1
|
Yuan M, Shi M, Yang H, Ashraf S, Iqbal S, Turkez H, Boren J, Zhang C, Uhlén M, Altay O, Mardinoglu A. Targeting PKLR in liver diseases. Trends Endocrinol Metab 2025:S1043-2760(25)00054-2. [PMID: 40221236 DOI: 10.1016/j.tem.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 04/14/2025]
Abstract
Pyruvate kinase is a key regulator in hepatic glucose metabolism, encoded by the gene pyruvate kinase liver/red blood cells (PKLR). Systems biology-based approaches, including metabolic and gene co-expression networks analyses, as well as genome-wide association studies (GWAS), have led to the identification of PKLR as a pivotal gene influencing liver metabolism in patients with metabolic dysfunction-associated steatotic liver disease (MASLD) and hepatocellular carcinoma (HCC). Here, we review the critical role of PKLR in MASLD and HCC progression and examine the effects of PKLR modulation both in vitro and in vivo. We also discuss the development of therapeutic strategies for patients with MASLD and HCC by modulating PKLR, highlighting its promising future in a broader range of liver diseases.
Collapse
Affiliation(s)
- Meng Yuan
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, SE-17165, Sweden
| | - Mengnan Shi
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, SE-17165, Sweden
| | - Hong Yang
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, SE-17165, Sweden
| | - Sajda Ashraf
- Trustlife Laboratories, Drug Research & Development Center, 34774, Istanbul, Turkey
| | - Shazia Iqbal
- Trustlife Laboratories, Drug Research & Development Center, 34774, Istanbul, Turkey
| | - Hasan Turkez
- Medical Biology Department, Faculty of Medicine, Atatürk University, Erzurum TR-25240, Turkey
| | - Jan Boren
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Cheng Zhang
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, SE-17165, Sweden; Institute of Liver Studies, King's College London, London, SE5 8AF, UK
| | - Mathias Uhlén
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, SE-17165, Sweden
| | - Ozlem Altay
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, SE-17165, Sweden.
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, SE-17165, Sweden; Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK.
| |
Collapse
|
2
|
Moaddel R, Candia J, Ubaida-Mohien C, Tanaka T, Moore AZ, Zhu M, Fantoni G, Church S, D'Agostino J, Fan J, Shehadeh N, De S, Lehrmann E, Kaileh M, Simonsick E, Sen R, Egan JM, Ferrucci L. Healthy Aging Metabolomic and Proteomic Signatures Across Multiple Physiological Compartments. Aging Cell 2025:e70014. [PMID: 39952253 DOI: 10.1111/acel.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/18/2025] [Accepted: 01/27/2025] [Indexed: 02/17/2025] Open
Abstract
The study of biomarkers in biofluids and tissues expanded our understanding of the biological processes that drive physiological and functional manifestations of aging. However, most of these studies were limited to examining one biological compartment, an approach that fails to recognize that aging pervasively affects the whole body. The simultaneous modeling of hundreds of metabolites and proteins across multiple compartments may provide a more detailed picture of healthy aging and point to differences between chronological and biological aging. Herein, we report proteomic analyses of plasma and urine collected in healthy men and women, age 22-92 years. Using these data, we developed a series of metabolomic and proteomic predictors of chronological age for plasma, urine, and skeletal muscle. We then defined a biological aging score, which measures the departure between an individual's predicted age and the expected predicted age for that individual based on the full cohort. We show that these predictors are significantly and independently related to clinical phenotypes important for aging, such as inflammation, iron deficiency anemia, muscle mass, and renal and hepatic functions. Despite a different set of selected biomarkers in each compartment, the different scores reflect a similar degree of deviation from healthy aging in single individuals, thus allowing identification of subjects with significant accelerated or decelerated biological aging.
Collapse
Affiliation(s)
- R Moaddel
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - J Candia
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - C Ubaida-Mohien
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - T Tanaka
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - A Z Moore
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - M Zhu
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - G Fantoni
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - S Church
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - J D'Agostino
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - J Fan
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - N Shehadeh
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - S De
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - E Lehrmann
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - M Kaileh
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - E Simonsick
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - R Sen
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - J M Egan
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - L Ferrucci
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Mardinoglu A, Palsson BØ. Genome-scale models in human metabologenomics. Nat Rev Genet 2025; 26:123-140. [PMID: 39300314 DOI: 10.1038/s41576-024-00768-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/22/2024]
Abstract
Metabologenomics integrates metabolomics with other omics data types to comprehensively study the genetic and environmental factors that influence metabolism. These multi-omics data can be incorporated into genome-scale metabolic models (GEMs), which are highly curated knowledge bases that explicitly account for genes, transcripts, proteins and metabolites. By including all known biochemical reactions catalysed by enzymes and transporters encoded in the human genome, GEMs analyse and predict the behaviour of complex metabolic networks. Continued advancements to the scale and scope of GEMs - from cells and tissues to microbiomes and the whole body - have helped to design effective treatments and develop better diagnostic tools for metabolic diseases. Furthermore, increasing amounts of multi-omics data are incorporated into GEMs to better identify the underlying mechanisms, biomarkers and potential drug targets of metabolic diseases.
Collapse
Affiliation(s)
- Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK.
| | - Bernhard Ø Palsson
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- Department of Paediatrics, University of California, San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA.
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
4
|
Gu M, Zhang D, Li C, Ren Y, Song G, Chen L, Li S, Zheng X. In-depth metaproteomics analysis reveals the protein profile and metabolism characteristics in pork during refrigerated storage. Food Chem 2024; 459:140149. [PMID: 39002337 DOI: 10.1016/j.foodchem.2024.140149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/28/2024] [Accepted: 06/15/2024] [Indexed: 07/15/2024]
Abstract
Alterations in microbiotas and endogenous enzymes have been implicated in meat deterioration. However, the factors that mediate the interactions between meat quality and microbiome profile were inadequately investigated. In this study, we collected pork samples throughout the refrigeration period and employed metaproteomics to characterize both the pork and microbial proteins. Our findings demonstrated that pork proteins associated with the catabolic process are upregulated during storage compared to the initial stage. Pseudomonas, Clostridium, Goodfellowiella, and Gonapodya contribute to the spoilage process. Notably, we observed an elevated abundance of microbial proteins related to glycolytic enzymes in refrigerated pork, identifying numerous proteins linked to biogenic amine production, thus highlighting their essential role in microbial decay. Further, we reveal that many of these microbial proteins from Pseudomonas are ribosomal proteins, promoting enzyme synthesis by enhancing transcription and translation. This study provides intrinsic insights into the underlying mechanisms by which microorganisms contribute to meat spoilage.
Collapse
Affiliation(s)
- Minghui Gu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Cheng Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yuqing Ren
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Guangchun Song
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Li Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Shaobo Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xiaochun Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
5
|
Štancl P, Gršković P, Držaić S, Vičić A, Karlić R, Korać P. RNA-Sequencing Identification of Genes Supporting HepG2 as a Model Cell Line for Hepatocellular Carcinoma or Hepatocytes. Genes (Basel) 2024; 15:1460. [PMID: 39596661 PMCID: PMC11593409 DOI: 10.3390/genes15111460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Cell lines do not faithfully replicate the authentic transcriptomic condition of the disease under study. The HepG2 cell line is widely used for studying hepatocellular carcinoma (HCC), but not all biological processes and genes exhibit congruent expression patterns between cell lines and the actual disease. The objective of this study is to perform a comparative transcriptomic analysis of the HepG2 cell line, HCC, and primary hepatocytes (PH) in order to identify genes suitable for research in HepG2 as a model for PH or HCC research. Methods: We conducted a differential expression analysis between publicly available data from HCC patients, PH, and HepG2. We examined specific overlaps of differentially expressed genes (DEGs) in a pairwise manner between groups in order to obtain a valuable gene list for studying HCC or PH using different parameter filtering. We looked into the function and druggability of these genes. Conclusions: In total, we identified 397 genes for HepG2 as a valuable HCC model and 421 genes for HepG2 as a valuable PH model, and with more stringent criteria, we derived a smaller list of 40 and 21 genes, respectively. The majority of genes identified as a valuable set for the HCC model are involved in DNA repair and protein degradation mechanisms. This research aims to provide detailed guidance on gene selection for studying diseases like hepatocellular carcinoma, primary hepatocytes, or others using cell lines.
Collapse
Affiliation(s)
- Paula Štancl
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (P.Š.); (S.D.)
| | - Paula Gršković
- Biomedical Research Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia;
| | - Sara Držaić
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (P.Š.); (S.D.)
| | - Ana Vičić
- Department of Obstetrics and Gynecology, Clinical Hospital “Sveti Duh”, 10000 Zagreb, Croatia;
| | - Rosa Karlić
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (P.Š.); (S.D.)
| | - Petra Korać
- Biomedical Research Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
6
|
Wang W, Qian J, Shang M, Qiao Y, Huang J, Gao X, Ye Z, Tong X, Xu K, Li X, Liu Z, Zhou L, Zheng S. Integrative analysis of the transcriptome and metabolome reveals the importance of hepatokine FGF21 in liver aging. Genes Dis 2024; 11:101161. [PMID: 39022127 PMCID: PMC11252782 DOI: 10.1016/j.gendis.2023.101161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/03/2023] [Accepted: 10/16/2023] [Indexed: 07/20/2024] Open
Abstract
Aging is a contributor to liver disease. Hence, the concept of liver aging has become prominent and has attracted considerable interest, but its underlying mechanism remains poorly understood. In our study, the internal mechanism of liver aging was explored via multi-omics analysis and molecular experiments to support future targeted therapy. An aged rat liver model was established with d-galactose, and two other senescent hepatocyte models were established by treating HepG2 cells with d-galactose and H2O2. We then performed transcriptomic and metabolomic assays of the aged liver model and transcriptome analyses of the senescent hepatocyte models. In livers, genes related to peroxisomes, fatty acid elongation, and fatty acid degradation exhibited down-regulated expression with aging, and the hepatokine Fgf21 expression was positively correlated with the down-regulation of these genes. In senescent hepatocytes, similar to the results found in aged livers, FGF21 expression was also decreased. Moreover, the expressions of cell cycle-related genes were significantly down-regulated, and the down-regulated gene E2F8 was the key cell cycle-regulating transcription factor. We then validated that FGF21 overexpression can protect against liver aging and that FGF21 can attenuate the declines in the antioxidant and regenerative capacities in the aging liver. We successfully validated the results from cellular and animal experiments using human liver and blood samples. Our study indicated that FGF21 is an important target for inhibiting liver aging and suggested that pharmacological prevention of the reduction in FGF21 expression due to aging may be used to treat liver aging-related diseases.
