1
|
Trifonova D, Curin M, Riabova K, Karsonova A, Keller W, Grönlund H, Käck U, Konradsen JR, van Hage M, Karaulov A, Valenta R. Allergenic Activity of Individual Cat Allergen Molecules. Int J Mol Sci 2023; 24:16729. [PMID: 38069052 PMCID: PMC10706119 DOI: 10.3390/ijms242316729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
More than 10% of the world's population suffers from an immunoglobulin E (IgE)-mediated allergy to cats which is accompanied mainly by respiratory symptoms such as rhinitis and asthma. Several cat allergen molecules have been identified, but their allergenic activity has not been investigated in depth. Purified cat allergen molecules (Fel d 1, Fel d 2, Fel d 3, Fel d 4, Fel d 6, Fel d 7 and Fel d 8) were characterized via mass spectrometry and circular dichroism spectroscopy regarding their molecular mass and fold, respectively. Cat-allergen-specific IgE levels were quantified via ImmunoCAP measurements in IgE-sensitized subjects with (n = 37) and without (n = 20) respiratory symptoms related to cat exposure. The allergenic activity of the cat allergens was investigated by loading patients' IgE onto rat basophils expressing the human FcεRI receptor and studying the ability of different allergen concentrations to induce β-hexosaminidase release. Purified and folded cat allergens with correct masses were obtained. Cat-allergen-specific IgE levels were much higher in patients with a respiratory allergy than in patients without a respiratory allergy. Fel d 1, Fel d 2, Fel d 4 and Fel d 7 bound the highest levels of specific IgE and already-induced basophil degranulation at hundred-fold-lower concentrations than the other allergens. Fel d 1, Fel d 4 and Fel d 7 were recognized by more than 65% of patients with a respiratory allergy, whereas Fel d 2 was recognized by only 30%. Therefore, in addition to the major cat allergen Fel d 1, Fel d 4 and Fel d 7 should also be considered to be important allergens for the diagnosis and specific immunotherapy of cat allergy.
Collapse
Affiliation(s)
- Daria Trifonova
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (D.T.)
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, 119991 Moscow, Russia (A.K.)
| | - Mirela Curin
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (D.T.)
| | - Ksenja Riabova
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, 119991 Moscow, Russia (A.K.)
| | - Antonina Karsonova
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, 119991 Moscow, Russia (A.K.)
| | - Walter Keller
- Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, 8010 Graz, Austria;
| | - Hans Grönlund
- Therapeutic Immune Design Unit, Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Ulrika Käck
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, 11883 Stockholm, Sweden;
| | - Jon R. Konradsen
- Pediatric Allergy and Pulmonology, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, 17164 Stockholm, Sweden
- Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Marianne van Hage
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, 17177 Stockholm, Sweden;
| | - Alexander Karaulov
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, 119991 Moscow, Russia (A.K.)
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (D.T.)
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, 119991 Moscow, Russia (A.K.)
- Karl Landsteiner University for Healthcare Sciences, 3500 Krems, Austria
| |
Collapse
|
2
|
Rainyte J, Zvirblis G, Zaveckas M, Kucinskaite-Kodze I, Silimavicius L, Petraityte-Burneikiene R. Immunological comparison of recombinant shrimp allergen Pen m 4, produced in Pichia pastoris and Escherichia coli. J Biotechnol 2023; 369:1-13. [PMID: 37164269 DOI: 10.1016/j.jbiotec.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
Shellfish are a leading cause of allergies worldwide, affecting about one-tenth of the general population. The sarcoplasmic calcium-binding protein, also known as allergen Pen m 4, is an important factor in shrimp allergies. Our objective was to assess the most effective techniques for producing a recombinant Pen m 4 protein as a potential tool for diagnosing shrimp allergies. In this study, for the first time, we produced a functional recombinant Pen m 4 protein in a eukaryotic system, Pichia pastoris, and analyzed it against Escherichia coli-produced equivalents in enzyme-linked immunosorbent and reverse-phase protein microarray assays. A dual tag system based on the maltose-binding protein was successfully used to increase the yield of Pen m 4 by 1.3 to 2.3-fold in both bacteria and yeast, respectively. Immunological characterization showed that N-glycosylation is neither crucial for the folding of Pen m 4 nor its recognition by specific IgE. However, the Ca2+-depletion assay indicated a dependence on calcium ion presence in blood samples. Results demonstrate how a comparative analysis can elucidate essential allergen manufacturing points. In conclusion, E. coli-produced Pen m 4 protein fused with the maltose-binding protein should be the preferred option for further studies in Penaeus monodon allergy diagnostics.
Collapse
Affiliation(s)
- Juta Rainyte
- Vilnius University Life Sciences Center Institute of Biotechnology, Sauletekio av. 7, 10257 Vilnius, Lithuania.
| | - Gintautas Zvirblis
- Vilnius University Life Sciences Center Institute of Biotechnology, Sauletekio av. 7, 10257 Vilnius, Lithuania.
| | - Mindaugas Zaveckas
- Vilnius University Life Sciences Center Institute of Biotechnology, Sauletekio av. 7, 10257 Vilnius, Lithuania.
| | - Indre Kucinskaite-Kodze
- Vilnius University Life Sciences Center Institute of Biotechnology, Sauletekio av. 7, 10257 Vilnius, Lithuania.
| | - Laimis Silimavicius
- Vilnius University Life Sciences Center Institute of Biotechnology, Sauletekio av. 7, 10257 Vilnius, Lithuania; Imunodiagnostika Ltd., Moletu str. 16, 14260 Vilnius, Lithuania.
| | - Rasa Petraityte-Burneikiene
- Vilnius University Life Sciences Center Institute of Biotechnology, Sauletekio av. 7, 10257 Vilnius, Lithuania.
