1
|
Lete I, Martínez A, Lasaga I, Centurión E, Vesga A. Update on the combination of myo-inositol/d-chiro-inositol for the treatment of polycystic ovary syndrome. Gynecol Endocrinol 2024; 40:2301554. [PMID: 38239032 DOI: 10.1080/09513590.2023.2301554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
In this article, we present a narrative review on the use of inositol in the treatment of polycystic ovary syndrome (PCOS). Of the different inositols that exist, only myo-inositol (MYO) and D-chiro inositol (DCI) have been studied in the treatment of PCOS. The results of the studies show that there is insufficient or controversial evidence to recommend the use of DCI alone, while MYO alone shows positive results and, above all, the MYO/DCI combination is effective when used at a ratio of at least 40:1, but there is enough rationale to further study ratios such as 66:1 to 100:1 as other possible effective combinations.
Collapse
Affiliation(s)
- Iñaki Lete
- Obstetrics and Gynaecology Clinical Management Unit, Araba University Hospital, Vitoria, Spain
| | - Ainara Martínez
- Obstetrics and Gynaecology Clinical Management Unit, Araba University Hospital, Vitoria, Spain
| | - Irene Lasaga
- Obstetrics and Gynaecology Clinical Management Unit, Araba University Hospital, Vitoria, Spain
| | - Eva Centurión
- Obstetrics and Gynaecology Clinical Management Unit, Araba University Hospital, Vitoria, Spain
| | - Amaia Vesga
- Obstetrics and Gynaecology Clinical Management Unit, Araba University Hospital, Vitoria, Spain
| |
Collapse
|
2
|
Cho JS, Luo ZW, Moon CW, Prabowo CPS, Lee SY. Metabolic engineering of Corynebacterium glutamicum for the production of pyrone and pyridine dicarboxylic acids. Proc Natl Acad Sci U S A 2024; 121:e2415213121. [PMID: 39475655 PMCID: PMC11551391 DOI: 10.1073/pnas.2415213121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/18/2024] [Indexed: 11/13/2024] Open
Abstract
Environmental concerns from plastic waste are driving interest in alternative monomers from bio-based sources. Pseudoaromatic dicarboxylic acids are promising alternatives with chemical structures similar to widely used petroleum-based aromatic dicarboxylic acids. However, their use in polyester synthesis has been limited due to production challenges. Here, we report the fermentative production of five pseudoaromatic dicarboxylic acids, including 2-pyrone-4,6-dicarboxylic acid (PDC) and pyridine dicarboxylic acids (PDCAs: 2,3-, 2,4-, 2,5-, and 2,6-PDCA), from glucose using five engineered Corynebacterium glutamicum strains. A platform C. glutamicum chassis strain was constructed by modulating the expression of nine genes involved in the synthesis and degradation pathways of precursor protocatechuate (PCA) and the glucose-uptake system. Comparative transcriptome analysis of the engineered strain against wild-type C. glutamicum identified iolE (NCgl0160) as a target for PDC production. Optimized fed-batch fermentation conditions enabled the final engineered strain to produce 76.17 ± 1.24 g/L of PDC. Using this platform strain, we constructed 2,3-, 2,4-, and 2,5-PDCA-producing strains by modulating the expression of key enzymes. Additionally, we demonstrated a previously uncharacterized pathway for 2,3-PDCA biosynthesis. The engineered strains produced 2.79 ± 0.005 g/L of 2,3-PDCA, 494.26 ± 2.61 mg/L of 2,4-PDCA, and 1.42 ± 0.02 g/L of 2,5-PDCA through fed-batch fermentation. To complete the portfolio, we introduced the 2,6-PDCA biosynthetic pathway to an L-aspartate pathway-enhanced C. glutamicum strain, producing 15.01 ± 0.03 g/L of 2,6-PDCA in fed-batch fermentation. The metabolic engineering strategies developed here will be useful for the production of pseudoaromatic chemicals.
