1
|
Zhao Y, Feng Q, Wang J, Zi H, Zhang Y, Zhang X, Tuakeh E, Pan H. Mechanistic insights into electric field-enhanced methanation of lignite via microbial metabolic pathway optimization. BIORESOURCE TECHNOLOGY 2025; 423:132223. [PMID: 39956523 DOI: 10.1016/j.biortech.2025.132223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/30/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
This study investigates the mechanistic insights into the enhancement of methane production from low-rank coal (lignite) through the application of electric fields. Experimental results demonstrate that an optimal electric field intensity of 1.6 V/cm significantly accelerates methane production, achieving a cumulative yield of 98.9 mL CH4/g lignite, which is 3.2 times higher than the control without an electric field (31.1 mL/g). Detailed analysis reveals that electric fields facilitate direct interspecies electron transfer, enriching electroactive microorganisms such as Coprothermobacter and Fermentibacteraceae. The abundance of these electroactive bacteria increased by up to 50 % at 1.6 V/cm, leading to improved degradation of complex organic substrates and optimized metabolic pathways. Metabolic pathways related to lactate and acetic acid production, precursors for methane, were found to be more abundant under electric field conditions. These findings offer new mechanistic insights into the role of electric fields in optimizing microbial pathways for low-rank coal methanation.
Collapse
Affiliation(s)
- Yong Zhao
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Qing Feng
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Jingli Wang
- Pingyin Branch of Jinan Ecological Environment Bureau, Jinan 250499, China
| | - Hao Zi
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yingkun Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xinjian Zhang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Emmanuel Tuakeh
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Hongda Pan
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
2
|
Hunt A, Rasor BJ, Seki K, Ekas HM, Warfel KF, Karim AS, Jewett MC. Cell-Free Gene Expression: Methods and Applications. Chem Rev 2025; 125:91-149. [PMID: 39700225 PMCID: PMC11719329 DOI: 10.1021/acs.chemrev.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/29/2024] [Accepted: 10/21/2024] [Indexed: 12/21/2024]
Abstract
Cell-free gene expression (CFE) systems empower synthetic biologists to build biological molecules and processes outside of living intact cells. The foundational principle is that precise, complex biomolecular transformations can be conducted in purified enzyme or crude cell lysate systems. This concept circumvents mechanisms that have evolved to facilitate species survival, bypasses limitations on molecular transport across the cell wall, and provides a significant departure from traditional, cell-based processes that rely on microscopic cellular "reactors." In addition, cell-free systems are inherently distributable through freeze-drying, which allows simple distribution before rehydration at the point-of-use. Furthermore, as cell-free systems are nonliving, they provide built-in safeguards for biocontainment without the constraints attendant on genetically modified organisms. These features have led to a significant increase in the development and use of CFE systems over the past two decades. Here, we discuss recent advances in CFE systems and highlight how they are transforming efforts to build cells, control genetic networks, and manufacture biobased products.
Collapse
Affiliation(s)
- Andrew
C. Hunt
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Blake J. Rasor
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Kosuke Seki
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Holly M. Ekas
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Katherine F. Warfel
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S. Karim
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
- Robert
H. Lurie Comprehensive Cancer Center, Northwestern
University, Chicago, Illinois 60611, United States
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
3
|
Xie X, Gui L, Qiao B, Wang G, Huang S, Zhao Y, Sun S. Deep learning in template-free de novo biosynthetic pathway design of natural products. Brief Bioinform 2024; 25:bbae495. [PMID: 39373052 PMCID: PMC11456888 DOI: 10.1093/bib/bbae495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 10/08/2024] Open
Abstract
Natural products (NPs) are indispensable in drug development, particularly in combating infections, cancer, and neurodegenerative diseases. However, their limited availability poses significant challenges. Template-free de novo biosynthetic pathway design provides a strategic solution for NP production, with deep learning standing out as a powerful tool in this domain. This review delves into state-of-the-art deep learning algorithms in NP biosynthesis pathway design. It provides an in-depth discussion of databases like Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome, and UniProt, which are essential for model training, along with chemical databases such as Reaxys, SciFinder, and PubChem for transfer learning to expand models' understanding of the broader chemical space. It evaluates the potential and challenges of sequence-to-sequence and graph-to-graph translation models for accurate single-step prediction. Additionally, it discusses search algorithms for multistep prediction and deep learning algorithms for predicting enzyme function. The review also highlights the pivotal role of deep learning in improving catalytic efficiency through enzyme engineering, which is essential for enhancing NP production. Moreover, it examines the application of large language models in pathway design, enzyme discovery, and enzyme engineering. Finally, it addresses the challenges and prospects associated with template-free approaches, offering insights into potential advancements in NP biosynthesis pathway design.
