1
|
Tsubota T, Sakai H, Sezutsu H. Genome Editing of Silkworms. Methods Mol Biol 2023; 2637:359-374. [PMID: 36773160 DOI: 10.1007/978-1-0716-3016-7_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Silkworm is a lepidopteran insect that has been used as a model for a wide variety of biological studies. The microinjection technique is available, and it is possible to cause transgenesis as well as target gene disruption via the genome editing technique. TALEN-mediated knockout is especially effective in this species. We also succeeded in the precise and efficient integration of a donor vector using the precise integration into target chromosome (PITCh) method. Here we describe protocols for ZFN (zinc finger nuclease)-, TALEN (transcription activator-like effector nuclease)-, and CRISPR/Cas9-mediated genome editing as well as the PITCh technique in the silkworm. We consider that all of these techniques can contribute to the further promotion of various biological studies in the silkworm and other insect species.
Collapse
Affiliation(s)
- Takuya Tsubota
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Hiroki Sakai
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Hideki Sezutsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan.
| |
Collapse
|
2
|
Yamada N, Mise Y, Yonemura N, Uchino K, Zabelina V, Sezutsu H, Iizuka T, Tamura T. Abolition of egg diapause by ablation of suboesophageal ganglion in parental females is compatible with genetic engineering methods. JOURNAL OF INSECT PHYSIOLOGY 2022; 142:104438. [PMID: 36049569 DOI: 10.1016/j.jinsphys.2022.104438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/07/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Microinjection of genetic material into non-diapause eggs is required for genetic engineering of silkworms. Besides diapause could be useful for maintaining transgenic lines, a drawback of this technology is that most standard silkworm strains and experimental lines of interest produce diapausing eggs. Several approaches have been developed to abolish diapause but none are very efficient. Here, we investigated the ablation of the suboesophageal ganglion (SG) in female pupae, which is a source of the hormone required to trigger egg diapause, as a mean to abolish diapause. We showed that SG-ablation is a reliable method to produce nondiapause eggs. Additionally, the challenge associated with lower fecundity of females with SG ablation was resolved by injecting pilocarpine into the mated female. We also investigated the suitability of nondiapause eggs laid by SG-ablated females for transgenesis, targeted mutagenesis, and induction of parthenogenetic development. Our results demonstrated SG-ablation to be a useful and simple method for expanding the possibilities associated with genetic engineering in silkworms.
Collapse
Affiliation(s)
- Nobuto Yamada
- Division of Silk-Producing Insect Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8634, Japan.
| | - Yoshiko Mise
- Division of Silk-Producing Insect Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8634, Japan
| | - Naoyuki Yonemura
- Division of Silk-Producing Insect Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8634, Japan
| | - Keiro Uchino
- Division of Silk-Producing Insect Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8634, Japan
| | - Valeriya Zabelina
- Biology Center CAS, Institute of Entomology, Branisovska 31, 370 05 Ceské Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, Branisovska 31, 370 05 Ceské Budejovice, Czech Republic
| | - Hideki Sezutsu
- Division of Silk-Producing Insect Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8634, Japan
| | - Tetsuya Iizuka
- Division of Silk-Producing Insect Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8634, Japan
| | - Toshiki Tamura
- Institute of Sericulture and Silk Science, Inashiki-gun, Ibaraki 300-0324, Japan
| |
Collapse
|
3
|
Homma S, Murata A, Ikegami M, Kobayashi M, Yamazaki M, Ikeda K, Daimon T, Numata H, Mizoguchi A, Shiomi K. Circadian Clock Genes Regulate Temperature-Dependent Diapause Induction in Silkworm Bombyx mori. Front Physiol 2022; 13:863380. [PMID: 35574475 PMCID: PMC9091332 DOI: 10.3389/fphys.2022.863380] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/23/2022] [Indexed: 11/27/2022] Open
Abstract
The bivoltine strain of the domestic silkworm, Bombyx mori, exhibits a facultative diapause phenotype that is determined by maternal environmental conditions during embryonic and larval development. Although a recent study implicated a circadian clock gene period (per) in circadian rhythms and photoperiod-induced diapause, the roles of other core feedback loop genes, including timeless (tim), Clock (Clk), cycle (cyc), and cryptochrome2 (cry2), have to be clarified yet. Therefore, the aim of this study was to elucidate the roles of circadian clock genes in temperature-dependent diapause induction. To achieve this, per, tim, Clk, cyc, and cry2 knockout (KO) mutants were generated, and the percentages of diapause and non-diapause eggs were determined. The results show that per, tim, Clk, cyc, and cry2 regulated temperature-induced diapause by acting upstream of cerebral γ-aminobutyric acid (GABA)ergic and diapause hormone signaling pathways. Moreover, the temporal expression of the clock genes in wild-type (wt) silkworms was significantly different from that of thermosensitive transient receptor potential ankyrin 1 (TRPA1) KO mutants during embryonic development. Overall, the findings of this study provide target genes for regulating temperature-dependent diapause induction in silkworms.