Collapse
Affiliation(s)
- Wenchao Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Junjie Qian
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Mingge Shang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Yiting Qiao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Jiacheng Huang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Xinxin Gao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Zhou Ye
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Xinyu Tong
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Kangdi Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Xiang Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Zhengtao Liu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, China
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310000, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310000, China
| |
Collapse
|
7
|
Iqbal S, Islam MZ, Ashraf S, Kim W, AL-Sharabi AA, Ozcan M, Hanashalshahaby E, Zhang C, Uhlén M, Boren J, Turkez H, Mardinoglu A. Discovery of Cell-Permeable Allosteric Inhibitors of Liver Pyruvate Kinase: Design and Synthesis of Sulfone-Based Urolithins. Int J Mol Sci 2024; 25:7986. [PMID: 39063228 PMCID: PMC11277446 DOI: 10.3390/ijms25147986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) presents a significant global health challenge, characterized by the accumulation of liver fat and impacting a considerable portion of the worldwide population. Despite its widespread occurrence, effective treatments for MAFLD are limited. The liver-specific isoform of pyruvate kinase (PKL) has been identified as a promising target for developing MAFLD therapies. Urolithin C, an allosteric inhibitor of PKL, has shown potential in preliminary studies. Expanding upon this groundwork, our study delved into delineating the structure-activity relationship of urolithin C via the synthesis of sulfone-based urolithin analogs. Our results highlight that incorporating a sulfone moiety leads to substantial PKL inhibition, with additional catechol moieties further enhancing this effect. Despite modest improvements in liver cell lines, there was a significant increase in inhibition observed in HepG2 cell lysates. Specifically, compounds 15d, 9d, 15e, 18a, 12d, and 15a displayed promising IC50 values ranging from 4.3 µM to 18.7 µM. Notably, compound 15e not only demonstrated a decrease in PKL activity and triacylglycerol (TAG) content but also showed efficient cellular uptake. These findings position compound 15e as a promising candidate for pharmacological MAFLD treatment, warranting further research and studies.
Collapse
Affiliation(s)
- Shazia Iqbal
- Trustlife Labs Drug Research & Development Center, 34774 Istanbul, Türkiye; (S.I.); (S.A.); (A.A.A.-S.); (E.H.)
| | - Md. Zahidul Islam
- Trustlife Labs Drug Research & Development Center, 34774 Istanbul, Türkiye; (S.I.); (S.A.); (A.A.A.-S.); (E.H.)
| | - Sajda Ashraf
- Trustlife Labs Drug Research & Development Center, 34774 Istanbul, Türkiye; (S.I.); (S.A.); (A.A.A.-S.); (E.H.)
| | - Woonghee Kim
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121 Stockholm, Sweden; (W.K.); (C.Z.); (M.U.)
| | - Amal A. AL-Sharabi
- Trustlife Labs Drug Research & Development Center, 34774 Istanbul, Türkiye; (S.I.); (S.A.); (A.A.A.-S.); (E.H.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Türkiye
| | - Mehmet Ozcan
- Department of Medical Biochemistry, Faculty of Medicine, Zonguldak Bulent Ecevit University, 67100 Zonguldak, Türkiye;
| | - Essam Hanashalshahaby
- Trustlife Labs Drug Research & Development Center, 34774 Istanbul, Türkiye; (S.I.); (S.A.); (A.A.A.-S.); (E.H.)
| | - Cheng Zhang
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121 Stockholm, Sweden; (W.K.); (C.Z.); (M.U.)
| | - Mathias Uhlén
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121 Stockholm, Sweden; (W.K.); (C.Z.); (M.U.)
| | - Jan Boren
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden;
| | - Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, 25240 Erzurum, Türkiye;
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121 Stockholm, Sweden; (W.K.); (C.Z.); (M.U.)
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, UK
| |
Collapse
|
8
|
Iqbal S, Sebhaoui J, Ashraf S, Ozcan M, Kim W, Belmen B, Yeşilyurt G, Hanashalshahaby E, Zhang C, Uhlen M, Boren J, Turkez H, Mardinoglu A. Design and synthesis of novel JNK inhibitors targeting liver pyruvate kinase for the treatment of non-alcoholic fatty liver disease and hepatocellular carcinoma. Bioorg Chem 2024; 147:107425. [PMID: 38714117 DOI: 10.1016/j.bioorg.2024.107425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/09/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) comprises a broad range of liver disease including hepatocellular carcinoma (HCC) with is no FDA-approved drug. Liver pyruvate kinase (PKL) is a major regulator of metabolic flux and ATP generation in liver presenting a potential target for the treatment of NAFLD. Based on our recent finding of JNK-5A's effectiveness in inhibiting PKLR expression through a drug repositioning pipeline, this study aims to improve its efficacy further. We synthesized a series of JNK-5A analogues with targeted modifications, guided by molecular docking studies. These compounds were evaluated for their activities on PKL expression, cell viability, triacylglyceride (TAG) levels, and the expressions of steatosis-related proteins in the human HepG2 cell line. Subsequently, the efficacy of these compounds was assessed in reducing TAG level and toxicity. Compounds 40 (SET-151) and 41 (SET-152) proved to be the most efficient in reducing TAG levels (11.51 ± 0.90 % and 10.77 ± 0.67 %) and demonstrated lower toxicity (61.60 ± 5.00 % and 43.87 ± 1.42 %) in HepG2 cells. Additionally, all synthesized compounds were evaluated for their anti-cancer properties revealing that compound 74 (SET-171) exhibited the highest toxicity in cell viability with IC50 values of 8.82 µM and 2.97 µM in HepG2 and Huh7 cell lines, respectively. To summarize, compounds 40 (SET-151) and 41 (SET-152) show potential for treating NAFLD, while compound 74 (SET-171) holds potential for HCC therapy.
Collapse
Affiliation(s)
- Shazia Iqbal
- Trustlife Labs Drug Research & Development Center, 34774 Istanbul, Turkiye
| | - Jihad Sebhaoui
- Trustlife Labs Drug Research & Development Center, 34774 Istanbul, Turkiye; Life and Health Sciences Laboratory, Faculty of Medicine and Pharmacy of Tangier, Abdelmalek Essaadi University, Morocco
| | - Sajda Ashraf
- Trustlife Labs Drug Research & Development Center, 34774 Istanbul, Turkiye
| | - Mehmet Ozcan
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden; Department of Medical Biochemistry, Faculty of Medicine, Zonguldak Bulent Ecevit University, Zonguldak, Turkiye
| | - Woonghee Kim
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Burcu Belmen
- Trustlife Labs Drug Research & Development Center, 34774 Istanbul, Turkiye
| | - Güldeniz Yeşilyurt
- Trustlife Labs Drug Research & Development Center, 34774 Istanbul, Turkiye
| | | | - Cheng Zhang
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Mathias Uhlen
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Jan Boren
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Turkiye
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden; Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK.
| |
Collapse
|
9
|
Matić J, Akladios F, Battisti UM, Håversen L, Nain-Perez A, Füchtbauer AF, Kim W, Monjas L, Rivero AR, Borén J, Mardinoglu A, Uhlen M, Grøtli M. Sulfone-based human liver pyruvate kinase inhibitors - Design, synthesis and in vitro bioactivity. Eur J Med Chem 2024; 269:116306. [PMID: 38471358 DOI: 10.1016/j.ejmech.2024.116306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/02/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevalent pathological condition characterised by the accumulation of fat in the liver. Almost one-third of the global population is affected by NAFLD, making it a significant health concern. However, despite its prevalence, there is currently no approved drug specifically designed for the treatment of NAFLD. To address this critical gap, researchers have been investigating potential targets for NAFLD drug development. One promising candidate is the liver isoform of pyruvate kinase (PKL). In recent studies, Urolithin C, an allosteric inhibitor of PKL, has emerged as a potential lead compound for therapeutic intervention. Building upon this knowledge, our team has conducted a comprehensive structure-activity relationship of Urolithin C. In this work, we have employed a scaffold-hopping approach, modifying the urolithin structure by replacing the urolithin carbonyl with a sulfone moiety. Our structure-activity relationship analysis has identified the sulfone group as particularly favourable for potent PKL inhibition. Additionally, we have found that the presence of catechol moieties on the two aromatic rings further improves the inhibitory activity. The most promising inhibitor from this new series displayed nanomolar inhibition, boasting an IC50 value of 0.07 μM. This level of potency rivals that of urolithin D and significantly surpasses the effectiveness of urolithin C by an order of magnitude. To better understand the molecular interactions underlying this inhibition, we obtained the crystal structure of one of the inhibitors complexed with PKL. This structural insight served as a valuable reference point, aiding us in the design of inhibitors.
Collapse
Affiliation(s)
- Josipa Matić
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96, Gothenburg, Sweden; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Fady Akladios
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96, Gothenburg, Sweden; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Umberto Maria Battisti
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96, Gothenburg, Sweden; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Liliana Håversen
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, SE-413 45, Gothenburg, Sweden
| | - Amalyn Nain-Perez
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96, Gothenburg, Sweden; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Anders Foller Füchtbauer
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96, Gothenburg, Sweden; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Woonghee Kim
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Leticia Monjas
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96, Gothenburg, Sweden; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Alexandra Rodriguez Rivero
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96, Gothenburg, Sweden; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, SE-413 45, Gothenburg, Sweden
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden; Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| | - Mathias Uhlen
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Morten Grøtli
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96, Gothenburg, Sweden.
| |
Collapse
|
10
|
Zou H, He J, Chu Y, Xu B, Li W, Huang S, Guan X, Liu F, Li H. Revealing discrepancies and drivers in the impact of lomefloxacin on groundwater denitrification throughout microbial community growth and succession. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133139. [PMID: 38056273 DOI: 10.1016/j.jhazmat.2023.133139] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/31/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
The coexistence of antibiotics and nitrates has raised great concern about antibiotic's impact on denitrification. However, conflicting results in these studies are very puzzling, possibly due to differences in microbial succession stages. This study investigated the effects of the high-priority urgent antibiotic, lomefloxacin (LOM), on groundwater denitrification throughout microbial growth and succession. The results demonstrated that LOM's impact on denitrification varied significantly across three successional stages, with the most pronounced effects exhibited in the initial stage (53.8% promotion at 100 ng/L-LOM, 84.6% inhibition at 100 μg/L-LOM), followed by the decline stage (13.3-18.2% inhibition), while no effect in the stable stage. Hence, a distinct pattern encompassing susceptibility, insusceptibility, and sub-susceptibility in LOM's impact on denitrification was discovered. Microbial metabolism and environment variation drove the pattern, with bacterial numbers and antibiotic resistance as primary influencers (22.5% and 15.3%, p < 0.01), followed by carbon metabolism and microbial community (5.0% and 3.68%, p < 0.01). The structural equation model confirmed results reliability. Bacterial numbers and resistance influenced susceptibility by regulating compensation and bacteriostasis, while carbon metabolism and microbial community impacted energy, electron transfer, and gene composition. These findings provide valuable insights into the complex interplay between antibiotics and denitrification patterns in groundwater.
