1
|
Damasceno JL, Santiago MB, Menezes RDP, Esperandim TR, Ozelin SD, Silva MVFD, Landaeta UR, Tavares DC, Cunha LCS, Ferro EAV, Fernandes TADM, Martins CHG. Determining the Antimycobacterial Action of Rottlerin Against Mycobacterium Species and Toxicity, Antioxidant Properties, and Therapeutic Target Affinity of Rottlerin. Curr Microbiol 2025; 82:147. [PMID: 39982530 DOI: 10.1007/s00284-025-04117-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/03/2025] [Indexed: 02/22/2025]
Abstract
Infections by Mycobacterium spp. are responsible for thousands of deaths every year worldwide. Microbial resistance, toxic effects, and adverse consequences of conventional therapies bring forth the need to search for new therapeutic agents. The aim of this study was to determine the antimicrobial action of the molecule Rottlerin against Mycobacterium spp. The broth microdilution assay showed that Rottlerin inhibited the mycobacterial growth at concentrations ≤ 50 µg/mL (≤ 96.81 µM), and the lowest bactericidal concentration was observed against M. tuberculosis (25 µg/mL-48.40 µM). The cytotoxicity of Rottlerin was conducted in a epithelial cell culture and evaluated through 2,3-Bis-(2-Methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) colorimetric assay, revealing an IC50 equivalent to 81.89 ± 4.64 µM. The antioxidant action determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay demonstrated that Rottlerin reduced at least 50% of free radicals at 109.2 µM. To gain insights into the antimycobacterial activity of Rottlerin, we performed molecular docking simulations with therapeutic targets of M. tuberculosis and observed that Rottlerin binds into the inhibitory site of the anti-infective target diterpene synthase (Rv3378c). Our findings indicate that Rottlerin presents antimicrobial effects with antioxidant action and prominent therapeutic targets, showing its biotechnological potential for the development of new agent against Mycobacterium spp. infection.
Collapse
Affiliation(s)
- Jaqueline Lopes Damasceno
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Mariana Brentini Santiago
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | | | | | | | | | | | | | | | - Eloísa Amália Vieira Ferro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Thales Alves de Melo Fernandes
- Laboratory of Applied Toxinology, Butantan Institute, Av. Vital Brasil 1500, Butantã, São Paulo, SP, CEP 05503-900, Brazil
| | - Carlos Henrique Gomes Martins
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Papanikolaou AS, Papaefthimiou D, Matekalo D, Karakousi CV, Makris AM, Kanellis AK. Chemical and transcriptomic analyses of leaf trichomes from Cistus creticus subsp. creticus reveal the biosynthetic pathways of certain labdane-type diterpenoids and their acetylated forms. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3431-3451. [PMID: 38520311 PMCID: PMC11156806 DOI: 10.1093/jxb/erae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/04/2024] [Indexed: 03/25/2024]
Abstract
Labdane-related diterpenoids (LRDs), a subgroup of terpenoids, exhibit structural diversity and significant commercial and pharmacological potential. LRDs share the characteristic decalin-labdanic core structure that derives from the cycloisomerization of geranylgeranyl diphosphate (GGPP). Labdanes derive their name from the oleoresin known as 'Labdanum', 'Ladano', or 'Aladano', used since ancient Greek times. Acetylated labdanes, rarely identified in plants, are associated with enhanced biological activities. Chemical analysis of Cistus creticus subsp. creticus revealed labda-7,13(E)-dien-15-yl acetate and labda-7,13(E)-dien-15-ol as major constituents. In addition, novel labdanes such as cis-abienol, neoabienol, ent-copalol, and one as yet unidentified labdane-type diterpenoid were detected for the first time. These compounds exhibit developmental regulation, with higher accumulation observed in young leaves. Using RNA-sequencing (RNA-seq) analysis of young leaf trichomes, it was possible to identify, clone, and eventually functionally characterize labdane-type diterpenoid synthase (diTPS) genes, encoding proteins responsible for the production of labda-7,13(E)-dien-15-yl diphosphate (endo-7,13-CPP), labda-7,13(E)-dien-15-yl acetate, and labda-13(E)-ene-8α-ol-15-yl acetate. Moreover, the reconstitution of labda-7,13(E)-dien-15-yl acetate and labda-13(E)-ene-8α-ol-15-yl acetate production in yeast is presented. Finally, the accumulation of LRDs in different plant tissues showed a correlation with the expression profiles of the corresponding genes.
Collapse
Affiliation(s)
- Antigoni S Papanikolaou
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece
| | - Dimitra Papaefthimiou
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece
| | - Dragana Matekalo
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece
| | - Christina-Vasiliki Karakousi
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece
| | - Antonios M Makris
- Institute of Applied Biosciences, Centre for Research & Technology, Hellas (CERTH), 57001 Thessaloniki, Macedonia, Greece
| | - Angelos K Kanellis
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece
| |
Collapse
|
3
|
Schwartz R, Zev S, Major DT. Mechanistic docking in terpene synthases using EnzyDock. Methods Enzymol 2024; 699:265-292. [PMID: 38942507 DOI: 10.1016/bs.mie.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Terpene Synthases (TPS) catalyze the formation of multicyclic, complex terpenes and terpenoids from linear substrates. Molecular docking is an important research tool that can further our understanding of TPS multistep mechanisms and guide enzyme design. Standard docking programs are not well suited to tackle the unique challenges of TPS, like the many chemical steps which form multiple stereo-centers, the weak dispersion interactions between the isoprenoid chain and the hydrophobic region of the active site, description of carbocation intermediates, and finding mechanistically meaningful sets of docked poses. To address these and other unique challenges, we developed the multistate, multiscale docking program EnzyDock and used it to study many TPS and other enzymes. In this review we discuss the unique challenges of TPS, the special features of EnzyDock developed to address these challenges and demonstrate its successful use in ongoing research on the bacterial TPS CotB2.
Collapse
Affiliation(s)
- Renana Schwartz
- Department of Chemistry and Institute for Nanotechnology Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Shani Zev
- Department of Chemistry and Institute for Nanotechnology Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Dan T Major
- Department of Chemistry and Institute for Nanotechnology Advanced Materials, Bar Ilan University, Ramat Gan, Israel.
| |
Collapse
|
4
|
Zhao Y, Liang Y, Luo G, Li Y, Han X, Wen M. Sequence-Structure Analysis Unlocking the Potential Functional Application of the Local 3D Motifs of Plant-Derived Diterpene Synthases. Biomolecules 2024; 14:120. [PMID: 38254720 PMCID: PMC10813164 DOI: 10.3390/biom14010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/31/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Plant-derived diterpene synthases (PdiTPSs) play a critical role in the formation of structurally and functionally diverse diterpenoids. However, the specificity or functional-related features of PdiTPSs are not well understood. For a more profound insight, we collected, constructed, and curated 199 functionally characterized PdiTPSs and their corresponding 3D structures. The complex correlations among their sequences, domains, structures, and corresponding products were comprehensively analyzed. Ultimately, our focus narrowed to the geometric arrangement of local structures. We found that local structural alignment can rapidly localize product-specific residues that have been validated by mutagenesis experiments. Based on the 3D motifs derived from the residues around the substrate, we successfully searched diterpene synthases (diTPSs) from the predicted terpene synthases and newly characterized PdiTPSs, suggesting that the identified 3D motifs can serve as distinctive signatures in diTPSs (I and II class). Local structural analysis revealed the PdiTPSs with more conserved amino acid residues show features unique to class I and class II, whereas those with fewer conserved amino acid residues typically exhibit product diversity and specificity. These results provide an attractive method for discovering novel or functionally equivalent enzymes and probing the product specificity in cases where enzyme characterization is limited.
Collapse
Affiliation(s)
- Yalan Zhao
- National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (Y.Z.); (Y.L.); (G.L.); (X.H.)
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yupeng Liang
- National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (Y.Z.); (Y.L.); (G.L.); (X.H.)
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Gan Luo
- National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (Y.Z.); (Y.L.); (G.L.); (X.H.)
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yi Li
- College of Mathematics and Computer Science, Dali University, Dali 671003, China
| | - Xiulin Han
- National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (Y.Z.); (Y.L.); (G.L.); (X.H.)
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Mengliang Wen
- National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (Y.Z.); (Y.L.); (G.L.); (X.H.)
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| |
Collapse
|
5
|
Ma X, Xu H, Tong Y, Luo Y, Dong Q, Jiang T. Structural and functional investigations of syn-copalyl diphosphate synthase from Oryza sativa. Commun Chem 2023; 6:240. [PMID: 37932442 PMCID: PMC10628199 DOI: 10.1038/s42004-023-01042-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023] Open
Abstract
The large superfamily of labdane-related diterpenoids is defined by the cyclization of linear geranylgeranyl pyrophosphate (GGPP), catalyzed by copalyl diphosphate synthases (CPSs) to form the basic decalin core, the copalyl diphosphates (CPPs). Three stereochemically distinct CPPs have been found in plants, namely (+)-CPP, ent-CPP and syn-CPP. Here, we used X-ray crystallography and cryo-EM methods to describe different oligomeric structures of a syn-copalyl diphosphate synthase from Oryza sativa (OsCyc1), and provided a cryo-EM structure of OsCyc1D367A mutant in complex with the substrate GGPP. Further analysis showed that tetramers are the dominant form of OsCyc1 in solution and are not necessary for enzyme activity in vitro. Through rational design, we identified an OsCyc1 mutant that can generate ent-CPP in addition to syn-CPP. Our work provides a structural and mechanistic basis for comparing different CPSs and paves the way for further enzyme design to obtain diterpene derivatives with specific chirality.
Collapse
Affiliation(s)
- Xiaoli Ma
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Haifeng Xu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuru Tong
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Yunfeng Luo
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Qinghua Dong
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Tao Jiang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Cheah LC, Liu L, Plan MR, Peng B, Lu Z, Schenk G, Vickers CE, Sainsbury F. Product Profiles of Promiscuous Enzymes Can be Altered by Controlling In Vivo Spatial Organization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303415. [PMID: 37750486 PMCID: PMC10646250 DOI: 10.1002/advs.202303415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/31/2023] [Indexed: 09/27/2023]
Abstract
Enzyme spatial organization is an evolved mechanism for facilitating multi-step biocatalysis and can play an important role in the regulation of promiscuous enzymes. The latter function suggests that artificial spatial organization can be an untapped avenue for controlling the specificity of bioengineered metabolic pathways. A promiscuous terpene synthase (nerolidol synthase) is co-localized and spatially organized with the preceding enzyme (farnesyl diphosphate synthase) in a heterologous production pathway, via translational protein fusion and/or co-encapsulation in a self-assembling protein cage. Spatial organization enhances nerolidol production by ≈11- to ≈62-fold relative to unorganized enzymes. More interestingly, striking differences in the ratio of end products (nerolidol and linalool) are observed with each spatial organization approach. This demonstrates that artificial spatial organization approaches can be harnessed to modulate the product profiles of promiscuous enzymes in engineered pathways in vivo. This extends the application of spatial organization beyond situations where multiple enzymes compete for a single substrate to cases where there is competition among multiple substrates for a single enzyme.