Collapse
Affiliation(s)
- Satoshi Homma
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| | - Akihisa Murata
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| | - Masato Ikegami
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| | - Masakazu Kobayashi
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| | - Maki Yamazaki
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| | - Kento Ikeda
- Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Takaaki Daimon
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | - Akira Mizoguchi
- Division of Liberal Arts and Sciences, Aichi Gakuin University, Nisshin, Japan
| | - Kunihiro Shiomi
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| |
Collapse
|
4
|
Zabelina V, Yonemura N, Uchino K, Iizuka T, Mochida Y, Takemura Y, Klymenko V, Sezutsu H, Sehnal F, Tamura T. Production of cloned transgenic silkworms by breeding non-diapausing parthenogenetic strains. JOURNAL OF INSECT PHYSIOLOGY 2021; 132:104265. [PMID: 34097982 DOI: 10.1016/j.jinsphys.2021.104265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
Clonal transgenic silkworms are useful for the functional analysis of insect genes and for the production of recombinant proteins. Such silkworms have previously been created using an existing ameiotic parthenogenetic strain. However, the process was labor intensive, and the efficiency of producing transgenic silkworms was very low. To overcome this issue, we developed a more convenient and efficient method by breeding non-diapausing parthenogenetic strains. The strains produced non-diapausing eggs only when the embryogenesis of the parent eggs was performed at low temperatures, which could then be used for injecting vector plasmids. This demonstrated that transgenic silkworms could be produced with greater ease and efficiency. To breed the strains, we crossed the existing parthenogenetic strains with bivoltine strains and made F1 and F2 from each cross. Then we selected the silkworms whose eggs have a high ability of parthenogenesis and became non-diapausing. We also demonstrated that the germplasm could be cryopreserved in liquid nitrogen. Thus, this method increases the efficiency and ease of using genetically engineered silkworms to analyze gene function and produce recombinant proteins, potentially impacting various industries.
Collapse
Affiliation(s)
- Valeriya Zabelina
- Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki 305-8634, Japan
| | - Naoyuki Yonemura
- Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki 305-8634, Japan
| | - Keiro Uchino
- Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki 305-8634, Japan
| | - Tetsuya Iizuka
- Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki 305-8634, Japan
| | - Yuji Mochida
- Institute of Sericulture, Iikura 1053, 300-0324 Ami-machi, Ibaraki, Japan
| | - Yoko Takemura
- Institute of Sericulture, Iikura 1053, 300-0324 Ami-machi, Ibaraki, Japan
| | | | - Hideki Sezutsu
- Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki 305-8634, Japan
| | | | - Toshiki Tamura
- Institute of Sericulture, Iikura 1053, 300-0324 Ami-machi, Ibaraki, Japan.
| |
Collapse
|
5
|
Yokoyama T, Saito S, Shimoda M, Kobayashi M, Takasu Y, Sezutsu H, Kato Y, Tominaga M, Mizoguchi A, Shiomi K. Comparisons in temperature and photoperiodic-dependent diapause induction between domestic and wild mulberry silkworms. Sci Rep 2021; 11:8052. [PMID: 33850226 PMCID: PMC8044193 DOI: 10.1038/s41598-021-87590-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/31/2021] [Indexed: 11/26/2022] Open
Abstract
The bivoltine strain of the domestic silkworm, Bombyx mori, has two generations per year. It shows a facultative diapause phenotype determined by environmental conditions, including photoperiod and temperature, and nutrient conditions during embryonic and larval development of the mother. However, it remains unclear how the environmental signals received during development are selectively utilized as cues to determine alternative diapause phenotypes. We performed a comparative analysis between the Kosetsu strain of B. mori and a Japanese population of the wild mulberry silkworm B. mandarina concerning the hierarchical molecular mechanisms in diapause induction. Our results showed that for the Kosetsu, temperature signals during the mother's embryonic development predominantly affected diapause determination through the thermosensitive transient receptor potential ankyrin 1 (TRPA1) and diapause hormone (DH) signaling pathways. However, embryonic diapause in B. mandarina was photoperiod-dependent, although the DH signaling pathway and thermal sensitivity of TRPA1 were conserved within both species. Based on these findings, we hypothesize that TRPA1-activated signals are strongly linked to the signaling pathway participating in diapause induction in Kosetsu to selectively utilize the temperature information as the cue because temperature-dependent induction was replaced by photoperiodic induction in the TRPA1 knockout mutant.
