1
|
Hanamghar S, Mellor SB, Mikkelsen L, Crocoll C, Motawie MS, Russo DA, Jensen PE, Zedler JAZ. Thylakoid Targeting Improves Stability of a Cytochrome P450 in the Cyanobacterium Synechocystis sp. PCC 6803. ACS Synth Biol 2025; 14:867-877. [PMID: 40114516 PMCID: PMC11934225 DOI: 10.1021/acssynbio.4c00800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/22/2025]
Abstract
Plants produce a large array of natural products of biotechnological interest. In many cases, these compounds are naturally produced at low titers and involve complex biosynthetic pathways, which often include cytochrome P450 enzymes. P450s are known to be difficult to express in traditional heterotrophic chassis. However, cyanobacteria have shown promise as a sustainable alternative for the heterologous expression of P450s and light-driven product biosynthesis. In this study, we explore strategies for improving plant P450 stability and membrane insertion in cyanobacteria. The widely used model cyanobacterium Synechocystis sp. PCC 6803 was chosen as the host, and the well-studied P450 CYP79A1 from the dhurrin pathway of Sorghum bicolor was chosen as the model enzyme. Combinations of the P450 fused with individual elements (e.g., signal peptide, transmembrane domain) or the full length cyanobacterial, thylakoid-localized, protein PetC1 were designed. All generated CYP79A1 variants led to oxime production. Our data show that strains producing CYP79A1 variants with elements of PetC1 improved thylakoid targeting. In addition, chlorophyll-normalized oxime levels increased, on average, up to 18 times compared to the unmodified CYP79A1. These findings offer promising strategies to improve heterologous P450 expression in cyanobacteria and can ultimately contribute to advancing light-driven biocatalysis in cyanobacterial chassis.
Collapse
Affiliation(s)
- Sayali
S. Hanamghar
- Synthetic
Biology of Photosynthetic Organisms, Matthias Schleiden Institute
for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Silas Busck Mellor
- Department
of Plant and Environmental Sciences, University
of Copenhagen, 1871 Frederiksberg, Denmark
| | - Lisbeth Mikkelsen
- Department
of Plant and Environmental Sciences, University
of Copenhagen, 1871 Frederiksberg, Denmark
| | - Christoph Crocoll
- Department
of Plant and Environmental Sciences, University
of Copenhagen, 1871 Frederiksberg, Denmark
| | - Mohammed Saddik Motawie
- Department
of Plant and Environmental Sciences, University
of Copenhagen, 1871 Frederiksberg, Denmark
| | - David A. Russo
- Bioorganic
Analytics, Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Poul Erik Jensen
- Department
of Food Science, University of Copenhagen, 1958 Frederiksberg, Denmark
| | - Julie A. Z. Zedler
- Synthetic
Biology of Photosynthetic Organisms, Matthias Schleiden Institute
for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
2
|
Yu J, Chen B, Huang X. Single-Electron Oxidation Triggered by Visible-Light-Excited Enzymes for Asymmetric Biocatalysis. Angew Chem Int Ed Engl 2025; 64:e202419262. [PMID: 39605283 DOI: 10.1002/anie.202419262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 11/29/2024]
Abstract
By integrating enzymatic catalysis with photocatalysis, photoenzymatic catalysis emerges as a powerful strategy to enhance enzyme catalytic capabilities and provide superior stereocontrol in reactions involving reactive intermediates. Repurposing naturally occurring enzymes using visible light is among the most active directions of photoenzymatic catalysis. This Minireview focuses on a cutting-edge strategy in this direction, namely single-electron-oxidation-triggered non-natural biotransformations catalyzed by photoexcited enzymes. These straightforward transformations feature a unique radical mechanism initiated by single-electron oxidation, achieving redox-neutral non-natural C-C, C-O, and C-S bond formation, and expanding the chemical toolbox of enzymes. By highlighting recent advances in this field and emphasizing their catalytic mechanisms and synthetic potential, innovative approaches for photobiomanufacturing are anticipated.
Collapse
Affiliation(s)
- Jinhai Yu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Bin Chen
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xiaoqiang Huang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
3
|
Tiwari D, Kumar N, Bongirwar R, Shukla P. Nutraceutical prospects of genetically engineered cyanobacteria- technological updates and significance. World J Microbiol Biotechnol 2024; 40:263. [PMID: 38980547 DOI: 10.1007/s11274-024-04064-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/23/2024] [Indexed: 07/10/2024]
Abstract
Genetically engineered cyanobacterial strains that have improved growth rate, biomass productivity, and metabolite productivity could be a better option for sustainable bio-metabolite production. The global demand for biobased metabolites with nutraceuticals and health benefits has increased due to their safety and plausible therapeutic and nutritional utility. Cyanobacteria are solar-powered green cellular factories that can be genetically tuned to produce metabolites with nutraceutical and pharmaceutical benefits. The present review discusses biotechnological endeavors for producing bioprospective compounds from genetically engineered cyanobacteria and discusses the challenges and troubleshooting faced during metabolite production. This review explores the cyanobacterial versatility, the use of engineered strains, and the techno-economic challenges associated with scaling up metabolite production from cyanobacteria. Challenges to produce cyanobacterial bioactive compounds with remarkable nutraceutical values have been discussed. Additionally, this review also summarises the challenges and future prospects of metabolite production from genetically engineered cyanobacteria as a sustainable approach.
Collapse
Affiliation(s)
- Deepali Tiwari
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Niwas Kumar
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Riya Bongirwar
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
4
|
Kojima H, Yamamoto K, Suzuki T, Hayakawa Y, Niwa T, Tokuhiro K, Katahira S, Higashiyama T, Ishiguro S. Broad Chain-Length Specificity of the Alkane-Forming Enzymes NoCER1A and NoCER3A/B in Nymphaea odorata. PLANT & CELL PHYSIOLOGY 2024; 65:428-446. [PMID: 38174441 PMCID: PMC11020225 DOI: 10.1093/pcp/pcad168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/01/2023] [Accepted: 01/19/2024] [Indexed: 01/05/2024]
Abstract
Many terrestrial plants produce large quantities of alkanes for use in epicuticular wax and the pollen coat. However, their carbon chains must be long to be useful as fuel or as a petrochemical feedstock. Here, we focus on Nymphaea odorata, which produces relatively short alkanes in its anthers. We identified orthologs of the Arabidopsis alkane biosynthesis genes AtCER1 and AtCER3 in N. odorata and designated them NoCER1A, NoCER3A and NoCER3B. Expression analysis of NoCER1A and NoCER3A/B in Arabidopsis cer mutants revealed that the N. odorata enzymes cooperated with the Arabidopsis enzymes and that the NoCER1A produced shorter alkanes than AtCER1, regardless of which CER3 protein it interacted with. These results indicate that AtCER1 frequently uses a C30 substrate, whereas NoCER1A, NoCER3A/B and AtCER3 react with a broad range of substrate chain lengths. The incorporation of shorter alkanes disturbed the formation of wax crystals required for water-repellent activity in stems, suggesting that chain-length specificity is important for surface cleaning. Moreover, cultured tobacco cells expressing NoCER1A and NoCER3A/B effectively produced C19-C23 alkanes, indicating that the introduction of the two enzymes is sufficient to produce alkanes. Taken together, our findings suggest that these N. odorata enzymes may be useful for the biological production of alkanes of specific lengths. 3D modeling revealed that CER1s and CER3s share a similar structure that consists of N- and C-terminal domains, in which their predicted active sites are respectively located. We predicted the complex structure of both enzymes and found a cavity that connects their active sites.
Collapse
Affiliation(s)
- Hisae Kojima
- Technical Center, Nagoya University, Nagoya, 464-8601 Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Kanta Yamamoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Kasugai, 487-8501 Japan
| | - Yuri Hayakawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Tomoko Niwa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Kenro Tokuhiro
- Toyota Central R&D Labs., Inc., Nagakute, 480-1192 Japan
| | | | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601 Japan
- Graduate School of Science, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Sumie Ishiguro
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| |
Collapse
|
5
|
Wang M, Ye X, Bi H, Shen Z. Microalgae biofuels: illuminating the path to a sustainable future amidst challenges and opportunities. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:10. [PMID: 38254224 PMCID: PMC10804497 DOI: 10.1186/s13068-024-02461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
The development of microalgal biofuels is of significant importance in advancing the energy transition, alleviating food pressure, preserving the natural environment, and addressing climate change. Numerous countries and regions across the globe have conducted extensive research and strategic planning on microalgal bioenergy, investing significant funds and manpower into this field. However, the microalgae biofuel industry has faced a downturn due to the constraints of high costs. In the past decade, with the development of new strains, technologies, and equipment, the feasibility of large-scale production of microalgae biofuel should be re-evaluated. Here, we have gathered research results from the past decade regarding microalgae biofuel production, providing insights into the opportunities and challenges faced by this industry from the perspectives of microalgae selection, modification, and cultivation. In this review, we suggest that highly adaptable microalgae are the preferred choice for large-scale biofuel production, especially strains that can utilize high concentrations of inorganic carbon sources and possess stress resistance. The use of omics technologies and genetic editing has greatly enhanced lipid accumulation in microalgae. However, the associated risks have constrained the feasibility of large-scale outdoor cultivation. Therefore, the relatively controllable cultivation method of photobioreactors (PBRs) has made it the mainstream approach for microalgae biofuel production. Moreover, adjusting the performance and parameters of PBRs can also enhance lipid accumulation in microalgae. In the future, given the relentless escalation in demand for sustainable energy sources, microalgae biofuels should be deemed a pivotal constituent of national energy planning, particularly in the case of China. The advancement of synthetic biology helps reduce the risks associated with genetically modified (GM) microalgae and enhances the economic viability of their biofuel production.
Collapse
Affiliation(s)
- Min Wang
- Institute of Agricultural Remote Sensing and Information, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China.
| | - Xiaoxue Ye
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, 572025, China
| | - Hongwen Bi
- Institute of Agricultural Remote Sensing and Information, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Zhongbao Shen
- Grass and Science Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China.
| |
Collapse
|
6
|
Sheppard TJ, Specht DA, Barstow B. Efficiency estimates for electromicrobial production of branched-chain hydrocarbons. iScience 2024; 27:108773. [PMID: 38283329 PMCID: PMC10821168 DOI: 10.1016/j.isci.2023.108773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024] Open
Abstract
In electromicrobial production (EMP), electricity is used as microbial energy to produce complex molecules starting from simple compounds like CO2. The aviation industry requires sustainable fuel alternatives that can meet demands for high-altitude performance and modern emissions standards. EMP of jet fuel components provides a unique opportunity to generate fuel blends compatible with modern engines producing net-neutral emissions. Branched-chain hydrocarbons modulate the boiling and freezing points of liquid fuels at high altitudes. In this study, we analyze the pathways necessary to generate branched-chain hydrocarbons in vivo utilizing extracellular electron uptake (EEU) and H2-oxidation for electron delivery, the Calvin cycle for CO2-fixation and the aldehyde deformolating oxygenase decarboxylation pathway. We find the maximum electrical-to-fuel energy conversion efficiencies to be 40.0 - 4.4 + 0.6 % and 39.8 - 4.5 + 0.7 % . For a model blend containing straight-chain, branched-chain, and terpenoid components, increasing the fraction of branched-chain alkanes from zero to 47% only lowers the electrical energy conversion efficiency from 40.1 - 4.5 + 0.7 % to 39.5 - 4.6 + 0.7 % .