Collapse
Affiliation(s)
- Jae Sung Cho
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four Program), Korea Advanced Institute of Science and Technology, Daejeon34141, Republic of Korea
- BioProcess Engineering Research Center, Korea Advanced Institute of Science and Technology, Daejeon34141, Republic of Korea
| | - Zi Wei Luo
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four Program), Korea Advanced Institute of Science and Technology, Daejeon34141, Republic of Korea
- BioProcess Engineering Research Center, Korea Advanced Institute of Science and Technology, Daejeon34141, Republic of Korea
| | - Cheon Woo Moon
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four Program), Korea Advanced Institute of Science and Technology, Daejeon34141, Republic of Korea
- BioProcess Engineering Research Center, Korea Advanced Institute of Science and Technology, Daejeon34141, Republic of Korea
| | - Cindy Pricilia Surya Prabowo
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four Program), Korea Advanced Institute of Science and Technology, Daejeon34141, Republic of Korea
- BioProcess Engineering Research Center, Korea Advanced Institute of Science and Technology, Daejeon34141, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four Program), Korea Advanced Institute of Science and Technology, Daejeon34141, Republic of Korea
- BioProcess Engineering Research Center, Korea Advanced Institute of Science and Technology, Daejeon34141, Republic of Korea
- Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology, Daejeon34141, Republic of Korea
| |
Collapse
|
3
|
Preethy H A, Rajendran K, Sukumar AJ, Krishnan UM. Emerging paradigms in Alzheimer's therapy. Eur J Pharmacol 2024; 981:176872. [PMID: 39117266 DOI: 10.1016/j.ejphar.2024.176872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/13/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Alzheimer's disease is a neurodegenerative disorder that affects elderly, and its incidence is continuously increasing across the globe. Unfortunately, despite decades of research, a complete cure for Alzheimer's disease continues to elude us. The current medications are mainly symptomatic and slow the disease progression but do not result in reversal of all disease pathologies. The growing body of knowledge on the factors responsible for the onset and progression of the disease has resulted in the identification of new targets that could be targeted for treatment of Alzheimer's disease. This has opened new vistas for treatment of Alzheimer's disease that have moved away from chemotherapeutic agents modulating a single target to biologics and combinations that acted on multiple targets thereby offering better therapeutic outcomes. This review discusses the emerging directions in therapeutic interventions against Alzheimer's disease highlighting their merits that promise to change the treatment paradigm and challenges that limit their clinical translation.
Collapse
Affiliation(s)
- Agnes Preethy H
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India
| | - Kayalvizhi Rajendran
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India
| | - Anitha Josephine Sukumar
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India
| | - Uma Maheswari Krishnan
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India; School of Arts, Sciences, Humanities & Education, SASTRA Deemed University, Thanjavur, India.
