1
|
Soltysiak MPM, Ory ALH, Lee AD, Christophersen CE, Jalihal AP, Springer M. XanthoMoClo─A Robust Modular Cloning Genetic Toolkit for the Genera Xanthobacter and Roseixanthobacter. ACS Synth Biol 2025; 14:1173-1190. [PMID: 40080684 PMCID: PMC12012871 DOI: 10.1021/acssynbio.4c00806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/27/2025] [Accepted: 02/24/2025] [Indexed: 03/15/2025]
Abstract
Interest in Xanthobacter species is increasing due to their unique metabolic capabilities. They can grow in both heterotrophic and fully autotrophic environments, including carbon dioxide, dinitrogen gas, and hydrogen as the sole carbon, nitrogen, and energy sources, respectively. Academic and industrial groups looking to leverage these metabolic properties are already using Xanthobacter strains for the sustainable production of food and commodities. However, only a handful of genetic parts and protocols exist in scattered genetic backgrounds, and there is an unmet need for reliable genetic engineering tools to manipulate Xanthobacter species. Here, we developed XanthoMoClo, a robust modular cloning genetic toolkit for Xanthobacter and Roseixanthobacter species and strains, providing extensive tools to transform them, manipulate their metabolism, and express genes of interest. The toolkit contains plasmid parts, such as replication origins, antibiotic selection markers, fluorescent proteins, constitutive and inducible promoters, a standardized framework to incorporate novel components into the toolkit, and a conjugation donor to transform Xanthobacter and Roseixanthobacter strains easily with no or minimal optimization. We validated these plasmid components in depth in three of the most commonly studied Xanthobacter strains: X. versatilis Py2, X. autotrophicus GZ29, and X. flavus GJ10, as well as in R. finlandensis VTT E-85241. Finally, we demonstrate robust toolkit functionality across 21 different species of Xanthobacter and Roseixanthobacter, comprising 23 strains in total. The XanthoMoClo genetic toolkit is available to the research community (through AddGene) and will help accelerate the genetic engineering of Xanthobacter to further their applications in sustainability and bioremediation efforts.
Collapse
Affiliation(s)
| | - Audrey L. H. Ory
- Department
of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Andrew D. Lee
- Department
of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | | | - Amogh P. Jalihal
- Department
of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Michael Springer
- Department
of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Broad
Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142, United States
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02215, United States
| |
Collapse
|
2
|
Sanford P, Woolston BM. Development of a Recombineering System for the Acetogen Eubacterium limosum with Cas9 Counterselection for Markerless Genome Engineering. ACS Synth Biol 2024; 13:2505-2514. [PMID: 39033464 PMCID: PMC11334238 DOI: 10.1021/acssynbio.4c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
Eubacterium limosum is a Clostridial acetogen that efficiently utilizes a wide range of single-carbon substrates and contributes to metabolism of health-associated compounds in the human gut microbiota. These traits have led to interest in developing it as a platform for sustainable CO2-based biofuel production to combat carbon emissions, and for exploring the importance of the microbiota in human health. However, synthetic biology and metabolic engineering in E. limosum have been hindered by the inability to rapidly make precise genomic modifications. Here, we screened a diverse library of recombinase proteins to develop a highly efficient oligonucleotide-based recombineering system based on the viral recombinase RecT. Following optimization, the system is capable of catalyzing ssDNA recombination at an efficiency of up to 2%. Addition of a Cas9 counterselection system eliminated unrecombined cells, with up to 100% of viable cells encoding the desired mutation, enabling creation of genomic point mutations in a scarless and markerless manner. We deployed this system to create a clean knockout of the extracellular polymeric substance (EPS) gene cluster, generating a strain incapable of biofilm formation. This approach is rapid and simple, not requiring laborious homology arm cloning, and can readily be retargeted to almost any genomic locus. This work overcomes a major bottleneck in E. limosum genetic engineering by enabling precise genomic modifications, and provides both a roadmap and associated recombinase plasmid library for developing similar systems in other Clostridia of interest.
Collapse
Affiliation(s)
- Patrick
A. Sanford
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, 223 Cullinane, Boston, Massachusetts 02115, United States
| | - Benjamin M. Woolston
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, 223 Cullinane, Boston, Massachusetts 02115, United States
| |
Collapse
|
3
|
Hocq R, Bottone S, Gautier A, Pflügl S. A fluorescent reporter system for anaerobic thermophiles. Front Bioeng Biotechnol 2023; 11:1226889. [PMID: 37476481 PMCID: PMC10355840 DOI: 10.3389/fbioe.2023.1226889] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023] Open
Abstract
Owing to their inherent capacity to make invisible biological processes visible and quantifiable, fluorescent reporter systems have numerous applications in biotechnology. For classical fluorescent protein systems (i.e., GFP and derivatives), chromophore maturation is O2-dependent, restricting their applications to aerobic organisms. In this work, we pioneered the use of the oxygen-independent system FAST (Fluorescence Activating and absorption Shifting tag) in the thermophilic anaerobe Thermoanaerobacter kivui. We developed a modular cloning system that was used to easily clone a library of FAST expression cassettes in an E. coli-Thermoanaerobacter shuttle plasmid. FAST-mediated fluorescence was then assessed in vivo in T. kivui, and we observed bright green and red fluorescence for cells grown at 55°C. Next, we took advantage of this functional reporter system to characterize a set of homologous and heterologous promoters by quantifying gene expression, expanding the T. kivui genetic toolbox. Low fluorescence at 66°C (Topt for T. kivui) was subsequently investigated at the single-cell level using flow cytometry and attributed to plasmid instability at higher temperatures. Adaptive laboratory evolution circumvented this issue and drastically enhanced fluorescence at 66°C. Whole plasmid sequencing revealed the evolved strain carried functional plasmids truncated at the Gram-positive origin of replication, that could however not be linked to the increased fluorescence displayed by the evolved strain. Collectively, our work demonstrates the applicability of the FAST fluorescent reporter systems to T. kivui, paving the way for further applications in thermophilic anaerobes.
Collapse
Affiliation(s)
- Rémi Hocq
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Vienna, Austria
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Vienna, Austria
| | - Sara Bottone
- Laboratoire des Biomolécules (LBM), Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, École Normale Supérieure, Université PSL, Paris, France
- Institut Universitaire de France, Paris, France
| | - Arnaud Gautier
- Laboratoire des Biomolécules (LBM), Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, École Normale Supérieure, Université PSL, Paris, France
- Institut Universitaire de France, Paris, France
| | - Stefan Pflügl
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Vienna, Austria
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Vienna, Austria
| |
Collapse
|
4
|
Kearsey LJ, Yan C, Prandi N, Toogood HS, Takano E, Scrutton NS. Biosynthesis of cannabigerol and cannabigerolic acid: the gateways to further cannabinoid production. Synth Biol (Oxf) 2023; 8:ysad010. [PMID: 37323510 PMCID: PMC10263468 DOI: 10.1093/synbio/ysad010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/10/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023] Open
Abstract
Cannabinoids are a therapeutically valuable class of secondary metabolites with a vast number of substituents. The native cannabinoid biosynthetic pathway of Cannabis sativa generates cannabigerolic acid (CBGA), the common substrate to multiple cannabinoid synthases. The bioactive decarboxylated analog of this compound, cannabigerol (CBG), represents an alternate gateway into the cannabinoid space as a substrate either to non-canonical cannabinoid synthase homologs or to synthetic chemical reactions. Herein, we describe the identification and repurposing of aromatic prenyltransferase (AtaPT), which when coupled with native enzymes of C. sativa can form an Escherichia coli production system for CBGA in cell lysates and CBG in whole cells. Engineering of AtaPT, guided by structural analysis, was performed to enhance its kinetics toward CBGA production for subsequent use in a proof-of-concept lysate system. For the first time, we show a synthetic biology platform for CBG biosynthesis in E. coli cells by employing AtaPT under an optimized microbial system. Our results have therefore set the foundation for sustainable production of well-researched and rarer cannabinoids in an E. coli chassis. Graphical Abstract.
Collapse
Affiliation(s)
- Lewis J Kearsey
- Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester M1 7DN, UK
| | - Cunyu Yan
- BBSRC/EPSRC Synthetic Biology Research Centre SYNBIOCHEM, University of Manchester, Manchester M1 7DN, UK
| | - Nicole Prandi
- Manchester Institute of Biotechnology and School of Chemistry, University of Manchester
| | - Helen S Toogood
- Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester M1 7DN, UK
| | - Eriko Takano
- Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester M1 7DN, UK
- BBSRC/EPSRC Synthetic Biology Research Centre SYNBIOCHEM, University of Manchester, Manchester M1 7DN, UK
- EPSRC/BBSRC Future Biomanufacturing Research Hub, The University of Manchester, Manchester M1 7DN, UK
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester M1 7DN, UK
- BBSRC/EPSRC Synthetic Biology Research Centre SYNBIOCHEM, University of Manchester, Manchester M1 7DN, UK
- EPSRC/BBSRC Future Biomanufacturing Research Hub, The University of Manchester, Manchester M1 7DN, UK
| |
Collapse
|
5
|
Guo X, Zhang H, Feng J, Yang L, Luo K, Fu H, Wang J. De novo biosynthesis of butyl butyrate in engineered Clostridium tyrobutyricum. Metab Eng 2023; 77:64-75. [PMID: 36948242 DOI: 10.1016/j.ymben.2023.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/07/2023] [Accepted: 03/20/2023] [Indexed: 03/24/2023]
Abstract
Butyl butyrate has broad applications in foods, cosmetics, solvents, and biofuels. Microbial synthesis of bio-based butyl butyrate has been regarded as a promising approach recently. Herein, we engineered Clostridium tyrobutyricum ATCC 25755 to achieve de novo biosynthesis of butyl butyrate from fermentable sugars. Through introducing the butanol synthetic pathway (enzyme AdhE2), screening alcohol acyltransferases (AATs), adjusting transcription of VAAT and adhE2 (i.e., optimizing promoter), and efficient supplying butyryl-CoA, an excellent engineered strain, named MUV3, was obtained with ability to produce 4.58 g/L butyl butyrate at 25 °C with glucose in serum bottles. More NADH is needed for butyl butyrate synthesis, thus mannitol (the more reduced substrate) was employed to produce butyl butyrate. Ultimately, 62.59 g/L butyl butyrate with a selectivity of 95.97%, and a yield of 0.21 mol/mol was obtained under mannitol with fed-batch fermentation in a 5 L bioreactor, which is the highest butyl butyrate titer reported so far. Altogether, this study presents an anaerobic fermentative platform for de novo biosynthesis of butyl butyrate in one step, which lays the foundation for butyl butyrate biosynthesis from renewable biomass feedstocks.