Collapse
Affiliation(s)
- Li Chen Cheah
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQLD4072Australia
- CSIRO Future Science Platform in Synthetic BiologyCommonwealth Scientific and Industrial Research Organisation (CSIRO)Dutton ParkSt LuciaQLD4102Australia
- Present address:
Australian Centre for Disease Preparedness5 Portarlington RdEast GeelongVIC3219Australia
| | - Lian Liu
- Metabolomics Australia (Queensland Node)The University of QueenslandSt LuciaQLD4072Australia
| | - Manuel R. Plan
- Metabolomics Australia (Queensland Node)The University of QueenslandSt LuciaQLD4072Australia
| | - Bingyin Peng
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQLD4072Australia
- CSIRO Future Science Platform in Synthetic BiologyCommonwealth Scientific and Industrial Research Organisation (CSIRO)Dutton ParkSt LuciaQLD4102Australia
- ARC Centre of Excellence in Synthetic BiologyQueensland University of TechnologyBrisbaneQLD4000Australia
- School of Biological and Environmental ScienceQueensland University of TechnologyBrisbaneQLD4000Australia
| | - Zeyu Lu
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQLD4072Australia
- ARC Centre of Excellence in Synthetic BiologyQueensland University of TechnologyBrisbaneQLD4000Australia
| | - Gerhard Schenk
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQLD4072Australia
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQLD4072Australia
| | - Claudia E. Vickers
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQLD4072Australia
- CSIRO Future Science Platform in Synthetic BiologyCommonwealth Scientific and Industrial Research Organisation (CSIRO)Dutton ParkSt LuciaQLD4102Australia
- ARC Centre of Excellence in Synthetic BiologyQueensland University of TechnologyBrisbaneQLD4000Australia
- School of Biological and Environmental ScienceQueensland University of TechnologyBrisbaneQLD4000Australia
- Centre for Cell Factories and BiopolymersGriffith Institute for Drug DiscoveryGriffith UniversityNathanQLD4111Australia
| | - Frank Sainsbury
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQLD4072Australia
- CSIRO Future Science Platform in Synthetic BiologyCommonwealth Scientific and Industrial Research Organisation (CSIRO)Dutton ParkSt LuciaQLD4102Australia
- Centre for Cell Factories and BiopolymersGriffith Institute for Drug DiscoveryGriffith UniversityNathanQLD4111Australia
| |
Collapse
|
7
|
Tian M, Jin B, Chen L, Ma R, Ma Q, Li X, Chen T, Guo J, Ge H, Zhao X, Lai C, Tang J, Cui G, Huang L. Functional diversity of diterpene synthases in Aconitum plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107968. [PMID: 37619270 DOI: 10.1016/j.plaphy.2023.107968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/30/2023] [Accepted: 08/06/2023] [Indexed: 08/26/2023]
Abstract
Members of the Aconitum genus within the Ranunculaceae family are known to accumulate a broad array of medicinal and toxic diterpenoid alkaloids (DAs). Historically, ent-copalyl diphosphate (ent-CPP) was considered the sole precursor in DAs biosynthesis. However, the recent discovery of ent-8,13-CPP synthase in A. gymnandrum Maxim., which participates in ent-atiserene biosynthesis, raises the question of whether this gene is conserved throughout the Aconitum genus. In this study, RNA sequencing and PacBio Iso-sequencing were employed to identify diterpene synthases (diTPSs) in four additional Aconitum species with distinct DA compositions. In vitro and in vivo analyses functionally characterized a diverse array of 10 class II and 9 class I diTPSs. In addition to the identification of seven class II diTPSs as ent-CPP synthases, three other synthases generating ent-8,13-CPP, 8,13-CPP, and 8α-hydroxy-CPP were also discovered. Four class I kaurene synthases-like (KSLs) were observed to react with ent-CPP to yield ent-kaurene. Three KSLs not only reacted with ent-CPP but also ent-8,13-CPP to produce ent-atiserene. AsiKSL2-1 was found to react with 8α-hydroxy-CPP to produce Z-abienol and AsiKSL2-2 exhibited no activity with any of the four intermediates. This research delineates the known diterpene biosynthesis pathways in six Aconitum species and explores the highly divergent diterpene synthases within the genus, which are consistent with their phylogeny and may be responsible for the differential distribution of diterpenoid alkaloids in root and aerial parts. These findings contribute valuable insights into the diversification of diterpene biosynthesis and establish a solid foundation for future investigation into DA biosynthetic pathways in Aconitum.
Collapse
Affiliation(s)
- Mei Tian
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Baolong Jin
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lingli Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Institute of Traditional Chinese Medicine, Anhui Food and Drug Inspection and Research Institute, Hefei, 230051, China
| | - Rui Ma
- School of Pharmacy, Henan University of Chinese Medicine, Henan, 450046, China
| | - Qing Ma
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiaolin Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tong Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Juan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hui Ge
- Gansu University of Traditional Chinese Medicine, Gansu, 730000, China
| | - Xin Zhao
- Gansu University of Traditional Chinese Medicine, Gansu, 730000, China
| | - Changjiangsheng Lai
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jinfu Tang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Guanghong Cui
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
8
|
Li H, Wu S, Lin R, Xiao Y, Malaco Morotti AL, Wang Y, Galilee M, Qin H, Huang T, Zhao Y, Zhou X, Yang J, Zhao Q, Kanellis AK, Martin C, Tatsis EC. The genomes of medicinal skullcaps reveal the polyphyletic origins of clerodane diterpene biosynthesis in the family Lamiaceae. MOLECULAR PLANT 2023; 16:549-570. [PMID: 36639870 DOI: 10.1016/j.molp.2023.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/21/2022] [Accepted: 01/09/2023] [Indexed: 06/09/2023]
Abstract
The presence of anticancer clerodane diterpenoids is a chemotaxonomic marker for the traditional Chinese medicinal plant Scutellaria barbata, although the molecular mechanisms behind clerodane biosynthesis are unknown. Here, we report a high-quality assembly of the 414.98 Mb genome of S. barbata into 13 pseudochromosomes. Using phylogenomic and biochemical data, we mapped the plastidial metabolism of kaurene (gibberellins), abietane, and clerodane diterpenes in three species of the family Lamiaceae (Scutellaria barbata, Scutellaria baicalensis, and Salvia splendens), facilitating the identification of genes involved in the biosynthesis of the clerodanes, kolavenol, and isokolavenol. We show that clerodane biosynthesis evolved through recruitment and neofunctionalization of genes from gibberellin and abietane metabolism. Despite the assumed monophyletic origin of clerodane biosynthesis, which is widespread in species of the Lamiaceae, our data show distinct evolutionary lineages and suggest polyphyletic origins of clerodane biosynthesis in the family Lamiaceae. Our study not only provides significant insights into the evolution of clerodane biosynthetic pathways in the mint family, Lamiaceae, but also will facilitate the production of anticancer clerodanes through future metabolic engineering efforts.
Collapse
Affiliation(s)
- Haixiu Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Song Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruoxi Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yiren Xiao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ana Luisa Malaco Morotti
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ya Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meytal Galilee
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Haowen Qin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Tao Huang
- Novogene Bioinformatics Institute, Beijing, China
| | - Yong Zhao
- Novogene Bioinformatics Institute, Beijing, China
| | - Xun Zhou
- Novogene Bioinformatics Institute, Beijing, China
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai 201602, China
| | - Qing Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai 201602, China
| | - Angelos K Kanellis
- Group of Biotechnology of Pharmaceutical Plants, Lab. of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | | | - Evangelos C Tatsis
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CEPAMS - CAS-JIC Centre of Excellence for Plant and Microbial Sciences, Shanghai 200032, China.
| |
Collapse
|
9
|
Wang Z, Nelson DR, Zhang J, Wan X, Peters RJ. Plant (di)terpenoid evolution: from pigments to hormones and beyond. Nat Prod Rep 2023; 40:452-469. [PMID: 36472136 PMCID: PMC9945934 DOI: 10.1039/d2np00054g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: up to 2014-2022.Diterpenoid biosynthesis in plants builds on the necessary production of (E,E,E)-geranylgeranyl diphosphate (GGPP) for photosynthetic pigment production, with diterpenoid biosynthesis arising very early in land plant evolution, enabling stockpiling of the extensive arsenal of (di)terpenoid natural products currently observed in this kingdom. This review will build upon that previously published in the Annual Review of Plant Biology, with a stronger focus on enzyme structure-function relationships, as well as additional insights into the evolution of (di)terpenoid metabolism since generated.
Collapse
Affiliation(s)
- Zhibiao Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China.,Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50014, USA.
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Juan Zhang
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China.
| | - Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China.
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50014, USA.
| |
Collapse
|
10
|
Stowell EA, Ehrenberger MA, Lin YL, Chang CY, Rudolf JD. Structure-guided product determination of the bacterial type II diterpene synthase Tpn2. Commun Chem 2022; 5:146. [PMID: 36698006 PMCID: PMC9814783 DOI: 10.1038/s42004-022-00765-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022] Open
Abstract
A grand challenge in terpene synthase (TS) enzymology is the ability to predict function from protein sequence. Given the limited number of characterized bacterial TSs and significant sequence diversities between them and their eukaryotic counterparts, this is currently impossible. To contribute towards understanding the sequence-structure-function relationships of type II bacterial TSs, we determined the structure of the terpentedienyl diphosphate synthase Tpn2 from Kitasatospora sp. CB02891 by X-ray crystallography and made structure-guided mutants to probe its mechanism. Substitution of a glycine into a basic residue changed the product preference from the clerodane skeleton to a syn-labdane skeleton, resulting in the first syn-labdane identified from a bacterial TS. Understanding how a single residue can dictate the cyclization pattern in Tpn2, along with detailed bioinformatics analysis of bacterial type II TSs, sets the stage for the investigation of the functional scope of bacterial type II TSs and the discovery of novel bacterial terpenoids.
Collapse
Affiliation(s)
- Emma A Stowell
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | | | - Ya-Lin Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC
| | - Chin-Yuan Chang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC.
- Center for Intelligent Drug Systems and Smart Bio-devices, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC.
| | - Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
11
|
Expanding the terpene biosynthetic code with non-canonical 16 carbon atom building blocks. Nat Commun 2022; 13:5188. [PMID: 36057727 PMCID: PMC9440906 DOI: 10.1038/s41467-022-32921-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 08/23/2022] [Indexed: 11/08/2022] Open
Abstract
Humankind relies on specialized metabolites for medicines, flavors, fragrances, and numerous other valuable biomaterials. However, the chemical space occupied by specialized metabolites, and, thus, their application potential, is limited because their biosynthesis is based on only a handful of building blocks. Engineering organisms to synthesize alternative building blocks will bypass this limitation and enable the sustainable production of molecules with non-canonical chemical structures, expanding the possible applications. Herein, we focus on isoprenoids and combine synthetic biology with protein engineering to construct yeast cells that synthesize 10 non-canonical isoprenoid building blocks with 16 carbon atoms. We identify suitable terpene synthases to convert these building blocks into C16 scaffolds and a cytochrome P450 to decorate the terpene scaffolds and produce different oxygenated compounds. Thus, we reconstruct the modular structure of terpene biosynthesis on 16-carbon backbones, synthesizing 28 different non-canonical terpenes, some of which have interesting odorant properties.
Collapse
|
12
|
Sun Y, Chen Z, Wang G, Lv H, Mao Y, Ma K, Wang Y. De novo production of versatile oxidized kaurene diterpenes in Escherichia coli. Metab Eng 2022; 73:201-213. [DOI: 10.1016/j.ymben.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/24/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
|
13
|
Lemke C, Roach K, Ortega T, Tantillo DJ, Siegel JB, Peters RJ. Investigation of Acid–Base Catalysis in Halimadienyl Diphosphate Synthase Involved in Mycobacterium tuberculosis Virulence. ACS BIO & MED CHEM AU 2022; 2:490-498. [PMID: 36281298 PMCID: PMC9585517 DOI: 10.1021/acsbiomedchemau.2c00023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The devastating human
pathogenMycobacterium tuberculosis (Mtb)
is able to parasitize phagosomal compartments within alveolar
macrophage cells due, in part, to the activity of its cell-surface
lipids. Prominent among these is 1-tuberculosinyl-adenosine (1-TbAd),
a derivative of the diterpenoid tuberculosinyl (halima-5,13-dienyl)
diphosphate produced by the class II diterpene cyclase encoded by
Rv3377c, termed here MtHPS. Given the demonstrated ability of 1-TbAd
to act as a virulence factor for Mtb and the necessity for Rv3377c
for its production, there is significant interest in MtHPS activity.