Collapse
Affiliation(s)
- Timothy J. Sheppard
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - David A. Specht
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Buz Barstow
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
7
|
Sheppard TJ, Specht DA, Barstow B. Upper limit efficiency estimates for electromicrobial production of drop-in jet fuels. Bioelectrochemistry 2023; 154:108506. [PMID: 37473694 DOI: 10.1016/j.bioelechem.2023.108506] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/22/2023]
Abstract
Microbes which participate in extracellular electron uptake (EEU) or H2 oxidation have the ability to manufacture organic compounds using electricity as the primary source of metabolic energy. So-called electromicrobial production could be valuable to efficiently synthesize drop-in jet fuels using renewable energy. Here, we calculate the upper limit electrical-to-fuel conversion efficiency for a model jet fuel blend containing 85% straight-chain alkanes and 15% terpenoids. When using the Calvin cycle for carbon-fixation, the energy conversion efficiency is 37.8-4.3+1.8% when using EEU for electron delivery and 40.1-4.6+0.7% when using H2 oxidation. The production efficiency can be raised to 44.2-3.7+0.5% when using the Formolase formate-assimilation pathway, and to 49.2-2.1+0.3% with the Wood-Ljungdahl pathway. This efficiency can be further raised by swapping the well-known Aldehyde Deformolating Oxygenase (ADO) termination pathway with the recently discovered Fatty Acid Photodecarboxylase (FAP) pathway. If these systems were supplied with electricity from a maximally-efficient silicon solar photovoltaic, even the least efficient pathway exceeds the maximum solar-to-fuel efficiency of all known forms of photosynthesis.
Collapse
Affiliation(s)
- Timothy J Sheppard
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - David A Specht
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Buz Barstow
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
8
|
Kang DK, Kim SH, Sohn JH, Sung BH. Insights into Enzyme Reactions with Redox Cofactors in Biological Conversion of CO 2. J Microbiol Biotechnol 2023; 33:1403-1411. [PMID: 37482811 DOI: 10.4014/jmb.2306.06005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023]
Abstract
Carbon dioxide (CO2) is the most abundant component of greenhouse gases (GHGs) and directly creates environmental issues such as global warming and climate change. Carbon capture and storage have been proposed mainly to solve the problem of increasing CO2 concentration in the atmosphere; however, more emphasis has recently been placed on its use. Among the many methods of using CO2, one of the key environmentally friendly technologies involves biologically converting CO2 into other organic substances such as biofuels, chemicals, and biomass via various metabolic pathways. Although an efficient biocatalyst for industrial applications has not yet been developed, biological CO2 conversion is the needed direction. To this end, this review briefly summarizes seven known natural CO2 fixation pathways according to carbon number and describes recent studies in which natural CO2 assimilation systems have been applied to heterogeneous in vivo and in vitro systems. In addition, studies on the production of methanol through the reduction of CO2 are introduced. The importance of redox cofactors, which are often overlooked in the CO2 assimilation reaction by enzymes, is presented; methods for their recycling are proposed. Although more research is needed, biological CO2 conversion will play an important role in reducing GHG emissions and producing useful substances in terms of resource cycling.
Collapse
Affiliation(s)
- Du-Kyeong Kang
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biosystems and Bioengineering, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Seung-Hwa Kim
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biosystems and Bioengineering, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Jung-Hoon Sohn
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biosystems and Bioengineering, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Bong Hyun Sung
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biosystems and Bioengineering, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
9
|
Dupont CA, Bourigault Y, Osmond T, Nier M, Barbey C, Latour X, Konto-Ghiorghi Y, Verdon J, Merieau A. Pseudomonas fluorescens MFE01 uses 1-undecene as aerial communication molecule. Front Microbiol 2023; 14:1264801. [PMID: 37908545 PMCID: PMC10614000 DOI: 10.3389/fmicb.2023.1264801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/27/2023] [Indexed: 11/02/2023] Open
Abstract
Bacterial communication is a fundamental process used to synchronize gene expression and collective behavior among the bacterial population. The most studied bacterial communication system is quorum sensing, a cell density system, in which the concentration of inductors increases to a threshold level allowing detection by specific receptors. As a result, bacteria can change their behavior in a coordinated way. While in Pseudomonas quorum sensing based on the synthesis of N-acyl homoserine lactone molecules is well studied, volatile organic compounds, although considered to be communication signals in the rhizosphere, are understudied. The Pseudomonas fluorescens MFE01 strain has a very active type six secretion system that can kill some competitive bacteria. Furthermore, MFE01 emits numerous volatile organic compounds, including 1-undecene, which contributes to the aerial inhibition of Legionella pneumophila growth. Finally, MFE01 appears to be deprived of N-acyl homoserine lactone synthase. The main objective of this study was to explore the role of 1-undecene in the communication of MFE01. We constructed a mutant affected in undA gene encoding the enzyme responsible for 1-undecene synthesis to provide further insight into the role of 1-undecene in MFE01. First, we studied the impacts of this mutation both on volatile organic compounds emission, using headspace solid-phase microextraction combined with gas chromatography-mass spectrometry and on L. pneumophila long-range inhibition. Then, we analyzed influence of 1-undecene on MFE01 coordinated phenotypes, including type six secretion system activity and biofilm formation. Next, to test the ability of MFE01 to synthesize N-acyl homoserine lactones in our conditions, we investigated in silico the presence of corresponding genes across the MFE01 genome and we exposed its biofilms to an N-acyl homoserine lactone-degrading enzyme. Finally, we examined the effects of 1-undecene emission on MFE01 biofilm maturation and aerial communication using an original experimental set-up. This study demonstrated that the ΔundA mutant is impaired in biofilm maturation. An exposure of the ΔundA mutant to the volatile compounds emitted by MFE01 during the biofilm development restored the biofilm maturation process. These findings indicate that P. fluorescens MFE01 uses 1-undecene emission for aerial communication, reporting for the first time this volatile organic compound as bacterial intraspecific communication signal.
Collapse
Affiliation(s)
- Charly A. Dupont
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- Structure Fédérative de Recherche Normandie Végétale and Entente Franco-Québécoise NOR-SEVE, NORVEGE, Rouen, France
| | - Yvann Bourigault
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- Structure Fédérative de Recherche Normandie Végétale and Entente Franco-Québécoise NOR-SEVE, NORVEGE, Rouen, France
| | - Théo Osmond
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- Structure Fédérative de Recherche Normandie Végétale and Entente Franco-Québécoise NOR-SEVE, NORVEGE, Rouen, France
| | - Maëva Nier
- Laboratoire Ecologie and Biologie des Interactions, Université de Poitiers, Poitiers, France
| | - Corinne Barbey
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- Structure Fédérative de Recherche Normandie Végétale and Entente Franco-Québécoise NOR-SEVE, NORVEGE, Rouen, France
| | - Xavier Latour
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- Structure Fédérative de Recherche Normandie Végétale and Entente Franco-Québécoise NOR-SEVE, NORVEGE, Rouen, France
| | - Yoan Konto-Ghiorghi
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- Structure Fédérative de Recherche Normandie Végétale and Entente Franco-Québécoise NOR-SEVE, NORVEGE, Rouen, France
| | - Julien Verdon
- Laboratoire Ecologie and Biologie des Interactions, Université de Poitiers, Poitiers, France
| | - Annabelle Merieau
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- Structure Fédérative de Recherche Normandie Végétale and Entente Franco-Québécoise NOR-SEVE, NORVEGE, Rouen, France
| |
Collapse
|
10
|
Kugler A, Stensjö K. Optimal energy and redox metabolism in the cyanobacterium Synechocystis sp. PCC 6803. NPJ Syst Biol Appl 2023; 9:47. [PMID: 37739963 PMCID: PMC10516873 DOI: 10.1038/s41540-023-00307-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 09/01/2023] [Indexed: 09/24/2023] Open
Abstract
Understanding energy and redox homeostasis and carbon partitioning is crucial for systems metabolic engineering of cell factories. Carbon metabolism alone cannot achieve maximal accumulation of metabolites in production hosts, since an efficient production of target molecules requires energy and redox balance, in addition to carbon flow. The interplay between cofactor regeneration and heterologous production in photosynthetic microorganisms is not fully explored. To investigate the optimality of energy and redox metabolism, while overproducing alkenes-isobutene, isoprene, ethylene and 1-undecene, in the cyanobacterium Synechocystis sp. PCC 6803, we applied stoichiometric metabolic modelling. Our network-wide analysis indicates that the rate of NAD(P)H regeneration, rather than of ATP, controls ATP/NADPH ratio, and thereby bioproduction. The simulation also implies that energy and redox balance is interconnected with carbon and nitrogen metabolism. Furthermore, we show that an auxiliary pathway, composed of serine, one-carbon and glycine metabolism, supports cellular redox homeostasis and ATP cycling. The study revealed non-intuitive metabolic pathways required to enhance alkene production, which are mainly driven by a few key reactions carrying a high flux. We envision that the presented comparative in-silico metabolic analysis will guide the rational design of Synechocystis as a photobiological production platform of target chemicals.
Collapse
Affiliation(s)
- Amit Kugler
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-751 20, Uppsala, Sweden
| | - Karin Stensjö
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-751 20, Uppsala, Sweden.
| |
Collapse
|
11
|
Yahya RZ, Wellman GB, Overmans S, Lauersen KJ. Engineered production of isoprene from the model green microalga Chlamydomonas reinhardtii. Metab Eng Commun 2023; 16:e00221. [PMID: 37006831 PMCID: PMC10063407 DOI: 10.1016/j.mec.2023.e00221] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/23/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Isoprene is a clear, colorless, volatile 5-carbon hydrocarbon that is one monomer of all cellular isoprenoids and a platform chemical with multiple applications in industry. Many plants have evolved isoprene synthases (IspSs) with the capacity to liberate isoprene from dimethylallyl diphosphate (DMADP) as part of cellular thermotolerance mechanisms. Isoprene is hydrophobic and volatile, rapidly leaves plant tissues and is one of the main carbon emission sources from vegetation globally. The universality of isoprenoid metabolism allows volatile isoprene production from microbes expressing heterologous IspSs. Here, we compared heterologous overexpression from the nuclear genome and localization into the plastid of four plant terpene synthases (TPs) in the green microalga Chlamydomonas reinhardtii. Using sealed vial mixotrophic cultivation, direct quantification of isoprene production was achieved from the headspace of living cultures, with the highest isoprene production observed in algae expressing the Ipomoea batatas IspS. Perturbations of the downstream carotenoid pathway through keto carotenoid biosynthesis enhanced isoprene titers, which could be further enhanced by increasing flux towards DMADP through heterologous co-expression of a yeast isopentenyl-DP delta isomerase. Multiplexed controlled-environment testing revealed that cultivation temperature, rather than illumination intensity, was the main factor affecting isoprene yield from the engineered alga. This is the first report of heterologous isoprene production from a eukaryotic alga and sets a foundation for further exploration of carbon conversion to this commodity chemical.