| |
Collapse
|
3
|
Dramburg S, Hilger C, Santos AF, de Las Vecillas L, Aalberse RC, Acevedo N, Aglas L, Altmann F, Arruda KL, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilo MB, Blank S, Bosshard PP, Breiteneder H, Brough HA, Bublin M, Campbell D, Caraballo L, Caubet JC, Celi G, Chapman MD, Chruszcz M, Custovic A, Czolk R, Davies J, Douladiris N, Eberlein B, Ebisawa M, Ehlers A, Eigenmann P, Gadermaier G, Giovannini M, Gomez F, Grohman R, Guillet C, Hafner C, Hamilton RG, Hauser M, Hawranek T, Hoffmann HJ, Holzhauser T, Iizuka T, Jacquet A, Jakob T, Janssen-Weets B, Jappe U, Jutel M, Kalic T, Kamath S, Kespohl S, Kleine-Tebbe J, Knol E, Knulst A, Konradsen JR, Korošec P, Kuehn A, Lack G, Le TM, Lopata A, Luengo O, Mäkelä M, Marra AM, Mills C, Morisset M, Muraro A, Nowak-Wegrzyn A, Nugraha R, Ollert M, Palosuo K, Pastorello EA, Patil SU, Platts-Mills T, Pomés A, Poncet P, Potapova E, Poulsen LK, Radauer C, Radulovic S, Raulf M, Rougé P, Sastre J, Sato S, Scala E, Schmid JM, Schmid-Grendelmeier P, Schrama D, Sénéchal H, Traidl-Hoffmann C, Valverde-Monge M, van Hage M, van Ree R, Verhoeckx K, Vieths S, Wickman M, Zakzuk J, Matricardi PM, et alDramburg S, Hilger C, Santos AF, de Las Vecillas L, Aalberse RC, Acevedo N, Aglas L, Altmann F, Arruda KL, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilo MB, Blank S, Bosshard PP, Breiteneder H, Brough HA, Bublin M, Campbell D, Caraballo L, Caubet JC, Celi G, Chapman MD, Chruszcz M, Custovic A, Czolk R, Davies J, Douladiris N, Eberlein B, Ebisawa M, Ehlers A, Eigenmann P, Gadermaier G, Giovannini M, Gomez F, Grohman R, Guillet C, Hafner C, Hamilton RG, Hauser M, Hawranek T, Hoffmann HJ, Holzhauser T, Iizuka T, Jacquet A, Jakob T, Janssen-Weets B, Jappe U, Jutel M, Kalic T, Kamath S, Kespohl S, Kleine-Tebbe J, Knol E, Knulst A, Konradsen JR, Korošec P, Kuehn A, Lack G, Le TM, Lopata A, Luengo O, Mäkelä M, Marra AM, Mills C, Morisset M, Muraro A, Nowak-Wegrzyn A, Nugraha R, Ollert M, Palosuo K, Pastorello EA, Patil SU, Platts-Mills T, Pomés A, Poncet P, Potapova E, Poulsen LK, Radauer C, Radulovic S, Raulf M, Rougé P, Sastre J, Sato S, Scala E, Schmid JM, Schmid-Grendelmeier P, Schrama D, Sénéchal H, Traidl-Hoffmann C, Valverde-Monge M, van Hage M, van Ree R, Verhoeckx K, Vieths S, Wickman M, Zakzuk J, Matricardi PM, Hoffmann-Sommergruber K. EAACI Molecular Allergology User's Guide 2.0. Pediatr Allergy Immunol 2023; 34 Suppl 28:e13854. [PMID: 37186333 DOI: 10.1111/pai.13854] [Show More Authors] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 05/17/2023]
Abstract
Since the discovery of immunoglobulin E (IgE) as a mediator of allergic diseases in 1967, our knowledge about the immunological mechanisms of IgE-mediated allergies has remarkably increased. In addition to understanding the immune response and clinical symptoms, allergy diagnosis and management depend strongly on the precise identification of the elicitors of the IgE-mediated allergic reaction. In the past four decades, innovations in bioscience and technology have facilitated the identification and production of well-defined, highly pure molecules for component-resolved diagnosis (CRD), allowing a personalized diagnosis and management of the allergic disease for individual patients. The first edition of the "EAACI Molecular Allergology User's Guide" (MAUG) in 2016 rapidly became a key reference for clinicians, scientists, and interested readers with a background in allergology, immunology, biology, and medicine. Nevertheless, the field of molecular allergology is moving fast, and after 6 years, a new EAACI Taskforce was established to provide an updated document. The Molecular Allergology User's Guide 2.0 summarizes state-of-the-art information on allergen molecules, their clinical relevance, and their application in diagnostic algorithms for clinical practice. It is designed for both, clinicians and scientists, guiding health care professionals through the overwhelming list of different allergen molecules available for testing. Further, it provides diagnostic algorithms on the clinical relevance of allergenic molecules and gives an overview of their biology, the basic mechanisms of test formats, and the application of tests to measure allergen exposure.
