1
|
Nayak N, Mehrotra S, Karamchandani AN, Santelia D, Mehrotra R. Recent advances in designing synthetic plant regulatory modules. FRONTIERS IN PLANT SCIENCE 2025; 16:1567659. [PMID: 40241826 PMCID: PMC11999978 DOI: 10.3389/fpls.2025.1567659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025]
Abstract
Introducing novel functions in plants through synthetic multigene circuits requires strict transcriptional regulation. Currently, the use of natural regulatory modules in synthetic circuits is hindered by our limited knowledge of complex plant regulatory mechanisms, the paucity of characterized promoters, and the possibility of crosstalk with endogenous circuits. Synthetic regulatory modules can overcome these limitations. This article introduces an integrative de novo approach for designing plant synthetic promoters by utilizing the available online tools and databases. The recent achievements in designing and validating synthetic plant promoters, enhancers, transcription factors, and the challenges of establishing synthetic circuits in plants are also discussed.
Collapse
Affiliation(s)
- Namitha Nayak
- Department of Biological Sciences, Birla Institute of Technology and Sciences Pilani, Goa, India
| | - Sandhya Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Sciences Pilani, Goa, India
| | | | - Diana Santelia
- Institute of Integrative Biology, ETH Zürich Universitätstrasse, Zürich, Switzerland
| | - Rajesh Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Sciences Pilani, Goa, India
| |
Collapse
|
2
|
Glasscock CJ, Pecoraro R, McHugh R, Doyle LA, Chen W, Boivin O, Lonnquist B, Na E, Politanska Y, Haddox HK, Cox D, Norn C, Coventry B, Goreshnik I, Vafeados D, Lee GR, Gordan R, Stoddard BL, DiMaio F, Baker D. Computational design of sequence-specific DNA-binding proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558720. [PMID: 37790440 PMCID: PMC10542524 DOI: 10.1101/2023.09.20.558720] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Sequence-specific DNA-binding proteins (DBPs) play critical roles in biology and biotechnology, and there has been considerable interest in the engineering of DBPs with new or altered specificities for genome editing and other applications. While there has been some success in reprogramming naturally occurring DBPs using selection methods, the computational design of new DBPs that recognize arbitrary target sites remains an outstanding challenge. We describe a computational method for the design of small DBPs that recognize specific target sequences through interactions with bases in the major groove, and employ this method in conjunction with experimental screening to generate binders for 5 distinct DNA targets. These binders exhibit specificity closely matching the computational models for the target DNA sequences at as many as 6 base positions and affinities as low as 30-100 nM. The crystal structure of a designed DBP-target site complex is in close agreement with the design model, highlighting the accuracy of the design method. The designed DBPs function in both Escherichia coli and mammalian cells to repress and activate transcription of neighboring genes. Our method is a substantial step towards a general route to small and hence readily deliverable sequence-specific DBPs for gene regulation and editing.
Collapse
Affiliation(s)
- Cameron J. Glasscock
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Robert Pecoraro
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Physics, University of Washington, Seattle, WA, USA
| | - Ryan McHugh
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Lindsey A. Doyle
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Wei Chen
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Olivier Boivin
- Program in Genetics and Genomic, Duke University, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Beau Lonnquist
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Emily Na
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Yuliya Politanska
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Hugh K. Haddox
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - David Cox
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, CA USA
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA
| | - Christoffer Norn
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- BioInnovation Institute, DK2200 Copenhagen N, Denmark
| | - Brian Coventry
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Inna Goreshnik
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Dionne Vafeados
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Gyu Rie Lee
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA USA
| | - Raluca Gordan
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Department of Computer Science, Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Barry L. Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- BioInnovation Institute, DK2200 Copenhagen N, Denmark
| |
Collapse
|
3
|
Zhu I, Piraner DI, Roybal KT. Synthesizing a Smarter CAR T Cell: Advanced Engineering of T-cell Immunotherapies. Cancer Immunol Res 2023; 11:1030-1043. [PMID: 37429007 PMCID: PMC10527511 DOI: 10.1158/2326-6066.cir-22-0962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/15/2023] [Accepted: 06/02/2023] [Indexed: 07/12/2023]
Abstract
The immune system includes an array of specialized cells that keep us healthy by responding to pathogenic cues. Investigations into the mechanisms behind immune cell behavior have led to the development of powerful immunotherapies, including chimeric-antigen receptor (CAR) T cells. Although CAR T cells have demonstrated efficacy in treating blood cancers, issues regarding their safety and potency have hindered the use of immunotherapies in a wider spectrum of diseases. Efforts to integrate developments in synthetic biology into immunotherapy have led to several advancements with the potential to expand the range of treatable diseases, fine-tune the desired immune response, and improve therapeutic cell potency. Here, we examine current synthetic biology advances that aim to improve on existing technologies and discuss the promise of the next generation of engineered immune cell therapies.