Collapse
Affiliation(s)
- Hua Zou
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, China; MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China
| | - Jiangtao He
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, China; MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China.
| | - Yanjia Chu
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, China; MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China
| | - Baoshi Xu
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, China; MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China
| | - Wei Li
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, China; MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China
| | - Shiwen Huang
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, China; MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China
| | - Xiangyu Guan
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, China; School of Ocean Sciences, China University of Geosciences (Beijing), Beijing 100083, China
| | - Fei Liu
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, China; MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China
| | - Haiyan Li
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| |
Collapse
|
11
|
Yi X, Zhu J, Liu W, Peng L, Lu C, Sun P, Huang L, Nie X, Huang S, Guo T, Zhu Y. Proteome Landscapes of Human Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma. Mol Cell Proteomics 2023; 22:100604. [PMID: 37353004 PMCID: PMC10413158 DOI: 10.1016/j.mcpro.2023.100604] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/12/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023] Open
Abstract
Liver cancer is among the top leading causes of cancer mortality worldwide. Particularly, hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (CCA) have been extensively investigated from the aspect of tumor biology. However, a comprehensive and systematic understanding of the molecular characteristics of HCC and CCA remains absent. Here, we characterized the proteome landscapes of HCC and CCA using the data-independent acquisition (DIA) mass spectrometry (MS) method. By comparing the quantitative proteomes of HCC and CCA, we found several differences between the two cancer types. In particular, we found an abnormal lipid metabolism in HCC and activated extracellular matrix-related pathways in CCA. We next developed a three-protein classifier to distinguish CCA from HCC, achieving an area under the curve (AUC) of 0.92, and an accuracy of 90% in an independent validation cohort of 51 patients. The distinct molecular characteristics of HCC and CCA presented in this study provide new insights into the tumor biology of these two major important primary liver cancers. Our findings may help develop more efficient diagnostic approaches and new targeted drug treatments.
Collapse
Affiliation(s)
- Xiao Yi
- Center for ProtTalks, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Jiang Zhu
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key laboratory of Biological Targeted Therapy, The Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Liu
- Westlake Omics (Hangzhou) Biotechnology Co, Ltd, Hangzhou, Zhejiang, China
| | - Li Peng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Cong Lu
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key laboratory of Biological Targeted Therapy, The Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ping Sun
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lingling Huang
- Westlake Omics (Hangzhou) Biotechnology Co, Ltd, Hangzhou, Zhejiang, China
| | - Xiu Nie
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shi'ang Huang
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key laboratory of Biological Targeted Therapy, The Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tiannan Guo
- Center for ProtTalks, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| | - Yi Zhu
- Center for ProtTalks, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
12
|
Liu J, Wang D, Xie Z, Ding L, Li S, Ma X, Liu J, Ren J, Xiao C, Yang C, Xiao X. Combination of Pioglitazone and Metformin Actions on Liver Lipid Metabolism in Obese Mice. Biomolecules 2023; 13:1199. [PMID: 37627267 PMCID: PMC10452643 DOI: 10.3390/biom13081199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Despite the increasing prevalence rate of nonalcoholic fatty liver disease (NAFLD) worldwide, efficient pharmacotherapeutic regimens against NAFLD still need to be explored. Previous studies found that pioglitazone and metformin therapy could partly ameliorate NAFLD, but their combination therapy effects have not been researched. In the present study, we assessed the protective effects of metformin and pioglitazone combination therapy on liver lipid metabolism in high-fat diet (HFD)-fed mice and investigated the molecular mechanism. METHODS Male C57BL/6 mice were divided into five groups: normal control; HFD control; metformin monotherapy; pioglitazone monotherapy and combined therapy. After 8 weeks of pharmacological intervention, glucose and lipid metabolism characteristics, hepatic histology, lipidomics profiling and RNA-seq analysis were performed. RESULTS The combination of pioglitazone and metformin significantly ameliorated HFD-induced metabolic disturbance and the hepatic oil red O area. A lipidomics analysis showed that combined therapy could significantly reduce the high levels of free fatty acids (FFA), diacylglycerol and triglycerides, while a set of glycerophospholipids and sphingolipids were increased in the combined therapy group. Consistently, an RNA-seq analysis also showed a remarkable reduction in genes associated with FFA uptake and de novo lipogenesis, including Cd36, Fads1, Fads2, Fasn, Scd1, Elovl5 and Pklr in the combined therapy group. CONCLUSIONS Pioglitazone and metformin might have a synergistic protective effect on NAFLD by improving hepatic lipid profiles in HFD-induced mice. Further studies are needed to verify the clinical effects.
Collapse
Affiliation(s)
- Jieying Liu
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (J.L.); (D.W.)
- Department of Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Dongmei Wang
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (J.L.); (D.W.)
| | - Ziyan Xie
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (J.L.); (D.W.)
| | - Lu Ding
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (J.L.); (D.W.)
| | - Shunhua Li
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (J.L.); (D.W.)
| | - Xuemei Ma
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (J.L.); (D.W.)
| | - Jing Liu
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (J.L.); (D.W.)
| | - Jing Ren
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (J.L.); (D.W.)
| | - Cheng Xiao
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (J.L.); (D.W.)
| | - Chunru Yang
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (J.L.); (D.W.)
| | - Xinhua Xiao
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (J.L.); (D.W.)
| |
Collapse
|
13
|
Manilla V, Santopaolo F, Gasbarrini A, Ponziani FR. Type 2 Diabetes Mellitus and Liver Disease: Across the Gut-Liver Axis from Fibrosis to Cancer. Nutrients 2023; 15:nu15112521. [PMID: 37299482 DOI: 10.3390/nu15112521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Type 2 diabetes mellitus is a widespread disease worldwide, and is one of the cornerstones of metabolic syndrome. The existence of a strong relationship between diabetes and the progression of liver fibrosis has been demonstrated by several studies, using invasive and noninvasive techniques. Patients with type 2 diabetes mellitus (T2DM) and nonalcoholic fatty liver disease (NAFLD) show faster progression of fibrosis than patients without diabetes. Many confounding factors make it difficult to determine the exact mechanisms involved. What we know so far is that both liver fibrosis and T2DM are expressions of metabolic dysfunction, and we recognize similar risk factors. Interestingly, both are promoted by metabolic endotoxemia, a low-grade inflammatory condition caused by increased endotoxin levels and linked to intestinal dysbiosis and increased intestinal permeability. There is broad evidence on the role of the gut microbiota in the progression of liver disease, through both metabolic and inflammatory mechanisms. Therefore, dysbiosis that is associated with diabetes can act as a modifier of the natural evolution of NAFLD. In addition to diet, hypoglycemic drugs play an important role in this scenario, and their benefit is also the result of effects exerted in the gut. Here, we provide an overview of the mechanisms that explain why diabetic patients show a more rapid progression of liver disease up to hepatocellular carcinoma (HCC), focusing especially on those involving the gut-liver axis.
Collapse
Affiliation(s)
- Vittoria Manilla
- Digestive Disease Center-CEMAD, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Santopaolo
- Digestive Disease Center-CEMAD, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Digestive Disease Center-CEMAD, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Translational Medicine and Surgery Department, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Digestive Disease Center-CEMAD, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Translational Medicine and Surgery Department, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
14
|
Battisti UM, Monjas L, Akladios F, Matic J, Andresen E, Nagel CH, Hagkvist M, Håversen L, Kim W, Uhlen M, Borén J, Mardinoğlu A, Grøtli M. Exploration of Novel Urolithin C Derivatives as Non-Competitive Inhibitors of Liver Pyruvate Kinase. Pharmaceuticals (Basel) 2023; 16:ph16050668. [PMID: 37242451 DOI: 10.3390/ph16050668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The inhibition of liver pyruvate kinase could be beneficial to halt or reverse non-alcoholic fatty liver disease (NAFLD), a progressive accumulation of fat in the liver that can lead eventually to cirrhosis. Recently, urolithin C has been reported as a new scaffold for the development of allosteric inhibitors of liver pyruvate kinase (PKL). In this work, a comprehensive structure-activity analysis of urolithin C was carried out. More than 50 analogues were synthesized and tested regarding the chemical features responsible for the desired activity. These data could pave the way to the development of more potent and selective PKL allosteric inhibitors.
Collapse
Affiliation(s)
- Umberto Maria Battisti
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-171 65 Stockholm, Sweden
| | - Leticia Monjas
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-171 65 Stockholm, Sweden
| | - Fady Akladios
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-171 65 Stockholm, Sweden
| | - Josipa Matic
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-171 65 Stockholm, Sweden
| | - Eric Andresen
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Carolin H Nagel
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Malin Hagkvist
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Liliana Håversen
- Department of Molecular and Clinical Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
- Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Woonghee Kim
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-171 65 Stockholm, Sweden
| | - Mathias Uhlen
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-171 65 Stockholm, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
- Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Adil Mardinoğlu
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-171 65 Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Morten Grøtli
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
15
|
Chen WY, Thuy Dung PV, Yeh HL, Chen WH, Jiang KC, Li HR, Chen ZQ, Hsiao M, Huang J, Wen YC, Liu YN. Targeting PKLR/MYCN/ROMO1 signaling suppresses neuroendocrine differentiation of castration-resistant prostate cancer. Redox Biol 2023; 62:102686. [PMID: 36963289 PMCID: PMC10060381 DOI: 10.1016/j.redox.2023.102686] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 03/26/2023] Open
Abstract
Conventional treatment of prostate cancer (PCa) uses androgen-deprivation therapy (ADT) to inhibit androgen receptor (AR) signaling-driven tumor progression. ADT-induced PCa recurrence may progress to an AR-negative phenotype with neuroendocrine (NE) histologic features, which are associated with metabolic disturbances and poor prognoses. However, the metabolic pathways that regulate NE differentiation (NED) in PCa remain unclear. Herein, we show a regulatory mechanism in NED-associated metabolism dysfunction induced by ADT, whereby overexpression of pyruvate kinase L/R (PKLR) mediates oxidative stress through upregulation of reactive oxygen species modulator 1 (ROMO1), thereby promoting NED and aggressiveness. ADT mediates the nuclear translocation of PKLR, which binds to the MYCN/MAX complex to upregulate ROMO1 and NE-related genes, leading to altered mitochondrial function and NED of PCa. Targeting nuclear PKLR/MYCN using bromodomain and extra-terminal motif (BET) inhibitors has the potential to reduce PKLR/MYCN-driven NED. Abundant ROMO1 in serum samples may provide prognostic information in patients with ADT. Our results suggest that ADT resistance leads to upregulation of PKLR/MYCN/ROMO1 signaling, which may drive metabolic reprogramming and NED in PCa. We further show that increased abundance of serum ROMO1 may be associated with the development of NE-like PCa.
