1
|
Hannig P, Gargallo R, Mazzini S, Borgonovo G, Zuccolo M, Táborská E, Táborský P. Interaction process behind the strong stabilization of G-quadruplexes by alkaloid fagaronine. Biophys Chem 2025; 323:107443. [PMID: 40252303 DOI: 10.1016/j.bpc.2025.107443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/08/2025] [Accepted: 04/13/2025] [Indexed: 04/21/2025]
Abstract
Benzo[c]phenanthridine alkaloids are known for their stabilizing effects on non-canonical DNA structures, particularly G-quadruplexes (G4s). In this study, the interaction of fagaronine, a rare benzo[c]phenanthridine alkaloid, with several DNA structures (including B-DNA, parallel, antiparallel and hybrid G4s) is studied using molecular fluorescence and circular dichroism (CD) spectroscopy. It has been found that fagaronine significantly enhances the stability of all tested G4 conformations. Furthermore, a study by NMR spectroscopy provided valuable information on the mechanism of interaction of the ligand with the parallel G4 structure adopted by Pu22T14T23, a sequence mutated with respect to that found within the promoter region of the c-myc gene. Remarkably, when compared with data reported in the literature, fagaronine appears to exhibit one of the strongest G4 thermal stabilization effects ever recorded for a small ligand.
Collapse
Affiliation(s)
- Pavel Hannig
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Raimundo Gargallo
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1, 08028 Barcelona, Spain
| | - Stefania Mazzini
- Department of Food, Environmental and Nutritional Sciences (DEFENS), University of Milan, 20133 Milan, Italy
| | - Gigliola Borgonovo
- Department of Food, Environmental and Nutritional Sciences (DEFENS), University of Milan, 20133 Milan, Italy
| | - Marco Zuccolo
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy (DiSAA), University of Milan, 20133 Milan, Italy
| | - Eva Táborská
- Department of Biochemistry, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Petr Táborský
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic.
| |
Collapse
|
2
|
Gil‐Martínez A, Galiana‐Roselló C, Lázaro‐Gómez A, Mulet‐Rivero L, González‐García J. Deciphering the Interplay Between G-Quadruplexes and Natural/Synthetic Polyamines. Chembiochem 2025; 26:e202400873. [PMID: 39656761 PMCID: PMC12002122 DOI: 10.1002/cbic.202400873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
The interplay between polyamines and G-quadruplexes has been largely overlooked in the literature, even though polyamines are ubiquitous metabolites in living cells and G-quadruplexes are transient regulatory elements, being both of them key regulators of biological processes. Herein, we compile the investigations connecting G-quadruplexes and biogenic polyamines to understand the biological interplay between them. Moreover, we overview the main works focused on synthetic ligands containing polyamines designed to target G-quadruplexes, aiming to unravel the structural motifs for designing potent and selective G4 ligands.
Collapse
Affiliation(s)
- Ariadna Gil‐Martínez
- Department of Inorganic ChemistryInstitute of Molecular ScienceUniversity of ValenciaCatedrático José Beltrán 246980PaternaSpain
| | - Cristina Galiana‐Roselló
- Department of Inorganic ChemistryInstitute of Molecular ScienceUniversity of ValenciaCatedrático José Beltrán 246980PaternaSpain
- Príncipe Felipe Research CenterEduardo Primo Yúfera, 346012ValenciaSpain
| | - Andrea Lázaro‐Gómez
- Department of Inorganic ChemistryInstitute of Molecular ScienceUniversity of ValenciaCatedrático José Beltrán 246980PaternaSpain
| | - Laura Mulet‐Rivero
- Department of Inorganic ChemistryInstitute of Molecular ScienceUniversity of ValenciaCatedrático José Beltrán 246980PaternaSpain
| | - Jorge González‐García
- Department of Inorganic ChemistryInstitute of Molecular ScienceUniversity of ValenciaCatedrático José Beltrán 246980PaternaSpain
| |
Collapse
|
3
|
Roxo C, Pasternak A. Switching off cancer - An overview of G-quadruplex and i-motif functional role in oncogene expression. Bioorg Med Chem Lett 2025; 116:130038. [PMID: 39577601 DOI: 10.1016/j.bmcl.2024.130038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
DNA can self-assemble into G-quadruplexes and i-motifs non-canonical secondary structures that are formed by guanine-rich sequences and the cytosine-rich sequences, respectively. G-quadruplexes and i-motifs have been closely linked to cancer development since they can regulate genes expression in various promoter regions. Moreover, these structures have gained attention as viable targets for anticancer treatments because of their physicochemical properties and gene-regulatory functions. As a result, they are attractive molecular targets for innovative cancer therapies. Herein, we review the G-quadruplex and i-motif structures, their dynamic relationship in biological systems, as well as their significance in cancer biology and the potential therapeutic approaches. Furthermore, we also address the simultaneous and mutually exclusive formation of G-quadruplex and i-motif structures in cellular environment.
Collapse
Affiliation(s)
- Carolina Roxo
- Department of Nucleic Acids Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Anna Pasternak
- Department of Nucleic Acids Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| |
Collapse
|
4
|
Janeček M, Kührová P, Mlýnský V, Stadlbauer P, Otyepka M, Bussi G, Šponer J, Banáš P. Computer Folding of Parallel DNA G-Quadruplex: Hitchhiker's Guide to the Conformational Space. J Comput Chem 2025; 46:e27535. [PMID: 39653644 PMCID: PMC11628365 DOI: 10.1002/jcc.27535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 12/12/2024]
Abstract
Guanine quadruplexes (GQs) play crucial roles in various biological processes, and understanding their folding pathways provides insight into their stability, dynamics, and functions. This knowledge aids in designing therapeutic strategies, as GQs are potential targets for anticancer drugs and other therapeutics. Although experimental and theoretical techniques have provided valuable insights into different stages of the GQ folding, the structural complexity of GQs poses significant challenges, and our understanding remains incomplete. This study introduces a novel computational protocol for folding an entire GQ from single-strand conformation to its native state. By combining two complementary enhanced sampling techniques, we were able to model folding pathways, encompassing a diverse range of intermediates. Although our investigation of the GQ free energy surface (FES) is focused solely on the folding of the all-anti parallel GQ topology, this protocol has the potential to be adapted for the folding of systems with more complex folding landscapes.
Collapse
Affiliation(s)
- Michal Janeček
- Department of Physical Chemistry, Faculty of SciencePalacký University OlomoucOlomoucCzech Republic
| | - Petra Kührová
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN)Palacký University OlomoucOlomoucCzech Republic
- Institute of Biophysics of the Czech Academy of SciencesBrnoCzech Republic
| | - Vojtěch Mlýnský
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN)Palacký University OlomoucOlomoucCzech Republic
- Institute of Biophysics of the Czech Academy of SciencesBrnoCzech Republic
- IT4InnovationsVŠB—Technical University of OstravaOstravaCzech Republic
| | - Petr Stadlbauer
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN)Palacký University OlomoucOlomoucCzech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN)Palacký University OlomoucOlomoucCzech Republic
- IT4InnovationsVŠB—Technical University of OstravaOstravaCzech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati, SISSATriesteItaly
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of SciencesBrnoCzech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN)Palacký University OlomoucOlomoucCzech Republic
- Institute of Biophysics of the Czech Academy of SciencesBrnoCzech Republic
- IT4InnovationsVŠB—Technical University of OstravaOstravaCzech Republic
| |
Collapse
|
5
|
Ishikawa R, Yanagita K, Shimada S, Sasaki S, Hirokawa T, Ma Y, Nagasawa K, Tera M. Topology-selective photo-crosslinking of G-quadruplexes via dual G-quartet and groove recognition. Chem Commun (Camb) 2024; 60:13550-13553. [PMID: 39474792 DOI: 10.1039/d4cc04804k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The novel photo-crosslinking ligand 6OTD-Bp, bearing an alkylamine benzophenone (Bp) with macrocyclic hexaoxazole (6OTD), was shown to preferentially ligate with hybrid G4s through recognizing both G-quartets and their characteristic wide groove. Higher crosslinking yield was observed for hybrid G4 with wider grooves.
Collapse
Affiliation(s)
- Ryo Ishikawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei city, Tokyo 184-8588, Japan.
| | - Kazuki Yanagita
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei city, Tokyo 184-8588, Japan.
| | - Sayuri Shimada
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei city, Tokyo 184-8588, Japan.
| | - Shogo Sasaki
- Department of Chemistry, Biology, and Environmental Science, Faculty of Science, Nara Women's University, Kitauoyanishi-machi, Nara 630-8506, Japan
| | - Takatsugu Hirokawa
- Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
- Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Yue Ma
- Bioscience Center, Institute of Science Tokyo, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei city, Tokyo 184-8588, Japan.
| | - Masayuki Tera
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei city, Tokyo 184-8588, Japan.
| |
Collapse
|
6
|
Sundaresan S, Uttamrao PP, Kovuri P, Rathinavelan T. Entangled World of DNA Quadruplex Folds. ACS OMEGA 2024; 9:38696-38709. [PMID: 39310165 PMCID: PMC11411666 DOI: 10.1021/acsomega.4c04579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/28/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024]
Abstract
DNA quadruplexes participate in many biological functions. It takes up a variety of folds based on the sequence and environment. Here, a meticulous analysis of experimentally determined 437 quadruplex structures (433 PDBs) deposited in the PDB is carried out. The analysis reveals the modular representation of the quadruplex folds. Forty-eight unique quadruplex motifs (whose diversity arises out of the propeller, bulge, diagonal, and lateral loops that connect the quartets) are identified, leading to simple to complex inter/intramolecular quadruplex folds. The two-layered structural motifs are further classified into 33 continuous and 15 discontinuous motifs. While the continuous motifs can directly be extended to a quadruplex fold, the discontinuous motif requires an additional loop(s) to complete a fold, as illustrated here with examples. Similarly, higher-order quadruplex folds can also be represented by continuous or discontinuous motifs or their combinations. Such a modular representation of the quadruplex folds may assist in custom engineering of quadruplexes, designing motif-based drugs, and the prediction of the quadruplex structure. Furthermore, it could facilitate understanding of the role of quadruplexes in biological functions and diseases.
Collapse
Affiliation(s)
- Sruthi Sundaresan
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana 502284, India
| | - Patil Pranita Uttamrao
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana 502284, India
| | - Purnima Kovuri
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana 502284, India
| | | |
Collapse
|
7
|
Juribašić Kulcsár M, Gabelica V, Plavec J. Solution-State Structure of a Long-Loop G-Quadruplex Formed Within Promoters of Plasmodium falciparum B var Genes. Chemistry 2024; 30:e202401190. [PMID: 38647110 DOI: 10.1002/chem.202401190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
We report the high-resolution NMR solution-state structure of an intramolecular G-quadruplex with a diagonal loop of ten nucleotides. The G-quadruplex is formed by a 34-nt DNA sequence, d[CAG3T2A2G3TATA2CT3AG4T2AG3T2], named UpsB-Q-1. This sequence is found within promoters of the var genes of Plasmodium falciparum, which play a key role in malaria pathogenesis and evasion of the immune system. The [3+1]-hybrid G-quadruplex formed under physiologically relevant conditions exhibits a unique equilibrium between two structures, both stabilized by base stacking and non-canonical hydrogen bonding. Unique equilibrium of the two closely related 3D structures originates from a North-South repuckering of deoxyribose moiety of residue T27 in the lateral loop. Besides the 12 guanines involved in three G-quartets, most residues in loop regions are involved in interactions at both G-quartet-loop interfaces.