Collapse
Affiliation(s)
- Iowis Zhu
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143, USA
- These authors contributed equally
| | - Dan I. Piraner
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143, USA
- These authors contributed equally
| | - Kole T. Roybal
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA 8Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- Gladstone UCSF Institute for Genetic Immunology, San Francisco, CA 94107, USA
- UCSF Cell Design Institute, San Francisco, CA 94158, USA
| |
Collapse
|
4
|
O'Connell RW, Rai K, Piepergerdes TC, Wang Y, Samra KD, Wilson JA, Lin S, Zhang TH, Ramos E, Sun A, Kille B, Curry KD, Rocks JW, Treangen TJ, Mehta P, Bashor CJ. Ultra-high throughput mapping of genetic design space. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.532704. [PMID: 36993481 PMCID: PMC10055055 DOI: 10.1101/2023.03.16.532704] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Massively parallel genetic screens have been used to map sequence-to-function relationships for a variety of genetic elements. However, because these approaches only interrogate short sequences, it remains challenging to perform high throughput (HT) assays on constructs containing combinations of sequence elements arranged across multi-kb length scales. Overcoming this barrier could accelerate synthetic biology; by screening diverse gene circuit designs, "composition-to-function" mappings could be created that reveal genetic part composability rules and enable rapid identification of behavior-optimized variants. Here, we introduce CLASSIC, a generalizable genetic screening platform that combines long- and short-read next-generation sequencing (NGS) modalities to quantitatively assess pooled libraries of DNA constructs of arbitrary length. We show that CLASSIC can measure expression profiles of >10 5 drug-inducible gene circuit designs (ranging from 6-9 kb) in a single experiment in human cells. Using statistical inference and machine learning (ML) approaches, we demonstrate that data obtained with CLASSIC enables predictive modeling of an entire circuit design landscape, offering critical insight into underlying design principles. Our work shows that by expanding the throughput and understanding gained with each design-build-test-learn (DBTL) cycle, CLASSIC dramatically augments the pace and scale of synthetic biology and establishes an experimental basis for data-driven design of complex genetic systems.
Collapse
|
5
|
Yu W, Chakravarthi VP, Borosha S, Dilower I, Lee EB, Ratri A, Starks RR, Fields PE, Wolfe MW, Faruque MO, Tuteja G, Rumi MAK. Transcriptional regulation of Satb1 in mouse trophoblast stem cells. Front Cell Dev Biol 2022; 10:918235. [PMID: 36589740 PMCID: PMC9795202 DOI: 10.3389/fcell.2022.918235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
SATB homeobox proteins are important regulators of developmental gene expression. Among the stem cell lineages that emerge during early embryonic development, trophoblast stem (TS) cells exhibit robust SATB expression. Both SATB1 and SATB2 act to maintain the trophoblast stem-state. However, the molecular mechanisms that regulate TS-specific Satb expression are not yet known. We identified Satb1 variant 2 as the predominant transcript in trophoblasts. Histone marks, and RNA polymerase II occupancy in TS cells indicated an active state of the promoter. A novel cis-regulatory region with active histone marks was identified ∼21 kbp upstream of the variant 2 promoter. CRISPR/Cas9 mediated disruption of this sequence decreased Satb1 expression in TS cells and chromosome conformation capture analysis confirmed looping of this distant regulatory region into the proximal promoter. Scanning position weight matrices across the enhancer predicted two ELF5 binding sites in close proximity to SATB1 sites, which were confirmed by chromatin immunoprecipitation. Knockdown of ELF5 downregulated Satb1 expression in TS cells and overexpression of ELF5 increased the enhancer-reporter activity. Interestingly, ELF5 interacts with SATB1 in TS cells, and the enhancer activity was upregulated following SATB overexpression. Our findings indicate that trophoblast-specific Satb1 expression is regulated by long-range chromatin looping of an enhancer that interacts with ELF5 and SATB proteins.