Collapse
Affiliation(s)
- Wei-Yu Chen
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Phan Vu Thuy Dung
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hsiu-Lien Yeh
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wei-Hao Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Ching Jiang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Han-Ru Li
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Zi-Qing Chen
- Division of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Jiaoti Huang
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Yu-Ching Wen
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan.
| | - Yen-Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
16
|
Nain-Perez A, Nilsson O, Lulla A, Håversen L, Brear P, Liljenberg S, Hyvönen M, Borén J, Grøtli M. Tuning liver pyruvate kinase activity up or down with a new class of allosteric modulators. Eur J Med Chem 2023; 250:115177. [PMID: 36753880 DOI: 10.1016/j.ejmech.2023.115177] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
The liver isoform of pyruvate kinase (PKL) has gained interest due to its potential capacity to regulate fatty acid synthesis involved in the progression of non-alcoholic fatty liver disease (NAFLD). Here we describe a novel series of PKL modulators that can either activate or inhibit the enzyme allosterically, from a cryptic site at the interface of two protomers in the tetrameric enzyme. Starting from urolithin D, we designed and synthesised 42 new compounds. The effect of these compounds on PKL enzymatic activity was assessed after incubation with cell lysates obtained from a liver cell line. Pronounced activation of PKL activity, up to 3.8-fold, was observed for several compounds at 10 μM, while other compounds were prominent PKL inhibitors reducing its activity to 81% at best. A structure-activity relationship identified linear-shaped sulfone-sulfonamides as activators and non-linear compounds as inhibitors. Crystal structures revealed the conformations of these modulators, which were used as a reference for designing new modulators.
Collapse
Affiliation(s)
- Amalyn Nain-Perez
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96, Gothenburg, Sweden
| | - Oscar Nilsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96, Gothenburg, Sweden
| | - Aleksei Lulla
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, United Kingdom
| | - Liliana Håversen
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, SE-413 45, Gothenburg, Sweden
| | - Paul Brear
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, United Kingdom
| | - Sara Liljenberg
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96, Gothenburg, Sweden
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, United Kingdom
| | - Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, SE-413 45, Gothenburg, Sweden
| | - Morten Grøtli
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96, Gothenburg, Sweden.
| |
Collapse
|
17
|
Sun E, Huang R, Ding K, Wang L, Hou J, Tan X, Wei Y, Feng L, Jia X. Integrating strategies of metabolomics, network pharmacology, and experiment validation to investigate the processing mechanism of Epimedium fried with suet oil to warm kidney and enhance yang. Front Pharmacol 2023; 14:1113213. [PMID: 36762111 PMCID: PMC9905240 DOI: 10.3389/fphar.2023.1113213] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction: Epimedium, a traditional Chinese medicine (TCM) commonly used in ancient and modern China, is one of the traditional Chinese medicines clinically used to treat kidney yang deficiency syndrome (KYDS). There are differences in the efficacy of Epimedium before and after processing, and the effect of warming the kidney and enhancing yang is significantly enhanced after heating with suet oil. However, the active compounds, corresponding targets, metabolic pathways, and synergistic mechanism of frying Epimedium in suet oil to promote yang, remain unclear. Methods: Herein, a strategy based on comprehensive GC-TOF/MS metabolomics and network pharmacology analysis was used to construct an "active compounds-targets-metabolic pathways" network to identify the active compounds, targets and metabolic pathways involved. Subsequently, the targets in kidney tissue were further validated by real-time quantitative polymerase chain reaction (RT-qPCR). Histopathological analysis with physical and biochemical parameters were performed. Results: Fifteen biomarkers from urine and plasma, involving five known metabolic pathways related to kidney yang deficiency were screened. The network pharmacology results showed 37 active compounds (13 from Epimedium and 24 from suet oil), 159 targets, and 267 pathways with significant correlation. Importantly, integrated metabolomics and network pharmacologic analysis revealed 13 active compounds (nine from Epimedium and four from suet oil), 7 corresponding targets (ALDH2, ARG2, GSTA3, GSTM1, GSTM2, HPGDS, and NOS2), two metabolic pathways (glutathione metabolism, arginine and proline metabolism), and two biomarkers (Ornithine and 5-Oxoproline) associated with improved kidney yang deficiency by Epimedium fried with suet oil. Discussion: These finds may elucidate the underlying mechanism of yang enhancement via kidney warming effects. Our study indicated that the mechanism of action mainly involved oxidative stress and amino acid metabolism. Here, we demonstrated the novel strategies of integrating metabolomics and network pharmacology in exploring of the mechanisms of traditional Chinese medicines.
Collapse
Affiliation(s)
- E. Sun
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China,Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Academy of Traditional Chinese Medicine, Nanjing, China,*Correspondence: E. Sun, ; Xiaobin Jia,
| | - Ran Huang
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China,Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ke Ding
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ling Wang
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian Hou
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Academy of Traditional Chinese Medicine, Nanjing, China
| | - Xiaobin Tan
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China,Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Academy of Traditional Chinese Medicine, Nanjing, China
| | - Yingjie Wei
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China,Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Academy of Traditional Chinese Medicine, Nanjing, China
| | - Liang Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaobin Jia
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China,*Correspondence: E. Sun, ; Xiaobin Jia,
| |
Collapse
|
18
|
More Than an Antioxidant: Role of Dietary Astaxanthin on Lipid and Glucose Metabolism in the Liver of Rainbow Trout ( Oncorhynchus mykiss). Antioxidants (Basel) 2023; 12:antiox12010136. [PMID: 36670998 PMCID: PMC9854815 DOI: 10.3390/antiox12010136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
This study investigated the influence of dietary astaxanthin (AX) on glucose and lipid metabolism in rainbow trout liver. Two iso-nitrogenous and iso-lipidic diets were tested for 12 weeks in rainbow trout with an initial mean weight of 309 g. The S-ASTA diet was supplemented with 100 mg of synthetic AX per kg of feed, whereas the control diet (CTRL) had no AX. Fish fed the S-ASTA diet displayed lower neutral and higher polar lipids in the liver, associated with smaller hepatocytes and lower cytoplasm vacuolization. Dietary AX upregulated adipose triglyceride lipase (atgl), hormone-sensitive lipase (hsl2) and 1,2-diacylglycerol choline phosphotransferase (chpt), and downregulated diacylglycerol acyltransferase (dgat2), suggesting the AX's role in triacylglycerol (TAG) turnover and phospholipid (PL) synthesis. Dietary AX may also affect beta-oxidation with the upregulation of carnitine palmitoyltransferase 1 (cpt1α2). Although hepatic cholesterol levels were not affected, dietary AX increased gene expression of sterol regulatory element-binding protein 2 (srebp2). Dietary AX upregulated the expression of 6-phosphogluconate dehydrogenase (6pgdh) and downregulated pyruvate kinase (pkl). Overall, results suggest that dietary AX modulates the oxidative phase of the pentose phosphate pathway and the last step of glycolysis, affecting TAG turnover, β-oxidation, PL and cholesterol synthesis in rainbow trout liver.
Collapse
|
19
|
Wynkoop MR, Lalwani S, Cipolli W, Jimenez AG. Scaling with body mass and age in glycolytic enzymes of domestic dogs. Vet Res Commun 2023; 47:39-50. [PMID: 35441335 DOI: 10.1007/s11259-022-09926-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/09/2022] [Indexed: 01/27/2023]
Abstract
Animals produce ATP through oxidative phosphorylation using oxygen, but cellular energy can also be obtained through glycolysis when oxygen is not present at sufficient levels. Although most mammals of larger body mass have longer life spans, small dog breeds tend to outlive large breeds. Primary fibroblast cells from larger breeds of dogs have previously been shown to have increased dependency on glycolytic phenotypes across their lifespan. Different levels of activity of the glycolytic enzymes pyruvate kinase (PK), lactate dehydrogenase (LDH), and phosphoenolpyruvate carboxykinase (PEPCK) may provide insight to a mechanism that leads to the different metabolic phenotype observed in different sized breeds as they age. In this study, 1) we measured the activities of PK, LDH, and PEPCK in primary fibroblasts from dogs of different breed sizes and age classes and 2) measured the activities of PK and LDH in plasma from dogs of different breed sizes and age classes. We found that there was no significant relationship between body mass and PK, LDH and PEPCK activity in primary fibroblasts. Further, there were not significant differences with activity in these enzymes for old dogs compared to young dogs. In plasma, we found a negative correlation between PK activity and body mass and no relationship between LDH activity and body mass. There was a negative relationship between LDH activity and age in dogs. Further, while a negative correlational relationship between PK activity and age was only marginal, a best subsets regression model demonstrated a significant marginal effect of age on PK activity. PK and LDH may provide intermediates for other metabolic pathways in small breeds. However, large breed dogs may demonstrate a deficiency in metabolism at the PK level, a cellular metabolic pathway that may potentially aid in tumor progression.
Collapse
Affiliation(s)
- Morgan R Wynkoop
- Department of Biology, Colgate University, 13 Oak Dr., Hamilton, NY, 13346, USA
| | - Sahil Lalwani
- Department of Mathematics, Colgate University, 13 Oak Dr., Hamilton, NY, 13346, USA
| | - William Cipolli
- Department of Mathematics, Colgate University, 13 Oak Dr., Hamilton, NY, 13346, USA
| | - Ana Gabriela Jimenez
- Department of Biology, Colgate University, 13 Oak Dr., Hamilton, NY, 13346, USA.
| |
Collapse
|
20
|
Savva C, Helguero LA, González-Granillo M, Melo T, Couto D, Angelin B, Domingues MR, Li X, Kutter C, Korach-André M. Molecular programming modulates hepatic lipid metabolism and adult metabolic risk in the offspring of obese mothers in a sex-specific manner. Commun Biol 2022; 5:1057. [PMID: 36195702 PMCID: PMC9532402 DOI: 10.1038/s42003-022-04022-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
Male and female offspring of obese mothers are known to differ extensively in their metabolic adaptation and later development of complications. We investigate the sex-dependent responses in obese offspring mice with maternal obesity, focusing on changes in liver glucose and lipid metabolism. Here we show that maternal obesity prior to and during gestation leads to hepatic steatosis and inflammation in male offspring, while female offspring are protected. Females from obese mothers display important changes in hepatic transcriptional activity and triglycerides profile which may prevent the damaging effects of maternal obesity compared to males. These differences are sustained later in life, resulting in a better metabolic balance in female offspring. In conclusion, sex and maternal obesity drive differently transcriptional and posttranscriptional regulation of major metabolic processes in offspring liver, explaining the sexual dimorphism in obesity-associated metabolic risk. Sex and maternal obesity drive differently transcriptional and posttranscriptional regulation of major metabolic processes in the livers of female and male offspring, contributing to the sexual dimorphism in obesity-associated metabolic risk.