Collapse
|
12
|
Emmanuel MA, Bender SG, Bilodeau C, Carceller JM, DeHovitz JS, Fu H, Liu Y, Nicholls BT, Ouyang Y, Page CG, Qiao T, Raps FC, Sorigué DR, Sun SZ, Turek-Herman J, Ye Y, Rivas-Souchet A, Cao J, Hyster TK. Photobiocatalytic Strategies for Organic Synthesis. Chem Rev 2023; 123:5459-5520. [PMID: 37115521 PMCID: PMC10905417 DOI: 10.1021/acs.chemrev.2c00767] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Biocatalysis has revolutionized chemical synthesis, providing sustainable methods for preparing various organic molecules. In enzyme-mediated organic synthesis, most reactions involve molecules operating from their ground states. Over the past 25 years, there has been an increased interest in enzymatic processes that utilize electronically excited states accessed through photoexcitation. These photobiocatalytic processes involve a diverse array of reaction mechanisms that are complementary to one another. This comprehensive review will describe the state-of-the-art strategies in photobiocatalysis for organic synthesis until December 2022. Apart from reviewing the relevant literature, a central goal of this review is to delineate the mechanistic differences between the general strategies employed in the field. We will organize this review based on the relationship between the photochemical step and the enzymatic transformations. The review will include mechanistic studies, substrate scopes, and protein optimization strategies. By clearly defining mechanistically-distinct strategies in photobiocatalytic chemistry, we hope to illuminate future synthetic opportunities in the area.
Collapse
Affiliation(s)
- Megan A Emmanuel
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Sophie G Bender
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Catherine Bilodeau
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jose M Carceller
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Institute of Chemical Technology (ITQ), Universitat Politècnica de València, València 46022,Spain
| | - Jacob S DeHovitz
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Haigen Fu
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Yi Liu
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Bryce T Nicholls
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yao Ouyang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Claire G Page
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Tianzhang Qiao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Felix C Raps
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Damien R Sorigué
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Shang-Zheng Sun
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Joshua Turek-Herman
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yuxuan Ye
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Ariadna Rivas-Souchet
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jingzhe Cao
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Todd K Hyster
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
13
|
Yu X, Catanescu CO, Bird RE, Satagopan S, Baum ZJ, Lotti Diaz LM, Zhou QA. Trends in Research and Development for CO 2 Capture and Sequestration. ACS OMEGA 2023; 8:11643-11664. [PMID: 37033841 PMCID: PMC10077574 DOI: 10.1021/acsomega.2c05070] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Technological and medical advances over the past few decades epitomize human capabilities. However, the increased life expectancies and concomitant land-use changes have significantly contributed to the release of ∼830 gigatons of CO2 into the atmosphere over the last three decades, an amount comparable to the prior two and a half centuries of CO2 emissions. The United Nations has adopted a pledge to achieve "net zero", i.e., yearly removing as much CO2 from the atmosphere as the amount emitted due to human activities, by the year 2050. Attaining this goal will require a concerted effort by scientists, policy makers, and industries all around the globe. The development of novel materials on industrial scales to selectively remove CO2 from mixtures of gases makes it possible to mitigate CO2 emissions using a multipronged approach. Broadly, the CO2 present in the atmosphere can be captured using materials and processes for biological, chemical, and geological technologies that can sequester CO2 while also reducing our dependence on fossil-fuel reserves. In this review, we used the curated literature available in the CAS Content Collection to present a systematic analysis of the various approaches taken by scientists and industrialists to restore carbon balance in the environment. Our analysis highlights the latest trends alongside the associated challenges.
Collapse
|
14
|
Samire PP, Zhuang B, Légeret B, Baca-Porcel Á, Peltier G, Sorigué D, Aleksandrov A, Beisson F, Müller P. Autocatalytic effect boosts the production of medium-chain hydrocarbons by fatty acid photodecarboxylase. SCIENCE ADVANCES 2023; 9:eadg3881. [PMID: 37000872 PMCID: PMC10065435 DOI: 10.1126/sciadv.adg3881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Ongoing climate change is driving the search for renewable and carbon-neutral alternatives to fossil fuels. Photocatalytic conversion of fatty acids to hydrocarbons by fatty acid photodecarboxylase (FAP) represents a promising route to green fuels. However, the alleged low activity of FAP on C2 to C12 fatty acids seemed to preclude the use for synthesis of gasoline-range hydrocarbons. Here, we reveal that Chlorella variabilis FAP (CvFAP) can convert n-octanoic acid in vitro four times faster than n-hexadecanoic acid, its best substrate reported to date. In vivo, this translates into a CvFAP-based production rate over 10-fold higher for n-heptane than for n-pentadecane. Time-resolved spectroscopy and molecular modeling demonstrate that CvFAP's high catalytic activity on n-octanoic acid is, in part, due to an autocatalytic effect of its n-heptane product, which fills the rest of the binding pocket. These results represent an important step toward a bio-based and light-driven production of gasoline-like hydrocarbons.
Collapse
Affiliation(s)
- Poutoum P. Samire
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108 Saint-Paul-lez-Durance, France
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif sur Yvette, France
| | - Bo Zhuang
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif sur Yvette, France
- LOB, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| | - Bertrand Légeret
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Ángel Baca-Porcel
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Gilles Peltier
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Damien Sorigué
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Alexey Aleksandrov
- LOB, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| | - Frédéric Beisson
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Pavel Müller
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif sur Yvette, France
| |
Collapse
|
15
|
Sattayawat P, Yunus IS, Jones PR. Production of Fatty Acids and Derivatives Using Cyanobacteria. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023. [PMID: 36764955 DOI: 10.1007/10_2022_213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Fatty acids and their derivatives are highly valuable chemicals that can be produced through chemical or enzymatic processes using plant lipids. This may compete with human food sources. Therefore, there has been an urge to create a new method for synthesizing these chemicals. One approach is to use microbial cells, specifically cyanobacteria, as a factory platform. Engineering may need to be implemented in order to allow a cost-competitive production and to enable a production of a variety of different fatty acids and derivatives. In this chapter, we explain in details the importance of fatty acids and their derivatives, including fatty aldehydes, fatty alcohols, hydrocarbons, fatty acid methyl esters, and hydroxy fatty acids. The production of these chemicals using cyanobacterial native metabolisms together with strategies to engineer them are also explained. Moreover, recent examples of fatty acid and fatty acid derivative production from engineered cyanobacteria are gathered and reported. Commercial opportunities to manufacture fatty acids and derivatives are also discussed in this chapter. Altogether, it is clear that fatty acids and their derivatives are important chemicals, and with recent advancements in genetic engineering, a cyanobacterial platform for bio-based production is feasible. However, there are regulations and guidelines in place for the use of genetically modified organisms (GMOs) and some further developments are still needed before commercialization can be reached.
Collapse
Affiliation(s)
- Pachara Sattayawat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Ian S Yunus
- Joint BioEnergy Institute, Emeryville, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Patrik R Jones
- Department of Life Sciences, Imperial College London, London, UK.
| |
Collapse
|
16
|
Yao H, Dahal S, Yang L. Novel context-specific genome-scale modelling explores the potential of triacylglycerol production by Chlamydomonas reinhardtii. Microb Cell Fact 2023; 22:13. [PMID: 36650525 PMCID: PMC9847032 DOI: 10.1186/s12934-022-02004-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/17/2022] [Indexed: 01/19/2023] Open
Abstract
Gene expression data of cell cultures is commonly measured in biological and medical studies to understand cellular decision-making in various conditions. Metabolism, affected but not solely determined by the expression, is much more difficult to measure experimentally. Finding a reliable method to predict cell metabolism for expression data will greatly benefit metabolic engineering. We have developed a novel pipeline, OVERLAY, that can explore cellular fluxomics from expression data using only a high-quality genome-scale metabolic model. This is done through two main steps: first, construct a protein-constrained metabolic model (PC-model) by integrating protein and enzyme information into the metabolic model (M-model). Secondly, overlay the expression data onto the PC-model using a novel two-step nonconvex and convex optimization formulation, resulting in a context-specific PC-model with optionally calibrated rate constants. The resulting model computes proteomes and intracellular flux states that are consistent with the measured transcriptomes. Therefore, it provides detailed cellular insights that are difficult to glean individually from the omic data or M-model alone. We apply the OVERLAY to interpret triacylglycerol (TAG) overproduction by Chlamydomonas reinhardtii, using time-course RNA-Seq data. We show that OVERLAY can compute C. reinhardtii metabolism under nitrogen deprivation and metabolic shifts after an acetate boost. OVERLAY can also suggest possible 'bottleneck' proteins that need to be overexpressed to increase the TAG accumulation rate, as well as discuss other TAG-overproduction strategies.
Collapse
Affiliation(s)
- Haoyang Yao
- grid.410356.50000 0004 1936 8331Department of Chemical Engineering, Queen’s University, 19 Division St, Kingston, K7L 2N9 Canada
| | - Sanjeev Dahal
- grid.410356.50000 0004 1936 8331Department of Chemical Engineering, Queen’s University, 19 Division St, Kingston, K7L 2N9 Canada
| | - Laurence Yang
- grid.410356.50000 0004 1936 8331Department of Chemical Engineering, Queen’s University, 19 Division St, Kingston, K7L 2N9 Canada
| |
Collapse
|
17
|
Towards understanding the mechanism of n-hexane tolerance in Synechocystis sp. PCC 6803. Chin J Chem Eng 2023. [DOI: 10.1016/j.cjche.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
18
|
Kumar N, Kar S, Shukla P. Role of regulatory pathways and multi-omics approaches for carbon capture and mitigation in cyanobacteria. BIORESOURCE TECHNOLOGY 2022; 366:128104. [PMID: 36257524 DOI: 10.1016/j.biortech.2022.128104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Cyanobacteria are known for their metabolic potential and carbon capture and sequestration capabilities. These cyanobacteria are not only an effective source for carbon minimization and resource mobilization into value-added products for biotechnological gains. The present review focuses on the detailed description of carbon capture mechanisms exerted by the various cyanobacterial strains, the role of important regulatory pathways, and their subsequent genes responsible for such mechanisms. Moreover, this review will also describe effectual mechanisms of central carbon metabolism like isoprene synthesis, ethylene production, MEP pathway, and the role of Glyoxylate shunt in the carbon sequestration mechanisms. This review also describes some interesting facets of using carbon assimilation mechanisms for valuable bio-products. The role of regulatory pathways and multi-omics approaches in cyanobacteria will not only be crucial towards improving carbon utilization but also will give new insights into utilizing cyanobacterial bioresource for carbon neutrality.
