given sample with subsequent classification of samples and identification of differentially expressed metabolites, which define the sample classes. To perform this complex task, data analysis tools, metabolite libraries, and databases are required. Therefore, recent advances in metabolomics bioinformatics are also discussed.
Collapse
Affiliation(s)
- Katja Dettmer
- Department of Entomology, University of California at Davis, Davis, California 95616
| | - Pavel A. Aronov
- Department of Entomology, University of California at Davis, Davis, California 95616
| | - Bruce D. Hammock
- Department of Entomology, University of California at Davis, Davis, California 95616
- Cancer Research Center, University of California at Davis, Davis, California 95616
- *Correspondence to: Bruce D. Hammock, Department of Entomology, One Shields Avenue, University of California, Davis, CA 95616. E-mail:
| |
Collapse
|
23
|
Dong QL, Zhao XM, Ma HW, Xing XY, Sun NX. Metabolic flux analysis of the two astaxanthin-producing microorganismsHaematococcus pluvialis andPhaffia rhodozyma in the pure and mixed cultures. Biotechnol J 2006; 1:1283-92. [PMID: 17068750 DOI: 10.1002/biot.200600060] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The two major astaxanthin-producing microorganisms Phaffia rhodozyma and Haematococcus pluvialis exhibited elevated astaxanthin yields under the mixed culture regime, and the changes in flux distribution were investigated by means of metabolic flux analysis (MFA). In the mixed culture of the two strains, the carbon flux towards astaxanthin formation in P. rhodozyma increased by 20%, which may be due to the enriched oxygen evolved through the photosynthesis of H. pluvialis. On the other hand, the uptake of pyruvate and CO(2) excreted by P. rhodozyma also facilitated astaxanthin synthesis in H. pluvialis, which reduced 33% of the carbon flux exported from Calvin cycle to the catabolic pathway, and in turn raised the carbon flux to glyceraldehyde-3-phosphate by 25%. As a result, the carbon flux diverted to astaxanthin synthesis increased 2.8-fold in comparison with that in the pure culture.
Collapse
Affiliation(s)
- Qing-Lin Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | | | | | | | | |
Collapse
|
24
|
Paalme T, Nisamedtinov I, Abner K, Laht TM, Drews M, Pehk T. Application of 13C-[2] - and 13C-[1,2] acetate in metabolic labelling studies of yeast and insect cells. Antonie van Leeuwenhoek 2006; 89:443-57. [PMID: 16779638 DOI: 10.1007/s10482-005-9053-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/21/2005] [Indexed: 10/24/2022]
Abstract
The advantage of using 13C-labelled glucose in metabolic studies is that it is an important carbon and energy source for almost all biotechnologically and medically important organisms. On the other hand, the disadvantage is its relatively high cost in the labelling experiments. Looking for cheaper alternatives we found that 13C-[2] acetate or 13C-[1,2] acetate is a prospective compound for such experiments. Acetate is well incorporated by many organisms, including mammalian and insect cell cultures as preferred source of acetyl-CoA. Our experimental results using 13C NMR demonstrated that acetate was efficiently incorporated into glutamate and alanine secreted by the insect cell culture. Using D-stat culture of Saccharomyces uvarum on glucose/13C-acetate mineral media we demonstrated that the labelling patterns of proteinogenic amino acids can be well predicted on the basis of specific substrate consumption rates using the modified scheme of yeast metabolism and stoichiometric modelling. According to this scheme aspartate and alanine in S. uvarum under the experimental conditions used is synthesised in the mitochondria. Synthesis of alanine in the mitochondria was also demonstrated for Spodoptera frugiperda. For both organisms malic enzyme was also operative. For S. uvarum it was shown that the activity of malic enzyme is sufficient for supporting the mitochondrial biosynthetic reactions with NADPH.
Collapse
Affiliation(s)
- Toomas Paalme
- Tallinn University of Technology, Ehitajate tee 5, 19086, Tallinn, Estonia
| | | | | | | | | | | |
Collapse
|
25
|
Blank LM, Lehmbeck F, Sauer U. Metabolic-flux and network analysis in fourteen hemiascomycetous yeasts. FEMS Yeast Res 2005; 5:545-58. [PMID: 15780654 DOI: 10.1016/j.femsyr.2004.09.008] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 09/28/2004] [Accepted: 09/29/2004] [Indexed: 12/01/2022] Open
Abstract
In a quantitative comparative study, we elucidated the glucose metabolism in fourteen hemiascomycetous yeasts from the Genolevures project. The metabolic networks of these different species were first established by (13)C-labeling data and the inventory of the genomes. This information was subsequently used for metabolic-flux ratio analysis to quantify the intracellular carbon flux distributions in these yeast species. Firstly, we found that compartmentation of amino acid biosynthesis in most species was identical to that in Saccharomyces cerevisiae. Exceptions were the mitochondrial origin of aspartate biosynthesis in Yarrowia lipolytica and the cytosolic origin of alanine biosynthesis in S. kluyveri. Secondly, the control of flux through the TCA cycle was inversely correlated with the ethanol production rate, with S. cerevisiae being the yeast with the highest ethanol production capacity. The classification between respiratory and respiro-fermentative metabolism, however, was not qualitatively exclusive but quantitatively gradual. Thirdly, the flux through the pentose phosphate (PP) pathway was correlated to the yield of biomass, suggesting a balanced production and consumption of NADPH. Generally, this implies the lack of active transhydrogenase-like activities in hemiascomycetous yeasts under the tested growth condition, with Pichia angusta as the sole exception. In the latter case, about 40% of the NADPH was produced in the PP pathway in excess of the requirements for biomass production, which strongly suggests the operation of a yet unidentified mechanism for NADPH reoxidation in this species. In most yeasts, the PP pathway activity appears to be driven exclusively by the demand for NADPH.
Collapse
Affiliation(s)
- Lars M Blank
- Institute of Biotechnology, Building HPT E58, ETH Zürich, 8093 Zürich, Switzerland.
| | | | | |
Collapse
|
26
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2005; 40:693-704. [PMID: 15880598 DOI: 10.1002/jms.806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
|
27
|
Current awareness on yeast. Yeast 2005; 22:503-10. [PMID: 15918233 DOI: 10.1002/yea.1162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|