Collapse
Affiliation(s)
- Takeshi Yokoyama
- Department of United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, 183-8509, Japan
| | - Shigeru Saito
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Misato Shimoda
- Gunma Sericultural Technology Center, Maebashi, 371-0852, Japan
| | - Masakazu Kobayashi
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano, 386-8567, Japan
| | - Yoko Takasu
- National Institute of Agrobiological Sciences (NIAS), Tsukuba, 305-8602, Japan
| | - Hideki Sezutsu
- National Institute of Agrobiological Sciences (NIAS), Tsukuba, 305-8602, Japan
| | - Yoshiomi Kato
- International Christian University, Mitaka, 181-8585, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Akira Mizoguchi
- Division of Liberal Arts and Sciences, Aichi Gakuin University, Nisshin, 470-0195, Japan
| | - Kunihiro Shiomi
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano, 386-8567, Japan.
| |
Collapse
|
6
|
Tsuchiya R, Kaneshima A, Kobayashi M, Yamazaki M, Takasu Y, Sezutsu H, Tanaka Y, Mizoguchi A, Shiomi K. Maternal GABAergic and GnRH/corazonin pathway modulates egg diapause phenotype of the silkworm Bombyx mori. Proc Natl Acad Sci U S A 2021; 118:e2020028118. [PMID: 33443213 PMCID: PMC7817158 DOI: 10.1073/pnas.2020028118] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Diapause represents a major developmental switch in insects and is a seasonal adaptation that evolved as a specific subtype of dormancy in most insect species to ensure survival under unfavorable environmental conditions and synchronize populations. However, the hierarchical relationship of the molecular mechanisms involved in the perception of environmental signals to integration in morphological, physiological, behavioral, and reproductive responses remains unclear. In the bivoltine strain of the silkworm Bombyx mori, embryonic diapause is induced transgenerationally as a maternal effect. Progeny diapause is determined by the environmental temperature during embryonic development of the mother. Here, we show that the hierarchical pathway consists of a γ-aminobutyric acid (GABA)ergic and corazonin signaling system modulating progeny diapause induction via diapause hormone release, which may be finely tuned by the temperature-dependent expression of plasma membrane GABA transporter. Furthermore, this signaling pathway possesses similar features to the gonadotropin-releasing hormone (GnRH) signaling system for seasonal reproductive plasticity in vertebrates.
Collapse
Affiliation(s)
- Ryoma Tsuchiya
- Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Aino Kaneshima
- Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Masakazu Kobayashi
- Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Maki Yamazaki
- Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Yoko Takasu
- National Agriculture and Food Research Organization, 305-8634 Tsukuba, Japan
| | - Hideki Sezutsu
- National Agriculture and Food Research Organization, 305-8634 Tsukuba, Japan
| | - Yoshiaki Tanaka
- National Agriculture and Food Research Organization, 305-8634 Tsukuba, Japan
| | - Akira Mizoguchi
- Division of Liberal Arts and Sciences, Aichi Gakuin University, Nisshin 470-0195, Japan
| | - Kunihiro Shiomi
- Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan;
| |
Collapse
|
7
|
Yamamoto K, Higashiura A, Hirowatari A, Yamada N, Tsubota T, Sezutsu H, Nakagawa A. Characterisation of a diazinon-metabolising glutathione S-transferase in the silkworm Bombyx mori by X-ray crystallography and genome editing analysis. Sci Rep 2018; 8:16835. [PMID: 30443011 PMCID: PMC6237972 DOI: 10.1038/s41598-018-35207-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/01/2018] [Indexed: 11/09/2022] Open
Abstract
Previously, we found an unclassified glutathione S-transferase 2 (bmGSTu2) in the silkworm Bombyx mori that conjugates glutathione to 1-chloro-2,4-dinitrobenzene and also metabolises diazinon, an organophosphate insecticide. Here, we provide a structural and genome-editing characterisation of the diazinon-metabolising glutathione S-transferase in B. mori. The structure of bmGSTu2 was determined at 1.68 Å by X-ray crystallography. Mutation of putative amino acid residues in the substrate-binding site showed that Pro13, Tyr107, Ile118, Phe119, and Phe211 are crucial for enzymatic function. bmGSTu2 gene disruption resulted in a decrease in median lethal dose values to an organophosphate insecticide and a decrease in acetylcholine levels in silkworms. Taken together, these results indicate that bmGSTu2 could metabolise an organophosphate insecticide. Thus, this study provides insights into the physiological role of bmGSTu2 in silkworms, detoxification of organophosphate insecticides, and drug targets for the development of a novel insecticide.