Collapse
Affiliation(s)
- Niwas Kumar
- Society for Research and Initiatives for Sustainable Technologies and Institutions, Navrangapura, Ahmedabad 380009, India
| | - Srabani Kar
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
19
|
Liu S, Hou X, Xu A, Chu B, Li Y, Jin L, Lu J, Dong L, Fan M. Restrictive Regulation of Ionic Liquid Quaternary Ammonium Salt in SBA‐15 Pore Channel for Efficient Carbon Dioxide Conversion. Chemistry 2022; 28:e202202105. [DOI: 10.1002/chem.202202105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Shaoqing Liu
- Guangxi Colleges and University Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 PR China
| | - Xueyan Hou
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education School of Energy and Environment Southeast University Nanjing 210096 Jiangsu P. R. China
| | - Aihao Xu
- Guangxi Colleges and University Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 PR China
| | - Bingxian Chu
- Guangxi Colleges and University Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 PR China
| | - Yunxi Li
- Guangxi Colleges and University Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 PR China
| | - Lijian Jin
- Guangxi Colleges and University Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 PR China
| | - Jinkai Lu
- Guangxi Colleges and University Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 PR China
| | - Lihui Dong
- Guangxi Colleges and University Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 PR China
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 P.R. China
| | - Minguang Fan
- Guangxi Colleges and University Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 PR China
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 P.R. China
| |
Collapse
|
20
|
Hans S, Kumar N, Gohil N, Khambhati K, Bhattacharjee G, Deb SS, Maurya R, Kumar V, Reshamwala SMS, Singh V. Rebooting life: engineering non-natural nucleic acids, proteins and metabolites in microorganisms. Microb Cell Fact 2022; 21:100. [PMID: 35643549 PMCID: PMC9148472 DOI: 10.1186/s12934-022-01828-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/15/2022] [Indexed: 12/01/2022] Open
Abstract
The surging demand of value-added products has steered the transition of laboratory microbes to microbial cell factories (MCFs) for facilitating production of large quantities of important native and non-native biomolecules. This shift has been possible through rewiring and optimizing different biosynthetic pathways in microbes by exercising frameworks of metabolic engineering and synthetic biology principles. Advances in genome and metabolic engineering have provided a fillip to create novel biomolecules and produce non-natural molecules with multitude of applications. To this end, numerous MCFs have been developed and employed for production of non-natural nucleic acids, proteins and different metabolites to meet various therapeutic, biotechnological and industrial applications. The present review describes recent advances in production of non-natural amino acids, nucleic acids, biofuel candidates and platform chemicals.
Collapse
|
21
|
Tan X, Nielsen J. The integration of bio-catalysis and electrocatalysis to produce fuels and chemicals from carbon dioxide. Chem Soc Rev 2022; 51:4763-4785. [PMID: 35584360 DOI: 10.1039/d2cs00309k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dependence on fossil fuels has caused excessive emissions of greenhouse gases (GHGs), leading to climate changes and global warming. Even though the expansion of electricity generation will enable a wider use of electric vehicles, biotechnology represents an attractive route for producing high-density liquid transportation fuels that can reduce GHG emissions from jets, long-haul trucks and ships. Furthermore, to achieve immediate alleviation of the current environmental situation, besides reducing carbon footprint it is urgent to develop technologies that transform atmospheric CO2 into fossil fuel replacements. The integration of bio-catalysis and electrocatalysis (bio-electrocatalysis) provides such a promising avenue to convert CO2 into fuels and chemicals with high-chain lengths. Following an overview of different mechanisms that can be used for CO2 fixation, we will discuss crucial factors for electrocatalysis with a special highlight on the improvement of electron-transfer kinetics, multi-dimensional electrocatalysts and their hybrids, electrolyser configurations, and the integration of electrocatalysis and bio-catalysis. Finally, we prospect key advantages and challenges of bio-electrocatalysis, and end with a discussion of future research directions.
Collapse
Affiliation(s)
- Xinyi Tan
- Department of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE41296 Gothenburg, Sweden. .,BioInnovation Institute, Ole Maaløes Vej 3, DK2200 Copenhagen N, Denmark
| |
Collapse
|
22
|
Abdallah MN, Wellman GB, Overmans S, Lauersen KJ. Combinatorial Engineering Enables Photoautotrophic Growth in High Cell Density Phosphite-Buffered Media to Support Engineered Chlamydomonas reinhardtii Bio-Production Concepts. Front Microbiol 2022; 13:885840. [PMID: 35633717 PMCID: PMC9141048 DOI: 10.3389/fmicb.2022.885840] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/28/2022] [Indexed: 12/15/2022] Open
Abstract
Chlamydomonas reinhardtii has emerged as a powerful green cell factory for metabolic engineering of sustainable products created from the photosynthetic lifestyle of this microalga. Advances in nuclear genome modification and transgene expression are allowing robust engineering strategies to be demonstrated in this host. However, commonly used lab strains are not equipped with features to enable their broader implementation in non-sterile conditions and high-cell density concepts. Here, we used combinatorial chloroplast and nuclear genome engineering to augment the metabolism of the C. reinhardtii strain UVM4 with publicly available genetic tools to enable the use of inorganic phosphite and nitrate as sole sources of phosphorous and nitrogen, respectively. We present recipes to create phosphite-buffered media solutions that enable high cell density algal cultivation. We then combined previously reported engineering strategies to produce the heterologous sesquiterpenoid patchoulol to high titers from our engineered green cell factories and show these products are possible to produce in non-sterile conditions. Our work presents a straightforward means to generate C. reinhardtii strains for broader application in bio-processes for the sustainable generation of products from green microalgae.
Collapse
Affiliation(s)
| | | | | | - Kyle J. Lauersen
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
23
|
Abdallah MN, Wellman GB, Overmans S, Lauersen KJ. Combinatorial Engineering Enables Photoautotrophic Growth in High Cell Density Phosphite-Buffered Media to Support Engineered Chlamydomonas reinhardtii Bio-Production Concepts. Front Microbiol 2022; 13:885840. [PMID: 35633717 DOI: 10.1101/2022.02.28.482248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/28/2022] [Indexed: 05/28/2023] Open
Abstract
Chlamydomonas reinhardtii has emerged as a powerful green cell factory for metabolic engineering of sustainable products created from the photosynthetic lifestyle of this microalga. Advances in nuclear genome modification and transgene expression are allowing robust engineering strategies to be demonstrated in this host. However, commonly used lab strains are not equipped with features to enable their broader implementation in non-sterile conditions and high-cell density concepts. Here, we used combinatorial chloroplast and nuclear genome engineering to augment the metabolism of the C. reinhardtii strain UVM4 with publicly available genetic tools to enable the use of inorganic phosphite and nitrate as sole sources of phosphorous and nitrogen, respectively. We present recipes to create phosphite-buffered media solutions that enable high cell density algal cultivation. We then combined previously reported engineering strategies to produce the heterologous sesquiterpenoid patchoulol to high titers from our engineered green cell factories and show these products are possible to produce in non-sterile conditions. Our work presents a straightforward means to generate C. reinhardtii strains for broader application in bio-processes for the sustainable generation of products from green microalgae.
Collapse
Affiliation(s)
- Malak N Abdallah
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Gordon B Wellman
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Sebastian Overmans
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Kyle J Lauersen
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
24
|
Parveen H, Yazdani SS. Insights into cyanobacterial alkane biosynthesis. J Ind Microbiol Biotechnol 2022; 49:kuab075. [PMID: 34718648 PMCID: PMC9118987 DOI: 10.1093/jimb/kuab075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/09/2021] [Indexed: 11/12/2022]
Abstract
Alkanes are high-energy molecules that are compatible with enduring liquid fuel infrastructures, which make them highly suitable for being next-generation biofuels. Though biological production of alkanes has been reported in various microorganisms, the reports citing photosynthetic cyanobacteria as natural producers have been the most consistent for the long-chain alkanes and alkenes (C15-C19). However, the production of alkane in cyanobacteria is low, leading to its extraction being uneconomical for commercial purposes. In order to make alkane production economically feasible from cyanobacteria, the titre and yield need to be increased by several orders of magnitude. In the recent past, efforts have been made to enhance alkane production, although with a little gain in yield, leaving space for much improvement. Genetic manipulation in cyanobacteria is considered challenging, but recent advancements in genetic engineering tools may assist in manipulating the genome in order to enhance alkane production. Further, advancement in a basic understanding of metabolic pathways and gene functioning will guide future research for harvesting the potential of these tiny photosynthetically efficient factories. In this review, our focus would be to highlight the current knowledge available on cyanobacterial alkane production, and the potential aspects of developing cyanobacterium as an economical source of biofuel. Further insights into different metabolic pathways and hosts explored so far, and possible challenges in scaling up the production of alkanes will also be discussed.
Collapse
Affiliation(s)
- Humaira Parveen
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067 India
| | - Syed Shams Yazdani
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067 India
- DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| |
Collapse
|
25
|
Krujatz F, Dani S, Windisch J, Emmermacher J, Hahn F, Mosshammer M, Murthy S, Steingroewer J, Walther T, Kühl M, Gelinsky M, Lode A. Think outside the box: 3D bioprinting concepts for biotechnological applications – recent developments and future perspectives. Biotechnol Adv 2022; 58:107930. [DOI: 10.1016/j.biotechadv.2022.107930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/17/2022] [Indexed: 12/14/2022]
|
26
|
Hanko EKR, Sherlock G, Minton NP, Malys N. Biosensor-informed engineering of Cupriavidus necator H16 for autotrophic D-mannitol production. Metab Eng 2022; 72:24-34. [PMID: 35149227 DOI: 10.1016/j.ymben.2022.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 01/26/2023]
Abstract
Cupriavidus necator H16 is one of the most researched carbon dioxide (CO2)-fixing bacteria. It can store carbon in form of the polymer polyhydroxybutyrate and generate energy by aerobic hydrogen oxidation under lithoautotrophic conditions, making C. necator an ideal chassis for the biological production of value-added compounds from waste gases. Despite its immense potential, however, the experimental evidence of C. necator utilisation for autotrophic biosynthesis of chemicals is limited. Here, we genetically engineered C. necator for the high-level de novo biosynthesis of the industrially relevant sugar alcohol mannitol directly from Calvin-Benson-Bassham (CBB) cycle intermediates. To identify optimal mannitol production conditions in C. necator, a mannitol-responsive biosensor was applied for screening of mono- and bifunctional mannitol 1-phosphate dehydrogenases (MtlDs) and mannitol 1-phosphate phosphatases (M1Ps). We found that MtlD/M1P from brown alga Ectocarpus siliculosus performed overall the best under heterotrophic growth conditions and was selected to be chromosomally integrated. Consequently, autotrophic fermentation of recombinant C. necator yielded up to 3.9 g/L mannitol, representing a substantial improvement over mannitol biosynthesis using recombinant cyanobacteria. Importantly, we demonstrate that at the onset of stationary growth phase nearly 100% of carbon can be directed from the CBB cycle into mannitol through the glyceraldehyde 3-phosphate and fructose 6-phosphate intermediates. This study highlights for the first time the potential of C. necator to generate sugar alcohols from CO2 utilising precursors derived from the CBB cycle.