Collapse
Affiliation(s)
- Marina Juribašić Kulcsár
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia
| | - Valérie Gabelica
- School of Pharmaceutical Sciences, University of Geneva, 1 rue Michel-Servet, CH-1211, Geneva 4, Switzerland
| | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000, Ljubljana, Slovenia
- EN-FIST Centre of Excellence, Trg OF 13, SI-1000, Ljubljana, Slovenia
| |
Collapse
|
8
|
Zhang Z, Mlýnský V, Krepl M, Šponer J, Stadlbauer P. Mechanical Stability and Unfolding Pathways of Parallel Tetrameric G-Quadruplexes Probed by Pulling Simulations. J Chem Inf Model 2024; 64:3896-3911. [PMID: 38630447 PMCID: PMC11094737 DOI: 10.1021/acs.jcim.4c00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 05/14/2024]
Abstract
Guanine quadruplex (GQ) is a noncanonical nucleic acid structure formed by guanine-rich DNA and RNA sequences. Folding of GQs is a complex process, where several aspects remain elusive, despite being important for understanding structure formation and biological functions of GQs. Pulling experiments are a common tool for acquiring insights into the folding landscape of GQs. Herein, we applied a computational pulling strategy─steered molecular dynamics (SMD) simulations─in combination with standard molecular dynamics (MD) simulations to explore the unfolding landscapes of tetrameric parallel GQs. We identified anisotropic properties of elastic conformational changes, unfolding transitions, and GQ mechanical stabilities. Using a special set of structural parameters, we found that the vertical component of pulling force (perpendicular to the average G-quartet plane) plays a significant role in disrupting GQ structures and weakening their mechanical stabilities. We demonstrated that the magnitude of the vertical force component depends on the pulling anchor positions and the number of G-quartets. Typical unfolding transitions for tetrameric parallel GQs involve base unzipping, opening of the G-stem, strand slippage, and rotation to cross-like structures. The unzipping was detected as the first and dominant unfolding event, and it usually started at the 3'-end. Furthermore, results from both SMD and standard MD simulations indicate that partial spiral conformations serve as a transient ensemble during the (un)folding of GQs.
Collapse
Affiliation(s)
- Zhengyue Zhang
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 61200, Czech Republic
- CEITEC−Central
European Institute of Technology, Masaryk
University, Kamenice
5, Brno 625 00, Czech Republic
- National
Center for Biomolecular Research,
Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Vojtěch Mlýnský
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 61200, Czech Republic
| | - Miroslav Krepl
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 61200, Czech Republic
| | - Jiří Šponer
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 61200, Czech Republic
| | - Petr Stadlbauer
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 61200, Czech Republic
| |
Collapse
|
9
|
Jurkowski M, Kogut M, Sappati S, Czub J. Why Are Left-Handed G-Quadruplexes Scarce? J Phys Chem Lett 2024; 15:3142-3148. [PMID: 38477716 PMCID: PMC10961827 DOI: 10.1021/acs.jpclett.3c03589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/27/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
G-quadruplexes (G4s) are nucleic acid structures crucial for the regulation of gene expression and genome maintenance. While they hold promise as nanodevice components, achieving desired G4 folds requires understanding the interplay between stability and structural properties, like helicity. Although right-handed G4 structures dominate the experimental data, the molecular basis for this preference over left-handed helicity is unclear. To address this, we employ all-atom molecular dynamics simulations and quantum chemical methods. Our results reveal that right-handed G4s exhibit greater thermodynamic and kinetic stability as a result of favorable sugar-phosphate backbone conformations in guanine tracts. Moreover, while hydrogen-bonding patterns influence helicity-specific G4 loop conformations, they minimally affect stability differences. We also elucidate the strong correlation between helicity and the strand progression direction, essential for G4 structures. These findings deepen our understanding of G4s, providing molecular-level insights into their structural and energetic preferences, which could inform the design of novel nanodevices.
Collapse
Affiliation(s)
- Michał Jurkowski
- Department
of Physical Chemistry, Gdańsk University
of Technology, Narutowicza Street 11/12, 80-233 Gdańsk, Poland
| | - Mateusz Kogut
- Department
of Physical Chemistry, Gdańsk University
of Technology, Narutowicza Street 11/12, 80-233 Gdańsk, Poland
| | - Subrahmanyam Sappati
- Department
of Physical Chemistry, Gdańsk University
of Technology, Narutowicza Street 11/12, 80-233 Gdańsk, Poland
- BioTechMed
Center, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdańsk, Poland
| | - Jacek Czub
- Department
of Physical Chemistry, Gdańsk University
of Technology, Narutowicza Street 11/12, 80-233 Gdańsk, Poland
- BioTechMed
Center, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
10
|
Wang J, Tang Y, Zheng J, Xie Z, Zhou J, Wu Y. DNAzyme-based and smartphone-assisted colorimetric biosensor for ultrasensitive and highly selective detection of histamine in meats. Food Chem 2024; 435:137526. [PMID: 37742463 DOI: 10.1016/j.foodchem.2023.137526] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/27/2023] [Accepted: 09/16/2023] [Indexed: 09/26/2023]
Abstract
Herein, a colorimetric biosensor for histamine detection in meat is first established based on the enhancement of DNAzyme with peroxidase-mimic activity. Histamine can boost the generation of G-quadruplex sequences, and make them more easily bond with hemin to produce many DNAzyme molecules. In addition, histamine increases the affinity of DNAzyme to the substrate 3,3',5,5'-tetramethylbenzidine (TMB). Therefore, the obtained DNAzyme can catalyze H2O2 and dissolved oxygen to produce many reactive oxygen species (ROS), which cause the TMB molecule to lose two electrons and generate yellow products, exhibiting a clear absorption peak at 450 nm. The colorimetric biosensor has excellent sensitivity, and the detection limit is as low as 38 μg·L-1 for histamine. Moreover, the biosensor has high selectivity and anti-interference ability, and exhibits a good recovery rate in actual meats. The above results show that the strategy has potential for application in the detection of trace histamine in meats.
Collapse
Affiliation(s)
- Junjun Wang
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Yue Tang
- College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Jia Zheng
- Wuliangye Yibin Co., Ltd, Yibin 644000, Sichuan Province, China
| | - Zhengmin Xie
- Wuliangye Yibin Co., Ltd, Yibin 644000, Sichuan Province, China
| | - Jianli Zhou
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Yuangen Wu
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; College of Life Sciences, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
11
|
Ugrina M, Burkhart I, Müller D, Schwalbe H, Schwierz N. RNA G-quadruplex folding is a multi-pathway process driven by conformational entropy. Nucleic Acids Res 2024; 52:87-100. [PMID: 37986217 PMCID: PMC10783511 DOI: 10.1093/nar/gkad1065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 09/25/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023] Open
Abstract
The kinetics of folding is crucial for the function of many regulatory RNAs including RNA G-quadruplexes (rG4s). Here, we characterize the folding pathways of a G-quadruplex from the telomeric repeat-containing RNA by combining all-atom molecular dynamics and coarse-grained simulations with circular dichroism experiments. The quadruplex fold is stabilized by cations and thus, the ion atmosphere forming a double layer surrounding the highly charged quadruplex guides the folding process. To capture the ionic double layer in implicit solvent coarse-grained simulations correctly, we develop a matching procedure based on all-atom simulations in explicit water. The procedure yields quantitative agreement between simulations and experiments as judged by the populations of folded and unfolded states at different salt concentrations and temperatures. Subsequently, we show that coarse-grained simulations with a resolution of three interaction sites per nucleotide are well suited to resolve the folding pathways and their intermediate states. The results reveal that the folding progresses from unpaired chain via hairpin, triplex and double-hairpin constellations to the final folded structure. The two- and three-strand intermediates are stabilized by transient Hoogsteen interactions. Each pathway passes through two on-pathway intermediates. We hypothesize that conformational entropy is a hallmark of rG4 folding. Conformational entropy leads to the observed branched multi-pathway folding process for TERRA25. We corroborate this hypothesis by presenting the free energy landscapes and folding pathways of four rG4 systems with varying loop length.
Collapse
Affiliation(s)
- Marijana Ugrina
- Institute of Physics, University of Augsburg, Universitätsstraße 1, 86159 Augsburg, Germany
- Department of Theoretical Biophysics, Max-Planck-Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Ines Burkhart
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Diana Müller
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Nadine Schwierz
- Institute of Physics, University of Augsburg, Universitätsstraße 1, 86159 Augsburg, Germany
| |
Collapse
|
12
|
Hu W, Jing H, Fu W, Wang Z, Zhou J, Zhang N. Conversion to Trimolecular G-Quadruplex by Spontaneous Hoogsteen Pairing-Based Strand Displacement Reaction between Bimolecular G-Quadruplex and Double G-Rich Probes. J Am Chem Soc 2023; 145:18578-18590. [PMID: 37553999 DOI: 10.1021/jacs.3c05617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Bimolecular or tetramolecular G-quadruplexes (GQs) are predominantly self-assembled by the same sequence-identical G-rich oligonucleotides and usually remain inert to the strand displacement reaction (SDR) with other short G-rich invading fragments of DNA or RNA. Appealingly, in this study, we demonstrate that a parallel homomeric bimolecular GQ target of Tub10 d(CAGGGAGGGT) as the starting reactant, although completely folded in K+ solution and sufficiently stable (melting temperature of 57.7 °C), can still spontaneously accept strand invasion by a pair of short G-rich invading probes of P1 d(TGGGA) near room temperature. The final SDR product is a novel parallel heteromeric trimolecular GQ (tri-GQ) of Tub10/2P1 reassembled between one Tub10 strand and two P1 strands. Here we present, to the best of our knowledge, the first NMR solution structure of such a discrete heteromeric tri-GQ and unveil a unique mode of two probes vs one target in mutual recognition among G-rich canonical DNA oligomers. As a model system, the short invading probe P1 can spontaneously trap G-rich target Tub10 from a Watson-Crick duplex completely hybridized between Tub10 and its fully complementary strand d(ACCCTCCCTG). The Tub10 sequence of d(CAGGGAGGGT) is a fragment from the G-rich promoter region of the human β2-tubulin gene. Our findings provide new insights into the Hoogsteen pairing-based SDR between a GQ target and double invading probes of short G-rich DNA fragments and are expected to grant access to increasingly complex architectures in GQ-based DNA nanotechnology.
Collapse
Affiliation(s)
- Wenxuan Hu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Haitao Jing
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Wenqiang Fu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Zengrong Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Jiang Zhou
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Na Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Key Laboratory of Anhui Province for High Field Magnetic Resonance Imaging, Hefei 230031, China
- High Magnetic Field Laboratory of Anhui Province, Hefei 230031, China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
13
|
Stadlbauer P, Mlýnský V, Krepl M, Šponer J. Complexity of Guanine Quadruplex Unfolding Pathways Revealed by Atomistic Pulling Simulations. J Chem Inf Model 2023; 63:4716-4731. [PMID: 37458574 PMCID: PMC10428220 DOI: 10.1021/acs.jcim.3c00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Indexed: 08/15/2023]
Abstract
Guanine quadruplexes (GQs) are non-canonical nucleic acid structures involved in many biological processes. GQs formed in single-stranded regions often need to be unwound by cellular machinery, so their mechanochemical properties are important. Here, we performed steered molecular dynamics simulations of human telomeric GQs to study their unfolding. We examined four pulling regimes, including a very slow setup with pulling velocity and force load accessible to high-speed atomic force microscopy. We identified multiple factors affecting the unfolding mechanism, i.e.,: (i) the more the direction of force was perpendicular to the GQ channel axis (determined by GQ topology), the more the base unzipping mechanism happened, (ii) the more parallel the direction of force was, GQ opening and cross-like GQs were more likely to occur, (iii) strand slippage mechanism was possible for GQs with an all-anti pattern in a strand, and (iv) slower pulling velocity led to richer structural dynamics with sampling of more intermediates and partial refolding events. We also identified that a GQ may eventually unfold after a force drop under forces smaller than those that the GQ withstood before the drop. Finally, we found out that different unfolding intermediates could have very similar chain end-to-end distances, which reveals some limitations of structural interpretations of single-molecule spectroscopic data.