Collapse
Affiliation(s)
- Kohji Yamamoto
- Department of Bioscience and Biotechnology, Kyushu University Graduate School, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Akifumi Higashiura
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Aiko Hirowatari
- Department of Bioscience and Biotechnology, Kyushu University Graduate School, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Naotaka Yamada
- Department of Bioscience and Biotechnology, Kyushu University Graduate School, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takuya Tsubota
- Transgenic Silkworm Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Hideki Sezutsu
- Transgenic Silkworm Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Atsushi Nakagawa
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
8
|
Hirayama C, Mase K, Iizuka T, Takasu Y, Okada E, Yamamoto K. Deficiency of a pyrroline-5-carboxylate reductase produces the yellowish green cocoon 'Ryokuken' of the silkworm, Bombyx mori. Heredity (Edinb) 2018; 120:422-436. [PMID: 29472695 DOI: 10.1038/s41437-018-0051-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/27/2017] [Accepted: 12/12/2017] [Indexed: 11/10/2022] Open
Abstract
The silkworm cocoon colour has attracted researchers involved in genetics, physiology and ecology for a long time. 'Ryokuken' cocoons are yellowish green in colour due to unusual flavonoids, prolinylflavonols, while 'Sasamayu' cocoons are light green and contain only simple flavonol glucosides. We found a novel gene associated with the cocoon colour change resulting from a change in flavonoid composition and named it Lg (light green cocoon). In the middle silk glands of the + Lg /+ Lg larvae, 1-pyrroline-5-carboxylic acid (P5C) was found to accumulate due to a decrease in the activity of pyrroline-5-carboxylate reductase (P5CR), an enzyme reducing P5C to proline. Sequence analysis of BmP5CR1, the candidate gene for Lg, revealed a 1.9 kb insertion and a 4 bp deletion within the 1st intron, a 97 bp deletion within the 4th intron, and a > 300 bp insertion within the 3'-UTR, in addition to two amino acid changes on exons 3 and 4 in + Lg /+ Lg compared to Lg/Lg. Decreased expression of BmP5CR1 was observed in all of the investigated tissues, including the middle silk glands in + Lg /+ Lg , which was probably caused by structural changes in the intronic regions of BmP5CR1. Furthermore, a BmP5CR1 knockout strain exhibited a yellowish green cocoon with the formation of prolinylflavonols. These results indicate that the yellowish green cocoon is produced by a BmP5CR1 deficiency. To our knowledge, this is the first report showing that the defect of an enzyme associated with intermediate metabolism promotes the conjugation of phytochemicals derived from foods with endogenously accumulating metabolites in animal tissues.
Collapse
Affiliation(s)
- Chikara Hirayama
- National Agriculture and Food Research Organization, NARO, Tsukuba, Ibaraki, 305-8634, Japan.
| | - Keisuke Mase
- College of Humanities and Sciences, Nihon University, Setagaya-ku, Tokyo, 156-8550, Japan.
| | - Tetsuya Iizuka
- National Agriculture and Food Research Organization, NARO, Tsukuba, Ibaraki, 305-8634, Japan
| | - Yoko Takasu
- National Agriculture and Food Research Organization, NARO, Tsukuba, Ibaraki, 305-8634, Japan
| | - Eiji Okada
- National Agriculture and Food Research Organization, NARO, Tsukuba, Ibaraki, 305-8634, Japan
| | - Kimiko Yamamoto
- National Agriculture and Food Research Organization, NARO, Tsukuba, Ibaraki, 305-8634, Japan
| |
Collapse
|
9
|
Fu Y, Yang Y, Zhang H, Farley G, Wang J, Quarles KA, Weng Z, Zamore PD. The genome of the Hi5 germ cell line from Trichoplusia ni, an agricultural pest and novel model for small RNA biology. eLife 2018; 7:31628. [PMID: 29376823 PMCID: PMC5844692 DOI: 10.7554/elife.31628] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/26/2018] [Indexed: 12/30/2022] Open
Abstract
We report a draft assembly of the genome of Hi5 cells from the lepidopteran insect pest, Trichoplusia ni, assigning 90.6% of bases to one of 28 chromosomes and predicting 14,037 protein-coding genes. Chemoreception and detoxification gene families reveal T. ni-specific gene expansions that may explain its widespread distribution and rapid adaptation to insecticides. Transcriptome and small RNA data from thorax, ovary, testis, and the germline-derived Hi5 cell line show distinct expression profiles for 295 microRNA- and >393 piRNA-producing loci, as well as 39 genes encoding small RNA pathway proteins. Nearly all of the W chromosome is devoted to piRNA production, and T. ni siRNAs are not 2´-O-methylated. To enable use of Hi5 cells as a model system, we have established genome editing and single-cell cloning protocols. The T. ni genome provides insights into pest control and allows Hi5 cells to become a new tool for studying small RNAs ex vivo. A common moth called the cabbage looper is becoming increasingly relevant to the scientific community. Its caterpillars are a serious threat to cabbage, broccoli and cauliflower crops, and they have started to resist the pesticides normally used to control them. Moreover, the insect’s germline cells – the ones that will produce sperm and eggs – are used in laboratories as ‘factories’ to artificially produce proteins of interest. The germline cells also host a group