Class II diterpene cyclases catalyze a general acid–base-mediated
carbocation cascade reaction initiated by protonation of the terminal
alkene in the general diterpenoid precursor (E,E,E)-geranylgeranyl diphosphate and terminated by deprotonation of the
final cyclized (and sometimes also rearranged) intermediate. Here,
structure-guided mutagenesis was applied to characterize the various
residues contributing to activation of the enzymatic acid, as well
as identify the enzymatic base in MtHPS. Particularly given the ability
of conservative substitution for the enzymatic base (Y479F) to generate
an alternative product (labda-7,13-dienyl diphosphate) via deprotonation
of an earlier unrearranged intermediate, further mutational analysis
was carried out to introduce potential alternative catalytic bases.
The results were combined with mechanistic molecular modeling to elucidate
how these mutations affect the catalytic activity of this important
enzyme. This not only provided detailed structure–function
insight into MtHPS but also further emphasized the inert nature of
the active site of MtHPS and class II diterpene cyclases more generally.
Collapse
Affiliation(s)
- Cody Lemke
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Kristin Roach
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Teresa Ortega
- Department of Chemistry, University of California-Davis, Davis, California 95616, United States
| | - Dean J. Tantillo
- Department of Chemistry, University of California-Davis, Davis, California 95616, United States
| | - Justin B. Siegel
- Department of Chemistry, University of California-Davis, Davis, California 95616, United States
- Department of Biochemistry and Molecular Medicine, University of California-Davis, Davis, California 95616, United States
- Genome Center, University of California-Davis, Davis, California 95616, United States
| | - Reuben J. Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
14
|
Wang J, Mao Y, Ma Y, Yang J, Jin B, Lin H, Tang J, Zeng W, Zhao Y, Gao W, Peters RJ, Guo J, Cui G, Huang L. Diterpene synthases from Leonurus japonicus elucidate epoxy-bridge formation of spiro-labdane diterpenoids. PLANT PHYSIOLOGY 2022; 189:99-111. [PMID: 35157086 PMCID: PMC9070827 DOI: 10.1093/plphys/kiac056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Spiro-9,13-epoxy-labdane diterpenoids are commonly found in Leonurus species, particularly in Leonurus japonicus Houtt., which is a medicinal herb of long-standing use in Asia and in which such spiro-heterocycles are present in at least 38 diterpenoids. Here, through generation of a transcriptome and functional characterization of six diterpene synthases (diTPSs) from L. japonicus, including three class II diTPSs (LjTPS1, LjTPS3, and LjTPS4) and three class I diTPSs (LjTPS5, LjTPS6, and LjTPS7), formation of the spiro-9,13-epoxy-labdane backbone was elucidated, along with identification of the relevant diTPSs for production of other labdane-related diterpenes. Similar to what has been found with diTPSs from other plant species, while LjTPS3 specifically produces the carbon-9 (C9) hydroxylated bicycle peregrinol diphosphate (PPP), the subsequently acting LjTPS6 yields a mixture of four products, largely labda-13(16),14-dien-9-ol, but with substantial amounts of viteagnusin D and the C13-S/R epimers of 9,13-epoxy-labda-14-ene. Notably, structure-function analysis identified a critical residue in LjTPS6 (I420) in which single site mutations enable specific production of the 13S epimer. Indeed, extensive mutagenesis demonstrated that LjTPS6:I420G reacts with PPP to both specifically and efficiently produce 9,13S-epoxy-labda-14-ene, providing a specialized synthase for further investigation of derived diterpenoid biosynthesis. The results reported here provide a strong foundation for future studies of the intriguing spiro-9,13-epoxy-labdane diterpenoid metabolism found in L. japonicus.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yaping Mao
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ying Ma
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jian Yang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Baolong Jin
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huixin Lin
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jinfu Tang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wen Zeng
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yujun Zhao
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wei Gao
- Beijing Shijitan Hospital, Capital Medical University, Beijing 10038, China
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, Iowa, USA
| | - Juan Guo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guanghong Cui
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
15
|
Wang Z, Peters RJ. Tanshinones: Leading the way into Lamiaceae labdane-related diterpenoid biosynthesis. CURRENT OPINION IN PLANT BIOLOGY 2022; 66:102189. [PMID: 35196638 PMCID: PMC8940693 DOI: 10.1016/j.pbi.2022.102189] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/06/2022] [Accepted: 01/14/2022] [Indexed: 05/06/2023]
Abstract
Tanshinones are the bioactive diterpenoid constituents of the traditional Chinese medicinal herb Danshen (Salvia miltiorrhiza), and are examples of the phenolic abietanes widely found within the Lamiaceae plant family. Due to the significant interest in these labdane-related diterpenoid natural products, their biosynthesis has been intensively investigated. In addition to providing the basis for metabolic engineering efforts, this work further yielded pioneering insights into labdane-related diterpenoid biosynthesis in the Lamiaceae more broadly. This includes stereochemical foreshadowing of aromatization, with novel protein domain loss in the relevant diterpene synthase, as well as broader phylogenetic conservation of the relevant enzymes. Beyond such summary of more widespread metabolism, formation of the furan ring that characterizes the tanshinones also has been recently elucidated. Nevertheless, the biocatalysts for the pair of demethylations remain unknown, and the intriguing potential connection of these reactions to the further aromatization observed in the tanshinones are speculated upon here.
Collapse
Affiliation(s)
- Zhibiao Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China; Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
16
|
Mao L, Jin B, Chen L, Tian M, Ma R, Yin B, Zhang H, Guo J, Tang J, Chen T, Lai C, Cui G, Huang L. Functional identification of the terpene synthase family involved in diterpenoid alkaloids biosynthesis in Aconitum carmichaelii. Acta Pharm Sin B 2021; 11:3310-3321. [PMID: 34729318 PMCID: PMC8546855 DOI: 10.1016/j.apsb.2021.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/22/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023] Open
Abstract
Aconitum carmichaelii is a high-value medicinal herb widely used across China, Japan, and other Asian countries. Aconitine-type diterpene alkaloids (DAs) are the characteristic compounds in Aconitum. Although six transcriptomes, based on short-read next generation sequencing technology, have been reported from the Aconitum species, the terpene synthase (TPS) corresponding to DAs biosynthesis remains unidentified. We apply a combination of Pacbio isoform sequencing and RNA sequencing to provide a comprehensive view of the A. carmichaelii transcriptome. Nineteen TPSs and five alternative splicing isoforms belonging to TPS-b, TPS-c, and TPS-e/f subfamilies were identified. In vitro enzyme reaction analysis functional identified two sesqui-TPSs and twelve diTPSs. Seven of the TPS-c subfamily genes reacted with GGPP to produce the intermediate ent-copalyl diphosphate. Five AcKSLs separately reacted with ent-CPP to produce ent-kaurene, ent-atiserene, and ent-13-epi-sandaracopimaradie: a new diterpene found in Aconitum. AcTPSs gene expression in conjunction DAs content analysis in different tissues validated that ent-CPP is the sole precursor to all DAs biosynthesis, with AcKSL1, AcKSL2s and AcKSL3-1 responsible for C20 atisine and napelline type DAs biosynthesis, respectively. These data clarified the molecular basis for the C20-DAs biosynthetic pathway in A. carmichaelii and pave the way for further exploration of C19-DAs biosynthesis in the Aconitum species.
Collapse
Affiliation(s)
- Liuying Mao
- College of Pharmacy, Shandong University of Chinese Medicine, Jinan 250355, China
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Baolong Jin
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lingli Chen
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Mei Tian
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Rui Ma
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Biwei Yin
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Haiyan Zhang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Juan Guo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jinfu Tang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tong Chen
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Changjiangsheng Lai
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guanghong Cui
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Luqi Huang
- College of Pharmacy, Shandong University of Chinese Medicine, Jinan 250355, China
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
17
|
Hu Z, Liu X, Tian M, Ma Y, Jin B, Gao W, Cui G, Guo J, Huang L. Recent progress and new perspectives for diterpenoid biosynthesis in medicinal plants. Med Res Rev 2021; 41:2971-2997. [PMID: 33938025 DOI: 10.1002/med.21816] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 12/25/2022]
Abstract
Diterpenoids, including more than 18,000 compounds, represent an important class of metabolites that encompass both phytohormones and some industrially relevant compounds. These molecules with complex, diverse structures and physiological activities, have high value in the pharmaceutical industry. Most medicinal diterpenoids are extracted from plants. Major advances in understanding the biosynthetic pathways of these active compounds are providing unprecedented opportunities for the industrial production of diterpenoids by metabolic engineering and synthetic biology. Here, we summarize recent developments in the field of diterpenoid biosynthesis from medicinal herbs. An overview of the pathways and known biosynthetic enzymes is presented. In particular, we look at the main findings from the past decade and review recent progress in the biosynthesis of different groups of ringed compounds. We also discuss diterpenoid production using synthetic biology and metabolic engineering strategies, and draw on new technologies and discoveries to bring together many components into a useful framework for diterpenoid production.
Collapse
Affiliation(s)
- Zhimin Hu
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiuyu Liu
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,School of Pharmaceutical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Mei Tian
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Ma
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baolong Jin
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Gao
- School of Pharmaceutical, Sciences, Capital Medical University, Beijing, China
| | - Guanghong Cui
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Juan Guo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
18
|
Lemke C, Whitham O, Peters RJ. Magnesium-specific ring expansion/contraction catalysed by the class II diterpene cyclase from pleuromutilin biosynthesis. Org Biomol Chem 2020; 18:5586-5588. [PMID: 32672326 PMCID: PMC7430159 DOI: 10.1039/d0ob01422b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The class II diterpene cyclase (DTC) from pleuromutilin biosynthesis uniquely mediates 'A' ring contraction of the initially formed decalin bicycle, yielding mutildienyl diphosphate (MPP). Catalysis requires a divalent metal cation co-factor. Intriguingly, selectively with magnesium, this DTC catalyzes ring expansion/contraction between MPP and halimadienyl diphosphate, providing some catalytic insight.
Collapse
Affiliation(s)
- Cody Lemke
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| | - Owen Whitham
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
19
|
Hu T, Zhou J, Tong Y, Su P, Li X, Liu Y, Liu N, Wu X, Zhang Y, Wang J, Gao L, Tu L, Lu Y, Jiang Z, Zhou YJ, Gao W, Huang L. Engineering chimeric diterpene synthases and isoprenoid biosynthetic pathways enables high-level production of miltiradiene in yeast. Metab Eng 2020; 60:87-96. [DOI: 10.1016/j.ymben.2020.03.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/25/2020] [Accepted: 03/29/2020] [Indexed: 12/18/2022]
|
20
|
Tiedge K, Muchlinski A, Zerbe P. Genomics-enabled analysis of specialized metabolism in bioenergy crops: current progress and challenges. Synth Biol (Oxf) 2020; 5:ysaa005. [PMID: 32995549 PMCID: PMC7445794 DOI: 10.1093/synbio/ysaa005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/03/2020] [Accepted: 05/25/2020] [Indexed: 11/25/2022] Open
Abstract
Plants produce a staggering diversity of specialized small molecule metabolites that play vital roles in mediating environmental interactions and stress adaptation. This chemical diversity derives from dynamic biosynthetic pathway networks that are often species-specific and operate under tight spatiotemporal and environmental control. A growing divide between demand and environmental challenges in food and bioenergy crop production has intensified research on these complex metabolite networks and their contribution to crop fitness. High-throughput omics technologies provide access to ever-increasing data resources for investigating plant metabolism. However, the efficiency of using such system-wide data to decode the gene and enzyme functions controlling specialized metabolism has remained limited; due largely to the recalcitrance of many plants to genetic approaches and the lack of 'user-friendly' biochemical tools for studying the diverse enzyme classes involved in specialized metabolism. With emphasis on terpenoid metabolism in the bioenergy crop switchgrass as an example, this review aims to illustrate current advances and challenges in the application of DNA synthesis and synthetic biology tools for accelerating the functional discovery of genes, enzymes and pathways in plant specialized metabolism. These technologies have accelerated knowledge development on the biosynthesis and physiological roles of diverse metabolite networks across many ecologically and economically important plant species and can provide resources for application to precision breeding and natural product metabolic engineering.