Collapse
Affiliation(s)
- Erik K R Hanko
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The University of Nottingham, Nottingham, NG7 2RD, United Kingdom; Present address: Manchester Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Gillian Sherlock
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Nigel P Minton
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Naglis Malys
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The University of Nottingham, Nottingham, NG7 2RD, United Kingdom.
| |
Collapse
|
27
|
Huang K, Su Z, He M, Wu Y, Wang M. Simultaneous accumulation of astaxanthin and β-carotene in Chlamydomonas reinhardtii by the introduction of foreign β-carotene hydroxylase gene in response to high light stress. Biotechnol Lett 2022; 44:321-331. [PMID: 35119571 DOI: 10.1007/s10529-022-03230-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/26/2022] [Indexed: 11/02/2022]
Abstract
Carotenoids are important photosynthetic pigments with many physiological functions, nutritional properties and high commercial value. β-carotene hydroxylase is one of the key enzymes in the carotenoid synthesis pathway of Chlamydomonas reinhardtii for the conversion of β-carotene to astaxanthin. The vector p64DZ containing the β-carotene hydroxylase gene crtZ from Haematococcus pluvialis was transformed into C. reinhardtii CC-503. The transformants were selected by alternate culture in solid-liquid medium containing spectinomycin (100 µg mL-1). PCR results indicated that the gene crtZ and aadA were integrated into the genome of C. reinhardtii. RT-PCR analysis showed that the gene crtZ was transcribed in Chlamydomonas transformants. HPLC analysis showed that the content of astaxanthin and β-carotene in cells of C. reinhardtii were simultaneously increased. Under medium light intensity cultivation (60 µmol m-2 s-1), transgenic C. reinhardtii had an 85.8% increase in β-carotene content compared with the wild type. The content of astaxanthin and β-carotene reached 1.97 ± 0.13 mg g-1 fresh cell weight (FCW) and 105.94 ± 5.84 µg g-1 FCW, which were increased 18% and 42.4% than the wild type after 6 h of high light treatment (200 µmol m-2 s-1), respectively. Our results indicate the regulatory effect on pigments in C. reinhardtii by β-carotene hydroxylase gene of H. pluvialis, and demonstrate the positive effect of high light stress on pigment accumulation in transgenic C. reinhardtii.
Collapse
Affiliation(s)
- Kunmei Huang
- College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Zhongliang Su
- College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China.
| | - Mingyan He
- College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Yaoyao Wu
- College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Meiqi Wang
- College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| |
Collapse
|
28
|
Yunus IS, Anfelt J, Sporre E, Miao R, Hudson EP, Jones PR. Synthetic metabolic pathways for conversion of CO2 into secreted short-to medium-chain hydrocarbons using cyanobacteria. Metab Eng 2022; 72:14-23. [DOI: 10.1016/j.ymben.2022.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/17/2022] [Accepted: 01/29/2022] [Indexed: 12/14/2022]
|
29
|
Taylor GM, Hitchcock A, Heap JT. Combinatorial assembly platform enabling engineering of genetically stable metabolic pathways in cyanobacteria. Nucleic Acids Res 2021; 49:e123. [PMID: 34554258 PMCID: PMC8643660 DOI: 10.1093/nar/gkab791] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/18/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Cyanobacteria are simple, efficient, genetically-tractable photosynthetic microorganisms which in principle represent ideal biocatalysts for CO2 capture and conversion. However, in practice, genetic instability and low productivity are key, linked problems in engineered cyanobacteria. We took a massively parallel approach, generating and characterising libraries of synthetic promoters and RBSs for the cyanobacterium Synechocystis sp. PCC 6803, and assembling a sparse combinatorial library of millions of metabolic pathway-encoding construct variants. Genetic instability was observed for some variants, which is expected when variants cause metabolic burden. Surprisingly however, in a single combinatorial round without iterative optimisation, 80% of variants chosen at random and cultured photoautotrophically over many generations accumulated the target terpenoid lycopene from atmospheric CO2, apparently overcoming genetic instability. This large-scale parallel metabolic engineering of cyanobacteria provides a new platform for development of genetically stable cyanobacterial biocatalysts for sustainable light-driven production of valuable products directly from CO2, avoiding fossil carbon or competition with food production.
Collapse
Affiliation(s)
- George M Taylor
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - John T Heap
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.,School of Life Sciences, The University of Nottingham, Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
30
|
Aselmeyer C, Légeret B, Bénarouche A, Sorigué D, Parsiegla G, Beisson F, Carrière F. Fatty Acid Photodecarboxylase Is an Interfacial Enzyme That Binds to Lipid-Water Interfaces to Access Its Insoluble Substrate. Biochemistry 2021; 60:3200-3212. [PMID: 34633183 DOI: 10.1021/acs.biochem.1c00317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fatty acid photodecarboxylase (FAP), one of the few natural photoenzymes characterized so far, is a promising biocatalyst for lipid-to-hydrocarbon conversion using light. However, the optimum supramolecular organization under which the fatty acid (FA) substrate should be presented to FAP has not been addressed. Using palmitic acid embedded in phospholipid liposomes, phospholipid-stabilized microemulsions, and mixed micelles, we show that FAP displays a preference for FAs present in liposomes and at the surface of microemulsions. The kinetics of adsorption onto phospholipid and galactolipid monomolecular films further suggests the ability of FAP to bind to and penetrate into membranes, with a higher affinity in the presence of FAs. The FAP structure reveals a potential interfacial recognition site with clusters of hydrophobic and basic residues surrounding the active site entrance. The resulting dipolar moment suggests the orientation of FAP at negatively charged interfaces. These findings provide important clues about the mode of action of FAP and the development of FAP-based bioconversion processes.
Collapse
Affiliation(s)
- Cyril Aselmeyer
- Aix Marseille Université, CNRS, UMR 7281 Bioénergétique et Ingénierie des Protéines, 13009 Marseille, France.,CEA, CNRS, Aix Marseille Université, Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), UMR 7265, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Bertrand Légeret
- CEA, CNRS, Aix Marseille Université, Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), UMR 7265, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Anaïs Bénarouche
- Aix Marseille Université, CNRS, UMR 7281 Bioénergétique et Ingénierie des Protéines, 13009 Marseille, France
| | - Damien Sorigué
- CEA, CNRS, Aix Marseille Université, Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), UMR 7265, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Goetz Parsiegla
- Aix Marseille Université, CNRS, UMR 7281 Bioénergétique et Ingénierie des Protéines, 13009 Marseille, France
| | - Fred Beisson
- CEA, CNRS, Aix Marseille Université, Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), UMR 7265, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Frédéric Carrière
- Aix Marseille Université, CNRS, UMR 7281 Bioénergétique et Ingénierie des Protéines, 13009 Marseille, France
| |
Collapse
|
31
|
Aamer Mehmood M, Shahid A, Malik S, Wang N, Rizwan Javed M, Nabeel Haider M, Verma P, Umer Farooq Ashraf M, Habib N, Syafiuddin A, Boopathy R. Advances in developing metabolically engineered microbial platforms to produce fourth-generation biofuels and high-value biochemicals. BIORESOURCE TECHNOLOGY 2021; 337:125510. [PMID: 34320777 DOI: 10.1016/j.biortech.2021.125510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Producing bio-based chemicals is imperative to establish an eco-friendly circular bioeconomy. However, the compromised titer of these biochemicals hampers their commercial implementation. Advances in genetic engineering tools have enabled researchers to develop robust strains producing desired titers of the next-generation biofuels and biochemicals. The native and non-native pathways have been extensively engineered in various host strains via pathway reconstruction and metabolic flux redirection of lipid metabolism and central carbon metabolism to produce myriad biomolecules including alcohols, isoprenoids, hydrocarbons, fatty-acids, and their derivatives. This review has briefly covered the research efforts made during the previous decade to produce advanced biofuels and biochemicals through engineered microbial platforms along with the engineering approaches employed. The efficiency of the various techniques along with their shortcomings is also covered to provide a comprehensive overview of the progress and future directions to achieve higher titer of fourth-generation biofuels and biochemicals while keeping environmental sustainability intact.
Collapse
Affiliation(s)
- Muhammad Aamer Mehmood
- School of Bioengineering, Sichuan University of Science and Engineering, Zigong, China; Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ayesha Shahid
- Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Sana Malik
- Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ning Wang
- School of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
| | - Muhammad Rizwan Javed
- Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Nabeel Haider
- Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Pradeep Verma
- Department of Microbiology, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer-305801, Rajasthan, India
| | - Muhammad Umer Farooq Ashraf
- Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Nida Habib
- Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Achmad Syafiuddin
- Department of Public Health, Universitas Nahdlatul Ulama Surabaya, 60237 Surabaya, East Java, Indonesia
| | - Raj Boopathy
- Department of Biological Sciences, Nicholls State University, Thibodaux, LA 70310, USA.
| |
Collapse
|
32
|
Intasian P, Prakinee K, Phintha A, Trisrivirat D, Weeranoppanant N, Wongnate T, Chaiyen P. Enzymes, In Vivo Biocatalysis, and Metabolic Engineering for Enabling a Circular Economy and Sustainability. Chem Rev 2021; 121:10367-10451. [PMID: 34228428 DOI: 10.1021/acs.chemrev.1c00121] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the industrial revolution, the rapid growth and development of global industries have depended largely upon the utilization of coal-derived chemicals, and more recently, the utilization of petroleum-based chemicals. These developments have followed a linear economy model (produce, consume, and dispose). As the world is facing a serious threat from the climate change crisis, a more sustainable solution for manufacturing, i.e., circular economy in which waste from the same or different industries can be used as feedstocks or resources for production offers an attractive industrial/business model. In nature, biological systems, i.e., microorganisms routinely use their enzymes and metabolic pathways to convert organic and inorganic wastes to synthesize biochemicals and energy required for their growth. Therefore, an understanding of how selected enzymes convert biobased feedstocks into special (bio)chemicals serves as an important basis from which to build on for applications in biocatalysis, metabolic engineering, and synthetic biology to enable biobased processes that are greener and cleaner for the environment. This review article highlights the current state of knowledge regarding the enzymatic reactions used in converting biobased wastes (lignocellulosic biomass, sugar, phenolic acid, triglyceride, fatty acid, and glycerol) and greenhouse gases (CO2 and CH4) into value-added products and discusses the current progress made in their metabolic engineering. The commercial aspects and life cycle assessment of products from enzymatic and metabolic engineering are also discussed. Continued development in the field of metabolic engineering would offer diversified solutions which are sustainable and renewable for manufacturing valuable chemicals.