Collapse
Affiliation(s)
- Petr Stadlbauer
- Institute of Biophysics of the Czech
Academy of Sciences, Královopolská 135, Brno 612 00, Czech Republic
| | - Vojtěch Mlýnský
- Institute of Biophysics of the Czech
Academy of Sciences, Královopolská 135, Brno 612 00, Czech Republic
| | - Miroslav Krepl
- Institute of Biophysics of the Czech
Academy of Sciences, Královopolská 135, Brno 612 00, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech
Academy of Sciences, Královopolská 135, Brno 612 00, Czech Republic
| |
Collapse
|
14
|
Nain N, Singh A, Khan S, Kukreti S. G-quadruplex formation at human DAT1 gene promoter: Effect of cytosine methylation. Biochem Biophys Rep 2023; 34:101464. [PMID: 37096205 PMCID: PMC10121379 DOI: 10.1016/j.bbrep.2023.101464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/26/2023] Open
Abstract
The dopamine transporter gene (DAT1), a recognized genetic risk factor for attention deficit hyperactivity disorder (ADHD) is principally responsible for the regulation of dopamine synaptic levels and serves as a key target in many psychostimulants drugs. DAT1 gene methylation has been considered an epigenetic marker in ADHD. The identification of G-rich sequence motifs potential to form G-quadruplexes is correlated with functionally important genomic regions. Herein, biophysical and biochemical techniques are employed to investigate the structural polymorphism along with the effect of cytosine methylation on a 26-nt G-rich sequence present in the promoter region of the DAT1 gene. The gel electrophoresis, circular dichroism spectroscopy, and UV-thermal melting data are well correlated and conclude the formation of a parallel (bimolecular), as well as antiparallel (tetramolecular) G-quadruplex in Na+ solution. Interestingly, the existence of uni-, bi-, tri-, and tetramolecular quadruplex structures in K+ solution exhibited only the parallel type G-quadruplex. The results demonstrate that in presence of either cation (Na+ or K+) the cytosine methylation reserved the structural topologies unaltered. However, methylation lowers the thermal stability of G-quadruplexes and the duplex structures, as well. These findings provide insights to understand the regulatory mechanisms underlying the formation of the G-quadruplex structure induced by DNA methylation.
Collapse
Affiliation(s)
- Nishu Nain
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Anju Singh
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi, Delhi, 110007, India
- Department of Chemistry, Ramjas College, University of Delhi, Delhi, 110007, India
| | - Shoaib Khan
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Shrikant Kukreti
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi, Delhi, 110007, India
- Corresponding author.
| |
Collapse
|
15
|
Zhang Y, Huang J, Yu K, Cui X. G-Quadruplexes Formation by the C9orf72 Nucleotide Repeat Expansion d(GGGGCC) n and Conformation Regulation by Fangchinoline. Molecules 2023; 28:4671. [PMID: 37375224 DOI: 10.3390/molecules28124671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The G-quadruplex (GQ)-forming hexanucleotide repeat expansion (HRE) in the C9orf72 (C9) gene has been found to be the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (collectively, C9ALS/FTD), implying the great significance of modulating C9-HRE GQ structures in C9ALS/FTD therapeutic treatment strategies. In this study, we investigated the GQ structures formed by varied lengths of C9-HRE DNA sequences d(GGGGCC)4 (C9-24mer) and d(GGGGCC)8 (C9-48mer), and found that the C9-24mer forms anti-parallel GQ (AP-GQ) in the presence of potassium ions, while the long C9-48mer bearing eight guanine tracts forms unstacked tandem GQ consisting of two C9-24mer unimolecular AP-GQs. Moreover, the natural small molecule Fangchinoline was screened out in order to be able to stabilize and alter the C9-HRE DNA to parallel GQ topology. Further study of the interaction of Fangchinoline with the C9-HRE RNA GQ unit r(GGGGCC)4 (C9-RNA) revealed that it can also recognize and improve the thermal stability of C9-HRE RNA GQ. Finally, use of AutoDock simulation results indicated that Fangchinoline binds to the groove regions of the parallel C9-HRE GQs. These findings pave the way for further studies of GQ structures formed by pathologically related long C9-HRE sequences, and also provide a natural small-molecule ligand that modulates the structure and stability of C9-HRE GQ, both in DNA and RNA levels. Altogether, this work may contribute to therapeutic approaches of C9ALS/FTD which take the upstream C9-HRE DNA region, as well as the toxic C9-HRE RNA, as targets.
Collapse
Affiliation(s)
- Yun Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Junliu Huang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Kainan Yu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xiaojie Cui
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China
| |
Collapse
|
16
|
Oprzeska-Zingrebe EA, Smiatek J. Basket-type G-quadruplex with two tetrads in the presence of TMAO and urea: A molecular dynamics study. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Gil-Martínez A, López-Molina S, Galiana-Roselló C, Lázaro-Gómez A, Schlüter F, Rizzo F, González-García J. Modulating the G-Quadruplex and Duplex DNA Binding by Controlling the Charge of Fluorescent Molecules. Chemistry 2023; 29:e202203094. [PMID: 36318180 PMCID: PMC10107164 DOI: 10.1002/chem.202203094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 12/13/2022]
Abstract
Two fluorescent and non-toxic spirobifluorene molecules bearing either positive (Spiro-NMe3) or negative (Spiro-SO3) charged moieties attached to the same aromatic structure have been investigated as binders for DNA. The novel Spiro-NMe3 containing four alkylammonium substituents interacts with G-quadruplex (G4) DNA structures and shows preference for G4s over duplex by means of FRET melting and fluorescence experiments. The interaction is governed by the charged substituents of the ligands as deduced from the lower binding of the sulfonate analogue (Spiro-SO3). On the contrary, Spiro-SO3 exhibits higher binding affinity to duplex DNA structure than to G4. Both molecules show a moderate quenching of the fluorescence upon DNA binding. The confocal microscopy evaluation shows the internalization of both molecules in HeLa cells and their lysosomal accumulation.
Collapse
Affiliation(s)
- Ariadna Gil-Martínez
- Institute of Molecular Science (ICMol) Department of Inorganic Chemistry, University of Valencia Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Sònia López-Molina
- Institute of Molecular Science (ICMol) Department of Inorganic Chemistry, University of Valencia Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Cristina Galiana-Roselló
- Institute of Molecular Science (ICMol) Department of Inorganic Chemistry, University of Valencia Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Andrea Lázaro-Gómez
- Institute of Molecular Science (ICMol) Department of Inorganic Chemistry, University of Valencia Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Friederike Schlüter
- Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149, Münster, Germany
| | - Fabio Rizzo
- Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149, Münster, Germany.,Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche (CNR), via G. Fantoli 16/15, 20138, Milano, Italy
| | - Jorge González-García
- Institute of Molecular Science (ICMol) Department of Inorganic Chemistry, University of Valencia Catedrático José Beltrán 2, 46980, Paterna, Spain
| |
Collapse
|
18
|
Ye M, Chen EV, Pfeil SH, Martin KN, Atrafi T, Yun S, Martinez Z, Yatsunyk LA. Homopurine guanine-rich sequences in complex with N-methyl mesoporphyrin IX form parallel G-quadruplex dimers and display a unique symmetry tetrad. Bioorg Med Chem 2023; 77:117112. [PMID: 36508994 PMCID: PMC9812923 DOI: 10.1016/j.bmc.2022.117112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
DNA can fold into G-quadruplexes (GQs), non-canonical secondary structures formed by π-π stacking of G-tetrads. GQs are important in many biological processes, which makes them promising therapeutic targets. We identified a 42-nucleotide long, purine-only G-rich sequence from human genome, which contains eight G-stretches connected by A and AAAA loops. We divided this sequence into five unique segments, four guanine stretches each, named GA1-5. In order to investigate the role of adenines in GQ structure formation, we performed biophysical and X-ray crystallographic studies of GA1-5 and their complexes with a highly selective GQ ligand, N-methyl mesoporphyrin IX (NMM). Our data indicate that all variants form parallel GQs whose stability depends on the number of flexible AAAA loops. GA1-3 bind NMM with 1:1 stoichiometry. The Ka for GA1 and GA3 is modest, ∼0.3 μM -1, and that for GA2 is significantly higher, ∼1.2 μM -1. NMM stabilizes GA1-3 by 14.6, 13.1, and 7.0 °C, respectively, at 2 equivalents. We determined X-ray crystal structures of GA1-NMM (1.98 Å resolution) and GA3-NMM (2.01 Å). The structures confirm the parallel topology of GQs with all adenines forming loops and display NMM binding at the 3' G-tetrad. Both complexes dimerize through the 5' interface. We observe two novel structural features: 1) a 'symmetry tetrad' at the dimer interface, which is formed by two guanines from each GQ monomer and 2) a NMM dimer in GA1-NMM. Our structural work confirms great flexibility of adenines as structural elements in GQ formation and contributes greatly to our understanding of the structural diversity of GQs and their modes of interaction with small molecule ligands.
Collapse
Affiliation(s)
- Ming Ye
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, United States
| | - Erin V Chen
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, United States
| | - Shawn H Pfeil
- Department of Physics, West Chester University, West Chester, PA 19383, United States
| | - Kailey N Martin
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, United States
| | - Tamanaa Atrafi
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, United States
| | - Sara Yun
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, United States
| | - Zahara Martinez
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, United States
| | - Liliya A Yatsunyk
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, United States.
| |
Collapse
|
19
|
Göç YB, Poziemski J, Smolińska W, Suwała D, Wieczorek G, Niedzialek D. Tracking Topological and Electronic Effects on the Folding and Stability of Guanine-Deficient RNA G-Quadruplexes, Engineered with a New Computational Tool for De Novo Quadruplex Folding. Int J Mol Sci 2022; 23:10990. [PMID: 36232294 PMCID: PMC9570295 DOI: 10.3390/ijms231910990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
The initial aim of this work was to elucidate the mutual influence of different single-stranded segments (loops and caps) on the thermodynamic stability of RNA G-quadruplexes. To this end, we used a new NAB-GQ-builder software program, to construct dozens of two-tetrad G-quadruplex topologies, based on a designed library of sequences. Then, to probe the sequence-morphology-stability relationships of the designed topologies, we performed molecular dynamics simulations. Their results provide guidance for the design of G-quadruplexes with balanced structures, and in turn programmable physicochemical properties for applications as biomaterials. Moreover, by comparative examinations of the single-stranded segments of three oncogene promoter G-quadruplexes, we assess their druggability potential for future therapeutic strategies. Finally, on the basis of a thorough analysis at the quantum mechanical level of theory on a series of guanine assemblies, we demonstrate how a valence tautomerism, triggered by a coordination of cations, initiates the process of G-quadruplex folding, and we propose a sequential folding mechanism, otherwise dictated by the cancellation of the dipole moments on guanines.