Collapse
Affiliation(s)
- Wei Yu
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - V. Praveen Chakravarthi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Shaon Borosha
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Iman Dilower
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Eun Bee Lee
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Anamika Ratri
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Rebekah R. Starks
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| | - Patrick E. Fields
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Michael W. Wolfe
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, United States
| | - M. Omar Faruque
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Geetu Tuteja
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| | - M. A. Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
6
|
Finn PB, Bhimsaria D, Ali A, Eguchi A, Ansari AZ, Dervan PB. Single position substitution of hairpin pyrrole-imidazole polyamides imparts distinct DNA-binding profiles across the human genome. PLoS One 2020; 15:e0243905. [PMID: 33351840 PMCID: PMC7755219 DOI: 10.1371/journal.pone.0243905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/01/2020] [Indexed: 01/21/2023] Open
Abstract
Pyrrole-imidazole (Py-Im) polyamides are synthetic molecules that can be rationally designed to target specific DNA sequences to both disrupt and recruit transcriptional machinery. While in vitro binding has been extensively studied, in vivo effects are often difficult to predict using current models of DNA binding. Determining the impact of genomic architecture and the local chromatin landscape on polyamide-DNA sequence specificity remains an unresolved question that impedes their effective deployment in vivo. In this report we identified polyamide-DNA interaction sites across the entire genome, by covalently crosslinking and capturing these events in the nuclei of human LNCaP cells. This technique confirms the ability of two eight ring hairpin-polyamides, with similar architectures but differing at a single ring position (Py to Im), to retain in vitro specificities and display distinct genome-wide binding profiles.
Collapse
Affiliation(s)
- Paul B. Finn
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | | | - Asfa Ali
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Asuka Eguchi
- Department of Microbiology and Immunology, Stanford University, Stanford, California, United States of America
| | - Aseem Z. Ansari
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Peter B. Dervan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| |
Collapse
|
7
|
Moses C, Hodgetts SI, Nugent F, Ben-Ary G, Park KK, Blancafort P, Harvey AR. Transcriptional repression of PTEN in neural cells using CRISPR/dCas9 epigenetic editing. Sci Rep 2020; 10:11393. [PMID: 32647121 PMCID: PMC7347541 DOI: 10.1038/s41598-020-68257-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022] Open
Abstract
After damage to the adult mammalian central nervous system (CNS), surviving neurons have limited capacity to regenerate and restore functional connectivity. Conditional genetic deletion of PTEN results in robust CNS axon regrowth, while PTEN repression with short hairpin RNA (shRNA) improves regeneration but to a lesser extent, likely due to suboptimal PTEN mRNA knockdown using this approach. Here we employed the CRISPR/dCas9 system to repress PTEN transcription in neural cells. We targeted the PTEN proximal promoter and 5' untranslated region with dCas9 fused to the repressor protein Krüppel-associated box (KRAB). dCas9-KRAB delivered in a lentiviral vector with one CRISPR guide RNA (gRNA) achieved potent and specific PTEN repression in human cell line models and neural cells derived from human iPSCs, and induced histone (H)3 methylation and deacetylation at the PTEN promoter. The dCas9-KRAB system outperformed a combination of four shRNAs targeting the PTEN transcript, a construct previously used in CNS injury models. The CRISPR system also worked more effectively than shRNAs for Pten repression in rat neural crest-derived PC-12 cells, and enhanced neurite outgrowth after nerve growth factor stimulation. PTEN silencing with CRISPR/dCas9 epigenetic editing may provide a new option for promoting axon regeneration and functional recovery after CNS trauma.