Collapse
Affiliation(s)
- Kira Tiedge
- Department of Plant Biology, University of California-Davis, Davis, CA 95616, USA
| | - Andrew Muchlinski
- Department of Plant Biology, University of California-Davis, Davis, CA 95616, USA
| | - Philipp Zerbe
- Department of Plant Biology, University of California-Davis, Davis, CA 95616, USA
| |
Collapse
|
21
|
Antibacterial Natural Halimanes: Potential Source of Novel Antibiofilm Agents. Molecules 2020; 25:molecules25071707. [PMID: 32276434 PMCID: PMC7180734 DOI: 10.3390/molecules25071707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/27/2022] Open
Abstract
The development of new agents against bacteria is an urgent necessity for human beings. The structured colony of bacterial cells, called the biofilm, is used to defend themselves from biocide attacks. For this reason, it is necessary to know their structures, develop new agents to eliminate them and to develop new procedures that allow an early diagnosis, by using biomarkers. Among natural products, some derivatives of diterpenes with halimane skeleton show antibacterial activity. Some halimanes have been isolated from marine organisms, structurally related with halimanes isolated from Mycobacterium tuberculosis. These halimanes are being evaluated as virulence factors and as tuberculosis biomarkers, this disease being one of the major causes of mortality and morbidity. In this work, the antibacterial halimanes will be reviewed, with their structural characteristics, activities, sources and the synthesis known until now.
Collapse
|
22
|
Murphy KM, Zerbe P. Specialized diterpenoid metabolism in monocot crops: Biosynthesis and chemical diversity. PHYTOCHEMISTRY 2020; 172:112289. [PMID: 32036187 DOI: 10.1016/j.phytochem.2020.112289] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 05/27/2023]
Abstract
Among the myriad specialized metabolites that plants employ to mediate interactions with their environment, diterpenoids form a chemically diverse group with vital biological functions. A few broadly abundant diterpenoids serve as core pathway intermediates in plant general metabolism. The majority of plant diterpenoids, however, function in specialized metabolism as often species-specific chemical defenses against herbivores and microbial diseases, in below-ground allelopathic interactions, as well as abiotic stress responses. Dynamic networks of anti-microbial diterpenoids were first demonstrated in rice (Oryza sativa) over four decades ago, and more recently, unique diterpenoid blends with demonstrated antibiotic bioactivities were also discovered in maize (Zea mays). Enabled by advances in -omics and biochemical approaches, species-specific diterpenoid-diversifying enzymes have been identified in these and other Poaceous species, including wheat (Triticum aestivum) and switchgrass (Panicum virgatum), and are discussed in this article with an emphasis on the critical diterpene synthase and cytochrome P450 monooxygenase families and their products. The continued investigation of the biosynthesis, diversity, and function of terpenoid-mediated crop defenses provides foundational knowledge to enable the development of strategies for improving crop resistance traits in the face of impeding pest, pathogen, and climate pressures impacting global agricultural production.
Collapse
Affiliation(s)
- Katherine M Murphy
- Department of Plant Biology, University of California-Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Philipp Zerbe
- Department of Plant Biology, University of California-Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
23
|
Gericke O, Hansen NL, Pedersen GB, Kjaerulff L, Luo D, Staerk D, Møller BL, Pateraki I, Heskes AM. Nerylneryl diphosphate is the precursor of serrulatane, viscidane and cembrane-type diterpenoids in Eremophila species. BMC PLANT BIOLOGY 2020; 20:91. [PMID: 32111159 PMCID: PMC7049213 DOI: 10.1186/s12870-020-2293-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/17/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Eremophila R.Br. (Scrophulariaceae) is a diverse genus of plants with species distributed across semi-arid and arid Australia. It is an ecologically important genus that also holds cultural significance for many Indigenous Australians who traditionally use several species as sources of medicines. Structurally unusual diterpenoids, particularly serrulatane and viscidane-types, feature prominently in the chemical profile of many species and recent studies indicate that these compounds are responsible for much of the reported bioactivity. We have investigated the biosynthesis of diterpenoids in three species: Eremophila lucida, Eremophila drummondii and Eremophila denticulata subsp. trisulcata. RESULTS In all studied species diterpenoids were localised to the leaf surface and associated with the occurrence of glandular trichomes. Trichome-enriched transcriptome databases were generated and mined for candidate terpene synthases (TPS). Four TPSs with diterpene biosynthesis activity were identified: ElTPS31 and ElTPS3 from E. lucida were found to produce (3Z,7Z,11Z)-cembratrien-15-ol and 5-hydroxyviscidane, respectively, and EdTPS22 and EdtTPS4, from E. drummondii and E. denticulata subsp. trisulcata, respectively, were found to produce 8,9-dihydroserrulat-14-ene which readily aromatized to serrulat-14-ene. In all cases, the identified TPSs used the cisoid substrate, nerylneryl diphosphate (NNPP), to form the observed products. Subsequently, cis-prenyl transferases (CPTs) capable of making NNPP were identified in each species. CONCLUSIONS We have elucidated two biosynthetic steps towards three of the major diterpene backbones found in this genus. Serrulatane and viscidane-type diterpenoids are promising candidates for new drug leads. The identification of an enzymatic route to their synthesis opens up the possibility of biotechnological production, making accessible a ready source of scaffolds for further modification and bioactivity testing.
Collapse
Affiliation(s)
- Oliver Gericke
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
- Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Nikolaj Lervad Hansen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
- Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Gustav Blichfeldt Pedersen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
- Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Louise Kjaerulff
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Dan Luo
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
- Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Dan Staerk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
- Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Irini Pateraki
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
- Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Allison Maree Heskes
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark.
- Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark.
| |
Collapse
|
24
|
Ma LT, Lee YR, Tsao NW, Wang SY, Zerbe P, Chu FH. Biochemical characterization of diterpene synthases of Taiwania cryptomerioides expands the known functional space of specialized diterpene metabolism in gymnosperms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:1254-1272. [PMID: 31448467 DOI: 10.1111/tpj.14513] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/13/2019] [Accepted: 08/19/2019] [Indexed: 05/20/2023]
Abstract
Taiwania cryptomerioides is a monotypic gymnosperm species, valued for the high decay resistance of its wood. This durability has been attributed to the abundance of terpenoids, especially the major diterpenoid metabolite ferruginol, with antifungal and antitermite activity. Specialized diterpenoid metabolism in gymnosperms primarily recruits bifunctional class-I/II diterpene synthases (diTPSs), whereas monofunctional class-II and class-I enzymes operate in angiosperms. In this study, we identified a previously unrecognized group of monofunctional diTPSs in T. cryptomerioides, which suggests a distinct evolutionary divergence of the diTPS family in this species. Specifically, five monofunctional diTPS functions not previously observed in gymnosperms were characterized, including monofunctional class-II enzymes forming labda-13-en-8-ol diphosphate (LPP, TcCPS2) and (+)-copalyl diphosphate (CPP, TcCPS4), and three class-I diTPSs producing biformene (TcKSL1), levopimaradiene (TcKSL3) and phyllocladanol (TcKSL5), respectively. Methyl jasmonate (MeJA) elicited the accumulation of levopimaradiene and the corresponding biosynthetic diTPS genes, TcCPS4 and TcKSL3, is consistent with a possible role in plant defense. Furthermore, TcCPS4 and TcKSL3 are likely to contribute to abietatriene biosynthesis via levopimaradiene as an intermediate in ferruginol biosynthesis in Taiwania. In conclusion, this study provides deeper insight into the functional landscape and molecular evolution of specialized diterpenoid metabolism in gymnosperms as a basis to better understand the role of these metabolites in tree chemical defense.
Collapse
Affiliation(s)
- Li-Ting Ma
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Ru Lee
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, 10617, Taiwan
| | - Nai-Wen Tsao
- Department of Forestry, National Chung-Hsing University, Taichung, 402, Taiwan
| | - Sheng-Yang Wang
- Department of Forestry, National Chung-Hsing University, Taichung, 402, Taiwan
| | - Philipp Zerbe
- Department of Plant Biology, University of California at Davis, Davis, CA, 95616, USA
| | - Fang-Hua Chu
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
25
|
Helfrich EJN, Lin GM, Voigt CA, Clardy J. Bacterial terpene biosynthesis: challenges and opportunities for pathway engineering. Beilstein J Org Chem 2019; 15:2889-2906. [PMID: 31839835 PMCID: PMC6902898 DOI: 10.3762/bjoc.15.283] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/01/2019] [Indexed: 12/27/2022] Open
Abstract
Terpenoids are the largest and structurally most diverse class of natural products. They possess potent and specific biological activity in multiple assays and against diseases, including cancer and malaria as notable examples. Although the number of characterized terpenoid molecules is huge, our knowledge of how they are biosynthesized is limited, particularly when compared to the well-studied thiotemplate assembly lines. Bacteria have only recently been recognized as having the genetic potential to biosynthesize a large number of complex terpenoids, but our current ability to associate genetic potential with molecular structure is severely restricted. The canonical terpene biosynthetic pathway uses a single enzyme to form a cyclized hydrocarbon backbone followed by modifications with a suite of tailoring enzymes that can generate dozens of different products from a single backbone. This functional promiscuity of terpene biosynthetic pathways renders terpene biosynthesis susceptible to rational pathway engineering using the latest developments in the field of synthetic biology. These engineered pathways will not only facilitate the rational creation of both known and novel terpenoids, their development will deepen our understanding of a significant branch of biosynthesis. The biosynthetic insights gained will likely empower a greater degree of engineering proficiency for non-natural terpene biosynthetic pathways and pave the way towards the biotechnological production of high value terpenoids.
Collapse
Affiliation(s)
- Eric J N Helfrich
- Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology, Boston, United States
| | - Geng-Min Lin
- Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, United States
| | - Christopher A Voigt
- Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, United States
| | - Jon Clardy
- Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology, Boston, United States
| |
Collapse
|
26
|
Quilez Del Moral JF, Domingo V, Pérez Á, Martínez Andrade KA, Enríquez L, Jaraiz M, López-Pérez JL, Barrero AF. Mimicking Halimane Synthases: Monitoring a Cascade of Cyclizations and Rearrangements from Epoxypolyprenes. J Org Chem 2019; 84:13764-13779. [PMID: 31559826 DOI: 10.1021/acs.joc.9b01996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We have developed and rationalized a biomimetic transformation mimicking halimane synthases based on a Lewis acid-catalyzed cascade of cyclizations and rearrangements of epoxypolyprenes. Two rings, three stereogenic centers, and a new double bond were generated in a single chemical operation. Based on this cascade transformation, we achieved a unified strategy toward the stereoselective total syntheses of halimene-type terpenoids and analogues as a proof-of-concept study. This method has been applied to the rapid synthesis of diterpene isotuberculosinol, a virulence factor of Mycobacterium tuberculosis as a representative example.