Collapse
Affiliation(s)
- Stephanie Dramburg
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | | | - Rob C Aalberse
- Sanquin Research, Dept Immunopathology, University of Amsterdam, Amsterdam, The Netherlands
- Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Lorenz Aglas
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Karla L Arruda
- Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Sao Paulo, Brasil, Brazil
| | - Riccardo Asero
- Ambulatorio di Allergologia, Clinica San Carlo, Paderno Dugnano, Italy
| | - Barbara Ballmer-Weber
- Klinik für Dermatologie und Allergologie, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Domingo Barber
- Institute of Applied Molecular Medicine Nemesio Diez (IMMAND), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Kirsten Beyer
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Maria Beatrice Bilo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
- Allergy Unit Department of Internal Medicine, University Hospital Ospedali Riuniti di Ancona, Torrette, Italy
| | - Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Philipp P Bosshard
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Heimo Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Helen A Brough
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Merima Bublin
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Dianne Campbell
- Department of Allergy and Immunology, Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
- Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Jean Christoph Caubet
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Giorgio Celi
- Centro DH Allergologia e Immunologia Clinica ASST- MANTOVA (MN), Mantova, Italy
| | | | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Rebecca Czolk
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Janet Davies
- Queensland University of Technology, Centre for Immunology and Infection Control, School of Biomedical Sciences, Herston, Queensland, Australia
- Metro North Hospital and Health Service, Emergency Operations Centre, Herston, Queensland, Australia
| | - Nikolaos Douladiris
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Bernadette Eberlein
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Motohiro Ebisawa
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, Japan
| | - Anna Ehlers
- Chemical Biology and Drug Discovery, Utrecht University, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Philippe Eigenmann
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Gabriele Gadermaier
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Mattia Giovannini
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Francisca Gomez
- Allergy Unit IBIMA-Hospital Regional Universitario de Malaga, Malaga, Spain
- Spanish Network for Allergy research RETIC ARADyAL, Malaga, Spain
| | - Rebecca Grohman
- NYU Langone Health, Department of Internal Medicine, New York, New York, USA
| | - Carole Guillet
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Christine Hafner
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Robert G Hamilton
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Hauser
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Thomas Hawranek
- Department of Dermatology and Allergology, Paracelsus Private Medical University, Salzburg, Austria
| | - Hans Jürgen Hoffmann
- Institute for Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | | | - Tomona Iizuka
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Alain Jacquet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thilo Jakob
- Department of Dermatology and Allergology, University Medical Center, Justus Liebig University Gießen, Gießen, Germany
| | - Bente Janssen-Weets
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Priority Research Area Asthma and Allergy, Research Center Borstel, Borstel, Germany
- Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research, Germany
- Interdisciplinary Allergy Outpatient Clinic, Dept. of Pneumology, University of Lübeck, Lübeck, Germany
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
| | - Tanja Kalic
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Sandip Kamath
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Sabine Kespohl
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Jörg Kleine-Tebbe
- Allergy & Asthma Center Westend, Outpatient Clinic and Clinical Research Center, Berlin, Germany
| | - Edward Knol
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - André Knulst
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jon R Konradsen
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Korošec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Gideon Lack
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Thuy-My Le
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Andreas Lopata
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Olga Luengo
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
- Allergy Section, Internal Medicine Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mika Mäkelä
- Division of Allergy, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Pediatric Department, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | | | - Clare Mills
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | | | - Antonella Muraro
- Food Allergy Referral Centre, Department of Woman and Child Health, Padua University Hospital, Padua, Italy
| | - Anna Nowak-Wegrzyn
- Division of Pediatric Allergy and Immunology, NYU Grossman School of Medicine, Hassenfeld Children's Hospital, New York, New York, USA
- Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Roni Nugraha
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Department of Aquatic Product Technology, Faculty of Fisheries and Marine Science, IPB University, Bogor, Indonesia
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Kati Palosuo
- Department of Allergology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Sarita Ulhas Patil
- Division of Rheumatology, Allergy and Immunology, Departments of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Allergy and Immunology, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Thomas Platts-Mills
- Division of Allergy and Clinical Immunology, University of Virginia, Charlottesville, Virginia, USA
| | | | - Pascal Poncet
- Institut Pasteur, Immunology Department, Paris, France
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Ekaterina Potapova
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Lars K Poulsen
- Allergy Clinic, Department of Dermatology and Allergy, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
| | - Christian Radauer
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Suzana Radulovic
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Monika Raulf
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Pierre Rougé
- UMR 152 PharmaDev, IRD, Université Paul Sabatier, Faculté de Pharmacie, Toulouse, France
| | - Joaquin Sastre
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Sakura Sato
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Enrico Scala
- Clinical and Laboratory Molecular Allergy Unit - IDI- IRCCS, Fondazione L M Monti Rome, Rome, Italy
| | - Johannes M Schmid
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Schmid-Grendelmeier
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
| | - Denise Schrama
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Hélène Sénéchal
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Claudia Traidl-Hoffmann
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Marcela Valverde-Monge
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ronald van Ree
- Department of Experimental Immunology and Department of Otorhinolaryngology, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kitty Verhoeckx
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Stefan Vieths
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Magnus Wickman
- Department of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Paolo M Matricardi
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
4
|
Linhart B, Freidl R, Elisyutina O, Khaitov M, Karaulov A, Valenta R. Molecular Approaches for Diagnosis, Therapy and Prevention of Cow´s Milk Allergy. Nutrients 2019; 11:E1492. [PMID: 31261965 PMCID: PMC6683018 DOI: 10.3390/nu11071492] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
Cow´s milk is one of the most important and basic nutrients introduced early in life in our diet but can induce IgE-associated allergy. IgE-associated allergy to cow´s milk can cause severe allergic manifestations in the gut, skin and even in the respiratory tract and may lead to life-threatening anaphylactic shock due to the stability of certain cow´s milk allergens. Here, we provide an overview about the allergen molecules in cow´s milk and the advantages of the molecular diagnosis of IgE sensitization to cow´s milk by serology. In addition, we review current strategies for prevention and treatment of cow´s milk allergy and discuss how they could be improved in the future by innovative molecular approaches that are based on defined recombinant allergens, recombinant hypoallergenic allergen derivatives and synthetic peptides.
Collapse
Affiliation(s)
- Birgit Linhart
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria.
| | - Raphaela Freidl
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Olga Elisyutina
- NRC Institute of Immunology FMBA of Russia, 115478, Moscow, Russia
| | - Musa Khaitov
- NRC Institute of Immunology FMBA of Russia, 115478, Moscow, Russia
| | - Alexander Karaulov
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Rudolf Valenta
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria
- NRC Institute of Immunology FMBA of Russia, 115478, Moscow, Russia
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| |
Collapse
|
5
|
Douladiris N, Garib V, Focke-Tejkl M, Valenta R, Papadopoulos NG, Linhart B. Detection of genuine grass pollen sensitization in children by skin testing with a recombinant grass pollen hybrid. Pediatr Allergy Immunol 2019; 30:59-65. [PMID: 30317676 PMCID: PMC6378406 DOI: 10.1111/pai.12991] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/10/2018] [Accepted: 10/05/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND Skin testing represents a commonly used first diagnostic method in clinical practice, but allergen extracts may vary in composition and often contain cross-reactive allergens and therefore do not always allow the precise identification of the sensitizing allergen source. Our aim was to investigate the suitability of a single recombinant hybrid molecule, consisting of the four major timothy grass pollen allergens (Phl p 1, Phl p 2, Phl p 5, and Phl p 6) for in vivo diagnosis of genuine grass pollen allergy in children suffering from pollinosis. METHODS Sixty-four children aged from 6 to 17 years with a positive skin reaction and/or specific IgE to grass pollen extract and respiratory symptoms of pollinosis as well as 9 control children with allergy to other allergen sources were studied. SPT was performed with the recombinant hybrid, the four recombinant timothy grass pollen allergens, and grass pollen extract. Specific IgE reactivity to 176 micro-arrayed allergen molecules was determined using ImmunoCAP ISAC technology. IgE reactivity to the hybrid was detected by non-denaturing RAST-based dot blot assay. RESULTS Genuine grass pollen sensitization was confirmed in 94% of the children with positive SPT to grass pollen extract by SPT and IgE reactivity to the hybrid. The four hybrid-negative children showed IgE reactivity to cross-reactive allergens such as Phl p 4, Phl p 11, and Phl p 12 and had also sensitizations to pollen allergens from unrelated plants. CONCLUSIONS The recombinant hybrid molecule represents a useful tool for in vivo diagnosis of genuine grass pollen sensitization.