Collapse
Affiliation(s)
- C Moses
- School of Human Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA, 6009, Australia
| | - S I Hodgetts
- School of Human Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- Perron Institute for Neurological and Translational Science, 8 Verdun Street, Nedlands, WA, 6009, Australia
| | - F Nugent
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA, 6009, Australia
- School of Molecular Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - G Ben-Ary
- School of Human Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - K K Park
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - P Blancafort
- School of Human Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia.
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA, 6009, Australia.
- Greehey Children's Cancer Research Institute, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX, 78229, USA.
| | - A R Harvey
- School of Human Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia.
- Perron Institute for Neurological and Translational Science, 8 Verdun Street, Nedlands, WA, 6009, Australia.
| |
Collapse
|
8
|
Shomali N, Gharibi T, Vahedi G, Mohammed RN, Mohammadi H, Salimifard S, Marofi F. Mesenchymal stem cells as carrier of the therapeutic agent in the gene therapy of blood disorders. J Cell Physiol 2019; 235:4120-4134. [PMID: 31691976 DOI: 10.1002/jcp.29324] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022]
Abstract
Nonhematopoietic stem cells as a delivery platform of therapeutic useful genes have attracted widespread attention in recent years, owing to gained a long lifespan, easy separation, high proliferation, and high transfection capacity. Mesenchymal stem/stromal cells (MSCs) are the choice of the cells for gene and cell therapy due to high self-renewal capacity, high migration rate to the site of the tumor, and with immune suppressive and anti-inflammatory properties. Hence, it has a high potential of safety genetic modification of MSCs for antitumor gene expression and has paved the way for the clinical application of these cells to target the therapy of cancers and other diseases. The aim of gene therapy is targeted treatment of cancers and diseases through recovery, change, or enhancement cell performance to the sustained secretion of useful therapeutic proteins and induction expression of the functional gene in intended tissue. Recent developments in the vectors designing leading to the increase and durability of expression and improvement of the safety of the vectors that overcome a lot of problems, such as durability of expression and the host immune response. Nowadays, gene therapy approach is used by MSCs as a delivery vehicle in the preclinical and the clinical trials for the secretion of erythropoietin, recombinant antibodies, coagulation factors, cytokines, as well as angiogenic inhibitors in many blood disorders like anemia, hemophilia, and malignancies. In this study, we critically discuss the status of gene therapy by MSCs as a delivery vehicle for the treatment of blood disorders. Finally, the results of clinical trial studies are assessed, highlighting promising advantages of this emerging technology in the clinical setting.
Collapse
Affiliation(s)
- Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Gharibi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ghasem Vahedi
- Department of Immunology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Rebar N Mohammed
- Bone Marrow Transplant Center, Hiwa Cancer Hospital, Suleimanyah, Iraq.,Department of Microbiology, College of Veterinary Medicine, University of Sulaimani, Suleimanyah, Iraq
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Sevda Salimifard
- Department of Hematology and Blood Transfusion, School of Allied Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Deyell M, Ameta S, Nghe P. Large scale control and programming of gene expression using CRISPR. Semin Cell Dev Biol 2019; 96:124-132. [PMID: 31181342 DOI: 10.1016/j.semcdb.2019.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/14/2019] [Indexed: 12/22/2022]
Abstract
The control of gene expression in cells and organisms allows to unveil gene to function relationships and to reprogram biological responses. Several systems, such as Zinc fingers, TALE (Transcription activator-like effectors), and siRNAs (small-interfering RNAs), have been exploited to achieve this. However, recent advances in Clustered Regularly Interspaced Short Palindromic Repeats and Cas9 (CRISPR-Cas9) have overshadowed them due to high specificity, compatibility with many different organisms, and design flexibility. In this review we summarize state-of-the art for CRISPR-Cas9 technology for large scale gene perturbation studies, including single gene and multiple genes knock-out, knock-down, knock-up libraries, and their associated screening assays. We feature in particular the combination of these methods with single-cell transcriptomics approaches. Finally, we highlight the application of CRISPR-Cas9 systems in building synthetic circuits that can be interfaced with gene networks to control cellular states.