Collapse
Affiliation(s)
- Xiaolong Guo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Huihui Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Jun Feng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Lu Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Kui Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Hongxin Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, China.
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Volk MJ, Tran VG, Tan SI, Mishra S, Fatma Z, Boob A, Li H, Xue P, Martin TA, Zhao H. Metabolic Engineering: Methodologies and Applications. Chem Rev 2022; 123:5521-5570. [PMID: 36584306 DOI: 10.1021/acs.chemrev.2c00403] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metabolic engineering aims to improve the production of economically valuable molecules through the genetic manipulation of microbial metabolism. While the discipline is a little over 30 years old, advancements in metabolic engineering have given way to industrial-level molecule production benefitting multiple industries such as chemical, agriculture, food, pharmaceutical, and energy industries. This review describes the design, build, test, and learn steps necessary for leading a successful metabolic engineering campaign. Moreover, we highlight major applications of metabolic engineering, including synthesizing chemicals and fuels, broadening substrate utilization, and improving host robustness with a focus on specific case studies. Finally, we conclude with a discussion on perspectives and future challenges related to metabolic engineering.
Collapse
Affiliation(s)
- Michael J Volk
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Vinh G Tran
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shih-I Tan
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Shekhar Mishra
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zia Fatma
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Aashutosh Boob
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hongxiang Li
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Pu Xue
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Teresa A Martin
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
Rostain W, Zaplana T, Boutard M, Baum C, Tabuteau S, Sanitha M, Ramya M, Guss A, Ettwiller L, Tolonen AC. Tuning of Gene Expression in Clostridium phytofermentans Using Synthetic Promoters and CRISPRi. ACS Synth Biol 2022; 11:4077-4088. [PMID: 36427328 PMCID: PMC9765743 DOI: 10.1021/acssynbio.2c00385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Indexed: 11/27/2022]
Abstract
Control of gene expression is fundamental to cell engineering. Here we demonstrate a set of approaches to tune gene expression in Clostridia using the model Clostridium phytofermentans. Initially, we develop a simple benchtop electroporation method that we use to identify a set of replicating plasmids and resistance markers that can be cotransformed into C. phytofermentans. We define a series of promoters spanning a >100-fold expression range by testing a promoter library driving the expression of a luminescent reporter. By insertion of tet operator sites upstream of the reporter, its expression can be quantitatively altered using the Tet repressor and anhydrotetracycline (aTc). We integrate these methods into an aTc-regulated dCas12a system with which we show in vivo CRISPRi-mediated repression of reporter and fermentation genes in C. phytofermentans. Together, these approaches advance genetic transformation and experimental control of gene expression in Clostridia.
Collapse
Affiliation(s)
- William Rostain
- Génomique
Métabolique, Genoscope, Institut François Jacob, CEA,
CNRS, Univ Evry, Université Paris-Saclay, 91057 Évry, France
| | - Tom Zaplana
- Génomique
Métabolique, Genoscope, Institut François Jacob, CEA,
CNRS, Univ Evry, Université Paris-Saclay, 91057 Évry, France
| | - Magali Boutard
- Génomique
Métabolique, Genoscope, Institut François Jacob, CEA,
CNRS, Univ Evry, Université Paris-Saclay, 91057 Évry, France
| | - Chloé Baum
- Génomique
Métabolique, Genoscope, Institut François Jacob, CEA,
CNRS, Univ Evry, Université Paris-Saclay, 91057 Évry, France
- New
England Biolabs, Inc., 240 County Road, Ipswich, Massachusetts 01938, United States
| | - Sibylle Tabuteau
- Génomique
Métabolique, Genoscope, Institut François Jacob, CEA,
CNRS, Univ Evry, Université Paris-Saclay, 91057 Évry, France
| | - Mary Sanitha
- Molecular
Genetics Laboratory, Department of Genetic Engineering, College of
Engineering and Technology, SRM Institute
of Science and Technology, SRM Nagar, Kattankulathur-603 203, TN, India
| | - Mohandass Ramya
- Molecular
Genetics Laboratory, Department of Genetic Engineering, College of
Engineering and Technology, SRM Institute
of Science and Technology, SRM Nagar, Kattankulathur-603 203, TN, India
| | - Adam Guss
- Biosciences
Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6038, United States
| | - Laurence Ettwiller
- New
England Biolabs, Inc., 240 County Road, Ipswich, Massachusetts 01938, United States
| | - Andrew C. Tolonen
- Génomique
Métabolique, Genoscope, Institut François Jacob, CEA,
CNRS, Univ Evry, Université Paris-Saclay, 91057 Évry, France
| |
Collapse
|
8
|
Zhang Y, Bailey TS, Kubiak AM, Lambin P, Theys J. Heterologous Gene Regulation in Clostridia: Rationally Designed Gene Regulation for Industrial and Medical Applications. ACS Synth Biol 2022; 11:3817-3828. [PMID: 36265075 PMCID: PMC9680021 DOI: 10.1021/acssynbio.2c00401] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Several species from the Clostridium genus show promise as industrial solvent producers and cancer therapeutic delivery vehicles. Previous development of shuttle plasmids and genome editing tools has aided the study of these species and enabled their exploitation in industrial and medical applications. Nevertheless, the precise control of gene expression is still hindered by the limited range of characterized promoters. To address this, libraries of promoters (native and synthetic), 5' UTRs, and alternative start codons were constructed. These constructs were tested in Escherichia coli K-12, Clostridium sporogenes NCIMB 10696, and Clostridium butyricum DSM 10702, using β-glucuronidase (gusA) as a gene reporter. Promoter activity was corroborated using a second gene reporter, nitroreductase (nmeNTR) from Neisseria meningitides. A strong correlation was observed between the two reporters. In C. sporogenes and C. butyricum, respectively, changes in GusA activity between the weakest and strongest expressing levels were 129-fold and 78-fold. Similar results were obtained with the nmeNTR. Using the GusA reporter, translation initiation from six alternative (non-AUG) start codons was measured in E. coli, C. sporogenes, and C. butyricum. Clearly, species-specific differences between clostridia and E. coli in translation initiation were observed, and the performance of the start codons was influenced by the upstream 5' UTR sequence. These results highlight a new opportunity for gene control in recombinant clostridia. To demonstrate the value of these results, expression of the sacB gene from Bacillus subtilis was optimized for use as a novel negative selection marker in C. butyricum. In summary, these results indicate improvements in the understanding of heterologous gene regulation in Clostridium species and E. coli cloning strains. This new knowledge can be utilized for rationally designed gene regulation in Clostridium-mediated industrial and medical applications, as well as fundamental research into the biology of Clostridium species.
Collapse
Affiliation(s)
- Yanchao Zhang
- The
M-Lab, Department of Precision Medicine, GROW - School of Oncology
and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands,
| | - Tom S. Bailey
- The
M-Lab, Department of Precision Medicine, GROW - School of Oncology
and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Aleksandra M. Kubiak
- The
M-Lab, Department of Precision Medicine, GROW - School of Oncology
and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands,Exomnis
Biotech BV, Oxfordlaan
55, 6229 EV Maastricht, The Netherlands
| | - Philippe Lambin
- The
M-Lab, Department of Precision Medicine, GROW - School of Oncology
and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Jan Theys
- The
M-Lab, Department of Precision Medicine, GROW - School of Oncology
and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
9
|
Examination of Genetic Control Elements in the Phototrophic Firmicute Heliomicrobium modesticaldum. Microorganisms 2022; 10:microorganisms10050876. [PMID: 35630321 PMCID: PMC9145376 DOI: 10.3390/microorganisms10050876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 12/10/2022] Open
Abstract
Heliomicrobium modesticaldum has been used as a model organism for the Heliobacteria, the only phototrophic family in the Firmicutes. It is a moderately thermophilic anoxygenic phototrophic bacterium that is capable of fermentative growth in the dark. The genetic manipulation of H. modesticaldum is still in its infancy. Methods to introduce genes through the use of exogenous plasmids and to delete genes from the chromosome through the use of the native CRISPR/Cas system have been developed in the last several years. To expand our genetic toolkit, it was necessary to control gene expression. In this study, we analyzed constitutive and inducible promoters developed for clostridia for their use in H. modesticaldum and further tested two reporters, adhB and lacZ, as indicators of promoter strength. Alcohol dehydrogenase (AdhB) was unsuitable as a reporter in this species due to high endogenous activity and/or low activity of the reporter, but a thermostable LacZ worked well as a reporter. A set of constitutive promoters previously reported to work in Clostridium thermocellum was found to be reliable for controlling the expression of the lacZ reporter gene in H. modesticaldum at a range of activities spanning an order of magnitude. An anhydrotetracycline-inducible promoter was created by inserting tetO operators into a strong constitutive promoter, but it was not fully repressible. The implementation of a xylose-inducible promoter resulted in complete repression of β-gal in the absence of xylose, and reliable expression tunable through the concentration of xylose added to the culture.