Collapse
Affiliation(s)
- Nikolaos Douladiris
- Allergy Department, 2nd Pediatric Clinic, University of Athens, Athens, Greece
| | - Victoria Garib
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Margit Focke-Tejkl
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,NRC Institute of Immunology FMBA of Russia, Moscow, Russia.,Laboratory for Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Nikolaos G Papadopoulos
- Allergy Department, 2nd Pediatric Clinic, University of Athens, Athens, Greece.,Division of Infection, Immunity & Respiratory Medicine, University of Manchester, Manchester, UK
| | - Birgit Linhart
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Pfaar O, Lou H, Zhang Y, Klimek L, Zhang L. Recent developments and highlights in allergen immunotherapy. Allergy 2018; 73:2274-2289. [PMID: 30372537 DOI: 10.1111/all.13652] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 12/30/2022]
Abstract
Allergen immunotherapy (AIT) is the only disease-modifying treatment option for patients with IgE-mediated inhalant allergies. Though used in clinical practice for more than 100 years, most innovations in AIT efficacy and safety have been developed in the last two decades. This expert review aimed to highlight the recent progress in AIT for both application routes, the sublingual (SLIT) and subcutaneous (SCIT) forms. As such, it covers recent aspects regarding efficacy and safety in clinical trials and real-life data and outlines new concepts in consensus and position papers as well as in guidelines for AIT. Potential clinical and nonclinical biomarkers are discussed. This review also focuses on potential future perspectives in AIT, such as alternative application routes, immune-modulating adjuvants, and recombinant vaccines. In conclusion, this state of the art review provides a comprehensive overview of AIT and highlights unmet needs for the future.
Collapse
Affiliation(s)
- Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery; Section of Rhinology and Allergy; University Hospital Marburg; Philipps-Universität Marburg; Marburg Germany
| | - Hongfei Lou
- Department of Otolaryngology; Head and Neck Surgery; Beijing TongRen Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Nasal Diseases; Beijing Institute of Otolaryngology; Beijing China
- Department of Allergy; Beijing TongRen Hospital; Capital Medical University; Beijing China
| | - Yuan Zhang
- Department of Otolaryngology; Head and Neck Surgery; Beijing TongRen Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Nasal Diseases; Beijing Institute of Otolaryngology; Beijing China
- Department of Allergy; Beijing TongRen Hospital; Capital Medical University; Beijing China
| | - Ludger Klimek
- Center for Rhinology and Allergology; Wiesbaden Germany
| | - Luo Zhang
- Department of Otolaryngology; Head and Neck Surgery; Beijing TongRen Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Nasal Diseases; Beijing Institute of Otolaryngology; Beijing China
- Department of Allergy; Beijing TongRen Hospital; Capital Medical University; Beijing China
| |
Collapse
|
7
|
Popescu FD, Vieru M. Precision medicine allergy immunoassay methods for assessing immunoglobulin E sensitization to aeroallergen molecules. World J Methodol 2018; 8:17-36. [PMID: 30519536 PMCID: PMC6275558 DOI: 10.5662/wjm.v8.i3.17] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 08/17/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023] Open
Abstract
Molecular-based allergy diagnosis for the in vitro assessment of a patient immunoglobulin E (IgE) sensitization profile at the molecular level uses allergen molecules (also referred to as allergen components), which may be well-defined, highly purified, natural allergen components or recombinant allergens. Modern immunoassay methods used for the detection of specific IgE against aeroallergen components are either singleplex (such as the fluorescence enzyme immunoassay with capsulated cellulose polymer solid-phase coupled allergens, the enzyme-enhanced chemiluminescence immunoassay and the reversed enzyme allergosorbent test, with liquid-phase allergens), multiparameter (such as the line blot immunoassay for defined partial allergen diagnostics with allergen components coating membrane strips) or multiplex (such as the microarray-based immunoassay on immuno solid-phase allergen chip, and the two new multiplex nanotechnology-based immunoassays: the patient-friendly allergen nano-bead array, and the macroarray nanotechnology-based immunoassay used as a molecular allergy explorer). The precision medicine diagnostic work-up may be organized as an integrated “U-shape” approach, with a “top-down” approach (from symptoms to molecules) and a “bottom-up” approach (from molecules to clinical implications), as needed in selected patients. The comprehensive and accurate IgE sensitization molecular profiling, with identification of the relevant allergens, is indicated within the framework of a detailed patient’s clinical history to distinguish genuine IgE sensitization from sensitization due to cross-reactivity (especially in polysensitized patients), to assess unclear symptoms and unsatisfactory response to treatment, to reveal unexpected sensitizations, and to improve assessment of severity and risk aspects in some patients. Practical approaches, such as anamnesis molecular thinking, laboratory molecular thinking and postmolecular anamnesis, are sometimes applied. The component-resolved diagnosis of the specific IgE repertoire has a key impact on optimal decisions making for prophylactic and specific immunotherapeutic strategies tailored for the individual patient.