Collapse
Affiliation(s)
- José F Quilez Del Moral
- Department of Organic Chemistry, Institute of Biotechnology , University of Granada , 18071 Granada , Spain
| | - Victoriano Domingo
- Department of Organic Chemistry, Institute of Biotechnology , University of Granada , 18071 Granada , Spain
| | - Álvaro Pérez
- Department of Organic Chemistry, Institute of Biotechnology , University of Granada , 18071 Granada , Spain
| | - Kevin A Martínez Andrade
- Department of Organic Chemistry, Institute of Biotechnology , University of Granada , 18071 Granada , Spain
| | - Lourdes Enríquez
- Department of Electronics , University of Valladolid , 47011 Valladolid , Spain
| | - Martín Jaraiz
- Department of Electronics , University of Valladolid , 47011 Valladolid , Spain
| | - José Luis López-Pérez
- Department of Pharmaceutical Sciences, IBSAL-CIETUS , University of Salamanca , 37007 Salamanca , Spain.,Department of Pharmacology, Faculty of Medicine , University of Panama , 3366 Panama , Republic of Panama
| | - Alejandro F Barrero
- Department of Organic Chemistry, Institute of Biotechnology , University of Granada , 18071 Granada , Spain
| |
Collapse
|
27
|
Jia M, Mishra SK, Tufts S, Jernigan RL, Peters RJ. Combinatorial biosynthesis and the basis for substrate promiscuity in class I diterpene synthases. Metab Eng 2019; 55:44-58. [PMID: 31220664 DOI: 10.1016/j.ymben.2019.06.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/04/2019] [Accepted: 06/14/2019] [Indexed: 02/04/2023]
Abstract
Terpene synthases are capable of mediating complex reactions, but fundamentally simply catalyze lysis of allylic diphosphate esters with subsequent deprotonation. Even with the initially generated tertiary carbocation this offers a variety of product outcomes, and deprotonation further can be preceded by the addition of water. This is particularly evident with labdane-related diterpenes (LRDs) where such lysis follows bicyclization catalyzed by class II diterpene cyclases (DTCs) that generates preceding structural variation. Previous investigation revealed that two diterpene synthases (DTSs), one bacterial and the other plant-derived, exhibit extreme substrate promiscuity, but yet still typically produce exo-ene or tertiary alcohol LRD derivatives, respectively (i.e., demonstrating high catalytic specificity), enabling rational combinatorial biosynthesis. Here two DTSs that produce either cis or trans endo-ene LRD derivatives, also plant and bacterial (respectively), were examined for their potential analogous utility. Only the bacterial trans-endo-ene forming DTS was found to exhibit significant substrate promiscuity (with moderate catalytic specificity). This further led to investigation of the basis for substrate promiscuity, which was found to be more closely correlated with phylogenetic origin than reaction complexity. Specifically, bacterial DTSs exhibited significantly more substrate promiscuity than those from plants, presumably reflecting their distinct evolutionary context. In particular, plants typically have heavily elaborated LRD metabolism, in contrast to the rarity of such natural products in bacteria, and the lack of potential substrates presumably alleviates selective pressure against such promiscuity. Regardless of such speculation, this work provides novel biosynthetic access to almost 19 LRDs, demonstrating the power of the combinatorial approach taken here.
Collapse
Affiliation(s)
- Meirong Jia
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Sambit K Mishra
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Samuel Tufts
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Robert L Jernigan
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
28
|
Bathe U, Tissier A. Cytochrome P450 enzymes: A driving force of plant diterpene diversity. PHYTOCHEMISTRY 2019; 161:149-162. [PMID: 30733060 DOI: 10.1016/j.phytochem.2018.12.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 05/06/2023]
Abstract
In plant terpene biosynthesis, oxidation of the hydrocarbon backbone produced by terpene synthases is typically carried out by cytochrome P450 oxygenases (CYPs). The modifications introduced by CYPs include hydroxylations, sequential oxidations at one position and ring rearrangements and closures. These reactions significantly expand the structural diversity of terpenoids, but also provide anchoring points for further decorations by various transferases. In recent years, there has been a significant increase in reports of CYPs involved in plant terpene pathways. Plant diterpenes represent an important class of metabolites that includes hormones and a number of industrially relevant compounds such as pharmaceutical, aroma or food ingredients. In this review, we provide a comprehensive survey on CYPs reported to be involved in plant diterpene biosynthesis to date. A phylogenetic analysis showed that only few CYP clans are represented in diterpene biosynthesis, namely CYP71, CYP85 and CYP72. Remarkably few CYP families and subfamilies within those clans are involved, indicating specific expansion of these clades in plant diterpene biosynthesis. Nonetheless, the evolutionary trajectory of CYPs of specialized diterpene biosynthesis is diverse. Some are recently derived from gibberellin biosynthesis, while others have a more ancient history with recent expansions in specific plant families. Among diterpenoids, labdane-related diterpenoids represent a dominant class. The availability of CYPs from diverse plant species able to catalyze oxidations in specific regions of the labdane-related backbones provides opportunities for combinatorial biosynthesis to produce novel diterpene compounds that can be screened for biological activities of interest.
Collapse
Affiliation(s)
- Ulschan Bathe
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany.
| |
Collapse
|
29
|
Jin B, Guo J, Tang J, Tong Y, Ma Y, Chen T, Wang Y, Shen Y, Zhao Y, Lai C, Cui G, Huang L. An alternative splicing alters the product outcome of a class I terpene synthase in Isodon rubescens. Biochem Biophys Res Commun 2019; 512:310-313. [PMID: 30890335 DOI: 10.1016/j.bbrc.2019.03.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 03/10/2019] [Indexed: 10/27/2022]
Abstract
The labdane-related diterpenoids are an important superfamily of natural products. Their structural diversity mainly depends on diterpene synthases, which generate the hydrocarbon skeletal structures. Isodon rubescens contains an expanded family of class I terpene synthases with different functions. Here we report a novel class I terpene synthase cDNA (IrKSL3a) with loss of 18 nucleotides compared with the reported cDNA sequence (IrKSL3). Inspection of IrKSL3 genomic sequence indicated that IrKSL3a and IrKSL3 transcripts may be generated by an alternative splicing event that utilizes different 3' splice site. In vitro assays showed that IrKSL3a produced isopimaradiene and miltiradiene, while IrKSL3 only produced miltiradiene. Protein sequence alignment found the six residues encoded by the alternative exon was unique to IrKSL3, which are 17 residues away from the conserved DDXXD motif. A deletion mutant of IrKSL3 showed that maintaining two residues within the six-amino acid is sufficient for miltiradiene production, while the other mutants lost nearly all enzymatic function. Our results illustrated how product outcomes can be changed by alternative splicing, and further gave an interesting example for studying the loop conformation in tuning product outcome in class I terpene synthase.
Collapse
Affiliation(s)
- Baolong Jin
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Juan Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jinfu Tang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yuru Tong
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ying Ma
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Tong Chen
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yanan Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ye Shen
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yujun Zhao
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Changjiangsheng Lai
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Guanghong Cui
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Luqi Huang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
30
|
Yuan Y, Litzenburger M, Cheng S, Bian G, Hu B, Yan P, Cai Y, Deng Z, Bernhardt R, Liu T. Sesquiterpenoids Produced by Combining Two Sesquiterpene Cyclases with Promiscuous Myxobacterial CYP260B1. Chembiochem 2019; 20:677-682. [PMID: 30484946 DOI: 10.1002/cbic.201800670] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Indexed: 01/09/2023]
Abstract
Sesquiterpenes represent a class of important terpenoids with high structural diversity and a wide range of applications. The cyclized core skeletons are generated by sesquiterpene cyclases, and the structural diversity is further increased by a series of modification steps. Cytochromes P450 (P450s) are a class of monooxygenases and one of the main contributors to the structural diversity of natural products. Some of these P450s show a broad substrate range and might be promising candidates for the implementation of cascade reactions. In this study, a combinatorial biosynthesis approach was utilized by the combination of a promiscuous myxobacterial P450 (CYP260B1) with two sesquiterpene cyclases (FgJ01056, FgJ09920) of filamentous fungi. Two oxygenated products, culmorin and culmorone, and a new compound, koraidiol, were successfully generated and characterized. This approach suggests the potential use of noncognate P450s to produce novel oxygenated terpenoids, or to generate a novel biosynthetic route for known terpenoids by a combinatorial biosynthesis strategy.
Collapse
Affiliation(s)
- Yujie Yuan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, P.R. China
| | - Martin Litzenburger
- Department of Biochemistry, Saarland University, Campus B2.2, 66123, Saarbrücken, Germany
| | - Shu Cheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, P.R. China
| | - Guangkai Bian
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, P.R. China
| | - Ben Hu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, P.R. China
| | - Pan Yan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, P.R. China
| | - Yousheng Cai
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, P.R. China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, P.R. China
| | - Rita Bernhardt
- Department of Biochemistry, Saarland University, Campus B2.2, 66123, Saarbrücken, Germany
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, P.R. China.,Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan, 430075, P.R. China
| |
Collapse
|
31
|
Johnson SR, Bhat WW, Bibik J, Turmo A, Hamberger B, Evolutionary Mint Genomics Consortium, Hamberger B. A database-driven approach identifies additional diterpene synthase activities in the mint family (Lamiaceae). J Biol Chem 2019; 294:1349-1362. [PMID: 30498089 PMCID: PMC6349103 DOI: 10.1074/jbc.ra118.006025] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/12/2018] [Indexed: 12/30/2022] Open
Abstract
Members of the mint family (Lamiaceae) accumulate a wide variety of industrially and medicinally relevant diterpenes. We recently sequenced leaf transcriptomes from 48 phylogenetically diverse Lamiaceae species. Here, we summarize the available chemotaxonomic and enzyme activity data for diterpene synthases (diTPSs) in the Lamiaceae and leverage the new transcriptomes to explore the diTPS sequence and functional space. Candidate genes were selected with an intent to evenly sample the sequence homology space and to focus on species in which diTPS transcripts were found, yet from which no diterpene structures have been previously reported. We functionally characterized nine class II diTPSs and 10 class I diTPSs from 11 distinct plant species and found five class II activities, including two novel activities, as well as a spectrum of class I activities. Among the class II diTPSs, we identified a neo-cleroda-4(18),13E-dienyl diphosphate synthase from Ajuga reptans, catalyzing the likely first step in the biosynthesis of a variety of insect-antifeedant compounds. Among the class I diTPSs was a palustradiene synthase from Origanum majorana, leading to the discovery of specialized diterpenes in that species. Our results provide insights into the diversification of diterpene biosynthesis in the mint family and establish a comprehensive foundation for continued investigation of diterpene biosynthesis in the Lamiaceae.