Collapse
|
10
|
Bertram R, Neumann B, Schuster CF. Status quo of tet regulation in bacteria. Microb Biotechnol 2022; 15:1101-1119. [PMID: 34713957 PMCID: PMC8966031 DOI: 10.1111/1751-7915.13926] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 11/27/2022] Open
Abstract
The tetracycline repressor (TetR) belongs to the most popular, versatile and efficient transcriptional regulators used in bacterial genetics. In the tetracycline (Tc) resistance determinant tet(B) of transposon Tn10, tetR regulates the expression of a divergently oriented tetA gene that encodes a Tc antiporter. These components of Tn10 and of other natural or synthetic origins have been used for tetracycline-dependent gene regulation (tet regulation) in at least 40 bacterial genera. Tet regulation serves several purposes such as conditional complementation, depletion of essential genes, modulation of artificial genetic networks, protein overexpression or the control of gene expression within cell culture or animal infection models. Adaptations of the promoters employed have increased tet regulation efficiency and have made this system accessible to taxonomically distant bacteria. Variations of TetR, different effector molecules and mutated DNA binding sites have enabled new modes of gene expression control. This article provides a current overview of tet regulation in bacteria.
Collapse
Affiliation(s)
- Ralph Bertram
- Institute of Clinical Hygiene, Medical Microbiology and InfectiologyParacelsus Medical UniversityProf.‐Ernst‐Nathan‐Straße 1Nuremberg90419Germany
| | - Bernd Neumann
- Institute of Clinical Hygiene, Medical Microbiology and InfectiologyParacelsus Medical UniversityProf.‐Ernst‐Nathan‐Straße 1Nuremberg90419Germany
| | - Christopher F. Schuster
- Department of Infectious DiseasesDivision of Nosocomial Pathogens and Antibiotic ResistancesRobert Koch InstituteBurgstraße 37Wernigerode38855Germany
| |
Collapse
|
11
|
An operator-based expression toolkit for Bacillus subtilis enables fine-tuning of gene expression and biosynthetic pathway regulation. Proc Natl Acad Sci U S A 2022; 119:e2119980119. [PMID: 35263224 PMCID: PMC8931375 DOI: 10.1073/pnas.2119980119] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
A gene regulatory system is an important tool for the engineering of biosynthetic pathways of organisms. Here, we report the development of an inducible-ON/OFF regulatory system using a malO operator as a key element. We identified and modulated sequence, position, numbers, and spacing distance of malO operators, generating a series of activating or repressive promoters with tunable strength. The stringency and robustness are both guaranteed in this system, a maximal induction factor of 790-fold was achieved, and nine proteins from different organisms were expressed with high yields. This system can be utilized as a gene switch, promoter enhancer, or metabolic valve in synthetic biology applications. This operator-based engineering strategy can be employed for developing similar regulatory systems in different microorganisms. Genetic elements are key components of metabolic engineering and synthetic biological applications, allowing the development of organisms as biosensors and for manufacturing valuable chemicals and protein products. In contrast to the gram-negative model bacterium Escherichia coli, the gram-positive model bacterium Bacillus subtilis lacks such elements with precise and flexible characteristics, which is a great barrier to employing B. subtilis for laboratory studies and industrial applications. Here, we report the development of a malO-based genetic toolbox that is derived from the operator box in the malA promoter, enabling gene regulation via compatible “ON” and “OFF” switches. This engineered toolbox combines promoter-based mutagenesis and host-specific metabolic engineering of transactivation components upon maltose induction to achieve stringent, robust, and homogeneous gene regulation in B. subtilis. We further demonstrate the synthetic biological applications of the toolbox by utilizing these genetic elements as a gene switch, a promoter enhancer, and an ON-OFF dual-control device in biosynthetic pathway optimization. Collectively, this regulatory system provides a comprehensive genetic toolbox for controlling the expression of genes in biosynthetic pathways and regulatory networks to optimize the production of valuable chemicals and proteins in B. subtilis.
Collapse
|
12
|
Lee J. Lessons from Clostridial Genetics: Toward Engineering Acetogenic Bacteria. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-021-0062-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Joseph RC, Kelley SQ, Kim NM, Sandoval NR. Metabolic Engineering and the Synthetic Biology Toolbox for
Clostridium. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Bourgade B, Minton NP, Islam MA. Genetic and metabolic engineering challenges of C1-gas fermenting acetogenic chassis organisms. FEMS Microbiol Rev 2021; 45:fuab008. [PMID: 33595667 PMCID: PMC8351756 DOI: 10.1093/femsre/fuab008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
Unabated mining and utilisation of petroleum and petroleum resources and their conversion to essential fuels and chemicals have drastic environmental consequences, contributing to global warming and climate change. In addition, fossil fuels are finite resources, with a fast-approaching shortage. Accordingly, research efforts are increasingly focusing on developing sustainable alternatives for chemicals and fuels production. In this context, bioprocesses, relying on microorganisms, have gained particular interest. For example, acetogens use the Wood-Ljungdahl pathway to grow on single carbon C1-gases (CO2 and CO) as their sole carbon source and produce valuable products such as acetate or ethanol. These autotrophs can, therefore, be exploited for large-scale fermentation processes to produce industrially relevant chemicals from abundant greenhouse gases. In addition, genetic tools have recently been developed to improve these chassis organisms through synthetic biology approaches. This review will focus on the challenges of genetically and metabolically modifying acetogens. It will first discuss the physical and biochemical obstacles complicating successful DNA transfer in these organisms. Current genetic tools developed for several acetogens, crucial for strain engineering to consolidate and expand their catalogue of products, will then be described. Recent tool applications for metabolic engineering purposes to allow redirection of metabolic fluxes or production of non-native compounds will lastly be covered.
Collapse
Affiliation(s)
- Barbara Bourgade
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - Nigel P Minton
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, University of Nottingham, Nottingham, Nottinghamshire, NG7 2RD, UK
| | - M Ahsanul Islam
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| |
Collapse
|
15
|
Kim NM, Sinnott RW, Sandoval NR. Transcription factor-based biosensors and inducible systems in non-model bacteria: current progress and future directions. Curr Opin Biotechnol 2020; 64:39-46. [DOI: 10.1016/j.copbio.2019.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 10/25/2022]
|
16
|
Jiang Y, Fu Y, Ren Z, Gou H, Xu C. Screening and application of inducible promoters in Ruminiclostridium papyrosolvens. Lett Appl Microbiol 2020; 71:428-436. [PMID: 32649779 DOI: 10.1111/lam.13352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 11/27/2022]
Abstract
Ruminiclostridium papyrosolvens is a promising candidate for producing renewable green chemicals from cellulose due to its cellulolytic and ethanologenic capabilities. It is of significance to screen effective, and convenient-to-use inducible promoters that can be used for regulating the gene expression in R. papyrosolvens. We characterized two endogenous inducible promoters and investigated another two exogenous ones on the adaptability in R. papyrosolvens. Both of the endogenous xylan-inducible promoter Pxyl and exogenous lactose-inducible promoter Plac are found of high specificity and stringency. Pxyl has a short time to be induced while Plac has a low concentration of inducer. With these findings, a mazF-based counter selectable system has been constructed for promoting the efficiency of mutant screening via plasmid curing. The inducible gene expression systems provided novel tools for enhancing the capability of genetic manipulation in engineering R. papyrosolvens. SIGNIFICANCE AND IMPACT OF THE STUDY: Four inducible promoters from Clostridia were characterized in R. papyrosolvens. Xylan-inducible promoter Pxyl was found of a short time while lactose-inducible promoter Plac needs a low concentration of inducer to induce. Employing them, we successfully construct a mazF-based counter selectable system, which would be used to increase the mutant screening efficiency via induction of plasmid curing. The inducible gene expression systems provided novel tools for enhancing the capability of genetic manipulation in engineering R. papyrosolvens.
Collapse
Affiliation(s)
- Y Jiang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Y Fu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Z Ren
- Institute of Applied Chemistry, Shanxi University, Taiyuan, China
| | - H Gou
- Shenzhen Digital Life Institute, Shenzhen, China
| | - C Xu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| |
Collapse
|
17
|
A CRISPR/Anti-CRISPR Genome Editing Approach Underlines the Synergy of Butanol Dehydrogenases in Clostridium acetobutylicum DSM 792. Appl Environ Microbiol 2020; 86:AEM.00408-20. [PMID: 32385078 DOI: 10.1128/aem.00408-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/24/2020] [Indexed: 01/10/2023] Open
Abstract
Although Clostridium acetobutylicum is the model organism for the study of acetone-butanol-ethanol (ABE) fermentation, its characterization has long been impeded by the lack of efficient genome editing tools. In particular, the contribution of alcohol dehydrogenases to solventogenesis in this bacterium has mostly been studied with the generation of single-gene deletion strains. In this study, the three butanol dehydrogenase-encoding genes located on the chromosome of the DSM 792 reference strain were deleted iteratively by using a recently developed CRISPR-Cas9 tool improved by using an anti-CRISPR protein-encoding gene, acrIIA4 Although the literature has previously shown that inactivation of either bdhA, bdhB, or bdhC had only moderate effects on the strain, this study shows that clean deletion of both bdhA and bdhB strongly impaired solvent production and that a triple mutant ΔbdhA ΔbdhB ΔbdhC was even more affected. Complementation experiments confirmed the key role of these enzymes and the capacity of each bdh copy to fully restore efficient ABE fermentation in the triple deletion strain.IMPORTANCE An efficient CRISPR-Cas9 editing tool based on a previous two-plasmid system was developed for Clostridium acetobutylicum and used to investigate the contribution of chromosomal butanol dehydrogenase genes during solventogenesis. Thanks to the control of cas9 expression by inducible promoters and of Cas9-guide RNA (gRNA) complex activity by an anti-CRISPR protein, this genetic tool allows relatively fast, precise, markerless, and iterative modifications in the genome of this bacterium and potentially of other bacterial species. As an example, scarless mutants in which up to three genes coding for alcohol dehydrogenases are inactivated were then constructed and characterized through fermentation assays. The results obtained show that in C. acetobutylicum, other enzymes than the well-known AdhE1 are crucial for the synthesis of alcohol and, more globally, to perform efficient solventogenesis.