Collapse
Affiliation(s)
- Yavuz Burak Göç
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland or
- Faculty of Chemistry, Biological & Chemical Research Center, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Jakub Poziemski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland or
| | - Weronika Smolińska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland or
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Dominik Suwała
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland or
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Grzegorz Wieczorek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland or
- Molecure SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Dorota Niedzialek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland or
| |
Collapse
|
20
|
Tu ATT, Hoshi K, Ma Y, Oyama T, Suzuki S, Tsukakoshi K, Nagasawa K, Ikebukuro K, Yamazaki T. Effects of G-Quadruplex Ligands on the Topology, Stability, and Immunostimulatory Properties of G-Quadruplex-Based CpG Oligodeoxynucleotides. ACS Chem Biol 2022; 17:1703-1713. [PMID: 35765965 DOI: 10.1021/acschembio.1c00904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We previously reported that the formation of guanine-quadruplex (G4) structures provides phosphodiester oligodeoxynucleotides containing unmethylated cytosine-phosphate-guanine (CpG ODNs) with higher nuclease resistance and cellular uptake, thereby increasing their immunostimulation efficiency through TLR9 activation. CpG ODNs forming G4 structures (G4 CpG ODNs) are thus potential vaccine adjuvants against infectious diseases. However, the G4 structure changes topology depending on the surrounding environment. Recently, G4 ligands, which are small molecules that bind to G4 ODNs with high affinity, were reported to improve the stability of G4. In this study, we propose to increase the stability and function of G4 CpG ODNs using G4 ligands. We show the effects of two G4 ligands, named L2H2-6OTD (L2H2) and L2G2-2M2EG-6OTD (L2G2), on the topology, stability, and immunostimulatory properties of a monomeric hybrid-type G4 CpG ODN containing CpG motifs in the central loop, named GD3. We found that L2H2 helps maintain the hybrid G4 topology of GD3, whereas L2G2 induces parallel G4 formation. Both G4 ligands increase the thermodynamic and nuclease stability of GD3. However, only GD3 associated with L2H2 binds efficiently to TLR9 and evokes a higher immune response from mouse macrophage-like RAW264 cells. GD3 associated with L2G2 does not bind efficiently to TLR9 and elicits lower cytokine production. Our results demonstrate that the potential to enhance immunostimulatory properties depends on the ability of G4 ligands to maintain and stabilize the hybrid G4 of GD3. We anticipate that our findings will facilitate the development of more effective G4 CpG ODN-based vaccine adjuvants against infectious diseases.
Collapse
Affiliation(s)
- Anh Thi Tram Tu
- Nanomedicine Group, Research Center for Functional Materials (RCFM), National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047, Japan.,Division of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0808, Japan.,Department of Magnetic and Biomedical Materials, Faculty of Materials Science, University of Science, Vietnam National University, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh 70000, Viet Nam.,Vietnam National University, Linh Trung Ward, Thu Duc City, Ho Chi Minh 70000, Viet Nam
| | - Kazuaki Hoshi
- Nanomedicine Group, Research Center for Functional Materials (RCFM), National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Yue Ma
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei 184-8588, Japan
| | - Taiji Oyama
- JASCO Corporation, 2967-5, Ishikawamachi, Hachioji, Tokyo 192-8537, Japan
| | - Satoko Suzuki
- JASCO Corporation, 2967-5, Ishikawamachi, Hachioji, Tokyo 192-8537, Japan
| | - Kaori Tsukakoshi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei 184-8588, Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei 184-8588, Japan
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei 184-8588, Japan
| | - Tomohiko Yamazaki
- Nanomedicine Group, Research Center for Functional Materials (RCFM), National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047, Japan.,Division of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0808, Japan
| |
Collapse
|
21
|
Marquevielle J, De Rache A, Vialet B, Morvan E, Mergny JL, Amrane S. G-quadruplex structure of the C. elegans telomeric repeat: a two tetrads basket type conformation stabilized by a non-canonical C-T base-pair. Nucleic Acids Res 2022; 50:7134-7146. [PMID: 35736226 PMCID: PMC9262591 DOI: 10.1093/nar/gkac523] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 05/07/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022] Open
Abstract
The Caenorhabditis elegans model has greatly contributed to the understanding of the role of G-quadruplexes in genomic instability. The GGCTTA repeats of the C. elegans telomeres resemble the GGGTTA repeats of the human telomeres. However, the comparison of telomeric sequences (Homo sapiens, Tetrahymena, Oxytricha, Bombyx mori and Giardia) revealed that small changes in these repeats can drastically change the topology of the folded G-quadruplex. In the present work we determined the structure adopted by the C. elegans telomeric sequence d[GG(CTTAGG)3]. The investigated C. elegans telomeric sequence is shown to fold into an intramolecular two G-tetrads basket type G-quadruplex structure that includes a C-T base pair in the diagonal loop. This work sheds light on the telomeric structure of the widely used C. elegans animal model.
Collapse
Affiliation(s)
- Julien Marquevielle
- Univ. Bordeaux, Inserm U1212, CNRS UMR 5320, ARNA laboratory, 146 rue Léo Saignat F-33000 Bordeaux, France
- Institut Européen de Chimie et Biologie, UMS 3033 US001, CNRS-Université de Bordeaux, 2 rue Robert Escarpit, F-33600 Pessac, France
| | - Aurore De Rache
- Univ. Bordeaux, Inserm U1212, CNRS UMR 5320, ARNA laboratory, 146 rue Léo Saignat F-33000 Bordeaux, France
- Institut Européen de Chimie et Biologie, UMS 3033 US001, CNRS-Université de Bordeaux, 2 rue Robert Escarpit, F-33600 Pessac, France
- Department of Chemistry, UNamur, 61 rue de Bruxelles, B-5000 Namur, Belgium
| | - Brune Vialet
- Univ. Bordeaux, Inserm U1212, CNRS UMR 5320, ARNA laboratory, 146 rue Léo Saignat F-33000 Bordeaux, France
| | - Estelle Morvan
- Institut Européen de Chimie et Biologie, UMS 3033 US001, CNRS-Université de Bordeaux, 2 rue Robert Escarpit, F-33600 Pessac, France
| | - Jean-Louis Mergny
- Univ. Bordeaux, Inserm U1212, CNRS UMR 5320, ARNA laboratory, 146 rue Léo Saignat F-33000 Bordeaux, France
- Institut Européen de Chimie et Biologie, UMS 3033 US001, CNRS-Université de Bordeaux, 2 rue Robert Escarpit, F-33600 Pessac, France
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Samir Amrane
- Univ. Bordeaux, Inserm U1212, CNRS UMR 5320, ARNA laboratory, 146 rue Léo Saignat F-33000 Bordeaux, France
- Institut Européen de Chimie et Biologie, UMS 3033 US001, CNRS-Université de Bordeaux, 2 rue Robert Escarpit, F-33600 Pessac, France
| |
Collapse
|
22
|
Mendes E, Bahls B, Aljnadi IM, Paulo A. Indoloquinolines as scaffolds for the design of potent G-quadruplex ligands. Bioorg Med Chem Lett 2022; 72:128862. [PMID: 35716866 DOI: 10.1016/j.bmcl.2022.128862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/19/2022]
Abstract
Indoloquinolines are natural alkaloids with known affinity to DNA and antiproliferative activity against bacteria, parasites, and cancer cells. Due to their non-chiral skeleton, their total synthesis is easy to achieve and throughout the years, many derivatives have been studied for their potential as drugs. Herein we review the indoloquinolines and bioisosters that have been designed, synthesised, and evaluated for their selective binding to G-quadruplex nucleic acid structures, as well as the reported effects in cancer cells. The data collected so far strongly suggest that indoloquinolines are good scaffolds for the development of drugs and probes targeting the G-quadruplex structures, but they also show that this scaffold is still underexplored.
Collapse
Affiliation(s)
- Eduarda Mendes
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal
| | - Bárbara Bahls
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal
| | - Israa M Aljnadi
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal
| | - Alexandra Paulo
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal.
| |
Collapse
|
23
|
Manuel BA, Sterling SA, Sanford AA, Heemstra JM. Systematically Modulating Aptamer Affinity and Specificity by Guanosine-to-Inosine Substitution. Anal Chem 2022; 94:6436-6440. [PMID: 35435665 DOI: 10.1021/acs.analchem.2c00422] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Aptamers are widely used in small molecule detection applications due to their specificity, stability, and cost effectiveness. One key challenge in utilizing aptamers in sensors is matching the binding affinity of the aptamer to the desired concentration range for analyte detection. The most common methods for modulating affinity have inherent limitations, such as the likelihood of drastic changes in aptamer folding. Here, we propose that substituting guanosine for inosine at specific locations in the aptamer sequence provides a less perturbative approach to modulating affinity. Inosine is a naturally occurring nucleotide that results from hydrolytic deamination of adenosine, and like guanine, it base pairs with cytosine. Using the well-studied cocaine binding aptamer, we systematically replaced guanosine with inosine and were able to generate sequences having a range of binding affinities from 230 nM to 80 μM. Interestingly, we found that these substitutions could also modulate the specificity of the aptamers, leading to a range of binding affinities for structurally related analytes. Analysis of folding stability via melting temperature shows that, as expected, aptamer structure is impacted by guanosine-to-inosine substitutions. The ability to tune binding affinity and specificity through guanosine-to-inosine substitution provides a convenient and reliable approach for rapidly generating aptamers for diverse biosensing applications.
Collapse
Affiliation(s)
- Brea A Manuel
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Sierra A Sterling
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Aimee A Sanford
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jennifer M Heemstra
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
24
|
McQuaid KT, Takahashi S, Baumgaertner L, Cardin DJ, Paterson NG, Hall JP, Sugimoto N, Cardin CJ. Ruthenium Polypyridyl Complex Bound to a Unimolecular Chair-Form G-Quadruplex. J Am Chem Soc 2022; 144:5956-5964. [PMID: 35324198 PMCID: PMC8991003 DOI: 10.1021/jacs.2c00178] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
The DNA G-quadruplex
is known for forming a range of topologies
and for the observed lability of the assembly, consistent with its
transient formation in live cells. The stabilization of a particular
topology by a small molecule is of great importance for therapeutic
applications. Here, we show that the ruthenium complex Λ-[Ru(phen)2(qdppz)]2+ displays enantiospecific G-quadruplex
binding. It crystallized in 1:1 stoichiometry with a modified human
telomeric G-quadruplex sequence, GGGTTAGGGTTAGGGTTTGGG (htel21T18), in an antiparallel chair topology, the first structurally
characterized example of ligand binding to this topology. The lambda
complex is bound in an intercalation cavity created by a terminal
G-quartet and the central narrow lateral loop formed by T10–T11–A12. The two remaining wide
lateral loops are linked through a third K+ ion at the
other end of the G-quartet stack, which also coordinates three thymine
residues. In a comparative ligand-binding study, we showed, using
a Klenow fragment assay, that this complex is the strongest observed
inhibitor of replication, both using the native human telomeric sequence
and the modified sequence used in this work.
Collapse
Affiliation(s)
- Kane T McQuaid
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| | - Shuntaro Takahashi
- FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Lena Baumgaertner
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| | - David J Cardin
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| | - Neil G Paterson
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K
| | - James P Hall
- School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| | - Naoki Sugimoto
- FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.,FIRST (Graduate School of Frontiers of Innovative Research in Science and Technology), Konan University, 7-1-20 Minatojima-Minamimashi, Chuo-Ku, Kobe 650-0047, Japan
| | - Christine J Cardin
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| |
Collapse
|
25
|
Mendes E, Aljnadi IM, Bahls B, Victor BL, Paulo A. Major Achievements in the Design of Quadruplex-Interactive Small Molecules. Pharmaceuticals (Basel) 2022; 15:300. [PMID: 35337098 PMCID: PMC8953082 DOI: 10.3390/ph15030300] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/17/2022] Open
Abstract
Organic small molecules that can recognize and bind to G-quadruplex and i-Motif nucleic acids have great potential as selective drugs or as tools in drug target discovery programs, or even in the development of nanodevices for medical diagnosis. Hundreds of quadruplex-interactive small molecules have been reported, and the challenges in their design vary with the intended application. Herein, we survey the major achievements on the therapeutic potential of such quadruplex ligands, their mode of binding, effects upon interaction with quadruplexes, and consider the opportunities and challenges for their exploitation in drug discovery.
Collapse
Affiliation(s)
- Eduarda Mendes
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal; (E.M.); (I.M.A.); (B.B.)
| | - Israa M. Aljnadi
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal; (E.M.); (I.M.A.); (B.B.)
- Faculty of Sciences, BioISI, Biosystems and Integrative Sciences Institute, Universidade de Lisboa, 1749-016 Lisbon, Portugal;
| | - Bárbara Bahls
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal; (E.M.); (I.M.A.); (B.B.)