| |
Collapse
|
4
|
Kurashiki R, Takahashi M, Okumura Y, Ono T, Endo H, Makino K, Fukui K, Yokoyama K, Ishikawa S, Yoshida KI, Ohshiro T, Suzuki H. Efficient pathway-driven scyllo-inositol production from myo-inositol using thermophilic cells and mesophilic inositol dehydrogenases: a novel strategy for pathway control. Appl Environ Microbiol 2024; 90:e0028124. [PMID: 38975762 PMCID: PMC11267878 DOI: 10.1128/aem.00281-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/08/2024] [Indexed: 07/09/2024] Open
Abstract
Mesophilic enzymes, which are active at moderate temperatures, may dominate enzymatic reactions even in the presence of thermophilic crude enzymes. This study was conducted to investigate this hypothesis with mesophilic inositol dehydrogenases (IolG and IolX) produced in Geobacillus kaustophilus HTA426. To ensure the efficient production of mesophilic enzymes, we first screened for promoters induced at moderate temperatures using transcriptome analysis and identified four genes highly expressed at 30°C in the thermophile. We further characterized these promoters using fluorescent reporter assays to determine that the mti3 promoter could direct efficient gene expression at 40°C. We cloned the promoter into an Escherichia coli-Geobacillus shuttle plasmid and confirmed that the resulting vector functioned in G. kaustophilus and other thermophiles. We then used this vector for the cooperative expression of the iolG and iolX genes from Bacillus subtilis 168. G. kaustophilus cells carrying the expression vector were incubated at 60°C for cellular propagation and then at 40°C for the production of IolG and IolX. When the cells were permeabilized, IolG and IolX acted as catalysts to convert exogenous myo-inositol into scyllo-inositol at 30°C. In a scaled-up reaction, 10 g of myo-inositol was converted to 1.8 g of scyllo-inositol, which was further purified to yield 970 mg of pure powder. Notably, myo-inositol was degraded by intrinsic enzymes of G. kaustophilus at 60°C but not at 30°C, supporting our initial hypothesis. We indicate that this approach is useful for preparing enzyme cocktails without the need for purification. IMPORTANCE Enzyme cocktails are commonly employed for cell-free chemical synthesis; however, their preparation involves cumbersome processes. This study affirms that mesophilic enzymes in thermophilic crude extracts can function as specific catalysts at moderate temperatures, akin to enzyme cocktails. The catalyst was prepared by permeabilizing cells without the need for concentration, extraction, or purification processes; hence, its preparation was considerably simpler compared with conventional methods for enzyme cocktails. This approach was employed to produce pure scyllo-inositol from an economical substrate. Notably, this marks the first large-scale preparation of pure scyllo-inositol, holding potential pharmaceutical significance as scyllo-inositol serves as a promising agent for certain diseases but is currently expensive. Moreover, this approach holds promise for application in pathway engineering within living cells. The envisioned pathway is designed without chromosomal modification and is simply regulated by switching culture temperatures. Consequently, this study introduces a novel platform for both whole-cell and cell-free synthetic systems.
Collapse
Affiliation(s)
- Ryota Kurashiki
- Department of Engineering, Graduate School of Sustainability Science, Tottori University, Tottori, Japan
| | | | - Yuta Okumura
- Department of Engineering, Graduate School of Sustainability Science, Tottori University, Tottori, Japan
| | - Tatsuya Ono
- Department of Engineering, Graduate School of Sustainability Science, Tottori University, Tottori, Japan
| | - Hirofumi Endo
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Kohei Makino
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Kaho Fukui
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Kyosuke Yokoyama
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Shu Ishikawa
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Ken-ichi Yoshida
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Takashi Ohshiro
- Faculty of Engineering, Tottori University, Tottori, Japan
- Center for Research on Green Sustainable Chemistry, Tottori University, Tottori, Japan
| | - Hirokazu Suzuki
- Faculty of Engineering, Tottori University, Tottori, Japan
- Center for Research on Green Sustainable Chemistry, Tottori University, Tottori, Japan
| |
Collapse
|
5
|
Yoshida KI, Bott M. Microbial synthesis of health-promoting inositols. Curr Opin Biotechnol 2024; 87:103114. [PMID: 38520822 DOI: 10.1016/j.copbio.2024.103114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/25/2024]
Abstract
D-chiro-inositol and scyllo-inositol are known for their health-promoting properties and promising as ingredients for functional foods. Strains of Bacillus subtilis and Corynebacterium glutamicum were created by metabolic engineering capable of inexpensive production of these two rare inositols from myo-inositol, which is the most common inositol in nature. In addition, further modifications have enabled the synthesis of the two rare inositols from the much-cheaper carbon sources, glucose or sucrose.