Collapse
|
18
|
Toymentseva AA, Altenbuchner J. New CRISPR-Cas9 vectors for genetic modifications of Bacillus species. FEMS Microbiol Lett 2019; 366:5232309. [PMID: 30520985 DOI: 10.1093/femsle/fny284] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/05/2018] [Indexed: 12/16/2022] Open
Abstract
Genetic manipulation is a fundamental procedure for the study of gene and operon functions and new characteristics acquisition. Modern CRISPR-Cas technology allows genome editing more precisely and increases the efficiency of transferring mutations in a variety of hard to manipulate organisms. Here, we describe new CRISPR-Cas vectors for genetic modifications in bacillary species. Our plasmids are single CRISPR-Cas plasmids comprising all components for genome editing and should be functional in a broad host range. They are highly efficient (up to 97%) and precise. The employment and delivery of these plasmids to bacillary strains can be easily achieved by conjugation from Escherichia coli. During our research we also demonstrated the absence of compatibility between CRISPR-Cas system and non-homologous end joining in Bacillus subtilis.
Collapse
Affiliation(s)
- Anna A Toymentseva
- Institut für Industrielle Genetik, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Josef Altenbuchner
- Institut für Industrielle Genetik, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
19
|
Shin J, Kang S, Song Y, Jin S, Lee JS, Lee JK, Kim DR, Kim SC, Cho S, Cho BK. Genome Engineering of Eubacterium limosum Using Expanded Genetic Tools and the CRISPR-Cas9 System. ACS Synth Biol 2019; 8:2059-2068. [PMID: 31373788 DOI: 10.1021/acssynbio.9b00150] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Eubacterium limosum is one of the important bacteria in C1 feedstock utilization as well as in human gut microbiota. Although E. limosum has recently garnered much attention and investigation on a genome-wide scale, a bottleneck for systematic engineering in E. limosum is the lack of available genetic tools and an efficient genome editing platform. To overcome this limitation, we here report expanded genetic tools and the CRISPR-Cas9 system. We have developed an inducible promoter system that enables implementation of the CRISPR-Cas9 system to precisely manipulate target genes of the Wood-Ljungdahl pathway with 100% efficiency. Furthermore, we exploited the effectiveness of CRISPR interference to reduce the expression of target genes, exhibiting substantial repression of several genes in the Wood-Ljungdahl pathway and fructose-PTS system. These expanded genetic tools and CRISPR-Cas9 system comprise powerful and widely applicable genetic tools to accelerate functional genomic study and genome engineering in E. limosum.
Collapse
Affiliation(s)
- Jongoh Shin
- Department of Biological Sciences and KI for the BioCentury , KAIST , Daejeon , 305-701 , Republic of Korea
| | - Seulgi Kang
- Department of Biological Sciences and KI for the BioCentury , KAIST , Daejeon , 305-701 , Republic of Korea
| | - Yoseb Song
- Department of Biological Sciences and KI for the BioCentury , KAIST , Daejeon , 305-701 , Republic of Korea
| | - Sangrak Jin
- Department of Biological Sciences and KI for the BioCentury , KAIST , Daejeon , 305-701 , Republic of Korea
| | - Jin Soo Lee
- Department of Biological Sciences and KI for the BioCentury , KAIST , Daejeon , 305-701 , Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering , Konkuk University , Seoul , 05029 , Republic of Korea
| | - Dong Rip Kim
- Department of Mechanical Engineering , Hanyang University , Seoul , 04763 , Republic of Korea
| | - Sun Chang Kim
- Department of Biological Sciences and KI for the BioCentury , KAIST , Daejeon , 305-701 , Republic of Korea
- Intelligent Synthetic Biology Center , Daejeon , 305-701 , Republic of Korea
| | - Suhyung Cho
- Department of Biological Sciences and KI for the BioCentury , KAIST , Daejeon , 305-701 , Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences and KI for the BioCentury , KAIST , Daejeon , 305-701 , Republic of Korea
- Intelligent Synthetic Biology Center , Daejeon , 305-701 , Republic of Korea
| |
Collapse
|
20
|
Adaptation and application of a two-plasmid inducible CRISPR-Cas9 system in Clostridium beijerinckii. Methods 2019; 172:51-60. [PMID: 31362039 DOI: 10.1016/j.ymeth.2019.07.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 11/22/2022] Open
Abstract
Recent developments in CRISPR technologies have opened new possibilities for improving genome editing tools dedicated to the Clostridium genus. In this study we adapted a two-plasmid tool based on this technology to enable scarless modification of the genome of two reference strains of Clostridium beijerinckii producing an Acetone/Butanol/Ethanol (ABE) or an Isopropanol/Butanol/Ethanol (IBE) mix of solvents. In the NCIMB 8052 ABE-producing strain, inactivation of the SpoIIE sporulation factor encoding gene resulted in sporulation-deficient mutants, and this phenotype was reverted by complementing the mutant strain with a functional spoIIE gene. Furthermore, the fungal cellulase-encoding celA gene was inserted into the C. beijerinckii NCIMB 8052 chromosome, resulting in mutants with endoglucanase activity. A similar two-plasmid approach was next used to edit the genome of the natural IBE-producing strain C. beijerinckii DSM 6423, which has never been genetically engineered before. Firstly, the catB gene conferring thiamphenicol resistance was deleted to make this strain compatible with our dual-plasmid editing system. As a proof of concept, our dual-plasmid system was then used in C. beijerinckii DSM 6423 ΔcatB to remove the endogenous pNF2 plasmid, which led to a sharp increase of transformation efficiencies.
Collapse
|
21
|
Woolston BM, Emerson DF, Currie DH, Stephanopoulos G. Rediverting carbon flux in Clostridium ljungdahlii using CRISPR interference (CRISPRi). Metab Eng 2018; 48:243-253. [PMID: 29906505 DOI: 10.1016/j.ymben.2018.06.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 06/10/2018] [Indexed: 12/28/2022]
Abstract
Clostridium ljungdahlii has emerged as an attractive candidate for the bioconversion of synthesis gas (CO, CO2, H2) to a variety of fuels and chemicals through the Wood-Ljungdahl pathway. However, metabolic engineering and pathway elucidation in this microbe is limited by the lack of genetic tools to downregulate target genes. To overcome this obstacle, here we developed an inducible CRISPR interference (CRISPRi) system for C. ljungdahlii that enables efficient (> 94%) transcriptional repression of several target genes, both individually and in tandem. We then applied CRISPRi in a strain engineered for 3-hydroxybutyrate (3HB) production to examine targets for increasing carbon flux toward the desired product. Downregulating phosphotransacetylase (pta) with a single sgRNA led to a 97% decrease in enzyme activity and a 2.3-fold increase in titer during heterotrophic growth. However, acetate production still accounted for 40% of the carbon flux. Repression of aldehyde:ferredoxin oxidoreductase (aor2), another potential route for acetate production, led to a 5% reduction in acetate flux, whereas using an additional sgRNA targeted to pta reduced the enzyme activity to 0.7% of the wild-type level, and further reduced acetate production to 25% of the carbon flux with an accompanying increase in 3HB titer and yield. These results demonstrate the utility of CRISPRi for elucidating and controlling carbon flow in C. ljungdahlii.
Collapse
Affiliation(s)
- Benjamin M Woolston
- Department of Chemical Engineering, Massachusetts Institute of Technology, 25 Ames Street, MIT 56-469 C, Cambridge, MA 02139, United States
| | - David F Emerson
- Department of Chemical Engineering, Massachusetts Institute of Technology, 25 Ames Street, MIT 56-469 C, Cambridge, MA 02139, United States
| | - Devin H Currie
- Department of Chemical Engineering, Massachusetts Institute of Technology, 25 Ames Street, MIT 56-469 C, Cambridge, MA 02139, United States
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, 25 Ames Street, MIT 56-469 C, Cambridge, MA 02139, United States.
| |
Collapse
|
22
|
Gyulev IS, Willson BJ, Hennessy RC, Krabben P, Jenkinson ER, Thomas GH. Part by Part: Synthetic Biology Parts Used in Solventogenic Clostridia. ACS Synth Biol 2018; 7:311-327. [PMID: 29186949 DOI: 10.1021/acssynbio.7b00327] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The solventogenic Clostridia are of interest to the chemical industry because of their natural ability to produce chemicals such as butanol, acetone and ethanol from diverse feedstocks. Their use as whole cell factories presents multiple metabolic engineering targets that could lead to improved sustainability and profitability of Clostridium industrial processes. However, engineering efforts have been held back by the scarcity of genetic and synthetic biology tools. Over the past decade, genetic tools to enable transformation and chromosomal modifications have been developed, but the lack of a broad palette of synthetic biology parts remains one of the last obstacles to the rapid engineered improvement of these species for bioproduction. We have systematically reviewed existing parts that have been used in the modification of solventogenic Clostridia, revealing a narrow range of empirically chosen and nonengineered parts that are in current use. The analysis uncovers elements, such as promoters, transcriptional terminators and ribosome binding sites where increased fundamental knowledge is needed for their reliable use in different applications. Together, the review provides the most comprehensive list of parts used and also presents areas where an improved toolbox is needed for full exploitation of these industrially important bacteria.