Collapse
Affiliation(s)
- Pattarawan Intasian
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Kridsadakorn Prakinee
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Aisaraphon Phintha
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Duangthip Trisrivirat
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Nopphon Weeranoppanant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Chemical Engineering, Faculty of Engineering, Burapha University, 169, Long-hard Bangsaen, Saensook, Muang, Chonburi 20131, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| |
Collapse
|
33
|
Moulin SLY, Beyly-Adriano A, Cuiné S, Blangy S, Légeret B, Floriani M, Burlacot A, Sorigué D, Samire PP, Li-Beisson Y, Peltier G, Beisson F. Fatty acid photodecarboxylase is an ancient photoenzyme that forms hydrocarbons in the thylakoids of algae. PLANT PHYSIOLOGY 2021; 186:1455-1472. [PMID: 33856460 PMCID: PMC8260138 DOI: 10.1093/plphys/kiab168] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/07/2021] [Indexed: 05/11/2023]
Abstract
Fatty acid photodecarboxylase (FAP) is one of the few enzymes that require light for their catalytic cycle (photoenzymes). FAP was first identified in the microalga Chlorella variabilis NC64A, and belongs to an algae-specific subgroup of the glucose-methanol-choline oxidoreductase family. While the FAP from C. variabilis and its Chlamydomonas reinhardtii homolog CrFAP have demonstrated in vitro activities, their activities and physiological functions have not been studied in vivo. Furthermore, the conservation of FAP activity beyond green microalgae remains hypothetical. Here, using a C. reinhardtii FAP knockout line (fap), we showed that CrFAP is responsible for the formation of 7-heptadecene, the only hydrocarbon of this alga. We further showed that CrFAP was predominantly membrane-associated and that >90% of 7-heptadecene was recovered in the thylakoid fraction. In the fap mutant, photosynthetic activity was not affected under standard growth conditions, but was reduced after cold acclimation when light intensity varied. A phylogenetic analysis that included sequences from Tara Ocean identified almost 200 putative FAPs and indicated that FAP was acquired early after primary endosymbiosis. Within Bikonta, FAP was retained in secondary photosynthetic endosymbiosis lineages but absent from those that lost the plastid. Characterization of recombinant FAPs from various algal genera (Nannochloropsis, Ectocarpus, Galdieria, Chondrus) provided experimental evidence that FAP photochemical activity was present in red and brown algae, and was not limited to unicellular species. These results thus indicate that FAP was conserved during the evolution of most algal lineages where photosynthesis was retained, and suggest that its function is linked to photosynthetic membranes.
Collapse
Affiliation(s)
- Solène L Y Moulin
- CEA, CNRS, Aix-Marseille University, Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), UMR7265, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
- Present address: Stanford University, 279 Campus Dr, Stanford, CA 94305
| | - Audrey Beyly-Adriano
- CEA, CNRS, Aix-Marseille University, Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), UMR7265, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Stéphan Cuiné
- CEA, CNRS, Aix-Marseille University, Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), UMR7265, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Stéphanie Blangy
- CEA, CNRS, Aix-Marseille University, Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), UMR7265, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Bertrand Légeret
- CEA, CNRS, Aix-Marseille University, Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), UMR7265, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Magali Floriani
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SRTE/LECO, Cadarache, 13108 Saint-Paul-Lez-Durance, France
| | - Adrien Burlacot
- CEA, CNRS, Aix-Marseille University, Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), UMR7265, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
- Present address: Howard Hughes Medical Institute, Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720-3102, USA
| | - Damien Sorigué
- CEA, CNRS, Aix-Marseille University, Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), UMR7265, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Poutoum-Palakiyem Samire
- CEA, CNRS, Aix-Marseille University, Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), UMR7265, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Yonghua Li-Beisson
- CEA, CNRS, Aix-Marseille University, Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), UMR7265, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Gilles Peltier
- CEA, CNRS, Aix-Marseille University, Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), UMR7265, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Fred Beisson
- CEA, CNRS, Aix-Marseille University, Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), UMR7265, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
- Author for communication:
| |
Collapse
|
34
|
Yunus IS, Wang Z, Sattayawat P, Muller J, Zemichael FW, Hellgardt K, Jones PR. Improved Bioproduction of 1-Octanol Using Engineered Synechocystis sp. PCC 6803. ACS Synth Biol 2021; 10:1417-1428. [PMID: 34003632 DOI: 10.1021/acssynbio.1c00029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
1-Octanol has gained interest as a chemical precursor for both high and low value commodities including fuel, solvents, surfactants, and fragrances. By harnessing the power from sunlight and CO2 as carbon source, cyanobacteria has recently been engineered for renewable production of 1-octanol. The productivity, however, remained low. In the present work, we report efforts to further improve the 1-octanol productivity. Different N-terminal truncations were evaluated on three thioesterases from different plant species, resulting in several candidate thioesterases with improved activity and selectivity toward octanoyl-ACP. The structure/function trials suggest that current knowledge and/or state-of-the art computational tools are insufficient to determine the most appropriate cleavage site for thioesterases in Synechocystis. Additionally, by tuning the inducer concentration and light intensity, we further improved the 1-octanol productivity, reaching up to 35% (w/w) carbon partitioning and a titer of 526 ± 5 mg/L 1-octanol in 12 days. Long-term cultivation experiments demonstrated that the improved strain can be stably maintained for at least 30 days and/or over ten times serial dilution. Surprisingly, the improved strain was genetically stable in contrast to earlier strains having lower productivity (and hence a reduced chance of reaching toxic product concentrations). Altogether, improved enzymes and environmental conditions (e.g., inducer concentration and light intensity) substantially increased the 1-octanol productivity. When cultured under continuous conditions, the bioproduction system reached an accumulative titer of >3.5 g/L 1-octanol over close to 180 days.
Collapse
Affiliation(s)
- Ian Sofian Yunus
- Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Zhixuan Wang
- Department of Chemical Engineering, Imperial College London, SW7 2AZ London, United Kingdom
| | - Pachara Sattayawat
- Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jonathan Muller
- Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Fessehaye W. Zemichael
- Department of Chemical Engineering, Imperial College London, SW7 2AZ London, United Kingdom
| | - Klaus Hellgardt
- Department of Chemical Engineering, Imperial College London, SW7 2AZ London, United Kingdom
| | - Patrik R. Jones
- Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| |
Collapse
|
35
|
Scherer M, Fleishman SJ, Jones PR, Dandekar T, Bencurova E. Computational Enzyme Engineering Pipelines for Optimized Production of Renewable Chemicals. Front Bioeng Biotechnol 2021; 9:673005. [PMID: 34211966 PMCID: PMC8239229 DOI: 10.3389/fbioe.2021.673005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
To enable a sustainable supply of chemicals, novel biotechnological solutions are required that replace the reliance on fossil resources. One potential solution is to utilize tailored biosynthetic modules for the metabolic conversion of CO2 or organic waste to chemicals and fuel by microorganisms. Currently, it is challenging to commercialize biotechnological processes for renewable chemical biomanufacturing because of a lack of highly active and specific biocatalysts. As experimental methods to engineer biocatalysts are time- and cost-intensive, it is important to establish efficient and reliable computational tools that can speed up the identification or optimization of selective, highly active, and stable enzyme variants for utilization in the biotechnological industry. Here, we review and suggest combinations of effective state-of-the-art software and online tools available for computational enzyme engineering pipelines to optimize metabolic pathways for the biosynthesis of renewable chemicals. Using examples relevant for biotechnology, we explain the underlying principles of enzyme engineering and design and illuminate future directions for automated optimization of biocatalysts for the assembly of synthetic metabolic pathways.
Collapse
Affiliation(s)
- Marc Scherer
- Department of Bioinformatics, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Sarel J Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Patrik R Jones
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Thomas Dandekar
- Department of Bioinformatics, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Elena Bencurova
- Department of Bioinformatics, Julius-Maximilians University of Würzburg, Würzburg, Germany
| |
Collapse
|
36
|
Sun Y, Calderini E, Kourist R. A Reconstructed Common Ancestor of the Fatty Acid Photo-decarboxylase Clade Shows Photo-decarboxylation Activity and Increased Thermostability. Chembiochem 2021; 22:1833-1840. [PMID: 33539041 PMCID: PMC8252050 DOI: 10.1002/cbic.202000851] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/04/2021] [Indexed: 12/22/2022]
Abstract
Light-dependent enzymes are a rare type of biocatalyst with high potential for research and biotechnology. A recently discovered fatty acid photo-decarboxylase from Chlorella variabilis NC64A (CvFAP) converts fatty acids to the corresponding hydrocarbons only when irradiated with blue light (400 to 520 nm). To expand the available catalytic diversity for fatty acid decarboxylation, we reconstructed possible ancestral decarboxylases from a set of 12 extant sequences that were classified under the fatty acid decarboxylases clade within the glucose-methanol choline (GMC) oxidoreductase family. One of the resurrected enzymes (ANC1) showed activity in the decarboxylation of fatty acids, showing that the clade indeed contains several photo-decarboxylases. ANC1 has a 15 °C higher melting temperature (Tm ) than the extant CvFAP. Its production yielded 12-fold more protein than this wild type decarboxylase, which offers practical advantages for the biochemical investigation of this photoenzyme. Homology modelling revealed amino acid substitutions to more hydrophilic residues at the surface and shorter flexible loops compared to the wild type. Using ancestral sequence reconstruction, we have expanded the existing pool of confirmed fatty acid photo-decarboxylases, providing access to a more robust catalyst for further development via directed evolution.
Collapse
Affiliation(s)
- Yue Sun
- Institute of Molecular BiotechnologyGraz University of TechnologyPetersgasse 148010GrazAustria
| | - Elia Calderini
- Institute of Molecular BiotechnologyGraz University of TechnologyPetersgasse 148010GrazAustria
| | - Robert Kourist
- Institute of Molecular BiotechnologyGraz University of TechnologyPetersgasse 148010GrazAustria
| |
Collapse
|
37
|
Sharma A, Yazdani SS. Microbial engineering to produce fatty alcohols and alkanes. J Ind Microbiol Biotechnol 2021; 48:6169711. [PMID: 33713132 DOI: 10.1093/jimb/kuab011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 11/14/2022]
Abstract
Owing to their high energy density and composition, fatty acid-derived chemicals possess a wide range of applications such as biofuels, biomaterials, and other biochemical, and as a consequence, the global annual demand for products has surpassed 2 million tons. With the exhausting petroleum reservoirs and emerging environmental concerns on using petroleum feedstock, it has become indispensable to shift to a renewable-based industry. With the advancement in the field of synthetic biology and metabolic engineering, the use of microbes as factories for the production of fatty acid-derived chemicals is becoming a promising alternative approach for the production of these derivatives. Numerous metabolic approaches have been developed for conditioning the microbes to improve existing or develop new methodologies capable of efficient oleochemical production. However, there still exist several limitations that need to be addressed for the commercial viability of the microbial cell factory production. Though substantial advancement has been made toward successfully producing these fatty acids derived chemicals, a considerable amount of work needs to be done for improving the titers. In the present review, we aim to address the roadblocks impeding the heterologous production, the engineering pathway strategies implemented across the range of microbes in a detailed manner, and the commercial readiness of these molecules of immense application.