Collapse
Affiliation(s)
- Ken-Ichi Yoshida
- Graduate School of Science, Technology and Innovation, University of Kobe, Kobe, Japan.
| | - Michael Bott
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
6
|
Ji G, Jin X, Shi F. Metabolic engineering Corynebacterium glutamicum for D-chiro-inositol production. World J Microbiol Biotechnol 2024; 40:154. [PMID: 38568465 DOI: 10.1007/s11274-024-03969-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
D-chiro-inositol (DCI) is a potential drug for the treatment of type II diabetes and polycystic ovary syndrome. In order to effectively synthesize DCI in Corynebacterium glutamicum, the genes related to inositol catabolism in clusters iol1 and iol2 were knocked out in C. glutamicum SN01 to generate the chassis strain DCI-1. DCI-1 did not grow in and catabolize myo-inositol (MI). Subsequently, different exogenous and endogenous inosose isomerases were expressed in DCI-1 and their conversion ability of DCI from MI were compared. After fermentation, the strain DCI-7 co-expressing inosose isomerase IolI2 and inositol dehydrogenase IolG was identified as the optimal strain. Its DCI titer reached 3.21 g/L in the presence of 20 g/L MI. On this basis, the pH, temperature and MI concentration during whole-cell conversion of DCI by strain DCI-7 were optimized. Finally, the optimal condition that achieved the highest DCI titer of 6.96 g/L were obtained at pH 8.0, 37 °C and addition of 40 g/L MI. To our knowledge, it is the highest DCI titer ever reported.
Collapse
Affiliation(s)
- Guohui Ji
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
| | - Xia Jin
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
| | - Feng Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
7
|
Ramp P, Mack C, Wirtz A, Bott M. Alternative routes for production of the drug candidate d-chiro-inositol with Corynebacterium glutamicum using endogenous or promiscuous plant enzymes. Metab Eng 2023; 78:1-10. [PMID: 37146873 DOI: 10.1016/j.ymben.2023.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/05/2023] [Accepted: 04/23/2023] [Indexed: 05/07/2023]
Abstract
d-chiro-Inositol (DCI) is a promising drug candidate for treating insulin resistance and associated diseases such as type 2 diabetes or polycystic ovary syndrome. In this study, we developed two production processes for DCI using Corynebacterium glutamicum as host. In the first process, myo-inositol (MI) is oxidized to 2-keto-myo-inositol (2KMI) by the inositol dehydrogenase (IDH) IolG and then isomerized to 1-keto-d-chiro-inositol (1KDCI) by the isomerases Cg0212 or Cg2312, both of which were identified in this work. 1KDCI is then reduced to DCI by IolG. Overproduction of IolG and Cg0212 in a chassis strain unable to degrade inositols allowed the production of 1.1 g/L DCI from 10 g/L MI. As both reactions involved are reversible, only a partial conversion of MI to DCI can be achieved. To enable higher conversion ratios, a novel route towards DCI was established by utilizing the promiscuous activity of two plant-derived enzymes, the NAD+-dependent d-ononitol dehydrogenase MtOEPa and the NADPH-dependent d-pinitol dehydrogenase MtOEPb from Medicago truncatula (barrelclover). Heterologous production of these enzymes in the chassis strain led to the production of 1.6 g/L DCI from 10 g/L MI. For replacing the substrate MI by glucose, the two plant genes were co-expressed with the endogenous myo-inositol-1-phosphate synthase gene ino1 either as a synthetic operon or using a novel, bicistronic T7-based expression vector. With the single operon construct, 0.75 g/L DCI was formed from 20 g/L glucose, whereas with the bicistronic construct 1.2 g/L DCI was obtained, disclosing C. glutamicum as an attractive host for of d-chiro-inositol production.