Collapse
Affiliation(s)
- Ivan S. Gyulev
- Department
of Biology, University of York, Wentworth Way, York YO10 5DD, United Kingdom
| | - Benjamin J. Willson
- Department
of Biology, University of York, Wentworth Way, York YO10 5DD, United Kingdom
| | - Rosanna C. Hennessy
- Department
of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, 1871, Denmark
| | - Preben Krabben
- Green Biologics Limited, Milton Park, Abingdon, Oxfordshire OX14 4RU, United Kingdom
| | | | - Gavin H. Thomas
- Department
of Biology, University of York, Wentworth Way, York YO10 5DD, United Kingdom
| |
Collapse
|
23
|
Joseph RC, Kim NM, Sandoval NR. Recent Developments of the Synthetic Biology Toolkit for Clostridium. Front Microbiol 2018; 9:154. [PMID: 29483900 PMCID: PMC5816073 DOI: 10.3389/fmicb.2018.00154] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 01/23/2018] [Indexed: 12/15/2022] Open
Abstract
The Clostridium genus is a large, diverse group consisting of Gram-positive, spore-forming, obligate anaerobic firmicutes. Among this group are historically notorious pathogens as well as several industrially relevant species with the ability to produce chemical commodities, particularly biofuels, from renewable biomass. Additionally, other species are studied for their potential use as therapeutics. Although metabolic engineering and synthetic biology have been instrumental in improving product tolerance, titer, yields, and feed stock consumption capabilities in several organisms, low transformation efficiencies and lack of synthetic biology tools and genetic parts make metabolic engineering within the Clostridium genus difficult. Progress has recently been made to overcome challenges associated with engineering various Clostridium spp. For example, developments in CRISPR tools in multiple species and strains allow greater capability to produce edits with greater precision, faster, and with higher efficiencies. In this mini-review, we will highlight these recent advances and compare them to established methods for genetic engineering in Clostridium. In addition, we discuss the current state and development of Clostridium-based promoters (constitutive and inducible) and reporters. Future progress in this area will enable more rapid development of strain engineering, which would allow for the industrial exploitation of Clostridium for several applications including bioproduction of several commodity products.
Collapse
Affiliation(s)
- Rochelle C. Joseph
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA, United States
| | - Nancy M. Kim
- Interdisciplinary Bioinnovation PhD Program, Tulane University, New Orleans, LA, United States
| | - Nicholas R. Sandoval
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA, United States
| |
Collapse
|
24
|
Joseph RC, Kim NM, Sandoval NR. Recent Developments of the Synthetic Biology Toolkit for Clostridium. Front Microbiol 2018. [PMID: 29483900 DOI: 10.3389/fmicb.2018.00154/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
The Clostridium genus is a large, diverse group consisting of Gram-positive, spore-forming, obligate anaerobic firmicutes. Among this group are historically notorious pathogens as well as several industrially relevant species with the ability to produce chemical commodities, particularly biofuels, from renewable biomass. Additionally, other species are studied for their potential use as therapeutics. Although metabolic engineering and synthetic biology have been instrumental in improving product tolerance, titer, yields, and feed stock consumption capabilities in several organisms, low transformation efficiencies and lack of synthetic biology tools and genetic parts make metabolic engineering within the Clostridium genus difficult. Progress has recently been made to overcome challenges associated with engineering various Clostridium spp. For example, developments in CRISPR tools in multiple species and strains allow greater capability to produce edits with greater precision, faster, and with higher efficiencies. In this mini-review, we will highlight these recent advances and compare them to established methods for genetic engineering in Clostridium. In addition, we discuss the current state and development of Clostridium-based promoters (constitutive and inducible) and reporters. Future progress in this area will enable more rapid development of strain engineering, which would allow for the industrial exploitation of Clostridium for several applications including bioproduction of several commodity products.
Collapse
Affiliation(s)
- Rochelle C Joseph
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA, United States
| | - Nancy M Kim
- Interdisciplinary Bioinnovation PhD Program, Tulane University, New Orleans, LA, United States
| | - Nicholas R Sandoval
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA, United States
| |
Collapse
|
25
|
Yang G, Jia D, Jin L, Jiang Y, Wang Y, Jiang W, Gu Y. Rapid Generation of Universal Synthetic Promoters for Controlled Gene Expression in Both Gas-Fermenting and Saccharolytic Clostridium Species. ACS Synth Biol 2017; 6:1672-1678. [PMID: 28602076 DOI: 10.1021/acssynbio.7b00155] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Engineering solventogenic clostridia, a group of important industrial microorganisms, to realize their full potential in biorefinery application is still hindered by the absence of plentiful biological parts. Here, we developed an effective approach for rapid generation of a synthetic promoter library in solventogenic clostridia based on a dual-reporter system (catP-lacZ) and a widely used strong thl promoter. The yielded artificial promoters, spanning 2 orders of magnitude, comprised two modular components (the core promoter region and the spacer between RBS and the translation-initiating code), and the strongest promoter had an over 10-fold-higher activity than the original expression part Pthl. The test of these synthetic promoters in controlled expression of sadh and danK in saccharolytic C. acetobutylicum and gas-fermenting C. ljungdahlii, respectively, gave the expected phenotypes, and moreover, showed good correlation between promoter activities and phenotypic changes. The presented wide-strength-range promoters here will be useful for synthetic biology application in solventogenic clostridia.
Collapse
Affiliation(s)
- Gaohua Yang
- Key
Laboratory of Synthetic Biology, Institute of Plant Physiology and
Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dechen Jia
- Key
Laboratory of Synthetic Biology, Institute of Plant Physiology and
Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Lin Jin
- Key
Laboratory of Synthetic Biology, Institute of Plant Physiology and
Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuqian Jiang
- Department
of Biochemistry and Molecular Medicine, University of California at Davis, Sacramento, California 95817, United States
| | - Yong Wang
- Key
Laboratory of Synthetic Biology, Institute of Plant Physiology and
Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Weihong Jiang
- Key
Laboratory of Synthetic Biology, Institute of Plant Physiology and
Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Jiangsu
National Synergetic Innovation Center for Advanced Materials, SICAM, 200 North Zhongshan Road, Nanjing 210009, China
| | - Yang Gu
- Key
Laboratory of Synthetic Biology, Institute of Plant Physiology and
Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
26
|
Wasels F, Jean-Marie J, Collas F, López-Contreras AM, Lopes Ferreira N. A two-plasmid inducible CRISPR/Cas9 genome editing tool for Clostridium acetobutylicum. J Microbiol Methods 2017; 140:5-11. [PMID: 28610973 DOI: 10.1016/j.mimet.2017.06.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/09/2017] [Accepted: 06/09/2017] [Indexed: 01/18/2023]
Abstract
CRISPR/Cas-based genetic engineering has revolutionised molecular biology in both eukaryotes and prokaryotes. Several tools dedicated to the genomic transformation of the Clostridium genus of Gram-positive bacteria have been described in the literature; however, the integration of large DNA fragments still remains relatively limited. In this study, a CRISPR/Cas9 genome editing tool using a two-plasmid strategy was developed for the solventogenic strain Clostridium acetobutylicum ATCC 824. Codon-optimised cas9 from Streptococcus pyogenes was placed under the control of an anhydrotetracycline-inducible promoter on one plasmid, while the gRNA expression cassettes and editing templates were located on a second plasmid. Through the sequential introduction of these vectors into the cell, we achieved highly accurate genome modifications, including nucleotide substitution, gene deletion and cassette insertion up to 3.6kb. To demonstrate its potential, this genome editing tool was used to generate a marker-free mutant of ATCC 824 that produced an isopropanol-butanol-ethanol mixture. Whole-genome sequencing confirmed that no off-target modifications were present in the mutants. Such a tool is a prerequisite for efficient metabolic engineering in this solventogenic strain and provides an alternative editing strategy that might be applicable to other Clostridium strains.
Collapse
Affiliation(s)
- François Wasels
- IFP Energies nouvelles, Biotechnology Department, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France.
| | - Jennifer Jean-Marie
- IFP Energies nouvelles, Biotechnology Department, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France
| | - Florent Collas
- Wageningen Food and Biobased Research, Bornse Weilanden 9, 6709WG Wageningen, The Netherlands
| | - Ana M López-Contreras
- Wageningen Food and Biobased Research, Bornse Weilanden 9, 6709WG Wageningen, The Netherlands
| | - Nicolas Lopes Ferreira
- IFP Energies nouvelles, Biotechnology Department, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France
| |
Collapse
|
27
|
Liew F, Martin ME, Tappel RC, Heijstra BD, Mihalcea C, Köpke M. Gas Fermentation-A Flexible Platform for Commercial Scale Production of Low-Carbon-Fuels and Chemicals from Waste and Renewable Feedstocks. Front Microbiol 2016; 7:694. [PMID: 27242719 PMCID: PMC4862988 DOI: 10.3389/fmicb.2016.00694] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/26/2016] [Indexed: 12/13/2022] Open
Abstract
There is an immediate need to drastically reduce the emissions associated with global fossil fuel consumption in order to limit climate change. However, carbon-based materials, chemicals, and transportation fuels are predominantly made from fossil sources and currently there is no alternative source available to adequately displace them. Gas-fermenting microorganisms that fix carbon dioxide (CO2) and carbon monoxide (CO) can break this dependence as they are capable of converting gaseous carbon to fuels and chemicals. As such, the technology can utilize a wide range of feedstocks including gasified organic matter of any sort (e.g., municipal solid waste, industrial waste, biomass, and agricultural waste residues) or industrial off-gases (e.g., from steel mills or processing plants). Gas fermentation has matured to the point that large-scale production of ethanol from gas has been demonstrated by two companies. This review gives an overview of the gas fermentation process, focusing specifically on anaerobic acetogens. Applications of synthetic biology and coupling gas fermentation to additional processes are discussed in detail. Both of these strategies, demonstrated at bench-scale, have abundant potential to rapidly expand the commercial product spectrum of gas fermentation and further improve efficiencies and yields.