Collapse
Affiliation(s)
- Florin-Dan Popescu
- Department of Allergology, “Carol Davila” University of Medicine and Pharmacy, Bucharest 022441, Romania
- Department of Allergology and Clinical Immunology, “Nicolae Malaxa” Clinical Hospital, Bucharest 022441, Romania
| | - Mariana Vieru
- Department of Allergology, “Carol Davila” University of Medicine and Pharmacy, Bucharest 022441, Romania
- Department of Allergology and Clinical Immunology, “Nicolae Malaxa” Clinical Hospital, Bucharest 022441, Romania
| |
Collapse
|
8
|
Valenta R, Karaulov A, Niederberger V, Zhernov Y, Elisyutina O, Campana R, Focke-Tejkl M, Curin M, Namazova-Baranova L, Wang JY, Pawankar R, Khaitov M. Allergen Extracts for In Vivo Diagnosis and Treatment of Allergy: Is There a Future? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2018; 6:1845-1855.e2. [PMID: 30297269 PMCID: PMC6390933 DOI: 10.1016/j.jaip.2018.08.032] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/27/2018] [Accepted: 08/31/2018] [Indexed: 02/07/2023]
Abstract
Today, in vivo allergy diagnosis and allergen-specific immunotherapy (AIT) are still based on allergen extracts obtained from natural allergen sources. Several studies analyzing the composition of natural allergen extracts have shown severe problems regarding their quality such as the presence of undefined nonallergenic materials, contaminants as well as high variabilities regarding contents and biological activity of individual allergens. Despite the increasing availability of sophisticated analytical technologies, these problems cannot be overcome because they are inherent to allergen sources and methods of extract production. For in vitro allergy diagnosis problems related to natural allergen extracts have been largely overcome by the implementation of recombinant allergen molecules that are defined regarding purity and biological activity. However, no such advances have been made for allergen preparations to be used in vivo for diagnosis and therapy. No clinical studies have been performed for allergen extracts available for in vivo allergy diagnosis that document safety, sensitivity, and specificity of the products. Only for very few therapeutic allergen extracts state-of-the-art clinical studies have been performed that provide evidence for safety and efficacy. In this article, we discuss problems related to the inconsistent quality of products based on natural allergen extracts and share our observations that most of the products available for in vivo diagnosis and AIT do not meet the international standards for medicinal products. We argue that a replacement of natural allergen extracts by defined recombinantly produced allergen molecules and/or mixtures thereof may be the only way to guarantee the supply of clinicians with state-of-the-art medicinal products for in vivo diagnosis and treatment of allergic patients in the future.
Collapse
Affiliation(s)
- Rudolf Valenta
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria; NRC Institute of Immunology FMBA of Russia, Moscow, Russia; Laboratory for Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia.
| | - Alexander Karaulov
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Verena Niederberger
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Yury Zhernov
- NRC Institute of Immunology FMBA of Russia, Moscow, Russia
| | | | - Raffaela Campana
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Margarete Focke-Tejkl
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Mirela Curin
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Leyla Namazova-Baranova
- Department of Pediatrics, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Jiu-Yao Wang
- Center for Allergy and Immunology Research (ACIR), College of Medicine, National Cheng Kung University (Hospital), Tainan, Taiwan
| | - Ruby Pawankar
- Division of Allergy, Department of Pediatrics, Nippon Medical School, Tokyo, Japan
| | - Musa Khaitov
- NRC Institute of Immunology FMBA of Russia, Moscow, Russia
| |
Collapse
|
9
|
Valenta R, Karaulov A, Niederberger V, Gattinger P, van Hage M, Flicker S, Linhart B, Campana R, Focke-Tejkl M, Curin M, Eckl-Dorna J, Lupinek C, Resch-Marat Y, Vrtala S, Mittermann I, Garib V, Khaitov M, Valent P, Pickl WF. Molecular Aspects of Allergens and Allergy. Adv Immunol 2018; 138:195-256. [PMID: 29731005 DOI: 10.1016/bs.ai.2018.03.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Immunoglobulin E (IgE)-associated allergy is the most common immune disorder. More than 30% of the population suffer from symptoms of allergy which are often severe, disabling, and life threatening such as asthma and anaphylaxis. Population-based birth cohort studies show that up to 60% of the world population exhibit IgE sensitization to allergens, of which most are protein antigens. Thirty years ago the first allergen-encoding cDNAs have been isolated. In the meantime, the structures of most of the allergens relevant for disease in humans have been solved. Here we provide an update regarding what has been learned through the use of defined allergen molecules (i.e., molecular allergology) and about mechanisms of allergic disease in humans. We focus on new insights gained regarding the process of sensitization to allergens, allergen-specific secondary immune responses, and mechanisms underlying allergic inflammation and discuss open questions. We then show how molecular forms of diagnosis and specific immunotherapy are currently revolutionizing diagnosis and treatment of allergic patients and how allergen-specific approaches may be used for the preventive eradication of allergy.
Collapse
Affiliation(s)
- Rudolf Valenta
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria; NRC Institute of Immunology FMBA of Russia, Moscow, Russia.
| | - Alexander Karaulov
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Verena Niederberger
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Pia Gattinger
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Marianne van Hage
- Department of Medicine Solna, Immunology and Allergy Unit, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Sabine Flicker
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Birgit Linhart
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Raffaela Campana
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Margarete Focke-Tejkl
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Mirela Curin
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Julia Eckl-Dorna
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Christian Lupinek
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Yvonne Resch-Marat
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Susanne Vrtala
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Irene Mittermann
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Victoria Garib
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria; International Network of Universities for Molecular Allergology and Immunology, Vienna, Austria
| | - Musa Khaitov
- NRC Institute of Immunology FMBA of Russia, Moscow, Russia
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | - Winfried F Pickl
- Institute of Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW During the past few decades, modified allergens have been developed for use in allergen-specific immunotherapy (AIT) with the aim to improve efficacy and reduce adverse effects. This review aims to provide an overview of the different types of modified allergens, their mechanism of action and their potential for improving AIT. RECENT FINDINGS In-depth research in the field of allergen modifications as well as the advance of recombinant DNA technology have paved the way for improved diagnosis and research on human allergic diseases. A wide range of structurally modified allergens has been generated including allergen peptides, chemically altered allergoids, adjuvant-coupled allergens, and nanoparticle-based allergy vaccines. These modified allergens show promise for the development of AIT regimens with improved safety and long-term efficacy. Certain modifications ensure reduced IgE reactivity and retained T cell reactivity, which facilities induction of immune tolerance to the allergen. To date, multiple clinical trials have been performed using modified allergens. Promising results were obtained for the modified cat, grass and birch pollen, and house dust mite allergens. The use of modified allergens holds promise for improving AIT efficacy and safety. There is however a need for larger clinical studies to reliably assess the added benefit for the patient of using modified allergens for AIT.