of genetic mechanisms called RNA silencing. One of these processes is known as piRNA, and it protects the genome against ‘jumping genes’. These genetic elements can cause mutations by moving from place to place in the DNA: in germline cells, piRNA suppresses them before the genetic information is transmitted to the next generation. Not all germline cells grow equally well under experimental conditions, or are easy to use to examine piRNA mechanisms in a laboratory. The germline cells from the cabbage looper, on the other hand, have certain characteristics that would make them ideal to study piRNA in insects. However, the genome of the moth had not yet been fully resolved. This hinders research on new ways of controlling the pest, on how to use the germline cells to produce more useful proteins, or on piRNA. Decoding a genome requires several steps. First, the entire genetic information is broken in short sections that can then be deciphered. Next, these segments need to be ‘assembled’ – put together, and in the right order, to reconstitute the entire genome. Certain portions of the genome, which are formed of repeats of the same sections, can be difficult to assemble. Finally, the genome must be annotated: the different regions – such as the genes – need to be identified and labeled. Here, Fu et al. assembled and annotated the genome of the cabbage looper, and in the process developed strategies that could be used for other species with a lot of repeated sequences in their genomes. Having access to the looper’s full genetic information makes it possible to use their germline cells to produce new types of proteins, for example for pharmaceutical purposes. Fu et al. went on to make working with these cells even easier by refining protocols so that modern research techniques, such as the gene-editing technology CRISPR-Cas9, can be used on the looper germline cells. The mapping of the genome also revealed that the genes involved in removing toxins from the insects’ bodies are rapidly evolving, which may explain why the moths readily become resistant to insecticides. This knowledge could help finding new ways of controlling the pest. Finally, the genes involved in RNA silencing were labeled: results show that an entire chromosome is the source of piRNAs. Combined with the new protocols developed by Fu et al., this could make cabbage looper germline cells the default option for any research into the piRNA mechanism. How piRNA works in the moth could inform work on human piRNA, as these processes are highly similar across the animal kingdom.
Collapse
Affiliation(s)
- Yu Fu
- Bioinformatics Program, Boston University, Boston, United States.,Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, United States
| | - Yujing Yang
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, United States
| | - Han Zhang
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, United States
| | - Gwen Farley
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, United States
| | - Junling Wang
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, United States
| | - Kaycee A Quarles
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, United States
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, United States
| | - Phillip D Zamore
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
10
|
Yamamoto DS, Sumitani M, Hatakeyama M, Matsuoka H. Malaria infectivity of xanthurenic acid-deficient anopheline mosquitoes produced by TALEN-mediated targeted mutagenesis. Transgenic Res 2018; 27:51-60. [DOI: 10.1007/s11248-018-0057-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/11/2018] [Indexed: 12/15/2022]
|
11
|
Xu H, O'Brochta DA. Advanced technologies for genetically manipulating the silkworm Bombyx mori, a model Lepidopteran insect. Proc Biol Sci 2016; 282:rspb.2015.0487. [PMID: 26108630 DOI: 10.1098/rspb.2015.0487] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Genetic technologies based on transposon-mediated transgenesis along with several recently developed genome-editing technologies have become the preferred methods of choice for genetically manipulating many organisms. The silkworm, Bombyx mori, is a Lepidopteran insect of great economic importance because of its use in silk production and because it is a valuable model insect that has greatly enhanced our understanding of the biology of insects, including many agricultural pests. In the past 10 years, great advances have been achieved in the development of genetic technologies in B. mori, including transposon-based technologies that rely on piggyBac-mediated transgenesis and genome-editing technologies that rely on protein- or RNA-guided modification of chromosomes. The successful development and application of these technologies has not only facilitated a better understanding of B. mori and its use as a silk production system, but also provided valuable experiences that have contributed to the development of similar technologies in non-model insects. This review summarizes the technologies currently available for use in B. mori, their application to the study of gene function and their use in genetically modifying B. mori for biotechnology applications. The challenges, solutions and future prospects associated with the development and application of genetic technologies in B. mori are also discussed.