- Faculty of Sciences, BioISI, Biosystems and Integrative Sciences Institute, Universidade de Lisboa, 1749-016 Lisbon, Portugal;
| | - Bruno L. Victor
- Faculty of Sciences, BioISI, Biosystems and Integrative Sciences Institute, Universidade de Lisboa, 1749-016 Lisbon, Portugal;
| | - Alexandra Paulo
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal; (E.M.); (I.M.A.); (B.B.)
| |
Collapse
|
26
|
Rossi F, Paiardini A. A Machine Learning Perspective on DNA and RNA G-quadruplexes. Curr Bioinform 2022. [DOI: 10.2174/1574893617666220224105702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
G-quadruplexes (G4s) are particular structures found in guanine-rich DNA and RNA sequences that exhibit a wide diversity of three-dimensional conformations and exert key functions in the control of gene expression. G4s are able to interact with numerous small molecules and endogenous proteins, and their dysregulation can lead to a variety of disorders and diseases. Characterization and prediction of G4-forming sequences could elucidate their mechanism of action and could thus represent an important step in the discovery of potential therapeutic drugs. In this perspective, we propose an overview of G4s, discussing the state of the art of methodologies and tools developed to characterize and predict the presence of these structures in genomic sequences. In particular, we report on machine learning (ML) approaches and artificial neural networks (ANNs) that could open new avenues for the accurate analysis of quadruplexes, given their potential to derive informative features by learning from large, high-density datasets.
Collapse
Affiliation(s)
- Fabiana Rossi
- Department of Biochemical Sciences \'A. Rossi Fanelli\', University of Rome La Sapienza, Rome, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences \'A. Rossi Fanelli\', University of Rome La Sapienza, Rome, Italy
| |
Collapse
|
27
|
Galindo-Murillo R, Winkler L, Ma J, Hanelli F, Fleming AM, Burrows CJ, Cheatham TE. Riboflavin Stabilizes Abasic, Oxidized G-Quadruplex Structures. Biochemistry 2022; 61:265-275. [PMID: 35104101 PMCID: PMC8851688 DOI: 10.1021/acs.biochem.1c00598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
![]()
The G-quadruplex
is a noncanonical fold of DNA commonly found at
telomeres and within gene promoter regions of the genome. These guanine-rich
sequences are highly susceptible to damages such as base oxidation
and depurination, leading to abasic sites. In the present work, we
address whether a vacancy, such as an abasic site, in a G-quadruplex
serves as a specific ligand recognition site. When the G-tetrad is
all guanines, the vacant (abasic) site is recognized and bound by
free guanine nucleobase. However, we aim to understand whether the
preference for a specific ligand recognition changes with the presence
of a guanine oxidation product 8-oxo-7,8-dihydroguanine (OG) adjacent
to the vacancy in the tetrad. Using molecular dynamics simulation,
circular dichroism, and nuclear magnetic resonance, we examined the
ability for riboflavin to stabilize abasic site-containing G-quadruplex
structures. Through structural and free energy binding analysis, we
observe riboflavin’s ability to stabilize an abasic site-containing
G-quadruplex only in the presence of an adjacent OG-modified base.
Further, when compared to simulation with the vacancy filled by free
guanine, we observe that the free guanine nucleobase is pushed outside
of the tetrad by OG to interact with other parts of the structure,
including loop residues. These results support the preference of riboflavin
over free guanine to fill an OG-adjacent G-quadruplex abasic vacancy.
Collapse
Affiliation(s)
- Rodrigo Galindo-Murillo
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, 2000 East 30 South Skaggs 306, Salt Lake City, Utah 84112, United States
| | - Lauren Winkler
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, 2000 East 30 South Skaggs 306, Salt Lake City, Utah 84112, United States
| | - Jingwei Ma
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Fatjon Hanelli
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Aaron M Fleming
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Thomas E Cheatham
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, 2000 East 30 South Skaggs 306, Salt Lake City, Utah 84112, United States
| |
Collapse
|
28
|
Green AT, Pickard AJ, Li R, MacKerell AD, Bierbach U, Cho SS. Computational and Experimental Characterization of rDNA and rRNA G-Quadruplexes. J Phys Chem B 2022; 126:609-619. [PMID: 35026949 DOI: 10.1021/acs.jpcb.1c08340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA G-quadruplexes in human telomeres and gene promoters are being extensively studied for their role in controlling the growth of cancer cells. G-quadruplexes have been unambiguously shown to exist both in vitro and in vivo, including in the guanine (G)-rich DNA genes encoding pre-ribosomal RNA (pre-rRNA), which is transcribed in the cell's nucleolus. Recent studies strongly suggest that these DNA sequences ("rDNA"), and the transcribed rRNA, are a potential anticancer target through the inhibition of RNA polymerase I (Pol I) in ribosome biogenesis, but the structures of ribosomal G-quadruplexes at atomic resolution are unknown and very little biophysical characterization has been performed on them to date. In the present study, circular dichroism (CD) spectroscopy is used to show that two putative rDNA G-quadruplex sequences, NUC 19P and NUC 23P and their counterpart rRNAs, predominantly adopt parallel topologies, reminiscent of the analogous telomeric quadruplex structures. Based on this information, we modeled parallel topology atomistic structures of the putative ribosomal G-quadruplexes. We then validated and refined the modeled ribosomal G-quadruplex structures using all-atom molecular dynamics (MD) simulations with the CHARMM36 force field in the presence and absence of stabilizing K+. Motivated by preliminary MD simulations of the telomeric parallel G-quadruplex (TEL 24P) in which the K+ ion is expelled, we used updated CHARMM36 force field K+ parameters that were optimized, targeting the data from quantum mechanical calculations and the polarizable Drude model force field. In subsequent MD simulations with optimized CHARMM36 parameters, the K+ ions are predominantly in the G-quadruplex channel and the rDNA G-quadruplexes have more well-defined, predominantly parallel-topology structures as compared to rRNA. In addition, NUC 19P is more structured than NUC 23P, which contains extended loops. Results from this study set the structural foundation for understanding G-quadruplex functions and the design of novel chemotherapeutics against these nucleolar targets and can be readily extended to other DNA and RNA G-quadruplexes.
Collapse
Affiliation(s)
- Adam T Green
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Amanda J Pickard
- Department of Chemistry, Wake Forest University, Wake Downtown Campus, Winston-Salem, North Carolina 27101, United States
| | - Rongzhong Li
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109, United States.,Department of Computer Science, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Ulrich Bierbach
- Department of Chemistry, Wake Forest University, Wake Downtown Campus, Winston-Salem, North Carolina 27101, United States
| | - Samuel S Cho
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109, United States.,Department of Computer Science, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| |
Collapse
|
29
|
Beseiso D, Chen EV, McCarthy SE, Martin KN, Gallagher EP, Miao J, Yatsunyk L. OUP accepted manuscript. Nucleic Acids Res 2022; 50:2959-2972. [PMID: 35212369 PMCID: PMC8934647 DOI: 10.1093/nar/gkac091] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
G-quadruplexes (GQs) are non-canonical DNA structures composed of stacks of stabilized G-tetrads. GQs play an important role in a variety of biological processes and may form at telomeres and oncogene promoters among other genomic locations. Here, we investigate nine variants of telomeric DNA from Tetrahymena thermophila with the repeat (TTGGGG)n. Biophysical data indicate that the sequences fold into stable four-tetrad GQs which adopt multiple conformations according to native PAGE. Excitingly, we solved the crystal structure of two variants, TET25 and TET26. The two variants differ by the presence of a 3′-T yet adopt different GQ conformations. TET25 forms a hybrid [3 + 1] GQ and exhibits a rare 5′-top snapback feature. Consequently, TET25 contains four loops: three lateral (TT, TT, and GTT) and one propeller (TT). TET26 folds into a parallel GQ with three TT propeller loops. To the best of our knowledge, TET25 and TET26 are the first reported hybrid and parallel four-tetrad unimolecular GQ structures. The results presented here expand the repertoire of available GQ structures and provide insight into the intricacy and plasticity of the 3D architecture adopted by telomeric repeats from T. thermophila and GQs in general.
Collapse
Affiliation(s)
- Dana Beseiso
- Department of Chemistry and Biochemistry, Swarthmore College, 500 College Ave, Swarthmore, PA 19081, USA
| | - Erin V Chen
- Department of Chemistry and Biochemistry, Swarthmore College, 500 College Ave, Swarthmore, PA 19081, USA
| | - Sawyer E McCarthy
- Department of Chemistry and Biochemistry, Swarthmore College, 500 College Ave, Swarthmore, PA 19081, USA
| | - Kailey N Martin
- Department of Chemistry and Biochemistry, Swarthmore College, 500 College Ave, Swarthmore, PA 19081, USA
| | - Elizabeth P Gallagher
- Department of Chemistry and Biochemistry, Swarthmore College, 500 College Ave, Swarthmore, PA 19081, USA
| | - Joanne Miao
- Department of Chemistry and Biochemistry, Swarthmore College, 500 College Ave, Swarthmore, PA 19081, USA
| | | |
Collapse
|
30
|
Liu J, Yan L, He S, Hu J. Engineering DNA quadruplexes in DNA nanostructures for biosensor construction. NANO RESEARCH 2021; 15:3504-3513. [PMID: 35401944 PMCID: PMC8983328 DOI: 10.1007/s12274-021-3869-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/28/2021] [Accepted: 09/04/2021] [Indexed: 06/14/2023]
Abstract
DNA quadruplexes are nucleic acid conformations comprised of four strands. They are prevalent in human genomes and increasing efforts are being directed toward their engineering. Taking advantage of the programmability of Watson-Crick base-pairing and conjugation methodology of DNA with other molecules, DNA nanostructures of increasing complexity and diversified geometries have been artificially constructed since 1980s. In this review, we investigate the interweaving of natural DNA quadruplexes and artificial DNA nanostructures in the development of the ever-prosperous field of biosensing, highlighting their specific roles in the construction of biosensor, including recognition probe, signal probe, signal amplifier and support platform. Their implementation in various sensing scenes was surveyed. And finally, general conclusion and future perspective are discussed for further developments.
Collapse
Affiliation(s)
- Jingxin Liu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118 China
| | - Li Yan
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118 China
| | - Shiliang He
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118 China
| | - Junqing Hu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118 China
- Shenzhen Bey Laboratory, Shenzhen, 518132 China
| |
Collapse
|
31
|
Jana J, Weisz K. Thermodynamic Stability of G-Quadruplexes: Impact of Sequence and Environment. Chembiochem 2021; 22:2848-2856. [PMID: 33844423 PMCID: PMC8518667 DOI: 10.1002/cbic.202100127] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Indexed: 12/19/2022]
Abstract
G-quadruplexes have attracted growing interest in recent years due to their occurrence in vivo and their possible biological functions. In addition to being promising targets for drug design, these four-stranded nucleic acid structures have also been recognized as versatile tools for various technological applications. Whereas a large number of studies have yielded insight into their remarkable structural diversity, our current knowledge on G-quadruplex stabilities as a function of sequence and environmental factors only gradually emerges with an expanding collection of thermodynamic data. This minireview provides an overview of general rules that may be used to better evaluate quadruplex thermodynamic stabilities but also discusses present challenges in predicting most stable folds for a given sequence and environment.