Collapse
Affiliation(s)
- Christina Savva
- Department of Medicine, Cardiometabolic Unit and Integrated Cardio Metabolic Center, Karolinska Institute, Stockholm, Sweden.,Clinical Department of Endocrinology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Luisa A Helguero
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | | | - Tânia Melo
- Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, Aveiro, Portugal.,CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Daniela Couto
- Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, Aveiro, Portugal.,CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Bo Angelin
- Department of Medicine, Cardiometabolic Unit and Integrated Cardio Metabolic Center, Karolinska Institute, Stockholm, Sweden.,Clinical Department of Endocrinology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Maria Rosário Domingues
- Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, Aveiro, Portugal.,CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Xidan Li
- Department of Medicine, Cardiometabolic Unit and Integrated Cardio Metabolic Center, Karolinska Institute, Stockholm, Sweden
| | - Claudia Kutter
- Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Marion Korach-André
- Department of Medicine, Cardiometabolic Unit and Integrated Cardio Metabolic Center, Karolinska Institute, Stockholm, Sweden. .,Department of Gene Technology, Science for Life Laboratory, Royal Institute of Technology (KTH), Stockholm, Sweden.
| |
Collapse
|
21
|
Gjorgjieva M, Ay AS, Correia de Sousa M, Delangre E, Dolicka D, Sobolewski C, Maeder C, Fournier M, Sempoux C, Foti M. MiR-22 Deficiency Fosters Hepatocellular Carcinoma Development in Fatty Liver. Cells 2022; 11:cells11182860. [PMID: 36139435 PMCID: PMC9496902 DOI: 10.3390/cells11182860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 12/24/2022] Open
Abstract
MiR-22 is mostly considered as a hepatic tumor-suppressor microRNA based on in vitro analyses. Yet, whether miR-22 exerts a tumor-suppressive function in the liver has not been investigated in vivo. Herein, in silico analyses of miR-22 expression were performed in hepatocellular carcinomas from human patient cohorts and different mouse models. Diethylnitrosamine-induced hepatocellular carcinomas were then investigated in lean and diet-induced obese miR-22-deficient mice. The proteome of liver tissues from miR-22-deficient mice prior to hepatocellular carcinoma development was further analyzed to uncover miR-22 regulated factors that impact hepatocarcinogenesis with miR-22 deficiency. MiR-22 downregulation was consistently observed in hepatocellular carcinomas from all human cohorts and mouse models investigated. The time of appearance of the first tumors was decreased and the number of tumoral foci induced by diethylnitrosamine was significantly increased by miR-22-deficiency in vivo, two features which were further drastically exacerbated with diet-induced obesity. At the molecular level, we provide evidence that the loss of miR-22 significantly affects the energetic metabolism and mitochondrial functions of hepatocytes, and the expression of tumor-promoting factors such as thrombospondin-1. Our study demonstrates that miR-22 acts as a hepatic tumor suppressor in vivo by restraining pro-carcinogenic metabolic deregulations through pleiotropic mechanisms and the overexpression of relevant oncogenes.
Collapse
Affiliation(s)
- Monika Gjorgjieva
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Anne-Sophie Ay
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Marta Correia de Sousa
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Etienne Delangre
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Dobrochna Dolicka
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Cyril Sobolewski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Christine Maeder
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Margot Fournier
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Christine Sempoux
- Service of Clinical Pathology, Institute of Pathology, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Michelangelo Foti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Translational Research Centre in Onco-Haematology, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Correspondence:
| |
Collapse
|
22
|
Du A, Zhao F, Liu Y, Xu L, Chen K, Sun D, Han B. Genetic polymorphisms of PKLR gene and their associations with milk production traits in Chinese Holstein cows. Front Genet 2022; 13:1002706. [PMID: 36118870 PMCID: PMC9479125 DOI: 10.3389/fgene.2022.1002706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Our previous work had confirmed that pyruvate kinase L/R (PKLR) gene was expressed differently in different lactation periods of dairy cattle, and participated in lipid metabolism through insulin, PI3K-Akt, MAPK, AMPK, mTOR, and PPAR signaling pathways, suggesting that PKLR is a candidate gene to affect milk production traits in dairy cattle. Here, we verified whether this gene has significant genetic association with milk yield and composition traits in a Chinese Holstein cow population. In total, we identified 21 single nucleotide polymorphisms (SNPs) by resequencing the entire coding region and partial flanking region of PKLR gene, in which, two SNPs were located in 5′ promoter region, two in 5′ untranslated region (UTR), three in introns, five in exons, six in 3′ UTR and three in 3′ flanking region. The single marker association analysis displayed that all SNPs were significantly associated with milk yield, fat and protein yields or protein percentage (p ≤ 0.0497). The haplotype block containing all the SNPs, predicted by Haploview, had a significant association with fat yield and protein percentage (p ≤ 0.0145). Further, four SNPs in 5′ regulatory region and eight SNPs in UTR and exon regions were predicted to change the transcription factor binding sites (TFBSs) and mRNA secondary structure, respectively, thus affecting the expression of PKLR, leading to changes in milk production phenotypes, suggesting that these SNPs might be the potential functional mutations for milk production traits in dairy cattle. In conclusion, we demonstrated that PKLR had significant genetic effects on milk production traits, and the SNPs with significant genetic effects could be used as candidate genetic markers for genomic selection (GS) in dairy cattle.
Collapse
Affiliation(s)
- Aixia Du
- National Engineering Laboratory of Animal Breeding, Key Laboratory of Animal Genetics, Department of Animal Genetics and Breeding, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | | | - Yanan Liu
- National Engineering Laboratory of Animal Breeding, Key Laboratory of Animal Genetics, Department of Animal Genetics and Breeding, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lingna Xu
- National Engineering Laboratory of Animal Breeding, Key Laboratory of Animal Genetics, Department of Animal Genetics and Breeding, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kewei Chen
- Yantai Institute, China Agricultural University, Yantai, China
| | - Dongxiao Sun
- National Engineering Laboratory of Animal Breeding, Key Laboratory of Animal Genetics, Department of Animal Genetics and Breeding, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Bo Han
- National Engineering Laboratory of Animal Breeding, Key Laboratory of Animal Genetics, Department of Animal Genetics and Breeding, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Bo Han, /
| |
Collapse
|
23
|
Zhang C, Shi M, Kim W, Arif M, Klevstig M, Li X, Yang H, Bayram C, Bolat I, Tozlu ÖÖ, Hacımuftuoglu A, Yıldırım S, Sebhaoui J, Iqbal S, Wei Y, Shi X, Nielsen J, Turkez H, Uhlen M, Boren J, Mardinoglu A. Discovery of therapeutic agents targeting PKLR for NAFLD using drug repositioning. EBioMedicine 2022; 83:104214. [PMID: 35988463 PMCID: PMC9420484 DOI: 10.1016/j.ebiom.2022.104214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) encompasses a wide spectrum of liver pathologies. However, no medical treatment has been approved for the treatment of NAFLD. In our previous study, we found that PKLR could be a potential target for treatment of NALFD. Here, we investigated the effect of PKLR in in vivo model and performed drug repositioning to identify a drug candidate for treatment of NAFLD. METHODS Tissue samples from liver, muscle, white adipose and heart were obtained from control and PKLR knockout mice fed with chow and high sucrose diets. Lipidomics as well as transcriptomics analyses were conducted using these tissue samples. In addition, a computational drug repositioning analysis was performed and drug candidates were identified. The drug candidates were both tested in in vitro and in vivo models to evaluate their toxicity and efficacy. FINDINGS The Pklr KO reversed the increased hepatic triglyceride level in mice fed with high sucrose diet and partly recovered the transcriptomic changes in the liver as well as in other three tissues. Both liver and white adipose tissues exhibited dysregulated circadian transcriptomic profiles, and these dysregulations were reversed by hepatic knockout of Pklr. In addition, 10 small molecule drug candidates were identified as potential inhibitor of PKLR using our drug repositioning pipeline, and two of them significantly inhibited both the PKLR expression and triglyceride level in in vitro model. Finally, the two selected small molecule drugs were evaluated in in vivo rat models and we found that these drugs attenuate the hepatic steatosis without side effect on other tissues. INTERPRETATION In conclusion, our study provided biological insights about the critical role of PKLR in NAFLD progression and proposed a treatment strategy for NAFLD patients, which has been validated in preclinical studies. FUNDING ScandiEdge Therapeutics and Knut and Alice Wallenberg Foundation.