Collapse
|
28
|
Pyne ME, Bruder MR, Moo-Young M, Chung DA, Chou CP. Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium. Sci Rep 2016; 6:25666. [PMID: 27157668 PMCID: PMC4860712 DOI: 10.1038/srep25666] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/20/2016] [Indexed: 12/21/2022] Open
Abstract
Application of CRISPR-Cas9 systems has revolutionized genome editing across all domains of life. Here we report implementation of the heterologous Type II CRISPR-Cas9 system in Clostridium pasteurianum for markerless genome editing. Since 74% of species harbor CRISPR-Cas loci in Clostridium, we also explored the prospect of co-opting host-encoded CRISPR-Cas machinery for genome editing. Motivation for this work was bolstered from the observation that plasmids expressing heterologous cas9 result in poor transformation of Clostridium. To address this barrier and establish proof-of-concept, we focus on characterization and exploitation of the C. pasteurianum Type I-B CRISPR-Cas system. In silico spacer analysis and in vivo interference assays revealed three protospacer adjacent motif (PAM) sequences required for site-specific nucleolytic attack. Introduction of a synthetic CRISPR array and cpaAIR gene deletion template yielded an editing efficiency of 100%. In contrast, the heterologous Type II CRISPR-Cas9 system generated only 25% of the total yield of edited cells, suggesting that native machinery provides a superior foundation for genome editing by precluding expression of cas9 in trans. To broaden our approach, we also identified putative PAM sequences in three key species of Clostridium. This is the first report of genome editing through harnessing native CRISPR-Cas machinery in Clostridium.
Collapse
Affiliation(s)
- Michael E Pyne
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Mark R Bruder
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Murray Moo-Young
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Duane A Chung
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Ontario, Canada.,Algaeneers Inc. and Neemo Inc., Hamilton, Ontario, Canada
| | - C Perry Chou
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
29
|
Rebalancing Redox to Improve Biobutanol Production by Clostridium tyrobutyricum. Bioengineering (Basel) 2015; 3:bioengineering3010002. [PMID: 28952564 PMCID: PMC5597160 DOI: 10.3390/bioengineering3010002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/24/2015] [Accepted: 12/18/2015] [Indexed: 12/26/2022] Open
Abstract
Biobutanol is a sustainable green biofuel that can substitute for gasoline. Carbon flux has been redistributed in Clostridium tyrobutyricum via metabolic cell engineering to produce biobutanol. However, the lack of reducing power hampered the further improvement of butanol production. The objective of this study was to improve butanol production by rebalancing redox. Firstly, a metabolically-engineered mutant CTC-fdh-adhE2 was constructed by introducing heterologous formate dehydrogenase (fdh) and bifunctional aldehyde/alcohol dehydrogenase (adhE2) simultaneously into wild-type C. tyrobutyricum. The mutant evaluation indicated that the fdh-catalyzed NADH-producing pathway improved butanol titer by 2.15-fold in the serum bottle and 2.72-fold in the bioreactor. Secondly, the medium supplements that could shift metabolic flux to improve the production of butyrate or butanol were identified, including vanadate, acetamide, sodium formate, vitamin B12 and methyl viologen hydrate. Finally, the free-cell fermentation produced 12.34 g/L of butanol from glucose using the mutant CTC-fdh-adhE2, which was 3.88-fold higher than that produced by the control mutant CTC-adhE2. This study demonstrated that the redox engineering in C. tyrobutyricum could greatly increase butanol production.
Collapse
|
30
|
Li T, Li T, Ji W, Wang Q, Zhang H, Chen GQ, Lou C, Ouyang Q. Engineering of core promoter regions enables the construction of constitutive and inducible promoters in Halomonas sp. Biotechnol J 2015; 11:219-27. [DOI: 10.1002/biot.201400828] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/26/2015] [Accepted: 08/20/2015] [Indexed: 01/24/2023]
Affiliation(s)
- Tingting Li
- Center for Quantitative Biology and Peking-Tsinghua Joint Center for Life Sciences; Peking University; Beijing China
| | - Teng Li
- MOE Key Lab of Bioinformatics, Department of Biological Science and Biotechnology, School of Life Science, Tsinghua-Peking Joint Center for Life Sciences; Tsinghua University; Beijing China
| | - Weiyue Ji
- Center for Quantitative Biology and Peking-Tsinghua Joint Center for Life Sciences; Peking University; Beijing China
| | - Qiuyue Wang
- Center for Quantitative Biology and Peking-Tsinghua Joint Center for Life Sciences; Peking University; Beijing China
| | - Haoqian Zhang
- Center for Quantitative Biology and Peking-Tsinghua Joint Center for Life Sciences; Peking University; Beijing China
| | - Guo-Qiang Chen
- MOE Key Lab of Bioinformatics, Department of Biological Science and Biotechnology, School of Life Science, Tsinghua-Peking Joint Center for Life Sciences; Tsinghua University; Beijing China
| | - Chunbo Lou
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology; Chinese Academy of Sciences; Beijing China
| | - Qi Ouyang
- Center for Quantitative Biology and Peking-Tsinghua Joint Center for Life Sciences; Peking University; Beijing China
- School of Physics and the State Key Laboratory for Artificial Microstructures and Mesoscopic Physics; Peking University; Beijing China
| |
Collapse
|
31
|
Teng L, Wang K, Xu J, Xu C. Flavin mononucleotide (FMN)-based fluorescent protein (FbFP) as reporter for promoter screening in Clostridium cellulolyticum. J Microbiol Methods 2015; 119:37-43. [PMID: 26427827 DOI: 10.1016/j.mimet.2015.09.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/28/2015] [Accepted: 09/28/2015] [Indexed: 12/13/2022]
Abstract
Conventional methods for screening promoters in anaerobic bacteria are generally based on detection of enzymatic reactions and thus usually complicated or strain specific. Therefore a more efficient and universal method will be valuable. Here, using cellulolytic bacteria Clostridium cellulolyticum H10 as a model, we employed an oxygen-independent flavin-based fluorescent protein (FbFP) derived from Pseudomonas putida as a quantitative reporter for the screening of promoter via monitoring fluorescence intensity. The stability and reliability of FbFP fluorescence were proven by the high correlation (R(2)=0.87) between fluorescence intensity and abundance of FbFP. Moreover, two endogenous promoters with exceptional performance were identified and characterized, including a constitutive promoter p3398 and an inducible promoter p1133. Compared to the existing reporter systems widely used in clostridia, this FbFP-based method is more rapid, intuitive and versatile, and the endogenous promoters reported here should enrich the synthetic biology toolbox for this and related organisms.
Collapse
Affiliation(s)
- Lin Teng
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Wang
- Key Laboratory of Horticulture Science for Southern Mountainous Region, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.
| | - Chenggang Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.
| |
Collapse
|
32
|
Fine-tuning of ecaA and pepc gene expression increases succinic acid production in Escherichia coli. Appl Microbiol Biotechnol 2015; 99:8575-86. [DOI: 10.1007/s00253-015-6734-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 05/04/2015] [Accepted: 05/27/2015] [Indexed: 12/20/2022]
|
33
|
Chen W, Zhang S, Jiang P, Yao J, He Y, Chen L, Gui X, Dong Z, Tang SY. Design of an ectoine-responsive AraC mutant and its application in metabolic engineering of ectoine biosynthesis. Metab Eng 2015; 30:149-155. [PMID: 26051748 DOI: 10.1016/j.ymben.2015.05.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 01/27/2023]
Abstract
Advanced high-throughput screening methods for small molecules may have important applications in the metabolic engineering of the biosynthetic pathways of these molecules. Ectoine is an excellent osmoprotectant that has been widely used in cosmetics. In this study, the Escherichia coli regulatory protein AraC was engineered to recognize ectoine as its non-natural effector and to activate transcription upon ectoine binding. As an endogenous reporter of ectoine, the mutated AraC protein was successfully incorporated into high-throughput screening of ectoine hyper-producing strains. The ectoine biosynthetic cluster from Halomonas elongata was cloned into E. coli. By engineering the rate-limiting enzyme L-2,4-diaminobutyric acid (DABA) aminotransferase (EctB), ectoine production and the specific activity of the EctB mutant were increased. Thus, these results demonstrated the effectiveness of engineering regulatory proteins into sensitive and rapid screening tools for small molecules and highlighted the importance and efficacy of directed evolution strategies applied to the engineering of genetic components for yield improvement in the biosynthesis of small molecules.