Collapse
Affiliation(s)
- Sean R Johnson
- Departments of Biochemistry and Molecular Biology, East Lansing, Michigan 48824
| | - Wajid Waheed Bhat
- Departments of Biochemistry and Molecular Biology, East Lansing, Michigan 48824; Pharmacology and Toxicology, East Lansing, Michigan 48824
| | - Jacob Bibik
- Departments of Biochemistry and Molecular Biology, East Lansing, Michigan 48824
| | - Aiko Turmo
- Departments of Biochemistry and Molecular Biology, East Lansing, Michigan 48824
| | - Britta Hamberger
- Departments of Biochemistry and Molecular Biology, East Lansing, Michigan 48824
| | | | - Björn Hamberger
- Departments of Biochemistry and Molecular Biology, East Lansing, Michigan 48824.
| |
Collapse
|
32
|
Karunanithi PS, Zerbe P. Terpene Synthases as Metabolic Gatekeepers in the Evolution of Plant Terpenoid Chemical Diversity. FRONTIERS IN PLANT SCIENCE 2019; 10:1166. [PMID: 31632418 PMCID: PMC6779861 DOI: 10.3389/fpls.2019.01166] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/26/2019] [Indexed: 05/18/2023]
Abstract
Terpenoids comprise tens of thousands of small molecule natural products that are widely distributed across all domains of life. Plants produce by far the largest array of terpenoids with various roles in development and chemical ecology. Driven by selective pressure to adapt to their specific ecological niche, individual species form only a fraction of the myriad plant terpenoids, typically representing unique metabolite blends. Terpene synthase (TPS) enzymes are the gatekeepers in generating terpenoid diversity by catalyzing complex carbocation-driven cyclization, rearrangement, and elimination reactions that enable the transformation of a few acyclic prenyl diphosphate substrates into a vast chemical library of hydrocarbon and, for a few enzymes, oxygenated terpene scaffolds. The seven currently defined clades (a-h) forming the plant TPS family evolved from ancestral triterpene synthase- and prenyl transferase-type enzymes through repeated events of gene duplication and subsequent loss, gain, or fusion of protein domains and further functional diversification. Lineage-specific expansion of these TPS clades led to variable family sizes that may range from a single TPS gene to families of more than 100 members that may further function as part of modular metabolic networks to maximize the number of possible products. Accompanying gene family expansion, the TPS family shows a profound functional plasticity, where minor active site alterations can dramatically impact product outcome, thus enabling the emergence of new functions with minimal investment in evolving new enzymes. This article reviews current knowledge on the functional diversity and molecular evolution of the plant TPS family that underlies the chemical diversity of bioactive terpenoids across the plant kingdom.
Collapse
Affiliation(s)
- Prema S Karunanithi
- Department of Plant Biology, University of California Davis, Davis, CA, United States
| | - Philipp Zerbe
- Department of Plant Biology, University of California Davis, Davis, CA, United States
| |
Collapse
|
33
|
Jia M, Peters RJ. Correction: cis or trans with class II diterpene cyclases. Org Biomol Chem 2019; 17:8259-8260. [DOI: 10.1039/c9ob90139f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Correction for ‘cis or trans with class II diterpene cyclases’ by Meirong Jia, et al., Org. Biomol. Chem., 2017, 15, 3158–3160.
Collapse
Affiliation(s)
- Meirong Jia
- Roy J. Carver Department of Biochemistry
- Biophysics & Molecular Biology
- Iowa State University
- Ames
- USA
| | - Reuben J. Peters
- Roy J. Carver Department of Biochemistry
- Biophysics & Molecular Biology
- Iowa State University
- Ames
- USA
| |
Collapse
|
34
|
Xiao H, Zhang Y, Wang M. Discovery and Engineering of Cytochrome P450s for Terpenoid Biosynthesis. Trends Biotechnol 2018; 37:618-631. [PMID: 30528904 DOI: 10.1016/j.tibtech.2018.11.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 10/28/2018] [Accepted: 11/15/2018] [Indexed: 01/29/2023]
Abstract
Terpenoids represent 60% of known natural products, including many drugs and drug candidates, and their biosynthesis is attracting great interest. However, the unknown cytochrome P450s (CYPs) in terpenoid biosynthetic pathways make the heterologous production of related terpenoids impossible, while the slow kinetics of some known CYPs greatly limit the efficiency of terpenoid biosynthesis. Thus, there is a compelling need to discover and engineer CYPs for terpenoid biosynthesis to fully realize their great potential for industrial application. This review article summarizes the current state of CYP discovery and engineering in terpenoid biosynthesis, focusing on recent synthetic biology approaches toward prototyping CYPs in heterologous hosts. We also propose several strategies for further accelerating CYP discovery and engineering.
Collapse
Affiliation(s)
- Han Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and Laboratory of Molecular Biochemical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-chuan Road, Shanghai, 200240, China; Co-first author with equal contribution.
| | - Yue Zhang
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Co-first author with equal contribution
| | - Meng Wang
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
35
|
Zhang H, Jin B, Bu J, Guo J, Chen T, Ma Y, Tang J, Cui G, Huang L. Transcriptomic Insight into Terpenoid Biosynthesis and Functional Characterization of Three Diterpene Synthases in Scutellaria barbata. Molecules 2018; 23:molecules23112952. [PMID: 30424547 PMCID: PMC6278268 DOI: 10.3390/molecules23112952] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 11/30/2022] Open
Abstract
Scutellaria barbata (Lamiaceae) is an important medicinal herb widely used in China, Korea, India, and other Asian countries. Neo-clerodane diterpenoids are the largest known group of Scutellaria diterpenoids and show promising cytotoxic activity against several cancer cell lines. Here, Illumina-based deep transcriptome analysis of flowers, the aerial parts (leaf and stem), and roots of S. barbata was used to explore terpenoid-related genes. In total, 121,958,564 clean RNA-sequence reads were assembled into 88,980 transcripts, with an average length of 1370 nt and N50 length of 2144 nt, indicating high assembly quality. We identified nearly all known terpenoid-related genes (33 genes) involved in biosynthesis of the terpenoid backbone and 14 terpene synthase genes which generate skeletons for different terpenoids. Three full length diterpene synthase genes were functionally identified using an in vitro assay. SbTPS8 and SbTPS9 were identified as normal-CPP and ent-CPP synthase, respectively. SbTPS12 reacts with SbTPS8 to produce miltiradiene. Furthermore, SbTPS12 was proven to be a less promiscuous class I diterpene synthase. These results give a comprehensive understanding of the terpenoid biosynthesis in S. barbata and provide useful information for enhancing the production of bioactive neo-clerodane diterpenoids through genetic engineering.
Collapse
Affiliation(s)
- Huabei Zhang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Baolong Jin
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Junling Bu
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Juan Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Tong Chen
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Ying Ma
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Jinfu Tang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Guanghong Cui
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| |
Collapse
|
36
|
Hjortness MK, Riccardi L, Hongdusit A, Ruppe A, Zhao M, Kim EY, Zwart PH, Sankaran B, Arthanari H, Sousa MC, De Vivo M, Fox JM. Abietane-Type Diterpenoids Inhibit Protein Tyrosine Phosphatases by Stabilizing an Inactive Enzyme Conformation. Biochemistry 2018; 57:5886-5896. [PMID: 30169954 DOI: 10.1021/acs.biochem.8b00655] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein tyrosine phosphatases (PTPs) contribute to a striking variety of human diseases, yet they remain vexingly difficult to inhibit with uncharged, cell-permeable molecules; no inhibitors of PTPs have been approved for clinical use. This study uses a broad set of biophysical analyses to evaluate the use of abietane-type diterpenoids, a biologically active class of phytometabolites with largely nonpolar structures, for the development of pharmaceutically relevant PTP inhibitors. Results of nuclear magnetic resonance analyses, mutational studies, and molecular dynamics simulations indicate that abietic acid can inhibit protein tyrosine phosphatase 1B, a negative regulator of insulin signaling and an elusive drug target, by binding to its active site in a non-substrate-like manner that stabilizes the catalytically essential WPD loop in an inactive conformation; detailed kinetic studies, in turn, show that minor changes in the structures of abietane-type diterpenoids (e.g., the addition of hydrogens) can improve potency (i.e., lower IC50) by 7-fold. These findings elucidate a previously uncharacterized mechanism of diterpenoid-mediated inhibition and suggest, more broadly, that abietane-type diterpenoids are a promising source of structurally diverse-and, intriguingly, microbially synthesizable-molecules on which to base the design of new PTP-inhibiting therapeutics.
Collapse
Affiliation(s)
- Michael K Hjortness
- Department of Chemical and Biological Engineering , University of Colorado , 3415 Colorado Avenue , Boulder , Colorado 80303 , United States
| | - Laura Riccardi
- Laboratory of Molecular Modeling and Drug Discovery , Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
| | - Akarawin Hongdusit
- Department of Chemical and Biological Engineering , University of Colorado , 3415 Colorado Avenue , Boulder , Colorado 80303 , United States
| | - Alex Ruppe
- Department of Chemical and Biological Engineering , University of Colorado , 3415 Colorado Avenue , Boulder , Colorado 80303 , United States
| | - Mengxia Zhao
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States
| | - Edward Y Kim
- Department of Chemical and Biological Engineering , University of Colorado , 3415 Colorado Avenue , Boulder , Colorado 80303 , United States
| | - Peter H Zwart
- Molecular Biophysics and Integrated Bioimaging , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , 240 Longwood Avenue , Boston , Massachusetts 02115 , United States
| | - Marcelo C Sousa
- Department of Biochemistry , University of Colorado , 3415 Colorado Avenue , Boulder , Colorado 80303 , United States
| | - Marco De Vivo
- Laboratory of Molecular Modeling and Drug Discovery , Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
| | - Jerome M Fox
- Department of Chemical and Biological Engineering , University of Colorado , 3415 Colorado Avenue , Boulder , Colorado 80303 , United States
| |
Collapse
|
37
|
Pelot KA, Chen R, Hagelthorn DM, Young CA, Addison JB, Muchlinski A, Tholl D, Zerbe P. Functional Diversity of Diterpene Synthases in the Biofuel Crop Switchgrass. PLANT PHYSIOLOGY 2018; 178:54-71. [PMID: 30008447 PMCID: PMC6130043 DOI: 10.1104/pp.18.00590] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/05/2018] [Indexed: 05/06/2023]
Abstract
Diterpenoids constitute a diverse class of metabolites with critical functions in plant development, defense, and ecological adaptation. Major monocot crops, such as maize (Zea mays) and rice (Oryza sativa), deploy diverse blends of specialized diterpenoids as core components of biotic and abiotic stress resilience. Here, we describe the genome-wide identification and functional characterization of stress-related diterpene synthases (diTPSs) in the dedicated bioenergy crop switchgrass (Panicum virgatum). Mining of the allotetraploid switchgrass genome identified an expansive diTPS family of 31 members, and biochemical analysis of 11 diTPSs revealed a modular metabolic network producing a diverse array of diterpenoid metabolites. In addition to ent-copalyl diphosphate (CPP) and ent-kaurene synthases predictably involved in gibberellin biosynthesis, we identified syn-CPP and ent-labda-13-en-8-ol diphosphate (LPP) synthases as well as two diTPSs forming (+)-labda-8,13E-dienyl diphosphate (8,13-CPP) and ent-neo-cis-trans-clerodienyl diphosphate (CT-CLPP) scaffolds not observed previously in plants. Structure-guided mutagenesis of the (+)-8,13-CPP and ent-neo-CT-CLPP synthases revealed residue substitutions in the active sites that altered product outcome, representing potential neofunctionalization events that occurred during diversification of the switchgrass diTPS family. The conversion of ent-CPP, ent-LPP, syn-CPP, and ent-neo-CT-CLPP by promiscuous diTPSs further yielded distinct labdane-type diterpene olefins and alcohols. Of these metabolites, the formation of 9β-hydroxy-syn-pimar-15-ene and the expression of the corresponding genes were induced in roots and leaves in response to oxidative stress and ultraviolet irradiation, indicating their possible roles in abiotic stress adaptation. Together, these findings expand the known chemical space of diterpenoid metabolism in monocot crops toward systematically investigating and ultimately improving stress resilience traits in crop species.