Collapse
Affiliation(s)
- Xueying Xie
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education (Northeast Forestry University), No. 26 Hexing Road, Xiangfang District, Harbin 150001, China
- College of Life Science, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Lin Gui
- College of Computer and Control Engineering, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Baixue Qiao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education (Northeast Forestry University), No. 26 Hexing Road, Xiangfang District, Harbin 150001, China
- College of Life Science, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Guohua Wang
- College of Computer and Control Engineering, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Shan Huang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, No. 246 Xuefu Road, Nangang District,Harbin 150081, China
| | - Yuming Zhao
- College of Computer and Control Engineering, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Shanwen Sun
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education (Northeast Forestry University), No. 26 Hexing Road, Xiangfang District, Harbin 150001, China
- College of Life Science, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China
| |
Collapse
|
4
|
Balzerani F, Blasco T, Pérez-Burillo S, Valcarcel LV, Hassoun S, Planes FJ. Extending PROXIMAL to predict degradation pathways of phenolic compounds in the human gut microbiota. NPJ Syst Biol Appl 2024; 10:56. [PMID: 38802371 PMCID: PMC11130242 DOI: 10.1038/s41540-024-00381-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
Despite significant advances in reconstructing genome-scale metabolic networks, the understanding of cellular metabolism remains incomplete for many organisms. A promising approach for elucidating cellular metabolism is analysing the full scope of enzyme promiscuity, which exploits the capacity of enzymes to bind to non-annotated substrates and generate novel reactions. To guide time-consuming costly experimentation, different computational methods have been proposed for exploring enzyme promiscuity. One relevant algorithm is PROXIMAL, which strongly relies on KEGG to define generic reaction rules and link specific molecular substructures with associated chemical transformations. Here, we present a completely new pipeline, PROXIMAL2, which overcomes the dependency on KEGG data. In addition, PROXIMAL2 introduces two relevant improvements with respect to the former version: i) correct treatment of multi-step reactions and ii) tracking of electric charges in the transformations. We compare PROXIMAL and PROXIMAL2 in recovering annotated products from substrates in KEGG reactions, finding a highly significant improvement in the level of accuracy. We then applied PROXIMAL2 to predict degradation reactions of phenolic compounds in the human gut microbiota. The results were compared to RetroPath RL, a different and relevant enzyme promiscuity method. We found a significant overlap between these two methods but also complementary results, which open new research directions into this relevant question in nutrition.
Collapse
Affiliation(s)
- Francesco Balzerani
- University of Navarra, Tecnun School of Engineering, Manuel de Lardizábal 13, 20018, San Sebastián, Spain
| | - Telmo Blasco
- University of Navarra, Tecnun School of Engineering, Manuel de Lardizábal 13, 20018, San Sebastián, Spain
| | - Sergio Pérez-Burillo
- University of Navarra, Tecnun School of Engineering, Manuel de Lardizábal 13, 20018, San Sebastián, Spain
| | - Luis V Valcarcel
- University of Navarra, Tecnun School of Engineering, Manuel de Lardizábal 13, 20018, San Sebastián, Spain
- University of Navarra, Biomedical Engineering Center, Campus Universitario, 31009, Pamplona, Navarra, Spain
- University of Navarra, Instituto de Ciencia de los Datos e Inteligencia Artificial (DATAI), Campus Universitario, 31080, Pamplona, Spain
| | - Soha Hassoun
- Department of Computer Science, Tufts University, Medford, MA, 02155, USA.