Collapse
Affiliation(s)
- Jagannath Jana
- Institute of BiochemistryUniversität GreifswaldFelix-Hausdorff Str. 417489GreifswaldGermany
| | - Klaus Weisz
- Institute of BiochemistryUniversität GreifswaldFelix-Hausdorff Str. 417489GreifswaldGermany
| |
Collapse
|
32
|
Libera V, Andreeva EA, Martel A, Thureau A, Longo M, Petrillo C, Paciaroni A, Schirò G, Comez L. Porphyrin Binding and Irradiation Promote G-Quadruplex DNA Dimeric Structure. J Phys Chem Lett 2021; 12:8096-8102. [PMID: 34406777 DOI: 10.1021/acs.jpclett.1c01840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nucleic acid sequences rich in guanines can organize into noncanonical DNA G-quadruplexes (G4s) of variable size. The design of small molecules stabilizing the structure of G4s is a rapidly growing area for the development of novel anticancer therapeutic strategies and bottom-up nanotechnologies. Among a multitude of binders, porphyrins are very attractive due to their light activation that can make them valuable conformational regulators of G4s. Here, a structure-based strategy, integrating complementary probes, is employed to study the interaction between TMPyP4 porphyrin and a 22-base human telomeric sequence (Tel22) before and after irradiation with blue light. Porphyrin binding is discovered to promote Tel22 dimerization, while light irradiation of the Tel22-TMPyP4 complex controls dimer fraction. Such a change in quaternary structure is found to be strictly correlated with modifications at the secondary structure level, thus providing an unprecedented link between the degree of dimerization and the underlying conformational changes in G4s.
Collapse
Affiliation(s)
- Valeria Libera
- Dipartimento di Fisica e Geologia, Università di Perugia, Via Pascoli, 06123 Perugia, Italy
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
- CNR-IOM c/o Dipartimento di Fisica e Geologia, Università di Perugia, Via Pascoli, 06123 Perugia, Italy
| | - Elena A Andreeva
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, F-38000 Grenoble, France
| | - Anne Martel
- Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Aurelien Thureau
- Swing Beamline, Synchrotron SOLEIL, 91192 Gif sur Yvette, France
| | - Marialucia Longo
- Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum, Lichtenbergstraße 1, 85748 Garching, Germany
| | - Caterina Petrillo
- Dipartimento di Fisica e Geologia, Università di Perugia, Via Pascoli, 06123 Perugia, Italy
| | - Alessandro Paciaroni
- Dipartimento di Fisica e Geologia, Università di Perugia, Via Pascoli, 06123 Perugia, Italy
| | - Giorgio Schirò
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, F-38000 Grenoble, France
| | - Lucia Comez
- CNR-IOM c/o Dipartimento di Fisica e Geologia, Università di Perugia, Via Pascoli, 06123 Perugia, Italy
| |
Collapse
|
33
|
Weisz K. A world beyond double-helical nucleic acids: the structural diversity of tetra-stranded G-quadruplexes. CHEMTEXTS 2021. [DOI: 10.1007/s40828-021-00150-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractNucleic acids can adopt various secondary structures including double-, triple-, and tetra-stranded helices that differ by the specific hydrogen bond mediated pairing pattern between their nucleobase constituents. Whereas double-helical DNA relies on Watson–Crick base pairing to play a prominent role in storing genetic information, G-quadruplexes are tetra-stranded structures that are formed by the association of guanine bases from G-rich DNA and RNA sequences. During the last few decades, G-quadruplexes have attracted considerable interest after the realization that they form and exert regulatory functions in vivo. In addition, quadruplex architectures have also been recognized as versatile and powerful tools in a growing number of technological applications. To appreciate the astonishing structural diversity of these tetra-stranded structures and to give some insight into basic interactions that govern their folding, this article gives an overview of quadruplex structures and rules associated with the formation of different topologies. A brief discussion will also focus on nonconventional quadruplexes as well as on general principles when targeting quadruplexes with ligands.
Graphic abstract
Collapse
|
34
|
Mohr S, Jana J, Vianney YM, Weisz K. Expanding the Topological Landscape by a G-Column Flip of a Parallel G-Quadruplex. Chemistry 2021; 27:10437-10447. [PMID: 33955615 PMCID: PMC8361731 DOI: 10.1002/chem.202101181] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Indexed: 01/14/2023]
Abstract
Canonical G‐quadruplexes can adopt a variety of different topologies depending on the arrangement of propeller, lateral, or diagonal loops connecting the four G‐columns. A novel intramolecular G‐quadruplex structure is derived through inversion of the last G‐tract of a three‐layered parallel fold, associated with the transition of a single propeller into a lateral loop. The resulting (3+1) hybrid fold features three syn⋅anti⋅anti⋅anti G‐tetrads with a 3’‐terminal all‐syn G‐column. Although the ability of forming a duplex stem‐loop between G‐tracts seems beneficial for a propeller‐to‐lateral loop rearrangement, unmodified G‐rich sequences resist folding into the new (3+1) topology. However, refolding can be driven by the incorporation of syn‐favoring guanosine analogues into positions of the fourth G‐stretch. The presented hybrid‐type G‐quadruplex structure as determined by NMR spectroscopy may provide for an additional scaffold in quadruplex‐based technologies.
Collapse
Affiliation(s)
- Swantje Mohr
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Jagannath Jana
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Yoanes Maria Vianney
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Klaus Weisz
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| |
Collapse
|
35
|
Wang Y, Li C, Hao X, Wang L, Ma X, Jin R, Kang C, Gao L. Hydrogen-bond-driven dimers of naphthyridine derivatives for selective identification of DNA G-quadruplexes. Org Biomol Chem 2021; 19:4768-4774. [PMID: 33978052 DOI: 10.1039/d1ob00651g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
G-quadruplex (GQ) ligands as potential anti-cancer drugs have received extensive attention. Large aromatic systems are usually considered in the design of the ligands to improve the binding with GQs, which are typically constructed by the combination of small modules with covalent bonds. In this study, we presented a non-covalent bond approach to construct GQ ligands with an extended planar structure. The ligands were stable dimers assembled through quadruplex intermolecular hydrogen bonds between two molecules of naphthyridine derivatives. Spectroscopic analyses showed that dimeric ligands could stabilize GQs with an increase of the melting temperature up to 12 °C and induced conformational conversion of hybrid GQs. Confocal fluorescence microscopy confirmed the enrichment of naphthyridine ligands in the nucleus. The ligands showed moderate cytotoxicity against HeLa cells with an IC50 value of 7.5 μg mL-1 and effectively induced growth inhibition and apoptosis in HeLa cells. These results confirmed the feasibility of the quick building of GQ ligands through intermolecular interactions of simple molecules that are easily obtained during synthesis, which is helpful for GQ ligand design and quick establishment of a ligand library through the self-assembly of easily available molecular components.
Collapse
Affiliation(s)
- Yu Wang
- Laboratory of Polymer Composite and Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. and University of Science and Technology of China, Hefei 230026, China
| | - Chunjie Li
- Laboratory of Polymer Composite and Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Xueyu Hao
- Laboratory of Polymer Composite and Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. and University of Science and Technology of China, Hefei 230026, China
| | - Liangpeng Wang
- Laboratory of Polymer Composite and Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Xiaoye Ma
- Laboratory of Polymer Composite and Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Rizhe Jin
- Laboratory of Polymer Composite and Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Chuanqing Kang
- Laboratory of Polymer Composite and Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. and University of Science and Technology of China, Hefei 230026, China
| | - Lianxun Gao
- Laboratory of Polymer Composite and Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
36
|
Jing H, Fu W, Hu W, Xu S, Xu X, He M, Liu Y, Zhang N. NMR structural study on the self-trimerization of d(GTTAGG) into a dynamic trimolecular G-quadruplex assembly preferentially in Na+ solution with a moderate K+ tolerance. Nucleic Acids Res 2021; 49:2306-2316. [PMID: 33524157 PMCID: PMC7913680 DOI: 10.1093/nar/gkab028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/05/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
Vast G-quadruplexes (GQs) are primarily folded by one, two, or four G-rich oligomers, rarely with an exception. Here, we present the first NMR solution structure of a trimolecular GQ (tri-GQ) that is solely assembled by the self-trimerization of d(GTTAGG), preferentially in Na+ solution tolerant to an equal amount of K+ cation. Eight guanines from three asymmetrically folded strands of d(GTTAGG) are organized into a two-tetrad core, which features a broken G-column and two width-irregular grooves. Fast strand exchanges on a timescale of second at 17°C spontaneously occur between folded tri-GQ and unfolded single-strand of d(GTTAGG) that both species coexist in dynamic equilibrium. Thus, this tri-GQ is not just simply a static assembly but rather a dynamic assembly. Moreover, another minor tetra-GQ that has putatively tetrameric (2+2) antiparallel topology becomes noticeable only at an extremely high strand concentration above 18 mM. The major tri-GQ and minor tetra-GQ are considered to be mutually related, and their reversible interconversion pathways are proposed accordingly. The sequence d(GTTAGG) could be regarded as either a reading frame shifted single repeat of human telomeric DNA or a 1.5 repeat of Bombyx mori telomeric DNA. Overall, our findings provide new insight into GQs and expect more functional applications.
Collapse
Affiliation(s)
- Haitao Jing
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China.,University of Science and Technology of China, Hefei 230026, China
| | - Wenqiang Fu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China.,University of Science and Technology of China, Hefei 230026, China
| | - Wenxuan Hu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China.,University of Science and Technology of China, Hefei 230026, China
| | - Suping Xu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Xiaojuan Xu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China.,University of Science and Technology of China, Hefei 230026, China
| | - Miao He
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China.,University of Science and Technology of China, Hefei 230026, China
| | - Yangzhong Liu
- University of Science and Technology of China, Hefei 230026, China
| | - Na Zhang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.,Key Laboratory of Anhui Province for High Field Magnetic Resonance Imaging, Hefei 230031, China.,High Magnetic Field Laboratory of Anhui Province, Hefei 230031, China
| |
Collapse
|
37
|
Volek M, Kolesnikova S, Svehlova K, Srb P, Sgallová R, Streckerová T, Redondo JA, Veverka V, Curtis EA. Overlapping but distinct: a new model for G-quadruplex biochemical specificity. Nucleic Acids Res 2021; 49:1816-1827. [PMID: 33544841 PMCID: PMC7913677 DOI: 10.1093/nar/gkab037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 01/09/2021] [Accepted: 01/18/2021] [Indexed: 11/29/2022] Open
Abstract
G-quadruplexes are noncanonical nucleic acid structures formed by stacked guanine tetrads. They are capable of a range of functions and thought to play widespread biological roles. This diversity raises an important question: what determines the biochemical specificity of G-quadruplex structures? The answer is particularly important from the perspective of biological regulation because genomes can contain hundreds of thousands of G-quadruplexes with a range of functions. Here we analyze the specificity of each sequence in a 496-member library of variants of a reference G-quadruplex with respect to five functions. Our analysis shows that the sequence requirements of G-quadruplexes with these functions are different from one another, with some mutations altering biochemical specificity by orders of magnitude. Mutations in tetrads have larger effects than mutations in loops, and changes in specificity are correlated with changes in multimeric state. To complement our biochemical data we determined the solution structure of a monomeric G-quadruplex from the library. The stacked and accessible tetrads rationalize why monomers tend to promote a model peroxidase reaction and generate fluorescence. Our experiments support a model in which the sequence requirements of G-quadruplexes with different functions are overlapping but distinct. This has implications for biological regulation, bioinformatics, and drug design.
Collapse
Affiliation(s)
- Martin Volek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic.,Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague 128 44, Czech Republic
| | - Sofia Kolesnikova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic.,Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 166 28, Czech Republic
| | - Katerina Svehlova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic.,Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague 128 44, Czech Republic
| | - Pavel Srb
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| | - Ráchel Sgallová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic.,Department of Low-Temperature Physics, Faculty of Mathematics and Physics, Charles University in Prague, Prague 180 00, Czech Republic
| | - Tereza Streckerová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic.,Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 166 28, Czech Republic
| | - Juan A Redondo
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague 128 44, Czech Republic
| | - Edward A Curtis
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| |
Collapse
|
38
|
Yan C, Zhang Q, Gao H, Zheng X, Yang T, Zheng G, Zhou X, Shao Y. Concurrent formation of H- and J-aggregates of dyes with chiralities individually determined by G-quadruplex handedness. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119270. [PMID: 33310273 DOI: 10.1016/j.saa.2020.119270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/06/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
DNA templated dye assemblies pave an easy way to regulate the optical properties of molecular aggregates. G-quadruplexes (G4s) provide versatile DNA platforms for the dye assemblies since their foldings can be easily tuned by cation ions and sequences. In this work, we found that the G4 handedness can be used to control the aggregate chirality of a dye of 3,3'-diethylthiacarbocyanine (DiSC2(3)). The left-handed and right-handed G4s can template the concurrent formation of the J- and H-aggregates of DiSC2(3) with emergence of the featured absorption spectra. However, the chiral J-aggregate of DiSC2(3) can be formed only on the left-handed G4s, while the chiral H-aggregate is otherwise grown only on the right-handed G4s, as confirmed by the induced circular dichroism (ICD) spectra with the characteristic splitting bands. Additionally, these G4s even at tens of nM level are efficient to produce these chiral aggregates, demonstrating the high sensitivity of G4s in creating these optically active dye assemblies. The possible growth sites of the aggregates are proposed by the sequence length-dependent assemblies. Our work will provide a new way to control the chiral assemblies of dye aggregates via the G4 handedness.