Collapse
Affiliation(s)
- Kyle A Pelot
- Department of Plant Biology, University of California, Davis, California 95616
| | - Ruibing Chen
- Department of Plant Biology, University of California, Davis, California 95616
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, 200433 Shanghai, China
| | - David M Hagelthorn
- Department of Plant Biology, University of California, Davis, California 95616
| | - Cari A Young
- Department of Plant Biology, University of California, Davis, California 95616
| | - J Bennett Addison
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182
| | - Andrew Muchlinski
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Dorothea Tholl
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Philipp Zerbe
- Department of Plant Biology, University of California, Davis, California 95616
| |
Collapse
|
38
|
Bian G, Ma T, Liu T. In Vivo Platforms for Terpenoid Overproduction and the Generation of Chemical Diversity. Methods Enzymol 2018; 608:97-129. [PMID: 30173775 DOI: 10.1016/bs.mie.2018.04.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Terpenoids represent a highly diverse group of natural products with wide applications. Engineering approaches have been used to increase titers of many value-added terpenoids, such as farnesene, taxadiene, lycopene, and astaxanthin. In this chapter, we review the in vitro reconstitution-based targeted engineering of terpenoids, as well as approaches for the mining of terpene cyclases and for increasing the chemical diversity. Information gained from in vitro reconstitution extends our understanding of the mechanisms underlying terpenoid biosynthesis, the contributions of enzymes and cofactors, and key enzymes and rate-limiting steps for the development of an ideal biosynthetic production system. The in vitro reconstitution-based targeted engineering strategy provides a rational and accurate engineering approach for terpenoid overproduction with high efficiency. Furthermore, an efficient terpenoid overproduction platform can accelerate the entire process for the mining of terpene cyclases and the discovery of novel terpenoids and can substantially increase the chemical diversity of these kinds of terpenoids.
Collapse
Affiliation(s)
- Guangkai Bian
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, PR China
| | - Tian Ma
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, PR China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, PR China; Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan, PR China.
| |
Collapse
|
39
|
Schulte S, Potter KC, Lemke C, Peters RJ. Catalytic Bases and Stereocontrol in Lamiaceae Class II Diterpene Cyclases. Biochemistry 2018; 57:3473-3479. [PMID: 29787239 DOI: 10.1021/acs.biochem.8b00193] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plants from the widespread Lamiaceae family produce many labdane-related diterpenoids, a number of which serve medicinal roles, and whose biosynthesis is initiated by class II diterpene cyclases (DTCs). These enzymes utilize a general acid-base catalyzed cyclo-isomerization reaction to produce various stereoisomers of the eponymous labdaenyl carbocation intermediate, which can then undergo rearrangement and/or the addition of water prior to terminating deprotonation. Identification of the pair of residues that cooperatively serve as the catalytic base in the DTCs that produce ent-copalyl diphosphate (CPP) required for gibberellin phytohormone biosynthesis in all vascular plants has led to insight into the addition of water as well as rearrangement. Lamiaceae plants generally contain an additional DTC that produces the enantiomeric normal CPP, as well as others that yield hydroxylated products derived from the addition of water. Here the catalytic base in these DTCs was investigated. Notably, changing two adjacent residues that seem to serve as the catalytic base in the normal CPP synthase from Salvia miltiorrhiza (SmCPS) to the residues found in the closely related perigrinol diphosphate synthase from Marrubium vulgare (MvPPS), which produces a partially rearranged and hydroxylated product derived from the distinct syn stereoisomer of labdaenyl+, altered the product outcome in an unexpected fashion. Specifically, the relevant SmCPS:H315N/T316V double mutant produces terpentedienyl diphosphate, which is derived from complete substituent rearrangement of syn rather than normal labdaenyl+. Accordingly, alteration of the residues that normally serve as the catalytic base surprisingly can impact stereocontrol.
Collapse
Affiliation(s)
- Samuel Schulte
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology , Iowa State University , Ames , Iowa 50011 , United States
| | - Kevin C Potter
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology , Iowa State University , Ames , Iowa 50011 , United States
| | - Cody Lemke
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology , Iowa State University , Ames , Iowa 50011 , United States
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology , Iowa State University , Ames , Iowa 50011 , United States
| |
Collapse
|
40
|
Jia M, O’Brien TE, Zhang Y, Siegel JB, Tantillo DJ, Peters RJ. Changing Face: A Key Residue for the Addition of Water by Sclareol Synthase. ACS Catal 2018; 8:3133-3137. [PMID: 29713562 DOI: 10.1021/acscatal.8b00121] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Sclareol synthase from Salvia sclarea (SsSS) naturally acts on 8α-hydroxy-copalyl diphosphate (1), stereoselectively adding water to produce (13R)-sclareol (2a), and similarly yields hydroxylated products with manifold other such bicyclic diterpene precursors. Here a key residue for this addition of water was identified. Strikingly, substitution with glutamine switches stereochemical outcome with 1, leading to selective production of (13S)-sclareol (2b). Moreover, changes to the stereospecificity of water addition with the structurally closely-related substrate copalyl diphosphate (4) could be accomplished with alternative substitutions. Thus, this approach is expected to provide biosynthetic access to both epimers of 13-hydroxylated derivatives of manifold labdane-related diterpenes.
Collapse
Affiliation(s)
- Meirong Jia
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Terrence E. O’Brien
- Department of Chemistry, University of California−Davis, Davis, California 95616, United States
| | - Yue Zhang
- Department of Chemistry, University of California−Davis, Davis, California 95616, United States
| | - Justin B. Siegel
- Department of Chemistry, University of California−Davis, Davis, California 95616, United States
- Department of Biochemistry and Molecular Medicine, University of California−Davis, Davis, California 95616, United States
- Genome Center, University of California−Davis, Davis, California 95616, United States
| | - Dean J. Tantillo
- Department of Chemistry, University of California−Davis, Davis, California 95616, United States
| | - Reuben J. Peters
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
41
|
Heskes AM, Sundram TC, Boughton BA, Jensen NB, Hansen NL, Crocoll C, Cozzi F, Rasmussen S, Hamberger B, Hamberger B, Staerk D, Møller BL, Pateraki I. Biosynthesis of bioactive diterpenoids in the medicinal plant Vitex agnus-castus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:943-958. [PMID: 29315936 PMCID: PMC5838521 DOI: 10.1111/tpj.13822] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 12/04/2017] [Accepted: 12/14/2017] [Indexed: 05/11/2023]
Abstract
Vitex agnus-castus L. (Lamiaceae) is a medicinal plant historically used throughout the Mediterranean region to treat menstrual cycle disorders, and is still used today as a clinically effective treatment for premenstrual syndrome. The pharmaceutical activity of the plant extract is linked to its ability to lower prolactin levels. This feature has been attributed to the presence of dopaminergic diterpenoids that can bind to dopamine receptors in the pituitary gland. Phytochemical analyses of V. agnus-castus show that it contains an enormous array of structurally related diterpenoids and, as such, holds potential as a rich source of new dopaminergic drugs. The present work investigated the localisation and biosynthesis of diterpenoids in V. agnus-castus. With the assistance of matrix-assisted laser desorption ionisation-mass spectrometry imaging (MALDI-MSI), diterpenoids were localised to trichomes on the surface of fruit and leaves. Analysis of a trichome-specific transcriptome database, coupled with expression studies, identified seven candidate genes involved in diterpenoid biosynthesis: three class II diterpene synthases (diTPSs); three class I diTPSs; and a cytochrome P450 (CYP). Combinatorial assays of the diTPSs resulted in the formation of a range of different diterpenes that can account for several of the backbones of bioactive diterpenoids observed in V. agnus-castus. The identified CYP, VacCYP76BK1, was found to catalyse 16-hydroxylation of the diol-diterpene, peregrinol, to labd-13Z-ene-9,15,16-triol when expressed in Saccharomyces cerevisiae. Notably, this product is a potential intermediate in the biosynthetic pathway towards bioactive furan- and lactone-containing diterpenoids that are present in this species.
Collapse
Affiliation(s)
- Allison M. Heskes
- Plant Biochemistry LaboratoryDepartment of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40DK‐1871Frederiksberg CDenmark
- Center for Synthetic Biology ‘bioSYNergy’Department of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40DK‐1871Frederiksberg CDenmark
- VILLUM Center for Plant PlasticityDepartment of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40DK‐1871Frederiksberg CDenmark
| | - Tamil C.M. Sundram
- Plant Biochemistry LaboratoryDepartment of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40DK‐1871Frederiksberg CDenmark
- Department of Plant ScienceKulliyyah of ScienceInternational Islamic University Malaysia50728Kuala LumpurMalaysia
| | - Berin A. Boughton
- Metabolomics AustraliaSchool of BioSciencesThe University of MelbourneVic.3010Australia
| | | | - Nikolaj L. Hansen
- Plant Biochemistry LaboratoryDepartment of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40DK‐1871Frederiksberg CDenmark
- Center for Synthetic Biology ‘bioSYNergy’Department of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40DK‐1871Frederiksberg CDenmark
- VILLUM Center for Plant PlasticityDepartment of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40DK‐1871Frederiksberg CDenmark
| | - Christoph Crocoll
- DynaMo CenterDepartment of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40DK‐1871Frederiksberg CDenmark
| | - Federico Cozzi
- Plant Biochemistry LaboratoryDepartment of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40DK‐1871Frederiksberg CDenmark
| | - Simon Rasmussen
- Department of Bio and Health InformaticsTechnical University of DenmarkDK‐2800LyngbyDenmark
| | - Britta Hamberger
- Plant Biochemistry LaboratoryDepartment of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40DK‐1871Frederiksberg CDenmark
- Center for Synthetic Biology ‘bioSYNergy’Department of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40DK‐1871Frederiksberg CDenmark
- VILLUM Center for Plant PlasticityDepartment of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40DK‐1871Frederiksberg CDenmark
| | - Björn Hamberger
- Plant Biochemistry LaboratoryDepartment of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40DK‐1871Frederiksberg CDenmark
- Center for Synthetic Biology ‘bioSYNergy’Department of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40DK‐1871Frederiksberg CDenmark
- VILLUM Center for Plant PlasticityDepartment of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40DK‐1871Frederiksberg CDenmark
| | - Dan Staerk
- Department of Drug Design and PharmacologyFaculty of Health and Medical SciencesUniversity of CopenhagenDK‐2100CopenhagenDenmark
| | - Birger L. Møller
- Plant Biochemistry LaboratoryDepartment of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40DK‐1871Frederiksberg CDenmark
- Center for Synthetic Biology ‘bioSYNergy’Department of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40DK‐1871Frederiksberg CDenmark
- VILLUM Center for Plant PlasticityDepartment of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40DK‐1871Frederiksberg CDenmark
| | - Irini Pateraki
- Plant Biochemistry LaboratoryDepartment of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40DK‐1871Frederiksberg CDenmark
- Center for Synthetic Biology ‘bioSYNergy’Department of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40DK‐1871Frederiksberg CDenmark
- VILLUM Center for Plant PlasticityDepartment of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40DK‐1871Frederiksberg CDenmark
| |
Collapse
|
42
|
Abstract
Isoprenoid precursors readily undergo (poly)cyclization in electrophilic reaction cascades, presumably as internal addition of the carbon-carbon double-bonds from neighboring isoprenyl repeats readily forms relatively stable cyclohexyl tertiary carbocation intermediates. This hypothesis is agnostic regarding alkene configuration (i.e., Z or E). Consistent with this, here it is shown that certain class II diterpene cyclases, which normally convert (E,E,E)-geranylgeranyl diphosphate to 13E-trans-decalin bicycles, will also act upon (Z,Z,Z)-nerylneryl diphosphate, producing novel 13Z-cis-decalin bicycles instead.
Collapse
Affiliation(s)
- Meirong Jia
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50010, USA.
| | | |
Collapse
|
43
|
Roncero AM, Tobal IE, Moro RF, Díez D, Marcos IS. Halimane diterpenoids: sources, structures, nomenclature and biological activities. Nat Prod Rep 2018; 35:955-991. [DOI: 10.1039/c8np00016f] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Diterpenes with a halimane skeleton constitute a small group of natural products that can be biogenetically considered as being between labdane and clerodane diterpenoids.