Collapse
Affiliation(s)
- Paul Ramp
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Christina Mack
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Astrid Wirtz
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
8
|
Ma SY, Amoah OJ, Nguyen HT, Sohng JK. Glucosylation of Isoeugenol and Monoterpenes in Corynebacterium glutamicum by YdhE from Bacillus lichenformis. Molecules 2023; 28:molecules28093789. [PMID: 37175199 PMCID: PMC10180135 DOI: 10.3390/molecules28093789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Corynebacterium glutamicum has been regarded as a food-grade microorganism. In recent years, the research to improve the activities of beneficial therapeutics and pharmaceutical substances has resulted in the engineering of the therapeutically favorable cell factory system of C. glutamicum. In this study, we successfully glucosylated isoeugenol and other monoterpene derivatives in C. glutamicum using a promiscuous YdhE, which is a glycosyltransferase from Bacillus lichenformis. For efficient glucosylation, cultivation conditions such as the production time, substrate concentration, carbon source, and culture medium were optimized. Our system successfully converted about 93% of the isoeugenol to glucosylated compounds in the culture. The glucoside compounds were then purified, analyzed, and identified as isoeugenol-1-O-β-d-glucoside and isoeugenol-1-O-β-d-(2″-acetyl)-glucoside.
Collapse
Affiliation(s)
- Su Yeong Ma
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sun Moon-ro 221, Tangjeong-myeon, Asan-si 31460, Republic of Korea
| | - Obed Jackson Amoah
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sun Moon-ro 221, Tangjeong-myeon, Asan-si 31460, Republic of Korea
| | - Hue Thi Nguyen
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sun Moon-ro 221, Tangjeong-myeon, Asan-si 31460, Republic of Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sun Moon-ro 221, Tangjeong-myeon, Asan-si 31460, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, 70 Sun Moon-ro 221, Tangjeong-myeon, Asan-si 31460, Republic of Korea
| |
Collapse
|
9
|
Derkaczew M, Martyniuk P, Osowski A, Wojtkiewicz J. Cyclitols: From Basic Understanding to Their Association with Neurodegeneration. Nutrients 2023; 15:2029. [PMID: 37432155 DOI: 10.3390/nu15092029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 07/12/2023] Open
Abstract
One of the most common cyclitols found in eukaryotic cells-Myo-inositol (MI) and its derivatives play a key role in many cellular processes such as ion channel physiology, signal transduction, phosphate storage, cell wall formation, membrane biogenesis and osmoregulation. The aim of this paper is to characterize the possibility of neurodegenerative disorders treatment using MI and the research of other therapeutic methods linked to MI's derivatives. Based on the reviewed literature the researchers focus on the most common neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease and Spinocerebellar ataxias, but there are also works describing other seldom encountered diseases. The use of MI, d-pinitol and other methods altering MI's metabolism, although research on this topic has been conducted for years, still needs much closer examination. The dietary supplementation of MI shows a promising effect on the treatment of neurodegenerative disorders and can be of great help in alleviating the accompanying depressive symptoms.
Collapse
Affiliation(s)
- Maria Derkaczew
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
- Students' Scientific Club of Pathophysiologists, Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Piotr Martyniuk
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
- Students' Scientific Club of Pathophysiologists, Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Adam Osowski
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Joanna Wojtkiewicz
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| |
Collapse
|
10
|
Yao W, Yang H, Yang J. Small-molecule drugs development for Alzheimer's disease. Front Aging Neurosci 2022; 14:1019412. [PMID: 36389082 PMCID: PMC9664938 DOI: 10.3389/fnagi.2022.1019412] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease (AD) is an irreversible, progressive neurodegenerative brain disorder with no effective therapeutic drugs currently. The complicated pathophysiology of AD is not well understood, although beta-amyloid (Aβ) cascade and hyperphosphorylated tau protein were regarded as the two main causes of AD. Other mechanisms, such as oxidative stress, deficiency of central cholinergic neurotransmitters, mitochondrial dysfunction, and inflammation, were also proposed and studied as targets in AD. This review aims to summarize the small-molecule drugs that were developed based on the pathogenesis and gives a deeper understanding of the AD. We hope that it could help scientists find new and better treatments to gradually conquer the problems related to AD in future.