Collapse
Affiliation(s)
- Chenxiao Yan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Qingqing Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Heng Gao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Xiong Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Tong Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Guoxiang Zheng
- Undergraduate Teaching Department, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Xiaoshun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China.
| |
Collapse
|
39
|
Ghosh A, Largy E, Gabelica V. DNA G-quadruplexes for native mass spectrometry in potassium: a database of validated structures in electrospray-compatible conditions. Nucleic Acids Res 2021; 49:2333-2345. [PMID: 33555347 PMCID: PMC7913678 DOI: 10.1093/nar/gkab039] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/22/2020] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
G-quadruplex DNA structures have become attractive drug targets, and native mass spectrometry can provide detailed characterization of drug binding stoichiometry and affinity, potentially at high throughput. However, the G-quadruplex DNA polymorphism poses problems for interpreting ligand screening assays. In order to establish standardized MS-based screening assays, we studied 28 sequences with documented NMR structures in (usually ∼100 mM) potassium, and report here their circular dichroism (CD), melting temperature (Tm), NMR spectra and electrospray mass spectra in 1 mM KCl/100 mM trimethylammonium acetate. Based on these results, we make a short-list of sequences that adopt the same structure in the MS assay as reported by NMR, and provide recommendations on using them for MS-based assays. We also built an R-based open-source application to build and consult a database, wherein further sequences can be incorporated in the future. The application handles automatically most of the data processing, and allows generating custom figures and reports. The database is included in the g4dbr package (https://github.com/EricLarG4/g4dbr) and can be explored online (https://ericlarg4.github.io/G4_database.html).
Collapse
Affiliation(s)
- Anirban Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33000 Bordeaux, France
| | - Eric Largy
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33000 Bordeaux, France
| | - Valérie Gabelica
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33000 Bordeaux, France
| |
Collapse
|
40
|
Stadlbauer P, Islam B, Otyepka M, Chen J, Monchaud D, Zhou J, Mergny JL, Šponer J. Insights into G-Quadruplex-Hemin Dynamics Using Atomistic Simulations: Implications for Reactivity and Folding. J Chem Theory Comput 2021; 17:1883-1899. [PMID: 33533244 DOI: 10.1021/acs.jctc.0c01176] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Guanine quadruplex nucleic acids (G4s) are involved in key biological processes such as replication or transcription. Beyond their biological relevance, G4s find applications as biotechnological tools since they readily bind hemin and enhance its peroxidase activity, creating a G4-DNAzyme. The biocatalytic properties of G4-DNAzymes have been thoroughly studied and used for biosensing purposes. Despite hundreds of applications and massive experimental efforts, the atomistic details of the reaction mechanism remain unclear. To help select between the different hypotheses currently under investigation, we use extended explicit-solvent molecular dynamics (MD) simulations to scrutinize the G4/hemin interaction. We find that besides the dominant conformation in which hemin is stacked atop the external G-quartets, hemin can also transiently bind to the loops and be brought to the external G-quartets through diverse delivery mechanisms. The simulations do not support the catalytic mechanism relying on a wobbling guanine. Similarly, the catalytic role of the iron-bound water molecule is not in line with our results; however, given the simulation limitations, this observation should be considered with some caution. The simulations rather suggest tentative mechanisms in which the external G-quartet itself could be responsible for the unique H2O2-promoted biocatalytic properties of the G4/hemin complexes. Once stacked atop a terminal G-quartet, hemin rotates about its vertical axis while readily sampling shifted geometries where the iron transiently contacts oxygen atoms of the adjacent G-quartet. This dynamics is not apparent from the ensemble-averaged structure. We also visualize transient interactions between the stacked hemin and the G4 loops. Finally, we investigated interactions between hemin and on-pathway folding intermediates of the parallel-stranded G4 fold. The simulations suggest that hemin drives the folding of parallel-stranded G4s from slip-stranded intermediates, acting as a G4 chaperone. Limitations of the MD technique are briefly discussed.
Collapse
Affiliation(s)
- Petr Stadlbauer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Barira Islam
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Michal Otyepka
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Křížkovského 8, 779 00 Olomouc, Czech Republic
| | - Jielin Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - David Monchaud
- Institut de Chimie Moléculaire (ICMUB), CNRS UMR6302, UBFC, Dijon 21078, France
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jean-Louis Mergny
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China.,Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
41
|
Lin LY, McCarthy S, Powell BM, Manurung Y, Xiang IM, Dean WL, Chaires B, Yatsunyk LA. Biophysical and X-ray structural studies of the (GGGTT)3GGG G-quadruplex in complex with N-methyl mesoporphyrin IX. PLoS One 2020; 15:e0241513. [PMID: 33206666 PMCID: PMC7673559 DOI: 10.1371/journal.pone.0241513] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/15/2020] [Indexed: 01/21/2023] Open
Abstract
The G-quadruplex (GQ) is a well-studied non-canonical DNA structure formed by G-rich sequences found at telomeres and gene promoters. Biological studies suggest that GQs may play roles in regulating gene expression, DNA replication, and DNA repair. Small molecule ligands were shown to alter GQ structure and stability and thereby serve as novel therapies, particularly against cancer. In this work, we investigate the interaction of a G-rich sequence, 5'-GGGTTGGGTTGGGTTGGG-3' (T1), with a water-soluble porphyrin, N-methyl mesoporphyrin IX (NMM) via biophysical and X-ray crystallographic studies. UV-vis and fluorescence titrations, as well as a Job plot, revealed a 1:1 binding stoichiometry with an impressively tight binding constant of 30-50 μM-1 and ΔG298 of -10.3 kcal/mol. Eight extended variants of T1 (named T2 -T9) were fully characterized and T7 was identified as a suitable candidate for crystallographic studies. We solved the crystal structures of the T1- and T7-NMM complexes at 2.39 and 2.34 Å resolution, respectively. Both complexes form a 5'-5' dimer of parallel GQs capped by NMM at the 3' G-quartet, supporting the 1:1 binding stoichiometry. Our work provides invaluable details about GQ-ligand binding interactions and informs the design of novel anticancer drugs that selectively recognize specific GQs and modulate their stability for therapeutic purposes.
Collapse
Affiliation(s)
- Linda Yingqi Lin
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Sawyer McCarthy
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Barrett M. Powell
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Yanti Manurung
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Irene M. Xiang
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - William L. Dean
- Structural Biology Program JG Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Brad Chaires
- Structural Biology Program JG Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Liliya A. Yatsunyk
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| |
Collapse
|
42
|
Lenarčič Živković M, Rozman J, Plavec J. Structure of a DNA G-Quadruplex Related to Osteoporosis with a G-A Bulge Forming a Pseudo-loop. Molecules 2020; 25:E4867. [PMID: 33096904 PMCID: PMC7588008 DOI: 10.3390/molecules25204867] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 11/30/2022] Open
Abstract
Bone remodeling is a fine-tuned process principally regulated by a cascade triggered by interaction of receptor activator of NF-κB (RANK) and RANK ligand (RANKL). Excessive activity of the RANKL gene leads to increased bone resorption and can influence the incidence of osteoporosis. Although much has been learned about the intracellular signals activated by RANKL/RANK complex, significantly less is known about the molecular mechanisms of regulation of RANKL expression. Here, we report on the structure of an unprecedented DNA G-quadruplex, well-known secondary structure-mediated gene expression regulator, formed by a G-rich sequence found in the regulatory region of a RANKL gene. Solution-state NMR structural study reveals the formation of a three-layered parallel-type G-quadruplex characterized by an unique features, including a G-A bulge. Although a guanine within a G-tract occupies syn glycosidic conformation, bulge-forming residues arrange in a pseudo-loop conformation to facilitate partial 5/6-ring stacking, typical of G-quadruplex structures with parallel G-tracts orientation. Such distinctive structural features protruding from the core of the structure can represent a novel platform for design of highly specific ligands with anti-osteoporotic function. Additionally, our study suggests that the expression of RANKL gene may be regulated by putative folding of its G-rich region into non-B-DNA structure(s).
Collapse
Affiliation(s)
- Martina Lenarčič Živković
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia;
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Jan Rozman
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia;
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia;
- EN-FIST Centre of Excellence, Trg OF 13, 1000 Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| |
Collapse
|
43
|
Popenda M, Miskiewicz J, Sarzynska J, Zok T, Szachniuk M. Topology-based classification of tetrads and quadruplex structures. Bioinformatics 2020; 36:1129-1134. [PMID: 31588513 PMCID: PMC7031778 DOI: 10.1093/bioinformatics/btz738] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/12/2019] [Accepted: 09/25/2019] [Indexed: 12/02/2022] Open
Abstract
Motivation Quadruplexes attract the attention of researchers from many fields of bio-science. Due to a specific structure, these tertiary motifs are involved in various biological processes. They are also promising therapeutic targets in many strategies of drug development, including anticancer and neurological disease treatment. The uniqueness and diversity of their forms cause that quadruplexes show great potential in novel biological applications. The existing approaches for quadruplex analysis are based on sequence or 3D structure features and address canonical motifs only. Results In our study, we analyzed tetrads and quadruplexes contained in nucleic acid molecules deposited in Protein Data Bank. Focusing on their secondary structure topology, we adjusted its graphical diagram and proposed new dot-bracket and arc representations. We defined the novel classification of these motifs. It can handle both canonical and non-canonical cases. Based on this new taxonomy, we implemented a method that automatically recognizes the types of tetrads and quadruplexes occurring as unimolecular structures. Finally, we conducted a statistical analysis of these motifs found in experimentally determined nucleic acid structures in relation to the new classification. Availability and implementation https://github.com/tzok/eltetrado/ Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Mariusz Popenda
- Department of Structural Bioinformatics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Joanna Miskiewicz
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Poznan 60-965, Poland
| | - Joanna Sarzynska
- Department of Structural Bioinformatics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Tomasz Zok
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Poznan 60-965, Poland.,Poznan Supercomputing and Networking Center, Poznan 61-139, Poland
| | - Marta Szachniuk
- Department of Structural Bioinformatics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland.,Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Poznan 60-965, Poland
| |
Collapse
|
44
|
Tu ATT, Hoshi K, Ikebukuro K, Hanagata N, Yamazaki T. Monomeric G-Quadruplex-Based CpG Oligodeoxynucleotides as Potent Toll-Like Receptor 9 Agonists. Biomacromolecules 2020; 21:3644-3657. [PMID: 32857497 DOI: 10.1021/acs.biomac.0c00679] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synthetic oligodeoxynucleotides (ODNs) containing unmethylated cytosine-phosphate-guanine (CpG) motifs trigger the immune response by stimulating endosomal Toll-like receptor (TLR) 9. Natural linear ODNs are susceptible to nuclease degradation, thereby limiting their clinical applications. Here, we designed monomeric G-quadruplex-based CpG ODNs (G4 CpG ODNs) containing CpG motifs in the central loop region of the G4 structure. The monomeric G4 CpG ODNs were more stable in serum than the linear ODNs. The monomeric G4 CpG ODNs containing two or three CpG motifs induced the production of immunostimulatory cytokines interleukin (IL)-6, IL-12, and interferon (IFN)-β in mouse macrophage-like RAW264 cells. We also showed that the number of CpG motifs and the number of nucleotides between the CpG motif and G-tracts define the efficacy of the G4 CpG ODNs in activating TLR9. Incubating human peripheral blood mononuclear cells with G4 CpG ODNs promoted IL-6 and IFN-γ production, confirming their stimulatory effects on human immune cells. Mice given intraperitoneal injections of G4 CpG ODNs produced higher plasma IL-6 compared with injections of linear ODNs. These findings provide further understanding of the parameters governing the immunostimulatory activity of G4 CpG ODNs, thereby providing insights into the rational design of highly potent G4 CpG ODNs for vaccine adjuvants.