Collapse
|
11
|
Zimmer J, Döring S, Strecker D, Trösemeier JH, Hanschmann KM, Führer F, Vieths S, Kaul S. Minor allergen patterns in birch pollen allergen products-A question of pollen? Clin Exp Allergy 2017; 47:1079-1091. [PMID: 28493312 DOI: 10.1111/cea.12955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/29/2017] [Accepted: 04/19/2017] [Indexed: 11/27/2022]
Abstract
BACKGROUND Contrary to the scientific differentiation between major and minor allergens, the regulatory framework controlling allergen products in the EU distinguishes relevant and non-relevant allergens. Given the lack of knowledge on their clinical relevance, minor allergens are usually not controlled by allergen product specifications. Especially, in birch pollen (BP) allergen products, minor allergens are commonly disregarded. OBJECTIVES To quantify three minor allergens in BP allergen products from different manufacturers and to assess the influence of the utilized BP on minor allergen patterns. METHODS Apart from common quality parameters such as Bet v 1 content, Bet v 4, Bet v 6 and Bet v 7 were quantified in 70 BP allergen product batches from six manufacturers, using ELISA systems developed in-house. Batch-to-batch variability was checked for agreement with a variability margin of 50%-200% from mean of the given batches for individual allergen content. Subsequently, minor allergen patterns were generated via multidimensional scaling and related to information on the pollen lots used in production of the respective product batches. RESULTS Like the already established Bet v 4 ELISA, the ELISA systems for quantification of Bet v 6 and Bet v 7 were successfully validated. Differences in minor allergen content between products and batch-to-batch consistency were observed. Correlations between minor and major allergen content were low to moderate. About 20% of batches exceeded the variability margin for at least one minor allergen. Interestingly, these fluctuations could not in all cases be linked to the use of certain BP lots. CONCLUSIONS AND CLINICAL RELEVANCE The impact of the observed minor allergen variability on safety and efficacy of BP allergen products can currently not be estimated. As the described differences could only in few cases be related to the used pollen lots, it is evident that additional factors influence minor allergens in BP allergen products.
Collapse
Affiliation(s)
- J Zimmer
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - S Döring
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - D Strecker
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - J H Trösemeier
- Division of Microbiology, Paul-Ehrlich-Institut, Langen, Germany
| | - K M Hanschmann
- Division of Microbiology, Paul-Ehrlich-Institut, Langen, Germany
| | - F Führer
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - S Vieths
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - S Kaul
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
12
|
Matricardi PM, Kleine-Tebbe J, Hoffmann HJ, Valenta R, Hilger C, Hofmaier S, Aalberse RC, Agache I, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilò MB, Blank S, Bohle B, Bosshard PP, Breiteneder H, Brough HA, Caraballo L, Caubet JC, Crameri R, Davies JM, Douladiris N, Ebisawa M, EIgenmann PA, Fernandez-Rivas M, Ferreira F, Gadermaier G, Glatz M, Hamilton RG, Hawranek T, Hellings P, Hoffmann-Sommergruber K, Jakob T, Jappe U, Jutel M, Kamath SD, Knol EF, Korosec P, Kuehn A, Lack G, Lopata AL, Mäkelä M, Morisset M, Niederberger V, Nowak-Węgrzyn AH, Papadopoulos NG, Pastorello EA, Pauli G, Platts-Mills T, Posa D, Poulsen LK, Raulf M, Sastre J, Scala E, Schmid JM, Schmid-Grendelmeier P, van Hage M, van Ree R, Vieths S, Weber R, Wickman M, Muraro A, Ollert M. EAACI Molecular Allergology User's Guide. Pediatr Allergy Immunol 2016; 27 Suppl 23:1-250. [PMID: 27288833 DOI: 10.1111/pai.12563] [Citation(s) in RCA: 535] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The availability of allergen molecules ('components') from several protein families has advanced our understanding of immunoglobulin E (IgE)-mediated responses and enabled 'component-resolved diagnosis' (CRD). The European Academy of Allergy and Clinical Immunology (EAACI) Molecular Allergology User's Guide (MAUG) provides comprehensive information on important allergens and describes the diagnostic options using CRD. Part A of the EAACI MAUG introduces allergen molecules, families, composition of extracts, databases, and diagnostic IgE, skin, and basophil tests. Singleplex and multiplex IgE assays with components improve both sensitivity for low-abundance allergens and analytical specificity; IgE to individual allergens can yield information on clinical risks and distinguish cross-reactivity from true primary sensitization. Part B discusses the clinical and molecular aspects of IgE-mediated allergies to foods (including nuts, seeds, legumes, fruits, vegetables, cereal grains, milk, egg, meat, fish, and shellfish), inhalants (pollen, mold spores, mites, and animal dander), and Hymenoptera venom. Diagnostic algorithms and short case histories provide useful information for the clinical workup of allergic individuals targeted for CRD. Part C covers protein families containing ubiquitous, highly cross-reactive panallergens from plant (lipid transfer proteins, polcalcins, PR-10, profilins) and animal sources (lipocalins, parvalbumins, serum albumins, tropomyosins) and explains their diagnostic and clinical utility. Part D lists 100 important allergen molecules. In conclusion, IgE-mediated reactions and allergic diseases, including allergic rhinoconjunctivitis, asthma, food reactions, and insect sting reactions, are discussed from a novel molecular perspective. The EAACI MAUG documents the rapid progression of molecular allergology from basic research to its integration into clinical practice, a quantum leap in the management of allergic patients.