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, 02155, USA.
| | - Francisco J Planes
- University of Navarra, Tecnun School of Engineering, Manuel de Lardizábal 13, 20018, San Sebastián, Spain.
- University of Navarra, Biomedical Engineering Center, Campus Universitario, 31009, Pamplona, Navarra, Spain.
- University of Navarra, Instituto de Ciencia de los Datos e Inteligencia Artificial (DATAI), Campus Universitario, 31080, Pamplona, Spain.
| |
Collapse
|
5
|
Heid E, Probst D, Green WH, Madsen GKH. EnzymeMap: curation, validation and data-driven prediction of enzymatic reactions. Chem Sci 2023; 14:14229-14242. [PMID: 38098707 PMCID: PMC10718068 DOI: 10.1039/d3sc02048g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
Enzymatic reactions are an ecofriendly, selective, and versatile addition, sometimes even alternative to organic reactions for the synthesis of chemical compounds such as pharmaceuticals or fine chemicals. To identify suitable reactions, computational models to predict the activity of enzymes on non-native substrates, to perform retrosynthetic pathway searches, or to predict the outcomes of reactions including regio- and stereoselectivity are becoming increasingly important. However, current approaches are substantially hindered by the limited amount of available data, especially if balanced and atom mapped reactions are needed and if the models feature machine learning components. We therefore constructed a high-quality dataset (EnzymeMap) by developing a large set of correction and validation algorithms for recorded reactions in the literature and showcase its significant positive impact on machine learning models of retrosynthesis, forward prediction, and regioselectivity prediction, outperforming previous approaches by a large margin. Our dataset allows for deep learning models of enzymatic reactions with unprecedented accuracy, and is freely available online.
Collapse
Affiliation(s)
- Esther Heid
- Institute of Materials Chemistry, TU Wien 1060 Vienna Austria
- Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA
| | | | - William H Green
- Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA
| | | |
Collapse
|
6
|
Chainani Y, Bonnanzio G, Tyo KE, Broadbelt LJ. Coupling chemistry and biology for the synthesis of advanced bioproducts. Curr Opin Biotechnol 2023; 84:102992. [PMID: 37688985 DOI: 10.1016/j.copbio.2023.102992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/30/2023] [Accepted: 08/05/2023] [Indexed: 09/11/2023]
Abstract
Chemical and biological syntheses can both lead to a myriad of compounds. Biology enables us to harness the metabolism of microbial cell factories to produce key target molecules from renewable biomass-derived substrates. Although bio-based feedstocks are sustainably sourced and more benign than the rapidly depleting fossil fuels that chemical processes have historically relied on, limiting pathways solely to biological reactions may not equate to a greener process overall. In fact, bioreactors rely on substantial quantities of water and can be inefficient since organisms typically operate around ambient conditions and are sensitive to perturbations in their environment. Hybridizing biosynthetic pathways with green chemistry can instead be a more potent strategy to reduce our net manufacturing footprint. Emerging chemistries have demonstrated considerable success in performing complex transformations on biological feedstocks without significant solvent use. Many of these transformations would be too slow to perform enzymatically or infeasible altogether. Here, we put forth the concept that by carefully considering the merits and drawbacks of synthetic biology and chemistry as well as one's own use case, there exist many opportunities for coupling the two. Merging these syntheses can unlock a wider suite of functional group transformations, thereby enabling future manufacturing processes to sustainably access a larger space of valuable, platform chemicals.