Collapse
Affiliation(s)
- Anh Thi Tram Tu
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0808, Japan.,Nanomedicine Group, Research Center for Functional Materials (RCFM), National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Kazuaki Hoshi
- Nanomedicine Group, Research Center for Functional Materials (RCFM), National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei 184-8588, Japan
| | - Nobutaka Hanagata
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0808, Japan.,Nanotechnology Innovation Station, National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Tomohiko Yamazaki
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0808, Japan.,Nanomedicine Group, Research Center for Functional Materials (RCFM), National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047, Japan
| |
Collapse
|
45
|
Frelih T, Wang B, Plavec J, Šket P. Pre-folded structures govern folding pathways of human telomeric G-quadruplexes. Nucleic Acids Res 2020; 48:2189-2197. [PMID: 31950178 PMCID: PMC7038944 DOI: 10.1093/nar/gkz1235] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/12/2019] [Accepted: 12/31/2019] [Indexed: 01/12/2023] Open
Abstract
Understanding the mechanism by which biological macromolecules fold into their functional native conformations represents a problem of fundamental interest. DNA oligonucleotides derived from human telomeric repeat d[TAGGG(TTAGGG)3] and d[TAGGG(TTAGGG)3TT] fold into G-quadruplexes through diverse steps. Varying the pH and temperature by the use of nuclear magnetic resonance and other methods enabled detection of pre-folded structures that exist in solution before completely formed G-quadruplexes upon addition of cations. Pre-folded structures are in general hard to detect, however their knowledge is crucial to set up folding pathways into final structure since they are believed to be a starting point. Unexpectedly well-defined pre-folded structures composed of base triples for both oligonucleotides were detected at certain pH and temperature. These kinds of structures were up to now only hypothesized as intermediates in the folding process. All revealed pre-folded structures irrespective of the pH and temperature exhibited one common structural feature that could govern folding process.
Collapse
Affiliation(s)
- Tjaša Frelih
- Slovenian NMR Center, National Institute of Chemistry, Ljubljana 1000, Slovenia
| | - Baifan Wang
- Slovenian NMR Center, National Institute of Chemistry, Ljubljana 1000, Slovenia
| | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, Ljubljana 1000, Slovenia
- EN-FIST Center of Excellence, Ljubljana 1000, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana 1000, Slovenia
- Correspondence may also be addressed to Janez Plavec. Tel: +386 1 476 0353; Fax: +386 1 476 0300;
| | - Primož Šket
- Slovenian NMR Center, National Institute of Chemistry, Ljubljana 1000, Slovenia
- To whom correspondence should be addressed. Tel: +386 1 476 0223; Fax: +386 1 476 0300;
| |
Collapse
|
46
|
Perenon M, Bonnet H, Lavergne T, Dejeu J, Defrancq E. Surface plasmon resonance study of the interaction of N-methyl mesoporphyrin IX with G-quadruplex DNA. Phys Chem Chem Phys 2020; 22:4158-4164. [PMID: 32039427 DOI: 10.1039/c9cp06321h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Surface plasmon resonance (SPR) was used to investigate the interaction between N-methyl mesoporphyrin IX (NMM) and different G-quadruplex (G4) topologies. The study was associated with circular dichroism analysis (CD) to assess the topology of the G4s when they interacted with NMM. We demonstrate the high selectivity of NMM for the parallel G4 structure with a dissociation constant at least ten times lower than those of other G4 topologies. We also confirm the ability of NMM to shift the G4 conformation from both the hybrid and antiparallel topologies toward the parallel structure.
Collapse
Affiliation(s)
- M Perenon
- Univ. Grenoble Alpes, CNRS, DCM UMR-5250, F-38000 Grenoble, France.
| | - H Bonnet
- Univ. Grenoble Alpes, CNRS, DCM UMR-5250, F-38000 Grenoble, France.
| | - T Lavergne
- Univ. Grenoble Alpes, CNRS, DCM UMR-5250, F-38000 Grenoble, France.
| | - J Dejeu
- Univ. Grenoble Alpes, CNRS, DCM UMR-5250, F-38000 Grenoble, France.
| | - E Defrancq
- Univ. Grenoble Alpes, CNRS, DCM UMR-5250, F-38000 Grenoble, France.
| |
Collapse
|
47
|
Molecular dynamics simulations of G-quadruplexes: The basic principles and their application to folding and ligand binding. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2020. [DOI: 10.1016/bs.armc.2020.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
48
|
Stadlbauer P, Kührová P, Vicherek L, Banáš P, Otyepka M, Trantírek L, Šponer J. Parallel G-triplexes and G-hairpins as potential transitory ensembles in the folding of parallel-stranded DNA G-Quadruplexes. Nucleic Acids Res 2019; 47:7276-7293. [PMID: 31318975 PMCID: PMC6698752 DOI: 10.1093/nar/gkz610] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/26/2019] [Accepted: 07/03/2019] [Indexed: 12/29/2022] Open
Abstract
Guanine quadruplexes (G4s) are non-canonical nucleic acids structures common in important genomic regions. Parallel-stranded G4 folds are the most abundant, but their folding mechanism is not fully understood. Recent research highlighted that G4 DNA molecules fold via kinetic partitioning mechanism dominated by competition amongst diverse long-living G4 folds. The role of other intermediate species such as parallel G-triplexes and G-hairpins in the folding process has been a matter of debate. Here, we use standard and enhanced-sampling molecular dynamics simulations (total length of ∼0.9 ms) to study these potential folding intermediates. We suggest that parallel G-triplex per se is rather an unstable species that is in local equilibrium with a broad ensemble of triplex-like structures. The equilibrium is shifted to well-structured G-triplex by stacked aromatic ligand and to a lesser extent by flanking duplexes or nucleotides. Next, we study propeller loop formation in GGGAGGGAGGG, GGGAGGG and GGGTTAGGG sequences. We identify multiple folding pathways from different unfolded and misfolded structures leading towards an ensemble of intermediates called cross-like structures (cross-hairpins), thus providing atomistic level of description of the single-molecule folding events. In summary, the parallel G-triplex is a possible, but not mandatory short-living (transitory) intermediate in the folding of parallel-stranded G4.
Collapse
Affiliation(s)
- Petr Stadlbauer
- Institute of Biophysics of the Czech Academy of Sciences, v. v. i., Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Šlechtitelů 27, 771 46 Olomouc, Czech Republic
| | - Petra Kührová
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Šlechtitelů 27, 771 46 Olomouc, Czech Republic.,Department of Physical Chemistry, Faculty of Science, Palacky University, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Lukáš Vicherek
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Pavel Banáš
- Institute of Biophysics of the Czech Academy of Sciences, v. v. i., Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Šlechtitelů 27, 771 46 Olomouc, Czech Republic.,Department of Physical Chemistry, Faculty of Science, Palacky University, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Michal Otyepka
- Institute of Biophysics of the Czech Academy of Sciences, v. v. i., Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Šlechtitelů 27, 771 46 Olomouc, Czech Republic.,Department of Physical Chemistry, Faculty of Science, Palacky University, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Lukáš Trantírek
- Institute of Biophysics of the Czech Academy of Sciences, v. v. i., Královopolská 135, 612 65 Brno, Czech Republic.,Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, v. v. i., Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Šlechtitelů 27, 771 46 Olomouc, Czech Republic.,Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| |
Collapse
|
49
|
Geng Y, Liu C, Zhou B, Cai Q, Miao H, Shi X, Xu N, You Y, Fung CP, Din RU, Zhu G. The crystal structure of an antiparallel chair-type G-quadruplex formed by Bromo-substituted human telomeric DNA. Nucleic Acids Res 2019; 47:5395-5404. [PMID: 30957851 PMCID: PMC6547763 DOI: 10.1093/nar/gkz221] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/18/2019] [Accepted: 04/04/2019] [Indexed: 12/28/2022] Open
Abstract
Human telomeric guanine-rich DNA, which could adopt different G-quadruplex structures, plays important roles in protecting the cell from recombination and degradation. Although many of these structures were determined, the chair-type G-quadruplex structure remains elusive. Here, we present a crystal structure of the G-quadruplex composed of the human telomeric sequence d[GGGTTAGG8GTTAGGGTTAGG20G] with two dG to 8Br-dG substitutions at positions 8 and 20 with syn conformation in the K+ solution. It forms a novel three-layer chair-type G-quadruplex with two linking trinucleotide loops. Particularly, T5 and T17 are coplanar with two water molecules stacking on the G-tetrad layer in a sandwich-like mode through a coordinating K+ ion and an A6•A18 base pair. While a twisted Hoogsteen A12•T10 base pair caps on the top of G-tetrad core. The three linking TTA loops are edgewise and each DNA strand has two antiparallel adjacent strands. Our findings contribute to a deeper understanding and highlight the unique roles of loop and water molecule in the folding of the G-quadruplex.
Collapse
Affiliation(s)
- Yanyan Geng
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Changdong Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Bo Zhou
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.,Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Qixu Cai
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Haitao Miao
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Xiao Shi
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Naining Xu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yingying You
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Chun Po Fung
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Rahman Ud Din
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Guang Zhu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.,State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
50
|
Kotar A, Rigo R, Sissi C, Plavec J. Two-quartet kit* G-quadruplex is formed via double-stranded pre-folded structure. Nucleic Acids Res 2019; 47:2641-2653. [PMID: 30590801 PMCID: PMC6411839 DOI: 10.1093/nar/gky1269] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/16/2018] [Accepted: 12/10/2018] [Indexed: 01/13/2023] Open
Abstract
In the promoter of c-KIT proto-oncogene, whose deregulation has been implicated in many cancers, three G-rich regions (kit1, kit* and kit2) are able to fold into G-quadruplexes. While kit1 and kit2 have been studied in depth, little information is available on kit* folding behavior despite its key role in regulation of c-KIT transcription. Notably, kit* contains consensus sites for SP1 and AP2 transcription factors. Herein, a set of complementary spectroscopic and biophysical methods reveals that kit*, d[GGCGAGGAGGGGCGTGGCCGGC], adopts a chair type antiparallel G-quadruplex with two G-quartets at physiological relevant concentrations of KCl. Heterogeneous ensemble of structures is observed in the presence of Na+ and NH4+ ions, which however stabilize pre-folded structure. In the presence of K+ ions stacking interactions of adenine and thymine residues on the top G-quartet contribute to structural stability together with a G10•C18 base pair and a fold-back motif of the five residues at the 3′-terminal under the bottom G-quartet. The 3′-tail enables formation of a bimolecular pre-folded structure that drives folding of kit* into a single G-quadruplex. Intriguingly, kinetics of kit* G-quadruplex formation matches timescale of transcriptional processes and might demonstrate interplay of kinetic and thermodynamic factors for understanding regulation of c-KIT proto-oncogene expression.
Collapse
Affiliation(s)
- Anita Kotar
- Slovenian NMR Center, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Riccardo Rigo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Claudia Sissi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, 1000 Ljubljana, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia.,EN-FIST Center of Excellence, 1000 Ljubljana, Slovenia
| |
Collapse
|