Collapse
Affiliation(s)
- Hanfu Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, People's Republic of China
| | - David A O'Brochta
- Department of Entomology, The Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, MD 20850, USA
| |
Collapse
|
12
|
Hatakeyama M, Yatomi J, Sumitani M, Takasu Y, Sekiné K, Niimi T, Sezutsu H. Knockout of a transgene by transcription activator-like effector nucleases (TALENs) in the sawfly, Athalia rosae (Hymenoptera) and the ladybird beetle, Harmonia axyridis (Coleoptera). INSECT MOLECULAR BIOLOGY 2016; 25:24-31. [PMID: 26496859 DOI: 10.1111/imb.12195] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Transcription activator-like effector nucleases (TALENs) are efficient tools for targeted genome editing and have been utilized in a number of insects. Here, we demonstrate the gene disruption (knockout) caused by TALENs targeting a transgene, 3xP3-driven enhanced green fluorescence protein (EGFP), that is integrated in the genome of two species, the sawfly Athalia rosae (Hymenoptera) and the ladybird beetle Harmonia axyridis (Coleoptera). Messenger RNAs of TALENs targeting the sequences adjacent to the chromophore region were microinjected into the eggs/embryos of each species. In At. rosae, when microinjection was performed at the posterior end of eggs, 15% of G(0) individuals showed a somatic mosaic phenotype for eye EGFP fluorescence. Three-quarters of the somatic mosaics produced EGFP-negative G(1) progeny. When eggs were injected at the anterior end, 63% of the G(0) individuals showed somatic mosaicism, and 17% of them produced EGFP-negative G(1) progeny. In H. axyridis, 25% of posterior-injected and 8% of anterior-injected G(0) individuals produced EGFP-negative G(1) progeny. In both species, the EGFP-negative progeny retained the EGFP gene, and various deletions were detected in the target sequences, indicating that gene disruption was successfully induced. Finally, for both species, 18-21% of G(0) founders produced gene knockout progeny sufficient for establishing knockout strains.
Collapse
Affiliation(s)
- M Hatakeyama
- Division of Insect Sciences, National Institute of Agrobiological Sciences, Owashi, Tsukuba, Japan
| | - J Yatomi
- Laboratory of Sericulture & Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan
| | - M Sumitani
- Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Owashi, Tsukuba, Japan
| | - Y Takasu
- Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Owashi, Tsukuba, Japan
| | - K Sekiné
- Division of Insect Sciences, National Institute of Agrobiological Sciences, Owashi, Tsukuba, Japan
| | - T Niimi
- Laboratory of Sericulture & Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan
| | - H Sezutsu
- Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Owashi, Tsukuba, Japan
| |
Collapse
|
13
|
Abstract
Bombyx mori is a valuable model organism of high economic importance. Its genome sequence is available, as well as basic genetic and molecular genetic tools and markers. The introduction of genome editing methods based on engineered nucleases enables precise manipulations with genomic DNA, including targeted DNA deletions, insertions, or replacements in the genome allowing gene analysis and various applications. We describe here the use of TALENs which have a simple modular design of their DNA-binding domains, are easy to prepare and proved to be efficient in targeting of a wide range of cleavage sites. Our procedure often allows the production of individuals carrying homozygous mutations as early as in the G1 generation.
Collapse
Affiliation(s)
- Yoko Takasu
- National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Toshiki Tamura
- National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan.
| | - Marian Goldsmith
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, RI, 02881-0816, USA
| | - Michal Zurovec
- Biology Centre, Czech Academy of Sciences, Branisovska 31, 370 05, Ceske Budejovice, Czech Republic.
| |
Collapse
|
14
|
Shiomi K, Takasu Y, Kunii M, Tsuchiya R, Mukaida M, Kobayashi M, Sezutsu H, Ichida Takahama M, Mizoguchi A. Disruption of diapause induction by TALEN-based gene mutagenesis in relation to a unique neuropeptide signaling pathway in Bombyx. Sci Rep 2015; 5:15566. [PMID: 26497859 PMCID: PMC4620438 DOI: 10.1038/srep15566] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 09/29/2015] [Indexed: 12/18/2022] Open
Abstract
The insect neuropeptide family FXPRLa, which carries the Phe-Xaa-Pro-Arg-Leu-NH2 sequence at the C-terminus, is involved in many physiological processes. Although ligand-receptor interactions in FXPRLa signaling have been examined using in vitro assays, the correlation between these interactions and in vivo physiological function is unclear. Diapause in the silkworm, Bombyx mori, is thought to be elicited by diapause hormone (DH, an FXPRLa) signaling, which consists of interactions between DH and DH receptor (DHR). Here, we performed transcription activator-like effector nuclease (TALEN)-based mutagenesis of the Bombyx DH-PBAN and DHR genes and isolated the null mutants of these genes in a bivoltine strain. All mutant silkworms were fully viable and showed no abnormalities in the developmental timing of ecdysis or metamorphosis. However, female adults oviposited non-diapause eggs despite diapause-inducing temperature and photoperiod conditions. Therefore, we conclude that DH signaling is essential for diapause induction and consists of highly sensitive and specific interactions between DH and DHR selected during ligand-receptor coevolution in Bombyx mori.