Collapse
Affiliation(s)
- Ashima Sharma
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.,DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Syed Shams Yazdani
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.,DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| |
Collapse
|
38
|
Ahmed MS, Lauersen KJ, Ikram S, Li C. Efflux Transporters' Engineering and Their Application in Microbial Production of Heterologous Metabolites. ACS Synth Biol 2021; 10:646-669. [PMID: 33751883 DOI: 10.1021/acssynbio.0c00507] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metabolic engineering of microbial hosts for the production of heterologous metabolites and biochemicals is an enabling technology to generate meaningful quantities of desired products that may be otherwise difficult to produce by traditional means. Heterologous metabolite production can be restricted by the accumulation of toxic products within the cell. Efflux transport proteins (transporters) provide a potential solution to facilitate the export of these products, mitigate toxic effects, and enhance production. Recent investigations using knockout lines, heterologous expression, and expression profiling of transporters have revealed candidates that can enhance the export of heterologous metabolites from microbial cell systems. Transporter engineering efforts have revealed that some exhibit flexible substrate specificity and may have broader application potentials. In this Review, the major superfamilies of efflux transporters, their mechanistic modes of action, selection of appropriate efflux transporters for desired compounds, and potential transporter engineering strategies are described for potential applications in enhancing engineered microbial metabolite production. Future studies in substrate recognition, heterologous expression, and combinatorial engineering of efflux transporters will assist efforts to enhance heterologous metabolite production in microbial hosts.
Collapse
Affiliation(s)
- Muhammad Saad Ahmed
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology (BIT), Beijing 100081, P. R. China
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Abid Majeed Road, The Mall, Rawalpindi 46000, Pakistan
| | - Kyle J. Lauersen
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Sana Ikram
- Beijing Higher Institution Engineering Research Center for Food Additives and Ingredients, Beijing Technology & Business University (BTBU), Beijing 100048, P. R. China
| | - Chun Li
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology (BIT), Beijing 100081, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
39
|
Mao N, Aggarwal N, Poh CL, Cho BK, Kondo A, Liu C, Yew WS, Chang MW. Future trends in synthetic biology in Asia. ADVANCED GENETICS (HOBOKEN, N.J.) 2021; 2:e10038. [PMID: 36618442 PMCID: PMC9744534 DOI: 10.1002/ggn2.10038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/10/2021] [Accepted: 01/21/2021] [Indexed: 05/06/2023]
Abstract
Synthetic biology research and technology translation has garnered increasing interest from the governments and private investors in Asia, where the technology has great potential in driving a sustainable bio-based economy. This Perspective reviews the latest developments in the key enabling technologies of synthetic biology and its application in bio-manufacturing, medicine, food and agriculture in Asia. Asia-centric strengths in synthetic biology to grow the bio-based economy, such as advances in genome editing and the presence of biofoundries combined with the availability of natural resources and vast markets, are also highlighted. The potential barriers to the sustainable development of the field, including inadequate infrastructure and policies, with suggestions to overcome these by building public-private partnerships, more effective multi-lateral collaborations and well-developed governance framework, are presented. Finally, the roles of technology, education and regulation in mitigating potential biosecurity risks are examined. Through these discussions, stakeholders from different groups, including academia, industry and government, are expectantly better positioned to contribute towards the establishment of innovation and bio-economy hubs in Asia.
Collapse
Affiliation(s)
- Ning Mao
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI)National University of SingaporeSingaporeSingapore
| | - Nikhil Aggarwal
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI)National University of SingaporeSingaporeSingapore
- Synthetic Biology Translational Research Program and Department of Biochemistry, Yong Loo Ling School of MedicineNational University of SingaporeSingaporeSingapore
| | - Chueh Loo Poh
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI)National University of SingaporeSingaporeSingapore
- Department of Biomedical EngineeringNational University of SingaporeSingaporeSingapore
| | - Byung Kwan Cho
- Department of Biological Sciences, and KI for the BioCenturyKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, and Engineering Biology Research CenterKobe UniversityKobeJapan
| | - Chenli Liu
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Wen Shan Yew
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI)National University of SingaporeSingaporeSingapore
- Synthetic Biology Translational Research Program and Department of Biochemistry, Yong Loo Ling School of MedicineNational University of SingaporeSingaporeSingapore
| | - Matthew Wook Chang
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI)National University of SingaporeSingaporeSingapore
- Synthetic Biology Translational Research Program and Department of Biochemistry, Yong Loo Ling School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Biomedical EngineeringNational University of SingaporeSingaporeSingapore
| |
Collapse
|
40
|
Wang T, Zhao Y, Zhang H, Hui W. Non-noble nanoalloy of Ni0, Cu0 and Fe0 used for hydride transfer reaction for CO2. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2020.101417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Engineering Biocatalytic Solar Fuel Production: The PHOTOFUEL Consortium. Trends Biotechnol 2021; 39:323-327. [PMID: 33573847 DOI: 10.1016/j.tibtech.2021.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 11/23/2022]
Abstract
The EU Horizon2020 consortium PHOTOFUEL joined academic and industrial partners from biology, chemistry, engineering, engine design, and lifecycle assessment, making tremendous progress towards engine-ready fuels from CO2 via engineered photosynthetic microbes. Technical, environmental, economic, and societal opportunities and challenges were explored to frame future technology realization at scale.
Collapse
|
42
|
Synthesis of high-titer alka(e)nes in Yarrowia lipolytica is enabled by a discovered mechanism. Nat Commun 2020; 11:6198. [PMID: 33273473 PMCID: PMC7713262 DOI: 10.1038/s41467-020-19995-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022] Open
Abstract
Alka(e)nes are ideal fuel components for aviation, long-distance transport, and shipping. They are typically derived from fossil fuels and accounting for 24% of difficult-to-eliminate greenhouse gas emissions. The synthesis of alka(e)nes in Yarrowia lipolytica from CO2-neutral feedstocks represents an attractive alternative. Here we report that the high-titer synthesis of alka(e)nes in Yarrowia lipolytica harboring a fatty acid photodecarboxylase (CvFAP) is enabled by a discovered pathway. We find that acyl-CoAs, rather than free fatty acids (FFAs), are the preferred substrate for CvFAP. This finding allows us to debottleneck the pathway and optimize fermentation conditions so that we are able to redirect 89% of acyl-CoAs from the synthesis of neutral lipids to alka(e)nes and reach titers of 1.47 g/L from glucose. Two other CO2-derived substrates, wheat straw and acetate, are also demonstrated to be effective in producing alka(e)nes. Overall, our technology could advance net-zero emissions by providing CO2-neutral and energy-dense liquid biofuels. Alka(e)nes with chain lengths in C5-C23 range are ideal fuel components. Here, the authors report that high-titer production of alak(e)nes in pathway engineered Yarrowia lipolytica, which is enabled by the finding that acyl-CoA is another substrate of fatty acid photodecarboxylase (FAP).
Collapse
|
43
|
Current processes and future challenges of photoautotrophic production of acetyl-CoA-derived solar fuels and chemicals in cyanobacteria. Curr Opin Chem Biol 2020; 59:69-76. [DOI: 10.1016/j.cbpa.2020.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 01/03/2023]
|
44
|
Basri RS, Rahman RNZRA, Kamarudin NHA, Ali MSM. Cyanobacterial aldehyde deformylating oxygenase: Structure, function, and potential in biofuels production. Int J Biol Macromol 2020; 164:3155-3162. [PMID: 32841666 DOI: 10.1016/j.ijbiomac.2020.08.162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/04/2020] [Accepted: 08/20/2020] [Indexed: 11/27/2022]
Abstract
The conversion of aldehydes to valuable alkanes via cyanobacterial aldehyde deformylating oxygenase is of great interest. The availability of fossil reserves that keep on decreasing due to human exploitation is worrying, and even more troubling is the combustion emission from the fuel, which contributes to the environmental crisis and health issues. Hence, it is crucial to use a renewable and eco-friendly alternative that yields compound with the closest features as conventional petroleum-based fuel, and that can be used in biofuels production. Cyanobacterial aldehyde deformylating oxygenase (ADO) is a metal-dependent enzyme with an α-helical structure that contains di‑iron at the active site. The substrate enters the active site of every ADO through a hydrophobic channel. This enzyme exhibits catalytic activity toward converting Cn aldehyde to Cn-1 alkane and formate as a co-product. These cyanobacterial enzymes are small and easy to manipulate. Currently, ADOs are broadly studied and engineered for improving their enzymatic activity and substrate specificity for better alkane production. This review provides a summary of recent progress in the study of the structure and function of ADO, structural-based engineering of the enzyme, and highlight its potential in producing biofuels.
Collapse
Affiliation(s)
- Rose Syuhada Basri
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Nor Hafizah Ahmad Kamarudin
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
45
|
Amer M, Toogood H, Scrutton NS. Engineering nature for gaseous hydrocarbon production. Microb Cell Fact 2020; 19:209. [PMID: 33187524 PMCID: PMC7661322 DOI: 10.1186/s12934-020-01470-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 11/04/2020] [Indexed: 11/10/2022] Open
Abstract
The development of sustainable routes to the bio-manufacture of gaseous hydrocarbons will contribute widely to future energy needs. Their realisation would contribute towards minimising over-reliance on fossil fuels, improving air quality, reducing carbon footprints and enhancing overall energy security. Alkane gases (propane, butane and isobutane) are efficient and clean-burning fuels. They are established globally within the transportation industry and are used for domestic heating and cooking, non-greenhouse gas refrigerants and as aerosol propellants. As no natural biosynthetic routes to short chain alkanes have been discovered, de novo pathways have been engineered. These pathways incorporate one of two enzymes, either aldehyde deformylating oxygenase or fatty acid photodecarboxylase, to catalyse the final step that leads to gas formation. These new pathways are derived from established routes of fatty acid biosynthesis, reverse β-oxidation for butanol production, valine biosynthesis and amino acid degradation. Single-step production of alkane gases in vivo is also possible, where one recombinant biocatalyst can catalyse gas formation from exogenously supplied short-chain fatty acid precursors. This review explores current progress in bio-alkane gas production, and highlights the potential for implementation of scalable and sustainable commercial bioproduction hubs.