Collapse
Affiliation(s)
- Matthew Deyell
- Laboratoire de Biochimie, CNRS UMR8231, Chimie Biologie Innovation, PSL Research University, ESPCI Paris, 10 Rue Vauquelin, 75005, Paris, France
| | - Sandeep Ameta
- Laboratoire de Biochimie, CNRS UMR8231, Chimie Biologie Innovation, PSL Research University, ESPCI Paris, 10 Rue Vauquelin, 75005, Paris, France
| | - Philippe Nghe
- Laboratoire de Biochimie, CNRS UMR8231, Chimie Biologie Innovation, PSL Research University, ESPCI Paris, 10 Rue Vauquelin, 75005, Paris, France.
| |
Collapse
|
10
|
Moses C, Nugent F, Waryah CB, Garcia-Bloj B, Harvey AR, Blancafort P. Activating PTEN Tumor Suppressor Expression with the CRISPR/dCas9 System. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 14:287-300. [PMID: 30654190 PMCID: PMC6348769 DOI: 10.1016/j.omtn.2018.12.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 12/22/2022]
Abstract
PTEN expression is lost in many cancers, and even small changes in PTEN activity affect susceptibility and prognosis in a range of highly aggressive malignancies, such as melanoma and triple-negative breast cancer (TNBC). Loss of PTEN expression occurs via multiple mechanisms, including mutation, transcriptional repression and epigenetic silencing. Transcriptional repression of PTEN contributes to resistance to inhibitors used in the clinic, such as B-Raf inhibitors in BRAF mutant melanoma. We aimed to activate PTEN expression using the CRISPR system, specifically dead (d) Cas9 fused to the transactivator VP64-p65-Rta (VPR). dCas9-VPR was directed to the PTEN proximal promoter by single-guide RNAs (sgRNAs), in cancer cells that exhibited low levels of PTEN expression. The dCas9-VPR system increased PTEN expression in melanoma and TNBC cell lines, without transcriptional regulation at predicted off-target sgRNA binding sites. PTEN activation significantly repressed downstream oncogenic pathways, including AKT, mTOR, and MAPK signaling. BRAF V600E mutant melanoma cells transduced with dCas9-VPR displayed reduced migration, as well as diminished colony formation in the presence of B-Raf inhibitors, PI3K/mTOR inhibitors, and with combined PI3K/mTOR and B-Raf inhibition. CRISPR-mediated targeted activation of PTEN may provide an alternative therapeutic approach for highly aggressive cancers that are refractory to current treatments.
Collapse
Affiliation(s)
- Colette Moses
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia; School of Human Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Fiona Nugent
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia; School of Molecular Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Charlene Babra Waryah
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia
| | - Benjamin Garcia-Bloj
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia; School of Medicine, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, Huechuraba 8580745, Santiago, Chile
| | - Alan R Harvey
- School of Human Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia; Perron Institute for Neurological and Translational Science, 8 Verdun Street, Nedlands, WA 6009, Australia
| | - Pilar Blancafort
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia; School of Human Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia.