Collapse
Affiliation(s)
- Kunihiro Shiomi
- Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Yoko Takasu
- National Institute of Agrobiological Sciences (NIAS), Tsukuba 305-8634, Japan
| | - Masayo Kunii
- Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Ryoma Tsuchiya
- Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Moeka Mukaida
- Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Masakazu Kobayashi
- Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Hideki Sezutsu
- National Institute of Agrobiological Sciences (NIAS), Tsukuba 305-8634, Japan
| | | | - Akira Mizoguchi
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
15
|
Venken KJT, Sarrion-Perdigones A, Vandeventer PJ, Abel NS, Christiansen AE, Hoffman KL. Genome engineering: Drosophila melanogaster and beyond. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 5:233-67. [PMID: 26447401 DOI: 10.1002/wdev.214] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 08/03/2015] [Accepted: 08/20/2015] [Indexed: 12/26/2022]
Abstract
A central challenge in investigating biological phenomena is the development of techniques to modify genomic DNA with nucleotide precision that can be transmitted through the germ line. Recent years have brought a boon in these technologies, now collectively known as genome engineering. Defined genomic manipulations at the nucleotide level enable a variety of reverse engineering paradigms, providing new opportunities to interrogate diverse biological functions. These genetic modifications include controlled removal, insertion, and substitution of genetic fragments, both small and large. Small fragments up to a few kilobases (e.g., single nucleotide mutations, small deletions, or gene tagging at single or multiple gene loci) to large fragments up to megabase resolution can be manipulated at single loci to create deletions, duplications, inversions, or translocations of substantial sections of whole chromosome arms. A specialized substitution of chromosomal portions that presumably are functionally orthologous between different organisms through syntenic replacement, can provide proof of evolutionary conservation between regulatory sequences. Large transgenes containing endogenous or synthetic DNA can be integrated at defined genomic locations, permitting an alternative proof of evolutionary conservation, and sophisticated transgenes can be used to interrogate biological phenomena. Precision engineering can additionally be used to manipulate the genomes of organelles (e.g., mitochondria). Novel genome engineering paradigms are often accelerated in existing, easily genetically tractable model organisms, primarily because these paradigms can be integrated in a rigorous, existing technology foundation. The Drosophila melanogaster fly model is ideal for these types of studies. Due to its small genome size, having just four chromosomes, the vast amount of cutting-edge genetic technologies, and its short life-cycle and inexpensive maintenance requirements, the fly is exceptionally amenable to complex genetic analysis using advanced genome engineering. Thus, highly sophisticated methods developed in the fly model can be used in nearly any sequenced organism. Here, we summarize different ways to perform precise inheritable genome engineering using integrases, recombinases, and DNA nucleases in the D. melanogaster. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Koen J T Venken
- Department of Biochemistry and Molecular Biology, Verna and Marrs McLean, Houston, TX, USA.,Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.,Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, USA
| | | | - Paul J Vandeventer
- Department of Biochemistry and Molecular Biology, Verna and Marrs McLean, Houston, TX, USA
| | - Nicholas S Abel
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Audrey E Christiansen
- Department of Biochemistry and Molecular Biology, Verna and Marrs McLean, Houston, TX, USA
| | - Kristi L Hoffman
- Department of Biochemistry and Molecular Biology, Verna and Marrs McLean, Houston, TX, USA
| |
Collapse
|
16
|
Zabelina V, Uchino K, Mochida Y, Yonemura N, Klymenko V, Sezutsu H, Tamura T, Sehnal F. Construction and long term preservation of clonal transgenic silkworms using a parthenogenetic strain. JOURNAL OF INSECT PHYSIOLOGY 2015; 81:28-35. [PMID: 26112978 DOI: 10.1016/j.jinsphys.2015.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 06/20/2015] [Accepted: 06/22/2015] [Indexed: 06/04/2023]
Abstract
For the functional analysis of insect genes as well as for the production of recombinant proteins for biomedical use, clonal transgenic silkworms are very useful. We examined if they could be produced in the parthenogenetic strain that had been maintained for more than 40years as a female line in which embryogenesis is induced with nearly 100% efficiency by a heat shock treatment of unfertilized eggs. All individuals have identical female genotype. Silkworm transgenesis requires injection of the DNA constructs into the non-diapausing eggs at the preblastodermal stage of embryogenesis. Since our parthenogenetic silkworms produce diapausing eggs, diapause programing was eliminated by incubating ovaries of the parthenogenetic strain in standard male larvae. Chorionated eggs were dissected from the implants, activated by the heat shock treatment and injected with the transgene construct. Several transgenic individuals occurred in the daughter generation. Southern blotting analysis of two randomly chosen transgenic lines VTG1 and VTG14 revealed multiple transgene insertions. Insertions found in the parental females were transferred to the next generation without any changes in their sites and copy numbers, suggesting that transgenic silkworms can be maintained as clonal strains with homozygous transgenes. Cryopreservation was developed for the storage of precious genotypes. As shown for the VTG1 and VTG14 lines, larval ovaries can be stored in DMSO at the temperature of liquid nitrogen, transferred to Grace's medium during defrosting, and then implanted into larvae of either sex of the standard silkworm strains C146 and w1-pnd. Chorionated eggs, which developed in the implants, were dissected and activated by the heat shock to obtain females (nearly 100% efficiency) or by a cold shock to induce development to both sexes in 4% of the eggs. It was then possible to establish bisexual lines homozygous for the transgene.