Collapse
|
11
|
Physiological, Biochemical, and Structural Bioinformatic Analysis of the Multiple Inositol Dehydrogenases from Corynebacterium glutamicum. Microbiol Spectr 2022; 10:e0195022. [PMID: 36094194 PMCID: PMC9603128 DOI: 10.1128/spectrum.01950-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Inositols (cyclohexanehexols) comprise nine isomeric cyclic sugar alcohols, several of which occur in all domains of life with various functions. Many bacteria can utilize inositols as carbon and energy sources via a specific pathway involving inositol dehydrogenases (IDHs) as the first step of catabolism. The microbial cell factory Corynebacterium glutamicum can grow with myo-inositol as a sole carbon source. Interestingly, this species encodes seven potential IDHs, raising the question of the reason for this multiplicity. We therefore investigated the seven IDHs to determine their function, activity, and selectivity toward the biologically most important isomers myo-, scyllo-, and d-chiro-inositol. We created an ΔIDH strain lacking all seven IDH genes, which could not grow on the three inositols. scyllo- and d-chiro-inositol were identified as novel growth substrates of C. glutamicum. Complementation experiments showed that only four of the seven IDHs (IolG, OxiB, OxiD, and OxiE) enabled growth of the ΔIDH strain on two of the three inositols. The kinetics of the four purified enzymes agreed with the complementation results. IolG and OxiD are NAD+-dependent IDHs accepting myo- and d-chiro-inositol but not scyllo-inositol. OxiB is an NAD+-dependent myo-IDH with a weak activity also for scyllo-inositol but not for d-chiro-inositol. OxiE on the other hand is an NAD+-dependent scyllo-IDH showing also good activity for myo-inositol and a very weak activity for d-chiro-inositol. Structural models, molecular docking experiments, and sequence alignments enabled the identification of the substrate binding sites of the active IDHs and of residues allowing predictions on the substrate specificity. IMPORTANCE myo-, scyllo-, and d-chiro-inositol are C6 cyclic sugar alcohols with various biological functions, which also serve as carbon sources for microbes. Inositol catabolism starts with an oxidation to keto-inositols catalyzed by inositol dehydrogenases (IDHs). The soil bacterium C. glutamicum encodes seven potential IDHs. Using a combination of microbiological, biochemical, and modeling approaches, we analyzed the function of these enzymes and identified four IDHs involved in the catabolism of inositols. They possess distinct substrate preferences for the three isomers, and modeling and sequence alignments allowed the identification of residues important for substrate specificity. Our results expand the knowledge of bacterial inositol metabolism and provide an important basis for the rational development of producer strains for these valuable inositols, which show pharmacological activities against, e.g., Alzheimer's disease, polycystic ovarian syndrome, or type II diabetes.
Collapse
|
12
|
Yang M, Ma L, Yang X, Li L, Chen S, Qi B, Wang Y, Li C, Yang S, Zhao Y. Bioinformatic Prediction and Characterization of Proteins in Porphyra dentata by Shotgun Proteomics. Front Nutr 2022; 9:924524. [PMID: 35873412 PMCID: PMC9301277 DOI: 10.3389/fnut.2022.924524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Porphyra dentata is an edible red seaweed with high nutritional value. It is widely cultivated and consumed in East Asia and has vast economic benefits. Studies have found that P. dentata is rich in bioactive substances and is a potential natural resource. In this study, label-free shotgun proteomics was first applied to identify and characterize different harvest proteins in P. dentata. A total of 13,046 different peptides were identified and 419 co-expression target proteins were characterized. Bioinformatics was used to study protein characteristics, functional expression, and interaction of two important functional annotations, amino acid, and carbohydrate metabolism. Potential bioactive peptides, protein structure, and potential ligand conformations were predicted, and the results suggest that bioactive peptides may be utilized as high-quality active fermentation substances and potential targets for drug production. Our research integrated the global protein database, the first time bioinformatic analysis of the P. dentata proteome during different harvest periods, improves the information database construction and provides a framework for future research based on a comprehensive understanding.