Collapse
Affiliation(s)
- P M Matricardi
- Paediatric Pneumology and Immunology, Charitè Medical University, Berlin, Germany
| | - J Kleine-Tebbe
- Allergy & Asthma Center Westend, Outpatient Clinic Ackermann, Hanf, & Kleine-Tebbe, Berlin, Germany
| | - H J Hoffmann
- Department of Respiratory Diseases and Allergy, Institute of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - R Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - C Hilger
- Department of Infection & Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - S Hofmaier
- Paediatric Pneumology and Immunology, Charitè Medical University, Berlin, Germany
| | - R C Aalberse
- Sanquin Research, Department of Immunopathology, Amsterdam, The Netherlands
- Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - I Agache
- Department of Allergy and Clinical Immunology, Faculty of Medicine, Transylvania University of Brasov, Brasov, Romania
| | - R Asero
- Ambulatorio di Allergologia, Clinica San Carlo, Paderno Dugnano, Italy
| | - B Ballmer-Weber
- Allergy Unit, Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
| | - D Barber
- IMMA-School of Medicine, University CEU San Pablo, Madrid, Spain
| | - K Beyer
- Paediatric Pneumology and Immunology, Charitè Medical University, Berlin, Germany
| | - T Biedermann
- Department of Dermatology and Allergology, Technical University Munich, Munich, Germany
| | - M B Bilò
- Allergy Unit, Department of Internal Medicine, University Hospital Ospedali Riuniti di Ancona, Ancona, Italy
| | - S Blank
- Center of Allergy and Environment (ZAUM), Helmholtz Center Munich, Technical University of Munich, Munich, Germany
| | - B Bohle
- Division of Experimental Allergology, Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Vienna, Austria
| | - P P Bosshard
- Allergy Unit, Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
| | - H Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - H A Brough
- Paediatric Allergy, Department of Asthma, Allergy and Respiratory Science, King's College London, Guys' Hospital, London, UK
| | - L Caraballo
- Institute for Immunological Research, The University of Cartagena, Cartagena de Indias, Colombia
| | - J C Caubet
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - R Crameri
- Swiss Institute of Allergy and Asthma Research, University of Zürich, Davos, Switzerland
| | - J M Davies
- School of Biomedical Sciences, Institute of Biomedical Innovation, Queensland University of Technology, Brisbane, Qld, Australia
| | - N Douladiris
- Allergy Unit, 2nd Paediatric Clinic, National & Kapodistrian University, Athens, Greece
| | - M Ebisawa
- Department of Allergy, Clinical Research Center for Allergology and Rheumatology, Sagamihara National Hospital, Kanagawa, Japan
| | - P A EIgenmann
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - M Fernandez-Rivas
- Allergy Department, Hospital Clinico San Carlos IdISSC, Madrid, Spain
| | - F Ferreira
- Division of Allergy and Immunology, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - G Gadermaier
- Division of Allergy and Immunology, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - M Glatz
- Allergy Unit, Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
| | - R G Hamilton
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - T Hawranek
- Department of Dermatology, Paracelsus Private Medical University, Salzburg, Austria
| | - P Hellings
- Department of Otorhinolaryngology, Academic Medical Center (AMC), Amsterdam, The Netherlands
- Department of Otorhinolaryngology, University Hospitals Leuven, Leuven, Belgium
| | - K Hoffmann-Sommergruber
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - T Jakob
- Department of Dermatology and Allergology, University Medical Center Giessen and Marburg, Justus Liebig University Giessen, Giessen, Germany
| | - U Jappe
- Division of Clinical and Molecular Allergology, Research Centre Borstel, Airway Research Centre North (ARCN), Member of the German Centre for Lung Research (DZL), Borstel, Germany
- Interdisciplinary Allergy Division, Department of Pneumology, University of Lübeck, Lübeck, Germany
| | - M Jutel
- Department of Clinical Immunology, 'ALL-MED' Medical Research Institute, Wrocław Medical University, Wrocław, Poland
| | - S D Kamath
- Molecular Allergy Research Laboratory, Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville City, Qld, Australia
| | - E F Knol
- Departments of Immunology and Dermatology/Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - P Korosec
- University Clinic of Respiratory and Allergic Diseases, Golnik, Slovenia
| | - A Kuehn
- Department of Infection & Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - G Lack
- King's College London, MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
- Division of Asthma, Allergy and Lung Biology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - A L Lopata
- Department of Clinical Immunology, 'ALL-MED' Medical Research Institute, Wrocław Medical University, Wrocław, Poland
| | - M Mäkelä
- Skin and Allergy Hospital, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - M Morisset
- National Service of Immuno-Allergology, Centre Hospitalier Luxembourg (CHL), Luxembourg, UK
| | - V Niederberger
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - A H Nowak-Węgrzyn
- Pediatric Allergy and Immunology, Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - N G Papadopoulos
- Centre for Paediatrics and Child Health, Institute of Human Development, University of Manchester, Manchester, UK
| | - E A Pastorello
- Unit of Allergology and Immunology, Niguarda Ca' Granda Hospital, Milan, Italy
| | - G Pauli
- Service de Pneumologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - T Platts-Mills
- Department of Microbiology & Immunology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - D Posa
- Paediatric Pneumology and Immunology, Charitè Medical University, Berlin, Germany
| | - L K Poulsen
- Allergy Clinic, Copenhagen University Hospital, Copenhagen, Denmark
| | - M Raulf
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Ruhr-University Bochum (IPA), Bochum, Germany
| | - J Sastre
- Allergy Division, Fundación Jimenez Díaz, Madrid, Spain
| | - E Scala
- Experimental Allergy Unit, IDI-IRCCS, Rome, Italy
| | - J M Schmid
- Department of Respiratory Diseases and Allergy, Institute of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - P Schmid-Grendelmeier
- Allergy Unit, Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
| | - M van Hage
- Department of Medicine Solna, Clinical Immunology and Allergy Unit, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - R van Ree
- Departments of Experimental Immunology and of Otorhinolaryngology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - S Vieths
- Department of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - R Weber
- School of Medicine, University of Colorado, Denver, CO, USA
- Department of Medicine, National Jewish Health Service, Denver, CO, USA
| | - M Wickman
- Sachs' Children's Hospital, Karolinska Institutet, Stockholm, Sweden
| | - A Muraro
- The Referral Centre for Food Allergy Diagnosis and Treatment Veneto Region, Department of Mother and Child Health, University of Padua, Padua, Italy
| | - M Ollert
- Department of Infection & Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
13
|
Peng Z, Xu WW, Sham Y, Lam H, Sun D, Cheng L, Rasic NF, Guan Q, James AA, Simons FER. Mosquito salivary allergen Aed a 3: cloning, comprehensive molecular analysis, and clinical evaluation. Allergy 2016; 71:621-8. [PMID: 26608594 DOI: 10.1111/all.12812] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2015] [Indexed: 11/26/2022]
Abstract
BACKGROUND Allergic reactions to mosquito bites are an increasing clinical concern. Due to the lack of availability of mosquito salivary allergens, they are underdiagnosed. Here, we reported a newly cloned mosquito Aedes (Ae.) aegypti salivary allergen. METHODS A cDNA encoding a 30-kDa Ae. aegypti salivary protein, designated Aed a 3, was isolated from an expression library. The full-length cDNA was cloned into a baculovirus expression vector, and recombinant Aed a 3 (rAed a 3) was expressed, purified, and characterized. Skin prick tests with purified rAed a 3 and Ae. aegypti bite tests were performed in 43 volunteers. Serum rAed a 3-specific IgE levels were measured in 28 volunteers. RESULTS The primary nucleotide sequence, deduced amino acid sequence, and IgE-binding sites of Aed a 3 were identified. rAed a 3-selected antibodies recognized a 30-kDa Ae. aegypti saliva protein. rAed a 3 bound IgE in mosquito-allergic volunteers and the binding could be inhibited by the addition of natural mosquito extract dose dependently. Immediate skin test reactions to rAed a 3 correlated significantly with mosquito bite-induced reactions. Of the bite test-positive volunteers, 32% had a positive rAed a 3 skin test and 46% had specific IgE. No bite test-negative volunteers reacted to rAed a 3 in either the skin tests or the IgE assays, confirming the specificity of the assay. CONCLUSIONS Aed a 3 that corresponds to the Aegyptin protein is a major mosquito salivary allergen. Its recombinant form has biological activity and is suitable for use in skin tests and specific IgE assays in mosquito-allergic individuals.