Collapse
Affiliation(s)
- Cheng Zhang
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
| | - Mengnan Shi
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Woonghee Kim
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Muhammad Arif
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Martina Klevstig
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Xiangyu Li
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Hong Yang
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Cemil Bayram
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Ismail Bolat
- Department of Pathology, Veterinary Faculty, Ataturk University, Erzurum, 25240, Turkey
| | - Özlem Özdemir Tozlu
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25200 Erzurum, Turkey
| | - Ahmet Hacımuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Serkan Yıldırım
- Department of Pathology, Veterinary Faculty, Ataturk University, Erzurum, 25240, Turkey
| | - Jihad Sebhaoui
- Trustlife Laboratories, Drug Research & Development Center, Istanbul, Turkey
| | - Shazia Iqbal
- Trustlife Laboratories, Drug Research & Development Center, Istanbul, Turkey
| | - Yongjun Wei
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
| | - Xiaojing Shi
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Mathias Uhlen
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Jan Boren
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, United Kingdom
| |
Collapse
|
24
|
Grigorova N, Ivanova Z, Bjørndal B, Berge RK, Vachkova E, Milanova A, Penchev G, Georgiev IP. Diet restriction alone improves glucose tolerance and insulin sensitivity than its coadministration with krill or fish oil in a rabbit model of castration‐induced obesity. J Anim Physiol Anim Nutr (Berl) 2022; 106:1396-1407. [DOI: 10.1111/jpn.13742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/27/2022] [Accepted: 05/17/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Natalia Grigorova
- Department of Pharmacology, Animal Physiology and Physiological Chemistry, Faculty of Veterinary Medicine Trakia University Stara Zagora Bulgaria
| | - Zhenya Ivanova
- Department of Pharmacology, Animal Physiology and Physiological Chemistry, Faculty of Veterinary Medicine Trakia University Stara Zagora Bulgaria
| | - Bodil Bjørndal
- Department of Clinical Science University of Bergen Bergen Norway
- Department of Sports, Food, and Natural Sciences Western Norway University of Applied Sciences Bergen Norway
| | - Rolf Kristian Berge
- Department of Clinical Science University of Bergen Bergen Norway
- Department of Heart Disease Haukeland University Hospital Bergen Norway
| | - Ekaterina Vachkova
- Department of Pharmacology, Animal Physiology and Physiological Chemistry, Faculty of Veterinary Medicine Trakia University Stara Zagora Bulgaria
| | - Aneliya Milanova
- Department of Pharmacology, Animal Physiology and Physiological Chemistry, Faculty of Veterinary Medicine Trakia University Stara Zagora Bulgaria
| | - Georgi Penchev
- Department of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine Trakia University Stara Zagora Bulgaria
| | - Ivan Penchev Georgiev
- Department of Pharmacology, Animal Physiology and Physiological Chemistry, Faculty of Veterinary Medicine Trakia University Stara Zagora Bulgaria
| |
Collapse
|
25
|
Xue M, Song M, Yan D, Sun S, Wang Y, Fu T, Cai H, Xu H, Sun G, Wang K, Li M. Effect of SLC16A1 on Hepatic Glucose Metabolism in Newborn and Post-Weaned Holstein Bulls. Front Genet 2022; 13:811849. [PMID: 35664312 PMCID: PMC9156795 DOI: 10.3389/fgene.2022.811849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/18/2022] [Indexed: 12/11/2022] Open
Abstract
Background: Patterns of liver energy metabolism significantly differ from birth to adult in cattle undergoing change of rumen rumination. However, the genes involve in hepatic energy metabolism during bovine development and how regulate are still unclear. Methods: In this study, 0-day-old newborn calves (0W) and 9-week-old weaned calves (9W) were used to investigate differences in liver glucose metabolism at these stages of calf development. We did this primarily through the quantitation of energy metabolism indicators, then sequencing the liver transcriptome for each group of claves. Results: The transcriptome results showed 979 differentially expressed genes (DEGs), enriched in animal organ development, catabolic process, transmembrane transport. SLC16A1 involved in that and was locked to investigate. We explored the effects of SLC16A1 on glucose and lactate flux in vitro. We identified and verified its target, miR-22-3p, through bioinformatics and luciferase reporter assays. Moreover, this study found that miR-22-3p decreased cell activity by negatively regulating the SLC16A1. Importantly, our result showed the insulin-induced SLC16A1 mRNA expression decreased, regulated by promoter activity rather than miR-22-3p. Conclusions: Our study illustrates the role of SLC16A1 in the liver mediated metabolism of developing calves. These data enrich our knowledge of the regulatory mechanisms of liver mediated glucose metabolism in developing cattle.
Collapse
Affiliation(s)
- Mingming Xue
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Mingkun Song
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Duo Yan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Shuaijie Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yadong Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Tong Fu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Hanfang Cai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Huifen Xu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
26
|
Anthraquinone derivatives as ADP-competitive inhibitors of liver pyruvate kinase. Eur J Med Chem 2022; 234:114270. [DOI: 10.1016/j.ejmech.2022.114270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/01/2022] [Accepted: 03/06/2022] [Indexed: 12/26/2022]
|
27
|
Pyruvate kinase L/R links metabolism dysfunction to neuroendocrine differentiation of prostate cancer by ZBTB10 deficiency. Cell Death Dis 2022; 13:252. [PMID: 35306527 PMCID: PMC8934352 DOI: 10.1038/s41419-022-04694-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/17/2022] [Accepted: 02/25/2022] [Indexed: 12/05/2022]
Abstract
Neuroendocrine differentiation (NED) frequently occurs in androgen-deprivation therapy (ADT)-resistant prostate cancer (PCa) and is typically associated with metabolic pathway alterations, acquisition of lineage plasticity, and malignancy. There is no conventional therapeutic approach for PCa patients with NED pathologic features because the molecular targets are unknown. Here, we evaluated the regulatory mechanism of NED-associated metabolic reprogramming induced by ADT. We detected that the loss of the androgen-responsive transcription factor, zinc finger, and BTB domain containing 10 (ZBTB10), can activate pyruvate kinase L/R (PKLR) to enhance a NED response that is associated with glucose uptake by PCa cells. PKLR exhibits a tumor-promoting effect in PCa after ADT, but ZBTB10 can compensate for the glucose metabolism and NED capacity of PKLR through the direct transcriptional downregulation of PKLR. Targeting PKLR by drug repurposing with FDA-approved compounds can reduce the aggressiveness and NED of ADT-resistant PCa. We demonstrated that PKLR acts as a modulator to activate NED in PCa enhancement by loss of ZBTB10, thereby enabling PCa cells to mount a glycolysis response essential for therapeutic resistance. Our findings highlight the broad relation between NED and metabolic dysfunction to provide gene expression-based biomarkers for NEPC treatment.
Collapse
|
28
|
Liu Z, You Y, Chen Q, Li G, Pan W, Yang Q, Dong J, Wu Y, Bei JX, Pan C, Li F, Li B. Extracellular vesicle-mediated communication between hepatocytes and natural killer cells promotes hepatocellular tumorigenesis. Mol Ther 2022; 30:606-620. [PMID: 34601133 PMCID: PMC8821954 DOI: 10.1016/j.ymthe.2021.07.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/12/2021] [Accepted: 07/20/2021] [Indexed: 02/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is frequently characterized by metabolic and immune remodeling in the tumor microenvironment. We previously discovered that liver-specific deletion of fructose-1, 6-bisphosphatase 1 (FBP1), a gluconeogenic enzyme ubiquitously suppressed in HCC tissues, promotes liver tumorigenesis and induces metabolic and immune perturbations closely resembling human HCC. However, the underlying mechanisms remain incompletely understood. Here, we reported that FBP1-deficient livers exhibit diminished amounts of natural killer (NK) cells and accelerated tumorigenesis. Using the diethylnitrosamine-induced HCC mouse model, we analyzed potential changes in the immune cell populations purified from control and FBP1-depleted livers and found that NK cells were strongly suppressed. Mechanistically, FBP1 attenuation in hepatocytes derepresses an zeste homolog 2 (EZH2)-dependent transcriptional program to inhibit PKLR expression. This leads to reduced levels of PKLR cargo proteins sorted into hepatocyte-derived extracellular vesicles (EVs), dampened activity of EV-targeted NK cells, and accelerated liver tumorigenesis. Our study demonstrated that hepatic FBP1 depletion promotes HCC-associated immune remodeling, partly through the transfer of hepatocyte-secreted, PKLR-attenuated EVs to NK cells.
Collapse
Affiliation(s)
- Zhijun Liu
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuyu You
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Qiyi Chen
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Guobang Li
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenfeng Pan
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Qing Yang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiajun Dong
- Department of Neurosurgery, Jiangmen Central Hospital, Affiliated Jiangmen Hospital, Sun Yat-sen University, Guangdong 529030, China
| | - Yi Wu
- Department of Neurosurgery, Jiangmen Central Hospital, Affiliated Jiangmen Hospital, Sun Yat-sen University, Guangdong 529030, China
| | - Jin-Xin Bei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510080, China; Center for Precision Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Chaoyun Pan
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Fuming Li
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Bo Li
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510080, China; Center for Precision Medicine, Sun Yat-sen University, Guangzhou 510080, China; RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
29
|
Ma Y, Tan Z, Li Q, Fan W, Chen G, Bin Y, Zhou Y, Yi J, Luo X, Tan J, Si Z, Li J. Combined Analysis of Expression Profiles in a Mouse Model and Patients Identified BHMT2 as a New Regulator of Lipid Metabolism in Metabolic-Associated Fatty Liver Disease. Front Cell Dev Biol 2021; 9:741710. [PMID: 34869329 PMCID: PMC8636031 DOI: 10.3389/fcell.2021.741710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/19/2021] [Indexed: 01/02/2023] Open
Abstract
Metabolic associated fatty liver disease (MAFLD) is associated with obesity, type 2 diabetes mellitus, and other metabolic syndromes. Farnesoid X receptor (FXR, NR1H4) plays a prominent role in hepatic lipid metabolism. This study combined the expression of liver genes in FXR knockout (KO) mice and MAFLD patients to identify new pathogenic pathways for MAFLD based on genome-wide transcriptional profiling. In addition, the roles of new target genes in the MAFLD pathogenic pathway were also explored. Two groups of differentially expressed genes were obtained from FXR-KO mice and MAFLD patients by transcriptional analysis of liver tissue samples. The similarities and differences between the two groups of differentially expressed genes were analyzed to identify novel pathogenic pathways and target genes. After the integration analysis of differentially expressed genes, we identified 134 overlapping genes, many of which have been reported to play an important role in lipid metabolism. Our unique analysis method of comparing differential gene expression between FXR-KO mice and patients with MAFLD is useful to identify target genes and pathways that may be strongly implicated in the pathogenesis of MAFLD. The overlapping genes with high specificity were screened using the Gene Expression Omnibus (GEO) database. Through comparison and analysis with the GEO database, we determined that BHMT2 and PKLR could be highly correlated with MAFLD. Clinical data analysis and RNA interference testing in vitro confirmed that BHMT2 may a new regulator of lipid metabolism in MAFLD pathogenesis. These results may provide new ideas for understanding the pathogenesis of MAFLD and thus provide new targets for the treatment of MAFLD.