Collapse
Affiliation(s)
- Wei Chen
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shan Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Peixia Jiang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Yao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongzhi He
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lincai Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiwu Gui
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Zhiyang Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Shuang-Yan Tang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
34
|
Development of a regulatable plasmid-based gene expression system for Clostridium thermocellum. Appl Microbiol Biotechnol 2015; 99:7589-99. [DOI: 10.1007/s00253-015-6610-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 04/07/2015] [Accepted: 04/15/2015] [Indexed: 01/31/2023]
|
35
|
Li H, Liao JC. A synthetic anhydrotetracycline-controllable gene expression system in Ralstonia eutropha H16. ACS Synth Biol 2015; 4:101-6. [PMID: 24702232 DOI: 10.1021/sb4001189] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Controllable gene expression systems that are orthogonal to the host's native gene regulation network are invaluable tools for synthetic biology. In Ralstonia eutropha H16, such systems are extremely limited despite the importance of this organism in microbiological research and biotechnological application. Here we developed an anhydrotetracycline (aTc)-inducible gene expression system, which is composed of a synthetic promoter containing the operator tetO, the repressor TetR, and the inducer aTc. Using a reporter-activity based promoter library screen, we first identified the active hybrids between the tetO operators and the R. eutropha native rrsC promoter (PrrsC). Next, we showed that the hybrid promoters are repressable by TetR. To optimize the dynamic range of the system, a high-throughput screening of 300 mutants of R. eutropha phaC1 promoter was conducted to identify suitable promoters to tune the tetR expression level. The final controllable expression system contains the modified PrrsC with two copies of the tetO1 operator integrated and the tetR driven by the mutated PphaC1. The system has decreased basal expression level and can be tuned by different aTc concentrations with greater than 10-fold dynamic range. The system was used to alleviate cellular toxicity caused by AlsS overexpression, which impeded our metabolic engineering work on isobutanol and 3-methyl-1-butanol production in R. eutropha H16.
Collapse
Affiliation(s)
- Han Li
- Department of Chemical and Biomolecular Engineering, ‡The Molecular Biology Institute, §Department of Chemistry & Biochemistry, ∥Institute of Genomics and Proteomics, University of California, Los Angeles, California 90095, United States
| | - James C. Liao
- Department of Chemical and Biomolecular Engineering, ‡The Molecular Biology Institute, §Department of Chemistry & Biochemistry, ∥Institute of Genomics and Proteomics, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
36
|
Zhang J, Liu YJ, Cui GZ, Cui Q. A novel arabinose-inducible genetic operation system developed for Clostridium cellulolyticum. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:36. [PMID: 25763107 PMCID: PMC4355141 DOI: 10.1186/s13068-015-0214-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/29/2015] [Indexed: 05/07/2023]
Abstract
BACKGROUND Clostridium cellulolyticum and other cellulolytic Clostridium strains are natural producers of lignocellulosic biofuels and chemicals via the consolidated bioprocessing (CBP) route, and systems metabolic engineering is indispensable to meet the cost-efficient demands of industry. Several genetic tools have been developed for Clostridium strains, and an efficient and stringent inducible genetic operation system is still required for the precise regulation of the target gene function. RESULTS Here, we provide a stringent arabinose-inducible genetic operation (ARAi) system for C. cellulolyticum, including an effective gene expression platform with an oxygen-independent fluorescent reporter, a sensitive MazF-based counterselection genetic marker, and a precise gene knock-out method based on an inducible ClosTron system. A novel arabinose-inducible promoter derived from Clostridium acetobutylicum is employed in the ARAi system to control the expression of the target gene, and the gene expression can be up-regulated over 800-fold with highly induced stringency. The inducible ClosTron method of the ARAi system decreases the off-target frequency from 100% to 0, which shows the precise gene targeting in C. cellulolyticum. The inducible effect of the ARAi system is specific to a universal carbon source L-arabinose, implying that the system could be used widely for clostridial strains with various natural substrates. CONCLUSIONS The inducible genetic operation system ARAi developed in this study, containing both controllable gene expression and disruption tools, has the highest inducing activity and stringency in Clostridium by far. Thus, the ARAi system will greatly support the efficient metabolic engineering of C. cellulolyticum and other mesophilic Clostridium strains for lignocellulose bioconversion.
Collapse
Affiliation(s)
- Jie Zhang
- />Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189, Songling Road, Qingdao, 266101 People’s Republic of China
- />Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189, Songling Road, Qingdao, 266101 People’s Republic of China
- />University of Chinese Academy of Sciences, Chinese Academy of Sciences, 19, Yuquan Road, Beijing, 100049 People’s Republic of China
| | - Ya-Jun Liu
- />Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189, Songling Road, Qingdao, 266101 People’s Republic of China
- />Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189, Songling Road, Qingdao, 266101 People’s Republic of China
| | - Gu-Zhen Cui
- />Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189, Songling Road, Qingdao, 266101 People’s Republic of China
- />Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189, Songling Road, Qingdao, 266101 People’s Republic of China
| | - Qiu Cui
- />Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189, Songling Road, Qingdao, 266101 People’s Republic of China
- />Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189, Songling Road, Qingdao, 266101 People’s Republic of China
- />Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189, Songling Road, Qingdao, 266101 People’s Republic of China
| |
Collapse
|
37
|
Daniell J, Nagaraju S, Burton F, Köpke M, Simpson SD. Low-Carbon Fuel and Chemical Production by Anaerobic Gas Fermentation. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 156:293-321. [PMID: 26957126 DOI: 10.1007/10_2015_5005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
World energy demand is expected to increase by up to 40% by 2035. Over this period, the global population is also expected to increase by a billion people. A challenge facing the global community is not only to increase the supply of fuel, but also to minimize fossil carbon emissions to safeguard the environment, at the same time as ensuring that food production and supply is not detrimentally impacted. Gas fermentation is a rapidly maturing technology which allows low carbon fuel and commodity chemical synthesis. Unlike traditional biofuel technologies, gas fermentation avoids the use of sugars, relying instead on gas streams rich in carbon monoxide and/or hydrogen and carbon dioxide as sources of carbon and energy for product synthesis by specialized bacteria collectively known as acetogens. Thus, gas fermentation enables access to a diverse array of novel, large volume, and globally available feedstocks including industrial waste gases and syngas produced, for example, via the gasification of municipal waste and biomass. Through the efforts of academic labs and early stage ventures, process scale-up challenges have been surmounted through the development of specialized bioreactors. Furthermore, tools for the genetic improvement of the acetogenic bacteria have been reported, paving the way for the production of a spectrum of ever-more valuable products via this process. As a result of these developments, interest in gas fermentation among both researchers and legislators has grown significantly in the past 5 years to the point that this approach is now considered amongst the mainstream of emerging technology solutions for near-term low-carbon fuel and chemical synthesis.
Collapse
Affiliation(s)
- James Daniell
- LanzaTech Inc., 8045 Lamon Ave, Suite 400, Skokie, IL, 60077, USA.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Shilpa Nagaraju
- LanzaTech Inc., 8045 Lamon Ave, Suite 400, Skokie, IL, 60077, USA
| | - Freya Burton
- LanzaTech Inc., 8045 Lamon Ave, Suite 400, Skokie, IL, 60077, USA
| | - Michael Köpke
- LanzaTech Inc., 8045 Lamon Ave, Suite 400, Skokie, IL, 60077, USA
| | | |
Collapse
|
38
|
Tao W, Dong H, Zhang Y, Cai Z, Li Y. Introducing transglutaminase with its precursor region into Clostridium acetobutylicum improves its tolerance to oxidative stress and solvent production. Process Biochem 2015. [DOI: 10.1016/j.procbio.2014.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Lütke-Eversloh T. Application of new metabolic engineering tools for Clostridium acetobutylicum. Appl Microbiol Biotechnol 2014; 98:5823-37. [DOI: 10.1007/s00253-014-5785-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 01/30/2023]
|
40
|
Pyne ME, Bruder M, Moo-Young M, Chung DA, Chou CP. Technical guide for genetic advancement of underdeveloped and intractable Clostridium. Biotechnol Adv 2014; 32:623-41. [DOI: 10.1016/j.biotechadv.2014.04.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/10/2014] [Accepted: 04/15/2014] [Indexed: 02/04/2023]
|
41
|
Lactose-inducible system for metabolic engineering of Clostridium ljungdahlii. Appl Environ Microbiol 2014; 80:2410-6. [PMID: 24509933 DOI: 10.1128/aem.03666-13] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The development of tools for genetic manipulation of Clostridium ljungdahlii has increased its attractiveness as a chassis for autotrophic production of organic commodities and biofuels from syngas and microbial electrosynthesis and established it as a model organism for the study of the basic physiology of acetogenesis. In an attempt to expand the genetic toolbox for C. ljungdahlii, the possibility of adapting a lactose-inducible system for gene expression, previously reported for Clostridium perfringens, was investigated. The plasmid pAH2, originally developed for C. perfringens with a gusA reporter gene, functioned as an effective lactose-inducible system in C. ljungdahlii. Lactose induction of C. ljungdahlii containing pB1, in which the gene for the aldehyde/alcohol dehydrogenase AdhE1 was downstream of the lactose-inducible promoter, increased expression of adhE1 30-fold over the wild-type level, increasing ethanol production 1.5-fold, with a corresponding decrease in acetate production. Lactose-inducible expression of adhE1 in a strain in which adhE1 and the adhE1 homolog adhE2 had been deleted from the chromosome restored ethanol production to levels comparable to those in the wild-type strain. Inducing expression of adhE2 similarly failed to restore ethanol production, suggesting that adhE1 is the homolog responsible for ethanol production. Lactose-inducible expression of the four heterologous genes necessary to convert acetyl coenzyme A (acetyl-CoA) to acetone diverted ca. 60% of carbon flow to acetone production during growth on fructose, and 25% of carbon flow went to acetone when carbon monoxide was the electron donor. These studies demonstrate that the lactose-inducible system described here will be useful for redirecting carbon and electron flow for the biosynthesis of products more valuable than acetate. Furthermore, this tool should aid in optimizing microbial electrosynthesis and for basic studies on the physiology of acetogenesis.