Collapse
Affiliation(s)
- Alejandro M. Roncero
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas
- Universidad de Salamanca
- 37008 Salamanca
- Spain
| | - Ignacio E. Tobal
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas
- Universidad de Salamanca
- 37008 Salamanca
- Spain
| | - Rosalina F. Moro
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas
- Universidad de Salamanca
- 37008 Salamanca
- Spain
| | - David Díez
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas
- Universidad de Salamanca
- 37008 Salamanca
- Spain
| | - Isidro S. Marcos
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas
- Universidad de Salamanca
- 37008 Salamanca
- Spain
| |
Collapse
|
44
|
Murphy KM, Ma LT, Ding Y, Schmelz EA, Zerbe P. Functional Characterization of Two Class II Diterpene Synthases Indicates Additional Specialized Diterpenoid Pathways in Maize ( Zea mays). FRONTIERS IN PLANT SCIENCE 2018; 9:1542. [PMID: 30405674 PMCID: PMC6206430 DOI: 10.3389/fpls.2018.01542] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/02/2018] [Indexed: 05/18/2023]
Abstract
As a major staple food, maize (Zea mays) is critical to food security. Shifting environmental pressures increasingly hamper crop defense capacities, causing expanded harvest loss. Specialized labdane-type diterpenoids are key components of maize chemical defense and ecological adaptation. Labdane diterpenoid biosynthesis most commonly requires the pairwise activity of class II and class I diterpene synthases (diTPSs) that convert the central precursor geranylgeranyl diphosphate into distinct diterpenoid scaffolds. Two maize class II diTPSs, ANTHER EAR 1 and 2 (ZmAN1/2), have been previously identified as catalytically redundant ent-copalyl diphosphate (CPP) synthases. ZmAN1 is essential for gibberellin phytohormone biosynthesis, whereas ZmAN2 is stress-inducible and governs the formation of defensive kauralexin and dolabralexin diterpenoids. Here, we report the biochemical characterization of the two remaining class II diTPSs present in the maize genome, COPALYL DIPHOSPHATE SYNTHASE 3 (ZmCPS3) and COPALYL DIPHOSPHATE SYNTHASE 4 (ZmCPS4). Functional analysis via microbial co-expression assays identified ZmCPS3 as a (+)-CPP synthase, with functionally conserved orthologs occurring in wheat (Triticum aestivum) and numerous dicot species. ZmCPS4 formed the unusual prenyl diphosphate, 8,13-CPP (labda-8,13-dien-15-yl diphosphate), as verified by mass spectrometry and nuclear magnetic resonance. As a minor product, ZmCPS4 also produced labda-13-en-8-ol diphosphate (LPP). Root gene expression profiles did not indicate an inducible role of ZmCPS3 in maize stress responses. By contrast, ZmCPS4 showed a pattern of inducible gene expression in roots exposed to oxidative stress, supporting a possible role in abiotic stress responses. Identification of the catalytic activities of ZmCPS3 and ZmCPS4 clarifies the first committed reactions controlling the diversity of defensive diterpenoids in maize, and suggests the existence of additional yet undiscovered diterpenoid pathways.
Collapse
Affiliation(s)
- Katherine M. Murphy
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
| | - Li-Ting Ma
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, Taiwan
| | - Yezhang Ding
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, United States
| | - Eric A. Schmelz
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, United States
| | - Philipp Zerbe
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
- *Correspondence: Philipp Zerbe,
| |
Collapse
|
45
|
Identification of Enzymes Involved in Sesterterpene Biosynthesis in Marine Fungi. Methods Enzymol 2018; 604:441-498. [DOI: 10.1016/bs.mie.2018.04.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
46
|
Strategies for terpenoid overproduction and new terpenoid discovery. Curr Opin Biotechnol 2017; 48:234-241. [DOI: 10.1016/j.copbio.2017.07.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/03/2017] [Indexed: 11/17/2022]
|
47
|
Abstract
![]()
The
year 2017 marks the twentieth anniversary of terpenoid cyclase
structural biology: a trio of terpenoid cyclase structures reported
together in 1997 were the first to set the foundation for understanding
the enzymes largely responsible for the exquisite chemodiversity of
more than 80000 terpenoid natural products. Terpenoid cyclases catalyze
the most complex chemical reactions in biology, in that more than
half of the substrate carbon atoms undergo changes in bonding and
hybridization during a single enzyme-catalyzed cyclization reaction.
The past two decades have witnessed structural, functional, and computational
studies illuminating the modes of substrate activation that initiate
the cyclization cascade, the management and manipulation of high-energy
carbocation intermediates that propagate the cyclization cascade,
and the chemical strategies that terminate the cyclization cascade.
The role of the terpenoid cyclase as a template for catalysis is paramount
to its function, and protein engineering can be used to reprogram
the cyclization cascade to generate alternative and commercially important
products. Here, I review key advances in terpenoid cyclase structural
and chemical biology, focusing mainly on terpenoid cyclases and related
prenyltransferases for which X-ray crystal structures have informed
and advanced our understanding of enzyme structure and function.
Collapse
Affiliation(s)
- David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
48
|
Overcoming the plasticity of plant specialized metabolism for selective diterpene production in yeast. Sci Rep 2017; 7:8855. [PMID: 28821847 PMCID: PMC5562805 DOI: 10.1038/s41598-017-09592-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/26/2017] [Indexed: 01/19/2023] Open
Abstract
Plants synthesize numerous specialized metabolites (also termed natural products) to mediate dynamic interactions with their surroundings. The complexity of plant specialized metabolism is the result of an inherent biosynthetic plasticity rooted in the substrate and product promiscuity of the enzymes involved. The pathway of carnosic acid-related diterpenes in rosemary and sage involves promiscuous cytochrome P450s whose combined activity results in a multitude of structurally related compounds. Some of these minor products, such as pisiferic acid and salviol, have established bioactivity, but their limited availability prevents further evaluation. Reconstructing carnosic acid biosynthesis in yeast achieved significant titers of the main compound but could not specifically yield the minor products. Specific production of pisiferic acid and salviol was achieved by restricting the promiscuity of a key enzyme, CYP76AH24, through a single-residue substitution (F112L). Coupled with additional metabolic engineering interventions, overall improvements of 24 and 14-fold for pisiferic acid and salviol, respectively, were obtained. These results provide an example of how synthetic biology can help navigating the complex landscape of plant natural product biosynthesis to achieve heterologous production of useful minor metabolites. In the context of plant adaptation, these findings also suggest a molecular basis for the rapid evolution of terpene biosynthetic pathways.
Collapse
|
49
|
Jin B, Cui G, Guo J, Tang J, Duan L, Lin H, Shen Y, Chen T, Zhang H, Huang L. Functional Diversification of Kaurene Synthase-Like Genes in Isodon rubescens. PLANT PHYSIOLOGY 2017; 174:943-955. [PMID: 28381502 PMCID: PMC5462038 DOI: 10.1104/pp.17.00202] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/03/2017] [Indexed: 05/11/2023]
Abstract
Ent-kaurene diterpenoids are the largest group of known Isodon diterpenoids. Among them, oridonin is accumulated in the leaves, and is the most frequently studied compound because of its antitumor and antibacterial activities. We have identified five copalyl diphosphate synthase (CPS) and six kaurene synthase-like (KSL) genes by transcriptome profiling of Isodon rubescens leaves. An in vitro assay assigns ten of them to five different diterpene biosynthesis pathways, except IrCPS3 that has a mutation in the catalytic motif. The Lamiaceae-specific clade genes (IrCPS1 and IrCPS2) synthesize the intermediate copalyl diphosphate (normal-CPP), while IrCPS4 and IrCPS5 synthesize the intermediate ent-copalyl diphosphate (ent-CPP). IrKSL2, IrKSL4, and IrKSL5 react with ent-CPP to produce an ent-isopimaradiene-like compound, ent-atiserene and ent-kaurene, respectively. Correspondingly, the Lamiaceae-specific clade genes IrKSL1 or IrKSL3 combined with normal-CPP led to the formation of miltiradiene. The compound then underwent aromatization and oxidization with a cytochrome P450 forming two related compounds, abietatriene and ferruginol, which were detected in the root bark. IrKSL6 reacts with normal-CPP to produce isopimaradiene. IrKSL3 and IrKSL6 have the γβα tridomain structure, as these proteins tend to possess the bidomain structure of IrKSL1, highlighting the evolutionary history of KSL gene domain loss and further elucidating chemical diversity evolution from a macroevolutionary stance in Lamiaceae.
Collapse
Affiliation(s)
- Baolong Jin
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China (B.J., G.C., J.G., J.T., H.L., Y.S., T.C., H.Z., L.H.); and
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (L.D.)
| | - Guanghong Cui
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China (B.J., G.C., J.G., J.T., H.L., Y.S., T.C., H.Z., L.H.); and
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (L.D.)
| | - Juan Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China (B.J., G.C., J.G., J.T., H.L., Y.S., T.C., H.Z., L.H.); and
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (L.D.)
| | - Jinfu Tang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China (B.J., G.C., J.G., J.T., H.L., Y.S., T.C., H.Z., L.H.); and
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (L.D.)
| | - Lixin Duan
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China (B.J., G.C., J.G., J.T., H.L., Y.S., T.C., H.Z., L.H.); and
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (L.D.)
| | - Huixin Lin
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China (B.J., G.C., J.G., J.T., H.L., Y.S., T.C., H.Z., L.H.); and
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (L.D.)
| | - Ye Shen
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China (B.J., G.C., J.G., J.T., H.L., Y.S., T.C., H.Z., L.H.); and
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (L.D.)
| | - Tong Chen
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China (B.J., G.C., J.G., J.T., H.L., Y.S., T.C., H.Z., L.H.); and
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (L.D.)
| | - Huabei Zhang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China (B.J., G.C., J.G., J.T., H.L., Y.S., T.C., H.Z., L.H.); and
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (L.D.)
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China (B.J., G.C., J.G., J.T., H.L., Y.S., T.C., H.Z., L.H.); and
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (L.D.)
| |
Collapse
|
50
|
Kemper K, Hirte M, Reinbold M, Fuchs M, Brück T. Opportunities and challenges for the sustainable production of structurally complex diterpenoids in recombinant microbial systems. Beilstein J Org Chem 2017; 13:845-854. [PMID: 28546842 PMCID: PMC5433224 DOI: 10.3762/bjoc.13.85] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/11/2017] [Indexed: 01/24/2023] Open
Abstract
With over 50.000 identified compounds terpenes are the largest and most structurally diverse group of natural products. They are ubiquitous in bacteria, plants, animals and fungi, conducting several biological functions such as cell wall components or defense mechanisms. Industrial applications entail among others pharmaceuticals, food additives, vitamins, fragrances, fuels and fuel additives. Central building blocks of all terpenes are the isoprenoid compounds isopentenyl diphosphate and dimethylallyl diphosphate. Bacteria like Escherichia coli harbor a native metabolic pathway for these isoprenoids that is quite amenable for genetic engineering. Together with recombinant terpene biosynthesis modules, they are very suitable hosts for heterologous production of high value terpenes. Yet, in contrast to the number of extracted and characterized terpenes, little is known about the specific biosynthetic enzymes that are involved especially in the formation of highly functionalized compounds. Novel approaches discussed in this review include metabolic engineering as well as site-directed mutagenesis to expand the natural terpene landscape. Focusing mainly on the validation of successful integration of engineered biosynthetic pathways into optimized terpene producing Escherichia coli, this review shall give an insight in recent progresses regarding manipulation of mostly diterpene synthases.
Collapse
Affiliation(s)
- Katarina Kemper
- Professorship for Industrial Biocatalysis, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Max Hirte
- Professorship for Industrial Biocatalysis, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Markus Reinbold
- Professorship for Industrial Biocatalysis, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Monika Fuchs
- Professorship for Industrial Biocatalysis, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Thomas Brück
- Professorship for Industrial Biocatalysis, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| |
Collapse
|