Collapse
Affiliation(s)
| | - Keiro Uchino
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan.
| | - Yuji Mochida
- Institute of Sericulture, Iikura 1053, 300-0324 Ami-machi, Ibaraki, Japan.
| | - Naoyuki Yonemura
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan.
| | | | - Hideki Sezutsu
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| | - Toshiki Tamura
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan.
| | | |
Collapse
|
17
|
Zabelina V, Klymenko V, Tamura T, Doroshenko K, Liang H, Sezutsu H, Sehnal F. Genome engineering and parthenocloning in the silkworm, Bombyx mori. J Biosci 2015; 40:645-55. [DOI: 10.1007/s12038-015-9548-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Sajwan S, Sidorov R, Stašková T, Žaloudíková A, Takasu Y, Kodrík D, Zurovec M. Targeted mutagenesis and functional analysis of adipokinetic hormone-encoding gene in Drosophila. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 61:79-86. [PMID: 25641265 DOI: 10.1016/j.ibmb.2015.01.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/16/2015] [Accepted: 01/17/2015] [Indexed: 06/04/2023]
Abstract
Adipokinetic hormones (Akhs) are small peptides (8-10 amino acid [aa] residues long) found in insects that regulate metabolic responses to stress by stimulating catabolic reactions and mobilizing energy stores. We employed Transcription activator-like effector nuclease (TALEN) mutagenesis and isolated an Akh(1) mutant carrying a small deletion in the gene that resulted in a truncated peptide; the second aa (Leu) was missing from the functional octapeptide. This null Dmel/Akh mutant is suitable to study Akh function without any effect on the C-terminal associated peptide encoded by the same gene. The mutant flies were fully viable and compared to the control flies, had significantly low levels of hemolymph saccharides including trehalose and were resistant to starvation. These characteristics are similar to those obtained from the flies carrying targeted ablation of Akh-expressing neurons (reported earlier). We also found that the Akh(1) mutants are slightly heavy and had a slow metabolic rate. Furthermore, we showed that the ectopic expression of Dmel∖Akh reverses the Akh(1) phenotype and restores the wild-type characteristics. Our results confirmed that Akh is an important regulator of metabolic homeostasis in Drosophila.
Collapse
Affiliation(s)
- Suresh Sajwan
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branisovska 31, 370 05 Ceské Budejovice, Czech Republic
| | - Roman Sidorov
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branisovska 31, 370 05 Ceské Budejovice, Czech Republic
| | - Tereza Stašková
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branisovska 31, 370 05 Ceské Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic
| | - Anna Žaloudíková
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branisovska 31, 370 05 Ceské Budejovice, Czech Republic
| | - Yoko Takasu
- National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Dalibor Kodrík
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branisovska 31, 370 05 Ceské Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic.
| | - Michal Zurovec
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branisovska 31, 370 05 Ceské Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic.
| |
Collapse
|
19
|
Kühn R, Wefers B. Editing and investigating genomes with TALE and CRISPR/Cas systems: Genome engineering across species using TALENs. Methods 2014; 69:1. [DOI: 10.1016/j.ymeth.2014.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
20
|
Callier V, Nijhout HF. Plasticity of insect body size in response to oxygen: integrating molecular and physiological mechanisms. CURRENT OPINION IN INSECT SCIENCE 2014; 1:59-65. [PMID: 32846731 DOI: 10.1016/j.cois.2014.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 05/06/2014] [Accepted: 05/09/2014] [Indexed: 06/11/2023]
Abstract
The hypoxia-induced reduction of body size in Drosophila and Manduca is ideal for understanding the mechanisms of body size plasticity. The mechanisms of size regulation are well-studied in these species, and the molecular mechanisms of oxygen sensing are also well-characterized. What is missing is the connection between oxygen sensing and the mechanisms that regulate body size in standard conditions. Oxygen functions both as a substrate for metabolism to produce energy and as a signaling molecule that activates specific cellular signaling networks. Hypoxia affects metabolism in a passive, generalized manner. Hypoxia also induces the activation of targeted signaling pathways, which may mediate the reduction in body size, or alternatively, compensate for the metabolic perturbations and attenuate the reduction in size. These alternative hypotheses await testing. Both perspectives-metabolism and information-are necessary to understand how oxygen affects body size.
Collapse
|