Collapse
Affiliation(s)
- Z. Peng
- Department of Pediatrics and Child Health; University of Manitoba; Winnipeg MB Canada
- Department of Immunology; University of Manitoba; Winnipeg MB Canada
| | - W. W. Xu
- Department of Pediatrics and Child Health; University of Manitoba; Winnipeg MB Canada
- Department of Biochemistry and Medical Genetics; University of Manitoba; Winnipeg MB Canada
| | - Y. Sham
- Center for Drug Design; Academic Health Center; University of Minnesota; Minneapolis MN USA
| | - H. Lam
- Department of Pediatrics and Child Health; University of Manitoba; Winnipeg MB Canada
| | - D. Sun
- Department of Pediatrics and Child Health; University of Manitoba; Winnipeg MB Canada
| | - L. Cheng
- Department of Pediatrics and Child Health; University of Manitoba; Winnipeg MB Canada
| | - N. F. Rasic
- Department of Pediatrics and Child Health; University of Manitoba; Winnipeg MB Canada
| | - Q. Guan
- Department of Pediatrics and Child Health; University of Manitoba; Winnipeg MB Canada
- Department of Immunology; University of Manitoba; Winnipeg MB Canada
| | - A. A. James
- Departments of Microbiology & Molecular Genetics and Molecular Biology & Biochemistry; University of California; Irvine CA USA
| | - F. E. R. Simons
- Department of Pediatrics and Child Health; University of Manitoba; Winnipeg MB Canada
- Department of Immunology; University of Manitoba; Winnipeg MB Canada
| |
Collapse
|
14
|
Abstract
Pollen allergens are one of the main causes of type I allergies affecting up to 30% of the population in industrialized countries. Climatic changes affect the duration and intensity of pollen seasons and may together with pollution contribute to increased incidences of respiratory allergy and asthma. Allergenic grasses, trees, and weeds often present similar habitats and flowering periods compromising clinical anamnesis. Molecule-based approaches enable distinction between genuine sensitization and clinically mostly irrelevant IgE cross-reactivity due to, e. g., panallergens or carbohydrate determinants. In addition, sensitivity as well as specificity can be improved and lead to identification of the primary sensitizing source which is particularly beneficial regarding polysensitized patients. This review gives an overview on relevant pollen allergens and their usefulness in daily practice. Appropriate allergy diagnosis is directly influencing decisions for therapeutic interventions, and thus, reliable biomarkers are pivotal when considering allergen immunotherapy in the context of precision medicine.
Collapse
Affiliation(s)
- Isabel Pablos
- />Department of Molecular Biology, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Sabrina Wildner
- />Christian Doppler Laboratory for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Claudia Asam
- />Department of Molecular Biology, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Michael Wallner
- />Department of Molecular Biology, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Gabriele Gadermaier
- />Department of Molecular Biology, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
- />Christian Doppler Laboratory for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| |
Collapse
|
15
|
Olivier CE, Argentão DGP, Dos Santos Lima RP, da Silva MD, Dos Santos RAPG, Fabbri N. Assessment of allergen-induced respiratory hyperresponsiveness before the prescription of a specific immunotherapy. ALLERGY & RHINOLOGY 2015; 6:89-93. [PMID: 26302728 PMCID: PMC4541640 DOI: 10.2500/ar.2015.6.0122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Asymptomatic sensitization is a frequent condition that must be considered before the indication of allergic-specific immunotherapy. OBJECTIVE The aim of this study was to appreciate and correlate the local and spirometric changes elicited by the allergen-specific nasal provocation test (NPT) to define practical and feasible guidelines for the allergist/immunologist to demonstrate specific respiratory hyperresponsiveness before the indication of allergic-specific immunotherapy. METHODS A total of 172 subjects (children and adults) with a diagnosis of allergic rhinitis were submitted to flow-volume spirometry immediately before and after the NPT performed with Dermatophagoides antigens. The differences between the pre- and postspirometric estimated values of peak expiratory flow rate (PEFdif%), forced expiratory volume in 1 second (FEV1dif%), and forced vital capacity (FVCdif%) were correlated with the results of the nasal provocation test symptom score (NPT-SS). RESULTS There were 119 subjects (69%) with NPT-SS > 2. Among these patients who were reactive, the mean NPT-SS was 6.3. The Spearman's correlation between PEFdif% and NPT-SS was r = -0.44 (p = 0.01); the Spearman's correlation between FEV1dif% and NPT-SS was r = -0.22 (p = 0.01), and the Spearman's correlation between FVCdif% and NPT-SS was r = -0.21 (p = 0.04). CONCLUSION The combined utilization of the allergen-specific NPT-SS with the spirometry (or PEF meter) is a safe methodology to evaluate allergen-specific nasal and bronchial hyperresponsiveness (which sometimes acts as a bronchial provocation test) in patients with allergic rhinitis and asthma due to hypersensitivity who are candidates for allergen-specific immunotherapy.
Collapse
|
16
|
|