Collapse
Affiliation(s)
- Yongqiang Ma
- Department of Liver Transplant, Second Xiangya Hospital, Central South University, Changsha, China.,Transplant Medical Research Center, Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Tan
- Department of Gastroenterology, The First Hospital of Changsha, Changsha, China
| | - Qiang Li
- Department of Liver Transplant, Second Xiangya Hospital, Central South University, Changsha, China.,Transplant Medical Research Center, Second Xiangya Hospital, Central South University, Changsha, China
| | - Wenling Fan
- Department of Gastroenterology, The First Hospital of Changsha, Changsha, China
| | - Guangshun Chen
- Department of Liver Transplant, Second Xiangya Hospital, Central South University, Changsha, China.,Transplant Medical Research Center, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yangyang Bin
- Department of Liver Transplant, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Zhou
- Department of Liver Transplant, Second Xiangya Hospital, Central South University, Changsha, China
| | - Junfang Yi
- Department of Liver Transplant, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaohua Luo
- Department of Liver Transplant, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jieqiong Tan
- Center for Medical Genetics, School of Life Science, Central South University, Changsha, China
| | - Zhongzhou Si
- Department of Liver Transplant, Second Xiangya Hospital, Central South University, Changsha, China.,Transplant Medical Research Center, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiequn Li
- Department of Liver Transplant, Second Xiangya Hospital, Central South University, Changsha, China.,Transplant Medical Research Center, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
30
|
Yang H, Arif M, Yuan M, Li X, Shong K, Türkez H, Nielsen J, Uhlén M, Borén J, Zhang C, Mardinoglu A. A network-based approach reveals the dysregulated transcriptional regulation in non-alcoholic fatty liver disease. iScience 2021; 24:103222. [PMID: 34712920 PMCID: PMC8529555 DOI: 10.1016/j.isci.2021.103222] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/16/2021] [Accepted: 09/30/2021] [Indexed: 12/22/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver disease worldwide. We performed network analysis to investigate the dysregulated biological processes in the disease progression and revealed the molecular mechanism underlying NAFLD. Based on network analysis, we identified a highly conserved disease-associated gene module across three different NAFLD cohorts and highlighted the predominant role of key transcriptional regulators associated with lipid and cholesterol metabolism. In addition, we revealed the detailed metabolic differences between heterogeneous NAFLD patients through integrative systems analysis of transcriptomic data and liver-specific genome-scale metabolic model. Furthermore, we identified transcription factors (TFs), including SREBF2, HNF4A, SREBF1, YY1, and KLF13, showing regulation of hepatic expression of genes in the NAFLD-associated modules and validated the TFs using data generated from a mouse NAFLD model. In conclusion, our integrative analysis facilitates the understanding of the regulatory mechanism of these perturbed TFs and their associated biological processes. Disease-associated gene modules are conserved across multiple NAFLD cohorts The central genes in disease-associated modules are key enzymes in cholesterol synthesis YY1 and KLF13 are potential key transcriptional regulators of NAFLD development
Collapse
Affiliation(s)
- Hong Yang
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Muhammad Arif
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Meng Yuan
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Xiangyu Li
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Koeun Shong
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Hasan Türkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden.,BioInnovation Institute, 2200 Copenhagen, Denmark
| | - Mathias Uhlén
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Cheng Zhang
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.,School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.,Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
31
|
Zhou X, Mikaeloff F, Curbo S, Zhao Q, Kuiper R, Végvári Á, Neogi U, Karlsson A. Coordinated pyruvate kinase activity is crucial for metabolic adaptation and cell survival during mitochondrial dysfunction. Hum Mol Genet 2021; 30:2012-2026. [PMID: 34169315 PMCID: PMC8522632 DOI: 10.1093/hmg/ddab168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/26/2021] [Accepted: 06/17/2021] [Indexed: 12/21/2022] Open
Abstract
Deoxyguanosine kinase (DGUOK) deficiency causes mtDNA depletion and mitochondrial dysfunction. We reported long survival of DGUOK knockout (Dguok-/-) mice despite low (<5%) mtDNA content in liver tissue. However, the molecular mechanisms enabling the extended survival remain unknown. Using transcriptomics, proteomics and metabolomics followed by in vitro assays, we aimed to identify the molecular pathways involved in the extended survival of the Dguok-/- mice. At the early stage, the serine synthesis and folate cycle were activated but declined later. Increased activity of the mitochondrial citric acid cycle (TCA cycle) and the urea cycle and degradation of branched chain amino acids were hallmarks of the extended lifespan in DGUOK deficiency. Furthermore, the increased synthesis of TCA cycle intermediates was supported by coordination of two pyruvate kinase genes, PKLR and PKM, indicating a central coordinating role of pyruvate kinases to support the long-term survival in mitochondrial dysfunction.
Collapse
Affiliation(s)
- Xiaoshan Zhou
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm 141 86, Sweden
| | - Flora Mikaeloff
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm 141 86, Sweden
| | - Sophie Curbo
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm 141 86, Sweden
| | - Qian Zhao
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm 141 86, Sweden
| | - Raoul Kuiper
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm 141 86, Sweden
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm SE-171 65, Sweden
| | - Ujjwal Neogi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm 141 86, Sweden
| | - Anna Karlsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm 141 86, Sweden
| |
Collapse
|
32
|
Integrative Network Analysis Revealed Genetic Impact of Pyruvate Kinase L/R on Hepatocyte Proliferation and Graft Survival after Liver Transplantation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7182914. [PMID: 34512869 PMCID: PMC8429008 DOI: 10.1155/2021/7182914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/26/2021] [Indexed: 11/23/2022]
Abstract
Background Pyruvate kinase L/R (PKLR) has been suggested to affect the proliferation of hepatocytes via regulation of the cell cycle and lipid metabolism. However, its impact on the global metabolome and its clinical implications remain unclear. Aims We aimed to clarify the genetic impact of PKLR on the metabolomic profiles of hepatoma cells and its potential effects on grafts for liver transplantation (LT). Methods Nontargeted and targeted metabolomic assays were performed in human hepatoma cells transfected with lentiviral vectors causing PKLR overexpression and silencing, respectively. We then constructed a molecular network based on integrative analysis of transcriptomic and metabolomic data. We also assessed the biological functions of PKLR in the global metabolome in LT grafts in patients via a weighted correlation network model. Results Multiomic analysis revealed that PKLR perturbations significantly affected the pyruvate, citrate, and glycerophospholipid metabolism pathways, as crucial steps in de novo lipogenesis (DNL). We also confirmed the importance of phosphatidylcholines (PC) and its derivative lyso-PC supply on improved survival of LT grafts in patients. Coexpression analysis revealed beneficial effects of PKLR overexpression on posttransplant prognosis by alleviating arachidonic acid metabolism of the grafts, independent of operational risk factors. Conclusion This systems-level analysis indicated that PKLR affected hepatoma cell viability via impacts on the whole process of DNL, from glycolysis to final PC synthesis. PKLR also improved prognosis after LT, possibly via its impact on the increased genesis of beneficial glycerophospholipids.
Collapse
|
33
|
Sun Y, Tang X, Ye B, Ding K. DNA and RNA Sequencing Recapitulated Aberrant Tumor Metabolism in Liver Cancer Cell Lines. J Hepatocell Carcinoma 2021; 8:823-836. [PMID: 34350138 PMCID: PMC8327295 DOI: 10.2147/jhc.s318724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/06/2021] [Indexed: 12/24/2022] Open
Abstract
AIM Metabolic reprogramming has recently attracted extensive attention for understanding cancer development. We aimed to demonstrate a genomic and transcriptomic landscape of metabolic reprogramming underlying liver cancer cell lines. METHODS We investigated metabolic aberrant at both the transcriptome and genome levels using transcriptome and whole-exome sequencing data from 12 human liver cancer cell lines (hLCCLs) and one normal liver cell line. RESULTS Three subgroups of hLCCLs characterized from transcriptome sequencing data exhibit significantly different aberrations in various metabolic processes, including amino acid, lipid, energy, and carbohydrate metabolism. Furthermore, whole-exome sequencing revealed distinct mutational signatures among different subgroups of hLCCLs and identified a total of 19 known driver genes implicated in metabolism. CONCLUSION Our findings highlighted differential metabolic mechanisms in the development of liver cancer and provided a resource for further investigating its metabolic mechanisms.
Collapse
Affiliation(s)
- Yihong Sun
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, 410006, People’s Republic of China
| | - Xia Tang
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, 410006, People’s Republic of China
| | - Bo Ye
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, 410006, People’s Republic of China
| | - Keyue Ding
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, 410006, People’s Republic of China
- Medical Genetic Institute of Henan Province, Henan Provincial People’s Hospital, Henan Key Laboratory of Genetic Diseases and Functional Genomics, National Health Commission Key Laboratory of Birth Defect Prevention, Henan Provincial People’s Hospital of Henan University, People’s Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450003, People's Republic of China
| |
Collapse
|
34
|
Liu E, Ji Y, Zhang F, Liu B, Meng X. Review on Auricularia auricula-judae as a Functional Food: Growth, Chemical Composition, and Biological Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1739-1750. [PMID: 33543932 DOI: 10.1021/acs.jafc.0c05934] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although the application of Auricularia auricula-judae (AAJ) for health purposes has a long tradition in Asia, there is a lack of research on the functional nutrition of AAJ; the current research focused on polysaccharides has been too unitary compared to other mushrooms in recent years. Identification, extraction, and large-scale production of biologically active substances have emerged as critical determinants that determine AAJ becoming a functional food. AAJ is being treated in a restrained manner, despite having significant potential as a drug or a source of pure bioactive substances. Functional ingredients of mushrooms and AAJ have emerged as a new impetus for researchers interested in developing functional foods. This review presents an overview of current studies relevant to nutrition and the application of AAJ. The physiological conditions of AAJ and the corresponding functional ingredients beneficial to human health are reviewed to better understand the function and mechanisms of different nutrient contents. Relevant methods for evaluating the efficiency of extraction are also summarized. Finally, current limitations and the future scope for functional ingredients of AAJ are identified and discussed.
Collapse
Affiliation(s)
- Enchao Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Yuan Ji
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Fang Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Bingjie Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Xianghong Meng
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| |
Collapse
|
35
|
Montrose K, López Cabezas RM, Paukštytė J, Saarikangas J. Winter is coming: Regulation of cellular metabolism by enzyme polymerization in dormancy and disease. Exp Cell Res 2020; 397:112383. [PMID: 33212148 DOI: 10.1016/j.yexcr.2020.112383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 12/20/2022]
Abstract
Metabolism feeds growth. Accordingly, metabolism is regulated by nutrient-sensing pathways that converge growth promoting signals into biosynthesis by regulating the activity of metabolic enzymes. When the environment does not support growth, organisms invest in survival. For cells, this entails transitioning into a dormant, quiescent state (G0). In dormancy, the activity of biosynthetic pathways is dampened, and catabolic metabolism and stress tolerance pathways are activated. Recent work in yeast has demonstrated that dormancy is associated with alterations in the physicochemical properties of the cytoplasm, including changes in pH, viscosity and macromolecular crowding. Accompanying these changes, numerous metabolic enzymes transition from soluble to polymerized assemblies. These large-scale self-assemblies are dynamic and depolymerize when cells resume growth. Here we review how enzyme polymerization enables metabolic plasticity by tuning carbohydrate, nucleic acid, amino acid and lipid metabolic pathways, with particular focus on its potential adaptive value in cellular dormancy.