Collapse
Affiliation(s)
- Mingchang Yang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- College of Food Science and Bioengineering, Tianjin Agricultural University, Tianjin, China
- Co-innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Lizhen Ma
- College of Food Science and Bioengineering, Tianjin Agricultural University, Tianjin, China
| | - Xianqing Yang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Bo Qi
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Yueqi Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Chunsheng Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Shaoling Yang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
- *Correspondence: Yongqiang Zhao,
| |
Collapse
|
13
|
Siracusa L, Napoli E, Ruberto G. Novel Chemical and Biological Insights of Inositol Derivatives in Mediterranean Plants. Molecules 2022; 27:1525. [PMID: 35268625 PMCID: PMC8912080 DOI: 10.3390/molecules27051525] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
Inositols (Ins) are natural compounds largely widespread in plants and animals. Bio-sinthetically they derive from sugars, possessing a molecular structure very similar to the simple sugars, and this aspect concurs to define them as primary metabolites, even though it is much more correct to place them at the boundary between primary and secondary metabolites. This dichotomy is well represented by the fact that as primary metabolites they are essential cellular components in the form of phospholipid derivatives, while as secondary metabolites they are involved in a plethora of signaling pathways playing an important role in the surviving of living organisms. myo-Inositol is the most important and widespread compound of this family, it derives directly from d-glucose, and all known inositols, including stereoisomers and derivatives, are the results of metabolic processes on this unique molecule. In this review, we report the new insights of these compounds and their derivatives concerning their occurrence in Nature with a particular emphasis on the plant of the Mediterranean area, as well as the new developments about their biological effectiveness.
Collapse
Affiliation(s)
| | | | - Giuseppe Ruberto
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Paolo Gaifami 18, 95126 Catania, Italy; (L.S.); (E.N.)
| |
Collapse
|
14
|
Nie L, Xu K, Zhong B, Wu X, Ding Z, Chen X, Zhang B. Enhanced L-ornithine production from glucose and sucrose via manipulation of the fructose metabolic pathway in Corynebacterium glutamicum. BIORESOUR BIOPROCESS 2022; 9:11. [PMID: 38647759 PMCID: PMC10992749 DOI: 10.1186/s40643-022-00503-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/03/2022] [Indexed: 12/25/2022] Open
Abstract
L-Ornithine, an important non-essential amino acid, has considerable medicinal value in the treatment of complex liver diseases. Microbial fermentation strategies using robust engineered strains have remarkable potential for producing L-ornithine. We showed that glucose and sucrose co-utilization accumulate more L-ornithine in Corynebacterium glutamicum than glucose alone. Further manipulating the expression of intracellular fructose-1-phosphate kinase through the deletion of pfkB1resulted in the engineered strain C. glutamicum SO30 that produced 47.6 g/L of L-ornithine, which represents a 32.8% increase than the original strain C. glutamicum SO26 using glucose as substrate (35.88 g/L). Moreover, fed-batch cultivation of C. glutamicum SO30 in 5-L fermenters produced 78.0 g/L of L-ornithine, which was a 78.9% increase in yield compared with that produced by C. glutamicum SO26. These results showed that manipulating the fructose metabolic pathway increases L-ornithine accumulation and provides a reference for developing C. glutamicum to produce valuable metabolites.
Collapse
Affiliation(s)
- Libin Nie
- College of Bioscience and Bioengineering, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Kexin Xu
- College of Bioscience and Bioengineering, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Bin Zhong
- College of Bioscience and Bioengineering, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaoyu Wu
- College of Bioscience and Bioengineering, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhongtao Ding
- College of Bioscience and Bioengineering, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xuelan Chen
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, China
| | - Bin Zhang
- College of Bioscience and Bioengineering, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|