Collapse
Affiliation(s)
- Yash Chainani
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Geoffrey Bonnanzio
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Keith Ej Tyo
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Linda J Broadbelt
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
7
|
Ryu G, Kim GB, Yu T, Lee SY. Deep learning for metabolic pathway design. Metab Eng 2023; 80:130-141. [PMID: 37734652 DOI: 10.1016/j.ymben.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 09/23/2023]
Abstract
The establishment of a bio-based circular economy is imperative in tackling the climate crisis and advancing sustainable development. In this realm, the creation of microbial cell factories is central to generating a variety of chemicals and materials. The design of metabolic pathways is crucial in shaping these microbial cell factories, especially when it comes to producing chemicals with yet-to-be-discovered biosynthetic routes. To aid in navigating the complexities of chemical and metabolic domains, computer-supported tools for metabolic pathway design have emerged. In this paper, we evaluate how digital strategies can be employed for pathway prediction and enzyme discovery. Additionally, we touch upon the recent strides made in using deep learning techniques for metabolic pathway prediction. These computational tools and strategies streamline the design of metabolic pathways, facilitating the development of microbial cell factories. Leveraging the capabilities of deep learning in metabolic pathway design is profoundly promising, potentially hastening the advent of a bio-based circular economy.
Collapse
Affiliation(s)
- Gahyeon Ryu
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
| | - Gi Bae Kim
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
| | - Taeho Yu
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea; BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea; Graduate School of Engineering Biology, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
8
|
Zhang K, Fenner K. enviRule: an end-to-end system for automatic extraction of reaction patterns from environmental contaminant biotransformation pathways. Bioinformatics 2023; 39:btad407. [PMID: 37354527 PMCID: PMC10322654 DOI: 10.1093/bioinformatics/btad407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/02/2023] [Accepted: 06/23/2023] [Indexed: 06/26/2023] Open
Abstract
MOTIVATION Transformation products (TPs) of man-made chemicals, formed through microbially mediated transformation in the environment, can have serious adverse environmental effects, yet the analytical identification of TPs is challenging. Rule-based prediction tools are successful in predicting TPs, especially in environmental chemistry applications that typically have to rely on small datasets, by imparting the existing knowledge on enzyme-mediated biotransformation reactions. However, the rules extracted from biotransformation reaction databases usually face the issue of being over/under-generalized and are not flexible to be updated with new reactions. RESULTS We developed an automatic rule extraction tool called enviRule. It clusters biotransformation reactions into different groups based on the similarities of reaction fingerprints, and then automatically extracts and generalizes rules for each reaction group in SMARTS format. It optimizes the genericity of automatic rules against the downstream TP prediction task. Models trained with automatic rules outperformed the models trained with manually curated rules by 30% in the area under curve (AUC) scores. Moreover, automatic rules can be easily updated with new reactions, highlighting enviRule's strengths for both automatic extraction of optimized reactions rules and automated updating thereof. AVAILABILITY AND IMPLEMENTATION enviRule code is freely available at https://github.com/zhangky12/enviRule.
Collapse
Affiliation(s)
- Kunyang Zhang
- Department of Environmental Chemistry, Eawag, Dübendorf 8600, Switzerland
- Department of Chemistry, University of Zürich, Zürich 8057, Switzerland
| | - Kathrin Fenner
- Department of Environmental Chemistry, Eawag, Dübendorf 8600, Switzerland
- Department of Chemistry, University of Zürich, Zürich 8057, Switzerland
| |
Collapse
|
9
|