Collapse
|
42
|
Dong H, Tao W, Gong F, Li Y, Zhang Y. A functional recT gene for recombineering of Clostridium. J Biotechnol 2013; 173:65-7. [PMID: 24384234 DOI: 10.1016/j.jbiotec.2013.12.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/16/2013] [Accepted: 12/18/2013] [Indexed: 12/16/2022]
Abstract
Recombineering is an efficient genetic manipulation method employing the mechanism of phagenic RecT-mediated homologous recombination. To develop a recombineering method for Clostridium, a putative recT gene (CPF0939) from Clostridium perfringens genome was functionally verified in a clostridial host Clostridium acetobutylicum. We show that a short synthetic oligonucleotide can be introduced into the target site for specific point mutation. This functional recT gene would therefore contribute to development of recombineering tools for Clostridium.
Collapse
Affiliation(s)
- Hongjun Dong
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wenwen Tao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Fuyu Gong
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yin Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yanping Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
43
|
Luan G, Cai Z, Gong F, Dong H, Lin Z, Zhang Y, Li Y. Developing controllable hypermutable Clostridium cells through manipulating its methyl-directed mismatch repair system. Protein Cell 2013; 4:854-62. [PMID: 24214875 PMCID: PMC4875452 DOI: 10.1007/s13238-013-3079-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 09/25/2013] [Indexed: 01/06/2023] Open
Abstract
Development of controllable hypermutable cells can greatly benefit understanding and harnessing microbial evolution. However, there have not been any similar systems developed for Clostridium, an important bacterial genus. Here we report a novel two-step strategy for developing controllable hypermutable cells of Clostridium acetobutylicum, an important and representative industrial strain. Firstly, the mutS/L operon essential for methyldirected mismatch repair (MMR) activity was inactivated from the genome of C. acetobutylicum to generate hypermutable cells with over 250-fold increased mutation rates. Secondly, a proofreading control system carrying an inducibly expressed mutS/L operon was constructed. The hypermutable cells and the proofreading control system were integrated to form a controllable hypermutable system SMBMutC, of which the mutation rates can be regulated by the concentration of anhydrotetracycline (aTc). Duplication of the miniPthl-tetR module of the proofreading control system further significantly expanded the regulatory space of the mutation rates, demonstrating hypermutable Clostridium cells with controllable mutation rates are generated. The developed C. acetobutylicum strain SMBMutC2 showed higher survival capacities than the control strain facing butanol-stress, indicating greatly increased evolvability and adaptability of the controllable hypermutable cells under environmental challenges.
Collapse
Affiliation(s)
- Guodong Luan
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhen Cai
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Fuyu Gong
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Hongjun Dong
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Zhao Lin
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yanping Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yin Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
44
|
Yang L, Bao G, Zhu Y, Dong H, Zhang Y, Li Y. Discovery of a novel gene involved in autolysis of Clostridium cells. Protein Cell 2013; 4:467-74. [PMID: 23702687 DOI: 10.1007/s13238-013-3025-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 04/25/2013] [Indexed: 01/08/2023] Open
Abstract
Cell autolysis plays important physiological roles in the life cycle of clostridial cells. Understanding the genetic basis of the autolysis phenomenon of pathogenic Clostridium or solvent producing Clostridium cells might provide new insights into this important species. Genes that might be involved in autolysis of Clostridium acetobutylicum, a model clostridial species, were investigated in this study. Twelve putative autolysin genes were predicted in C. acetobutylicum DSM 1731 genome through bioinformatics analysis. Of these 12 genes, gene SMB_G3117 was selected for testing the in tracellular autolysin activity, growth profile, viable cell numbers, and cellular morphology. We found that overexpression of SMB_G3117 gene led to earlier ceased growth, significantly increased number of dead cells, and clear electrolucent cavities, while disruption of SMB_G3117 gene exhibited remarkably reduced intracellular autolysin activity. These results indicate that SMB_G3117 is a novel gene involved in cellular autolysis of C. acetobutylicum.
Collapse
Affiliation(s)
- Liejian Yang
- Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
45
|
Engineering Clostridium acetobutylicum for alcohol production. J Biotechnol 2013; 166:25-33. [PMID: 23651949 DOI: 10.1016/j.jbiotec.2013.04.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 04/19/2013] [Accepted: 04/26/2013] [Indexed: 01/18/2023]
Abstract
While Clostridium acetobutylicum has been used for large-scale butanol production (ABE fermentation), its by-product acetone cannot be used as a biofuel. In this study, C. acetobutylicum was engineered for alcohol titers (butanol plus ethanol). The adc gene was inactivated to eliminate acetone production, and glutathione biosynthetic capability was introduced into C. acetobutylicum to improve the strain's robustness by expressing Escherichia coli's gshAB genes in the adc locus. Acetone production was reduced from 2.64±0.22 g/L to 0.15±0.08 g/L in the engineered strain 824adc::gsh, whereas butanol production was increased from 5.17±0.26 g/L to 8.27±0.27 g/L. To further improve the alcohol titers, the metabolic flux in the alcohol biosynthesis pathways was enhanced. Overlapping PCR was used to generate expression cassette EC, which expresses the hbd, thl, crt, and bcd genes, and the Sol operon was amplified to express the adhE and ctfAB genes. Butanol and alcohol production reached 14.86±0.26 g/L and 18.11±0.66 g/L, respectively, in 824adc::gsh Sol-EC. Furthermore, the butanol and alcohol yields were 0.336 g/g and 0.409 g/g, respectively, in 824adc::gsh Sol-EC. This study provided a combined strategy for enhancing alcohol production in C. acetobutylicum.
Collapse
|
46
|
|
47
|
Abstract
Metabolic engineering emerged 20 years ago as the discipline occupied with the directed modification of metabolic pathways for the microbial synthesis of various products. As such, it deals with the engineering (design, construction, and optimization) of native as well as non-natural routes of product synthesis, aided in this task by the availability of synthetic DNA, the core enabling technology of synthetic biology. The two fields, however, only partially overlap in their interest in pathway engineering. While fabrication of biobricks, synthetic cells, genetic circuits, and nonlinear cell dynamics, along with pathway engineering, have occupied researchers in the field of synthetic biology, the sum total of these areas does not constitute a coherent definition of synthetic biology with a distinct intellectual foundation and well-defined areas of application. This paper reviews the origins of the two fields and advances two distinct paradigms for each of them: that of unit operations for metabolic engineering and electronic circuits for synthetic biology. In this context, metabolic engineering is about engineering cell factories for the biological manufacturing of chemical and pharmaceutical products, whereas the main focus of synthetic biology is fundamental biological research facilitated by the use of synthetic DNA and genetic circuits.
Collapse
Affiliation(s)
- Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Building 56 Room 469C, 77 Massachusetts Ave, Cambridge, MA 02139, USA.
| |
Collapse
|
48
|
Cooksley CM, Zhang Y, Wang H, Redl S, Winzer K, Minton NP. Targeted mutagenesis of the Clostridium acetobutylicum acetone-butanol-ethanol fermentation pathway. Metab Eng 2012; 14:630-41. [PMID: 22982601 DOI: 10.1016/j.ymben.2012.09.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 08/30/2012] [Accepted: 09/06/2012] [Indexed: 01/29/2023]
Abstract
The production of the chemical solvents acetone and butanol by the bacterium Clostridium acetobutylicum was one of the first large-scale industrial processes to be developed, and in the first part of the last century ranked second in importance only to ethanol production. After a steep decline in its industrial use, there has been a recent resurgence of interest in the acetone-butanol-ethanol (ABE) fermentation process, with a particular emphasis on butanol production. In order to generate strains suitable for efficient use on an industrial scale, metabolic engineering is required to alter the AB ratio in favour of butanol, and eradicate the production of unwanted products of fermentation. Using ClosTron technology, a large-scale targeted mutagenesis in C. acetobutylicum ATCC 824 was carried out, generating a set of 10 mutants, defective in alcohol/aldehyde dehydrogenases 1 and 2 (adhE1, adhE2), butanol dehydrogenases A and B (bdhA, bdhB), phosphotransbutyrylase (ptb), acetate kinase (ack), acetoacetate decarboxylase (adc), CoA transferase (ctfA/ctfB), and a previously uncharacterised putative alcohol dehydrogenase (CAP0059). However, inactivation of the main hydrogenase (hydA) and thiolase (thl) could not be achieved. Constructing such a series of mutants is paramount for the acquisition of information on the mechanism of solvent production in this organism, and the subsequent development of industrial solvent producing strains. Unexpectedly, bdhA and bdhB mutants did not affect solvent production, whereas inactivation of the previously uncharacterised gene CAP0059 resulted in increased acetone, butanol, and ethanol formation. Other mutants showed predicted phenotypes, including a lack of acetone formation (adc, ctfA, and ctfB mutants), an inability to take up acids (ctfA and ctfB mutants), and a much reduced acetate formation (ack mutant). The adhE1 mutant in particular produced very little solvents, demonstrating that this gene was indeed the main contributor to ethanol and butanol formation under the standard batch culture conditions employed in this study. All phenotypic changes observed could be reversed by genetic complementation, with exception of those seen for the ptb mutant. This mutant produced around 100 mM ethanol, no acetone and very little (7 mM) butanol. The genome of the ptb mutant was therefore re-sequenced, together with its parent strain (ATCC 824 wild type), and shown to possess a frameshift mutation in the thl gene, which perfectly explained the observed phenotype. This finding reinforces the need for mutant complementation and Southern Blot analysis (to confirm single ClosTron insertions), which should be obligatory in all further ClosTron applications.
Collapse
Affiliation(s)
- Clare M Cooksley
- Clostridia Research Group, BBSRC Sustainable Bioenergy Centre, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | | | | | | | | | | |
Collapse
|