Collapse
Affiliation(s)
- Kristopher Montrose
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, Finland; Research Programme in Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| | - Rosa María López Cabezas
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, Finland; Research Programme in Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| | - Jurgita Paukštytė
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, Finland; Research Programme in Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| | - Juha Saarikangas
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, Finland; Research Programme in Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland; Neuroscience Center, University of Helsinki, Finland.
| |
Collapse
|
36
|
Ozcan M, Altay O, Lam S, Turkez H, Aksoy Y, Nielsen J, Uhlen M, Boren J, Mardinoglu A. Improvement in the Current Therapies for Hepatocellular Carcinoma Using a Systems Medicine Approach. ACTA ACUST UNITED AC 2020; 4:e2000030. [PMID: 32529800 DOI: 10.1002/adbi.202000030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death primarily due to the lack of effective targeted therapies. Despite the distinct morphological and phenotypic patterns of HCC, treatment strategies are restricted to relatively homogeneous therapies, including multitargeted tyrosine kinase inhibitors and immune checkpoint inhibitors. Therefore, more effective therapy options are needed to target dysregulated metabolic and molecular pathways in HCC. Integrative genomic profiling of HCC patients provides insight into the most frequently mutated genes and molecular targets, including telomerase reverse transcriptase, the TP53 gene, and the Wnt/β-catenin signaling pathway oncogene (CTNNB1). Moreover, emerging techniques, such as genome-scale metabolic models may elucidate the underlying cancer-specific metabolism, which allows for the discovery of potential drug targets and identification of biomarkers. De novo lipogenesis has been revealed as consistently upregulated since it is required for cell proliferation in all HCC patients. The metabolic network-driven stratification of HCC patients in terms of redox responses, utilization of metabolites, and subtype-specific pathways may have clinical implications to drive the development of personalized medicine. In this review, the current and emerging therapeutic targets in light of molecular approaches and metabolic network-based strategies are summarized, prompting effective treatment of HCC patients.
Collapse
Affiliation(s)
- Mehmet Ozcan
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE 17121, Sweden.,Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, 06100, Turkey
| | - Ozlem Altay
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE 17121, Sweden
| | - Simon Lam
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| | - Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, 25240, Turkey
| | - Yasemin Aksoy
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, 06100, Turkey
| | - Jens Nielsen
- Prof. J. Nielsen, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, SE-41296, Sweden
| | - Mathias Uhlen
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE 17121, Sweden
| | - Jan Boren
- Department of Molecular and Clinical Medicine, University of Gothenburg, The Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, SE-413 45, Sweden
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE 17121, Sweden.,Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| |
Collapse
|
37
|
Lam S, Doran S, Yuksel HH, Altay O, Turkez H, Nielsen J, Boren J, Uhlen M, Mardinoglu A. Addressing the heterogeneity in liver diseases using biological networks. Brief Bioinform 2020; 22:1751-1766. [PMID: 32201876 PMCID: PMC7986590 DOI: 10.1093/bib/bbaa002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/28/2019] [Accepted: 01/03/2020] [Indexed: 12/19/2022] Open
Abstract
The abnormalities in human metabolism have been implicated in the progression of several complex human diseases, including certain cancers. Hence, deciphering the underlying molecular mechanisms associated with metabolic reprogramming in a disease state can greatly assist in elucidating the disease aetiology. An invaluable tool for establishing connections between global metabolic reprogramming and disease development is the genome-scale metabolic model (GEM). Here, we review recent work on the reconstruction of cell/tissue-type and cancer-specific GEMs and their use in identifying metabolic changes occurring in response to liver disease development, stratification of the heterogeneous disease population and discovery of novel drug targets and biomarkers. We also discuss how GEMs can be integrated with other biological networks for generating more comprehensive cell/tissue models. In addition, we review the various biological network analyses that have been employed for the development of efficient treatment strategies. Finally, we present three case studies in which independent studies converged on conclusions underlying liver disease.
Collapse
Affiliation(s)
- Simon Lam
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, United Kingdom; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-17121, Sweden
| | - Stephen Doran
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, United Kingdom; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-17121, Sweden
| | - Hatice Hilal Yuksel
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, United Kingdom; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-17121, Sweden
| | - Ozlem Altay
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, United Kingdom; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-17121, Sweden
| | - Hasan Turkez
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, United Kingdom; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-17121, Sweden
| | - Jens Nielsen
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, United Kingdom; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-17121, Sweden
| | - Jan Boren
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, United Kingdom; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-17121, Sweden
| | - Mathias Uhlen
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, United Kingdom; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-17121, Sweden
| | - Adil Mardinoglu
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, United Kingdom; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-17121, Sweden
| |
Collapse
|
38
|
Blencowe M, Karunanayake T, Wier J, Hsu N, Yang X. Network Modeling Approaches and Applications to Unravelling Non-Alcoholic Fatty Liver Disease. Genes (Basel) 2019; 10:E966. [PMID: 31771247 PMCID: PMC6947017 DOI: 10.3390/genes10120966] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/18/2019] [Accepted: 11/22/2019] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a progressive condition of the liver encompassing a range of pathologies including steatosis, non-alcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma. Research into this disease is imperative due to its rapid growth in prevalence, economic burden, and current lack of FDA approved therapies. NAFLD involves a highly complex etiology that calls for multi-tissue multi-omics network approaches to uncover the pathogenic genes and processes, diagnostic biomarkers, and potential therapeutic strategies. In this review, we first present a basic overview of disease pathogenesis, risk factors, and remaining knowledge gaps, followed by discussions of the need and concepts of multi-tissue multi-omics approaches, various network methodologies and application examples in NAFLD research. We highlight the findings that have been uncovered thus far including novel biomarkers, genes, and biological pathways involved in different stages of NAFLD, molecular connections between NAFLD and its comorbidities, mechanisms underpinning sex differences, and druggable targets. Lastly, we outline the future directions of implementing network approaches to further improve our understanding of NAFLD in order to guide diagnosis and therapeutics.
Collapse
Affiliation(s)
- Montgomery Blencowe
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA; (M.B.); (T.K.); (J.W.); (N.H.)
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Tilan Karunanayake
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA; (M.B.); (T.K.); (J.W.); (N.H.)
| | - Julian Wier
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA; (M.B.); (T.K.); (J.W.); (N.H.)
| | - Neil Hsu
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA; (M.B.); (T.K.); (J.W.); (N.H.)
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA; (M.B.); (T.K.); (J.W.); (N.H.)
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Interdepartmental Program of Bioinformatics, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| |
Collapse
|
39
|
Jaguezeski AM, Souza CF, Perin G, Gebert RR, Baldi KRA, Gomes TMA, Baldissera MD, Andrade CM, Stefani LM, Da Silva AS. Changes in cardiac and hepatic energetic metabolism in gerbils infected by Listeria monocytogenes. Microb Pathog 2019; 138:103786. [PMID: 31604154 DOI: 10.1016/j.micpath.2019.103786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/05/2019] [Accepted: 10/07/2019] [Indexed: 12/26/2022]
Abstract
Energy metabolism is a sensitive indicator of cellular disorders. Therefore, the objective of this study was to investigate changes in cardiac and hepatic energy metabolism during listeriosis using an experimental model. We divided gerbils into two groups: Control (n = 11) and orally Infected (n = 12) with 5 × 109 CFU/mL of Listeria monocytogenes. Euthanasia and sampling were performed on days 6 and 12 post-infection (PI). Histopathological lesions were not found in the heart; however, the liver showed pyogranuloma. In the hearts of infected animals, cytosolic creatine kinase activity was lower on day 6 and 12 PI; mitochondrial creatine kinase/pyruvate kinase (PK), and sodium potassium pump (Na+/K+-ATPase) activities were lower on day 12 PI. Hepatic PK and Na+/K+-ATPase activities were lower in the infected group on day 12 PI. Lipoperoxidation was higher in the livers and hearts of infected animals on day 12 PI, and antioxidant capacity against peroxyl radicals (ACAP) was also higher in this group. These data suggest that subclinical listeriosis alters hepatic and cardiac energy metabolism, possibly related to decreased activity of phosphotransferases and ATPase. Subsequent antioxidant responses are not sufficient to correct alterations in lipid peroxidation and bioenergetics, possibly leading to important cellular pathological mechanisms.
Collapse
Affiliation(s)
- Antonise M Jaguezeski
- Department of Toxicological Biochemistry, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | - Carine F Souza
- Department of Toxicological Biochemistry, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | - Géssica Perin
- Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó, Santa Catarina, Brazil
| | - Roger R Gebert
- Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó, Santa Catarina, Brazil
| | - Kelen R A Baldi
- Laboratory of Pathology Veterinary, Instituto Federal Catarinense (IFC), Concórdia, Santa Catarina, Brazil
| | - Teane M A Gomes
- Laboratory of Pathology Veterinary, Instituto Federal Catarinense (IFC), Concórdia, Santa Catarina, Brazil
| | - Matheus D Baldissera
- Department of Pharmacology, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | - Cinthia M Andrade
- Department of Toxicological Biochemistry, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | - Lenita M Stefani
- Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó, Santa Catarina, Brazil; Department of Science and Technology, Universidade do Estado de Santa Catarina (UDESC), Florianópolis, Santa Catarina, Brazil
| | - Aleksandro S Da Silva
- Department of Toxicological Biochemistry, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil; Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó, Santa Catarina, Brazil.
| |
Collapse
|
40
|
Abstract
The metabolic syndrome (MetS) concept gathers in a single entity a set of metabolic abnormalities that have in common a close relationship with ectopic deposit of lipids, insulin resistance, and chronic low-grade inflammation. It is a valuable teaching tool to help health professionals to understand and integrate the consequences of lipotoxicity and the adverse metabolic consequences of insulin resistance. Also, it is useful to identify subjects with a high risk for having incident type 2 diabetes. Systems biology studies have gained a prominent role in understanding the interaction between adipose tissue dysfunction, insulin action, and the MetS traits and co-morbidities (that is, non-alcoholic steatohepatitis, or NASH). This approach may allow the identification of new therapeutic targets (that is,
de novo lipogenesis inhibitors for NASH). Treatment targets on MetS are the adoption of a healthy lifestyle, weight loss, and the control of the co-morbidities (hyperglycemia, dyslipidemia, arterial hypertension, among others). The long-term goals are the prevention of type 2 diabetes, cardiovascular events, and other MetS-related outcomes. In the last few decades, new drugs derived from the identification of innovative treatment targets have come on the market. These drugs have positive effects on more than one MetS component (that is, hyperglycemia and weight control). New potential treatment targets are under study.
Collapse
Affiliation(s)
- Carlos A Aguilar-Salinas
- Unidad de Investigación en Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, 14008, Mexico.,Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, 14008, Mexico.,Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, Nuevo Leon, 64710, Mexico
| | - Tannia Viveros-Ruiz
- Unidad de Investigación en Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, 14008, Mexico.,Doctorado de Epidemiología Clínica, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| |
Collapse
|