Shebek KM, Strutz J, Broadbelt LJ, Tyo KEJ. Pickaxe: a Python library for the prediction of novel metabolic reactions. BMC Bioinformatics 2023; 24:106. [PMID: 36949401 PMCID: PMC10031857 DOI: 10.1186/s12859-023-05149-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/13/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Biochemical reaction prediction tools leverage enzymatic promiscuity rules to generate reaction networks containing novel compounds and reactions. The resulting reaction networks can be used for multiple applications such as designing novel biosynthetic pathways and annotating untargeted metabolomics data. It is vital for these tools to provide a robust, user-friendly method to generate networks for a given application. However, existing tools lack the flexibility to easily generate networks that are tailor-fit for a user's application due to lack of exhaustive reaction rules, restriction to pre-computed networks, and difficulty in using the software due to lack of documentation. RESULTS Here we present Pickaxe, an open-source, flexible software that provides a user-friendly method to generate novel reaction networks. This software iteratively applies reaction rules to a set of metabolites to generate novel reactions. Users can select rules from the prepackaged JN1224min ruleset, derived from MetaCyc, or define their own custom rules. Additionally, filters are provided which allow for the pruning of a network on-the-fly based on compound and reaction properties. The filters include chemical similarity to target molecules, metabolomics, thermodynamics, and reaction feasibility filters. Example applications are given to highlight the capabilities of Pickaxe: the expansion of common biological databases with novel reactions, the generation of industrially useful chemicals from a yeast metabolome database, and the annotation of untargeted metabolomics peaks from an E. coli dataset. CONCLUSION Pickaxe predicts novel metabolic reactions and compounds, which can be used for a variety of applications. This software is open-source and available as part of the MINE Database python package ( https://pypi.org/project/minedatabase/ ) or on GitHub ( https://github.com/tyo-nu/MINE-Database ). Documentation and examples can be found on Read the Docs ( https://mine-database.readthedocs.io/en/latest/ ). Through its documentation, pre-packaged features, and customizable nature, Pickaxe allows users to generate novel reaction networks tailored to their application.
Collapse
Affiliation(s)
- Kevin M Shebek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Jonathan Strutz
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Linda J Broadbelt
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Keith E J Tyo
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA.
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
10
|
Cho JS, Kim GB, Eun H, Moon CW, Lee SY. Designing Microbial Cell Factories for the Production of Chemicals. JACS AU 2022; 2:1781-1799. [PMID: 36032533 PMCID: PMC9400054 DOI: 10.1021/jacsau.2c00344] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 05/24/2023]
Abstract
The sustainable production of chemicals from renewable, nonedible biomass has emerged as an essential alternative to address pressing environmental issues arising from our heavy dependence on fossil resources. Microbial cell factories are engineered microorganisms harboring biosynthetic pathways streamlined to produce chemicals of interests from renewable carbon sources. The biosynthetic pathways for the production of chemicals can be defined into three categories with reference to the microbial host selected for engineering: native-existing pathways, nonnative-existing pathways, and nonnative-created pathways. Recent trends in leveraging native-existing pathways, discovering nonnative-existing pathways, and designing de novo pathways (as nonnative-created pathways) are discussed in this Perspective. We highlight key approaches and successful case studies that exemplify these concepts. Once these pathways are designed and constructed in the microbial cell factory, systems metabolic engineering strategies can be used to improve the performance of the strain to meet industrial production standards. In the second part of the Perspective, current trends in design tools and strategies for systems metabolic engineering are discussed with an eye toward the future. Finally, we survey current and future challenges that need to be addressed to advance microbial cell factories for the sustainable production of chemicals.