Collapse
Affiliation(s)
- Mohamed Amer
- EPSRC/BBSRC Future Biomanufacturing Research Hub, Synthetic Biology Research Centre SYNBIOCHEM Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, BBSRC/EPSRC, The University of Manchester, Manchester, M1 7DN, UK
| | - Helen Toogood
- EPSRC/BBSRC Future Biomanufacturing Research Hub, Synthetic Biology Research Centre SYNBIOCHEM Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, BBSRC/EPSRC, The University of Manchester, Manchester, M1 7DN, UK
| | - Nigel S Scrutton
- EPSRC/BBSRC Future Biomanufacturing Research Hub, Synthetic Biology Research Centre SYNBIOCHEM Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, BBSRC/EPSRC, The University of Manchester, Manchester, M1 7DN, UK.
| |
Collapse
|
46
|
Perozeni F, Cazzaniga S, Baier T, Zanoni F, Zoccatelli G, Lauersen KJ, Wobbe L, Ballottari M. Turning a green alga red: engineering astaxanthin biosynthesis by intragenic pseudogene revival in Chlamydomonas reinhardtii. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2053-2067. [PMID: 32096597 PMCID: PMC7540493 DOI: 10.1111/pbi.13364] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/11/2020] [Accepted: 02/21/2020] [Indexed: 05/03/2023]
Abstract
The green alga Chlamydomonas reinhardtii does not synthesize high-value ketocarotenoids like canthaxanthin and astaxanthin; however, a β-carotene ketolase (CrBKT) can be found in its genome. CrBKT is poorly expressed, contains a long C-terminal extension not found in homologues and likely represents a pseudogene in this alga. Here, we used synthetic redesign of this gene to enable its constitutive overexpression from the nuclear genome of C. reinhardtii. Overexpression of the optimized CrBKT extended native carotenoid biosynthesis to generate ketocarotenoids in the algal host causing noticeable changes the green algal colour to reddish-brown. We found that up to 50% of native carotenoids could be converted into astaxanthin and more than 70% into other ketocarotenoids by robust CrBKT overexpression. Modification of the carotenoid metabolism did not impair growth or biomass productivity of C. reinhardtii, even at high light intensities. Under different growth conditions, the best performing CrBKT overexpression strain was found to reach ketocarotenoid productivities up to 4.3 mg/L/day. Astaxanthin productivity in engineered C. reinhardtii shown here might be competitive with that reported for Haematococcus lacustris (formerly pluvialis) which is currently the main organism cultivated for industrial astaxanthin production. In addition, the extractability and bio-accessibility of these pigments were much higher in cell wall-deficient C. reinhardtii than the resting cysts of H. lacustris. Engineered C. reinhardtii strains could thus be a promising alternative to natural astaxanthin producing algal strains and may open the possibility of other tailor-made pigments from this host.
Collapse
Affiliation(s)
| | | | - Thomas Baier
- Faculty of BiologyCenter for Biotechnology (CeBiTec)Bielefeld UniversityBielefeldGermany
| | | | | | - Kyle J. Lauersen
- Faculty of BiologyCenter for Biotechnology (CeBiTec)Bielefeld UniversityBielefeldGermany
| | - Lutz Wobbe
- Faculty of BiologyCenter for Biotechnology (CeBiTec)Bielefeld UniversityBielefeldGermany
| | | |
Collapse
|
47
|
Achievements and challenges of genetic engineering of the model green alga Chlamydomonas reinhardtii. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101986] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Baier T, Jacobebbinghaus N, Einhaus A, Lauersen KJ, Kruse O. Introns mediate post-transcriptional enhancement of nuclear gene expression in the green microalga Chlamydomonas reinhardtii. PLoS Genet 2020; 16:e1008944. [PMID: 32730252 PMCID: PMC7419008 DOI: 10.1371/journal.pgen.1008944] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/11/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
Efficient nuclear transgene expression in the green microalga Chlamydomonas reinhardtii is generally hindered by low transcription rates. Introns can increase transcript abundance by a process called Intron-Mediated Enhancement (IME) in this alga and has been broadly observed in other eukaryotes. However, the mechanisms of IME in microalgae are poorly understood. Here, we identified 33 native introns from highly expressed genes in C. reinhardtii selected from transcriptome studies as well as 13 non-native introns. We investigated their IME capacities and probed the mechanism of action by modification of splice sites, internal sequence motifs, and position within transgenes. Several introns were found to elicit strong IME and found to be broadly applicable in different expression constructs. We determined that IME in C. reinhardtii exclusively occurs from introns within transcribed ORFs regardless of the promoter and is not induced by traditional enhancers of transcription. Our results elucidate some mechanistic details of IME in C. reinhardtii, which are similar to those observed in higher plants yet underly distinctly different induction processes. Our findings narrow the focus of targets responsible for algal IME and provides evidence that introns are underestimated regulators of C. reinhardtii nuclear gene expression. Although many genetic tools and basic transformation strategies exist for the model microalga Chlamydomonas reinhardtii, high-level genetic engineering with this organism is hindered by its inherent recalcitrance to foreign gene expression and limited knowledge of responsible expression regulators. In this work, we characterized the dynamics of 33 endogenous and 13 non-native introns and their effect on gene expression as artificial insertions into codon optimized transgenes. We found that introns from different origins have the capacity to increase gene expression rates. Intron-mediated enhancement was observed exclusively when these elements were placed in transcripts but not outside of transcribed mRNA regions. Insertion of different endogenous introns into coding sequences was found to positively affect expression rates through a synergy of additive transcription enhancement and exon length reduction, similar to those natively found in the C. reinhardtii genome. Our results indicate that intensive mRNA processing plays an underestimated role in the regulation of native gene expression in C. reinhardtii. In addition to internal sequence motifs, the location of artificially introduced introns greatly affected transgene expression levels. This work is highly valuable to the greater microalgal and synthetic biology research communities and contributes to broadening our understanding of eukaryotic intron-mediated enhancement.
Collapse
Affiliation(s)
- Thomas Baier
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse, Bielefeld, Germany
| | - Nick Jacobebbinghaus
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse, Bielefeld, Germany
| | - Alexander Einhaus
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse, Bielefeld, Germany
| | - Kyle J. Lauersen
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse, Bielefeld, Germany
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Olaf Kruse
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse, Bielefeld, Germany
- * E-mail:
| |
Collapse
|
49
|
Heyes DJ, Lakavath B, Hardman SJO, Sakuma M, Hedison TM, Scrutton NS. Photochemical Mechanism of Light-Driven Fatty Acid Photodecarboxylase. ACS Catal 2020; 10:6691-6696. [PMID: 32905273 PMCID: PMC7469136 DOI: 10.1021/acscatal.0c01684] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/18/2020] [Indexed: 01/06/2023]
Abstract
![]()
Fatty
acid photodecarboxylase (FAP) is a promising target for the
production of biofuels and fine chemicals. It contains a flavin adenine
dinucleotide cofactor and catalyzes the blue-light-dependent decarboxylation
of fatty acids to generate the corresponding alkane. However, little
is known about the catalytic mechanism of FAP, or how light is used
to drive enzymatic decarboxylation. Here, we have used a combination
of time-resolved and cryogenic trapping UV–visible absorption
spectroscopy to characterize a red-shifted flavin intermediate observed
in the catalytic cycle of FAP. We show that this intermediate can
form below the “glass transition” temperature of proteins,
whereas the subsequent decay of the species proceeds only at higher
temperatures, implying a role for protein motions in the decay of
the intermediate. Solvent isotope effect measurements, combined with
analyses of selected site-directed variants of FAP, suggest that the
formation of the red-shifted flavin species is directly coupled with
hydrogen atom transfer from a nearby active site cysteine residue,
yielding the final alkane product. Our study suggests that this cysteine
residue forms a thiolate-flavin charge-transfer species, which is
assigned as the red-shifted flavin intermediate. Taken together, our
data provide insights into light-dependent decarboxylase mechanisms
catalyzed by FAP and highlight important considerations in the (re)design
of flavin-based photoenzymes.
Collapse
Affiliation(s)
- Derren J. Heyes
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Balaji Lakavath
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Samantha J. O. Hardman
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Michiyo Sakuma
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Tobias M. Hedison
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Nigel S. Scrutton
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| |
Collapse
|
50
|
Varela Villarreal J, Burgués C, Rösch C. Acceptability of genetically engineered algae biofuels in Europe: opinions of experts and stakeholders. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:92. [PMID: 32489422 PMCID: PMC7245023 DOI: 10.1186/s13068-020-01730-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The development of alternative pathways for sustainable fuel production is a crucial task for politics, industry and research, since the current use of fossil fuels contributes to resource depletion and climate change. Microalgae are a promising option, but the technology readiness level (TRL) is low and cannot compete economically with fossil fuels. Novel genetic engineering technologies are being investigated to improve productivity and reduce the cost of harvesting products extracted from or excreted by microalgae for fuel production. However, high resource efficiency and low costs alone are no guarantee that algae fuels will find their way into the market. Technologies must be accepted by the public to become valuable for society. Despite strong efforts in algae research and development, as well as political commitments at different scales to promote algae biofuels for transport sectors, little is known about public acceptance of this alternative transport fuel. Despite the advantages of algae technology, genetically engineered (GE) microalgae can be controversial in Europe due to risk perception. Therefore, the aim of this study was to investigate, for the first time, the knowledge and views of European experts and stakeholders on the conditions and requirements for acceptability of GE microalgae for next generation biofuel production. RESULTS The results of the survey-based study indicate that the majority of the respondents believe that GE algae biofuels could provide strong benefits compared to other fuels. The majority would choose to be final consumers of engineered algae biofuels, if there is clear evidence of their benefits and open communication of potential risks. They believe that closed production systems with high security standards and rigorous risk assessment should be applied to avoid unintended impacts on humans and nature. Some respondents, however, are not convinced about the need to alter natural occurring algae strains to increase productivity, arguing that there is a huge unexplored variety, and that the consequences of using genome editing are still unknown. CONCLUSIONS This evaluation of the opinions held by European experts and stakeholders regarding GE algae biofuels provides valuable and differentiated insights, both for future research and for the development of feasible socio-technical algae systems for next generation biofuel production. The identified conditions and requirements for achieving public acceptability can support the (re-)design of this innovative technology and adaptation of the framework conditions towards the implementation of algae biofuels in Europe.
Collapse
Affiliation(s)
- Jessica Varela Villarreal
- Institute for Technology Assessment and Systems Analysis (ITAS), Karlsruhe Institute of Technology (KIT), Karlstr.11, 76133 Karlsruhe, Germany
| | - Cecilia Burgués
- Institute for Technology Assessment and Systems Analysis (ITAS), Karlsruhe Institute of Technology (KIT), Karlstr.11, 76133 Karlsruhe, Germany
| | - Christine Rösch
- Institute for Technology Assessment and Systems Analysis (ITAS), Karlsruhe Institute of Technology (KIT), Karlstr.11, 76133 Karlsruhe, Germany
| |
Collapse
|