Collapse
Affiliation(s)
- Jae Sung Cho
- Metabolic
and Biomolecular Engineering National Research Laboratory and Systems
Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative
Laboratory, Department of Chemical and Biomolecular Engineering (BK21
four), Korea Advanced Institute of Science
and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST
Institute for the BioCentury and KAIST Institute for Artificial Intelligence, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
- BioProcess
Engineering Research Center and BioInformatics Research Center, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
| | - Gi Bae Kim
- Metabolic
and Biomolecular Engineering National Research Laboratory and Systems
Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative
Laboratory, Department of Chemical and Biomolecular Engineering (BK21
four), Korea Advanced Institute of Science
and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST
Institute for the BioCentury and KAIST Institute for Artificial Intelligence, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
| | - Hyunmin Eun
- Metabolic
and Biomolecular Engineering National Research Laboratory and Systems
Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative
Laboratory, Department of Chemical and Biomolecular Engineering (BK21
four), Korea Advanced Institute of Science
and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST
Institute for the BioCentury and KAIST Institute for Artificial Intelligence, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
| | - Cheon Woo Moon
- Metabolic
and Biomolecular Engineering National Research Laboratory and Systems
Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative
Laboratory, Department of Chemical and Biomolecular Engineering (BK21
four), Korea Advanced Institute of Science
and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST
Institute for the BioCentury and KAIST Institute for Artificial Intelligence, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
| | - Sang Yup Lee
- Metabolic
and Biomolecular Engineering National Research Laboratory and Systems
Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative
Laboratory, Department of Chemical and Biomolecular Engineering (BK21
four), Korea Advanced Institute of Science
and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST
Institute for the BioCentury and KAIST Institute for Artificial Intelligence, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
- BioProcess
Engineering Research Center and BioInformatics Research Center, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
11
|
Strutz J, Shebek KM, Broadbelt LJ, Tyo KEJ. MINE 2.0: Enhanced biochemical coverage for peak identification in untargeted metabolomics. Bioinformatics 2022; 38:3484-3487. [PMID: 35595247 PMCID: PMC9237697 DOI: 10.1093/bioinformatics/btac331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/25/2022] [Accepted: 05/16/2022] [Indexed: 11/12/2022] Open
Abstract
SUMMARY Although advances in untargeted metabolomics have made it possible to gather data on thousands of cellular metabolites in parallel, identification of novel metabolites from these datasets remains challenging. To address this need, Metabolic in silico Network Expansions (MINEs) were developed. A MINE is an expansion of known biochemistry which can be used as a list of potential structures for unannotated metabolomics peaks. Here, we present MINE 2.0, which utilizes a new set of biochemical transformation rules that covers 93% of MetaCyc reactions (compared to 25% in MINE 1.0). This results in a 17-fold increase in database size and a 40% increase in MINE database compounds matching unannotated peaks from an untargeted metabolomics dataset. MINE 2.0 is thus a significant improvement to this community resource. AVAILABILITY AND IMPLEMENTATION The MINE 2.0 website can be accessed at https://minedatabase.ci.northwestern.edu. The MINE 2.0 web API documentation can be accessed at https://mine-api.readthedocs.io/en/latest/. The data and code underlying this article are available in the MINE-2.0-Paper repository at https://github.com/tyo-nu/MINE-2.0-Paper. MINE 2.0 source code can be accessed at https://github.com/tyo-nu/MINE-Database (MINE construction), https://github.com/tyo-nu/MINE-Server (backend web API), and https://github.com/tyo-nu/MINE-app (web app). SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jonathan Strutz
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA.,Center of Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA.,Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Kevin M Shebek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA.,Center of Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA.,Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Linda J Broadbelt
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA.,Center of Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Keith E J Tyo
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA.,Center of Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA.,Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
12
|
Sveshnikova A, MohammadiPeyhani H, Hatzimanikatis V. Computational tools and resources for designing new pathways to small molecules. Curr Opin Biotechnol 2022; 76:102722. [PMID: 35483185 DOI: 10.1016/j.copbio.2022.102722] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/04/2022] [Accepted: 03/22/2022] [Indexed: 12/22/2022]
Abstract
The metabolic engineering community relies on computational methods for pathway design to produce important small molecules in microbial hosts. Metabolic network databases are continuously curated and updated with known and novel reactions that expand the known biochemistry based on different sets of enzymatic reaction rules. To address the complexity of the metabolic networks, elaborate methods were developed to transform them into computable graphs, navigate them, and construct the best possible pathways. However, the recent experimental research points to the new challenges and opportunities for the computational pathway design. Here, we review the most recent advances, especially in the last two years, in computational discovery of new pathways and their prospects for expanding metabolic capabilities. We draw attention to the potential ways of improvement for pathway design algorithms, including the expansion of Design-Build-Test-Learn cycle to novel compounds and reactions and the standardization for the reaction rules and metabolic reaction databases.
Collapse
Affiliation(s)
- Anastasia Sveshnikova
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Homa MohammadiPeyhani
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland.
| |
Collapse
|
13
|
Green biomanufacturing promoted by automatic retrobiosynthesis planning and computational enzyme design. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|