| |
Collapse
|
11
|
Zhou Q, Zhan H, Liao X, Fang L, Liu Y, Xie H, Yang K, Gao Q, Ding M, Cai Z, Huang W, Liu Y. A revolutionary tool: CRISPR technology plays an important role in construction of intelligentized gene circuits. Cell Prolif 2018; 52:e12552. [PMID: 30520167 PMCID: PMC6496519 DOI: 10.1111/cpr.12552] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022] Open
Abstract
With the development of synthetic biology, synthetic gene circuits have shown great applied potential in medicine, biology, and as commodity chemicals. An ultimate challenge in the construction of gene circuits is the lack of effective, programmable, secure and sequence-specific gene editing tools. The clustered regularly interspaced short palindromic repeat (CRISPR) system, a CRISPR-associated RNA-guided endonuclease Cas9 (CRISPR-associated protein 9)-targeted genome editing tool, has recently been applied in engineering gene circuits for its unique properties-operability, high efficiency and programmability. The traditional single-targeted therapy cannot effectively distinguish tumour cells from normal cells, and gene therapy for single targets has poor anti-tumour effects, which severely limits the application of gene therapy. Currently, the design of gene circuits using tumour-specific targets based on CRISPR/Cas systems provides a new way for precision cancer therapy. Hence, the application of intelligentized gene circuits based on CRISPR technology effectively guarantees the safety, efficiency and specificity of cancer therapy. Here, we assessed the use of synthetic gene circuits and if the CRISPR system could be used, especially artificial switch-inducible Cas9, to more effectively target and treat tumour cells. Moreover, we also discussed recent advances, prospectives and underlying challenges in CRISPR-based gene circuit development.
Collapse
Affiliation(s)
- Qun Zhou
- Department of Urology, Shenzhen Second People's Hospital, Clinical Medicine College of Anhui Medical University, Shenzhen, China.,Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Hengji Zhan
- Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xinhui Liao
- Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Lan Fang
- Department of Urology, Shenzhen Second People's Hospital, Clinical Medicine College of Anhui Medical University, Shenzhen, China
| | - Yuhan Liu
- Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Haibiao Xie
- Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Kang Yang
- Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qunjun Gao
- Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Mengting Ding
- Department of Urology, Shenzhen Second People's Hospital, Clinical Medicine College of Anhui Medical University, Shenzhen, China.,Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhiming Cai
- Department of Urology, Shenzhen Second People's Hospital, Clinical Medicine College of Anhui Medical University, Shenzhen, China.,Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Weiren Huang
- Department of Urology, Shenzhen Second People's Hospital, Clinical Medicine College of Anhui Medical University, Shenzhen, China.,Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yuchen Liu
- Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
12
|
Waking up dormant tumor suppressor genes with zinc fingers, TALEs and the CRISPR/dCas9 system. Oncotarget 2018; 7:60535-60554. [PMID: 27528034 PMCID: PMC5312401 DOI: 10.18632/oncotarget.11142] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/19/2016] [Indexed: 12/24/2022] Open
Abstract
The aberrant epigenetic silencing of tumor suppressor genes (TSGs) plays a major role during carcinogenesis and regaining these dormant functions by engineering of sequence-specific epigenome editing tools offers a unique opportunity for targeted therapies. However, effectively normalizing the expression and regaining tumor suppressive functions of silenced TSGs by artificial transcription factors (ATFs) still remains a major challenge. Herein we describe novel combinatorial strategies for the potent reactivation of two class II TSGs, MASPIN and REPRIMO, in cell lines with varying epigenetic states, using the CRISPR/dCas9 associated system linked to a panel of effector domains (VP64, p300, VPR and SAM complex), as well as with protein-based ATFs, Zinc Fingers and TALEs. We found that co-delivery of multiple effector domains using a combination of CRISPR/dCas9 and TALEs or SAM complex maximized activation in highly methylated promoters. In particular, CRISPR/dCas9 VPR with SAM upregulated MASPIN mRNA (22,145-fold change) in H157 lung cancer cells, with accompanying re-expression of MASPIN protein, which led to a concomitant inhibition of cell proliferation and induction of apoptotic cell death. Consistently, CRISPR/dCas9 VP64 with SAM upregulated REPRIMO (680-fold change), which led to phenotypic reprogramming in AGS gastric cancer cells. Altogether, our results outlined novel sequence-specific, combinatorial epigenome editing approaches to reactivate highly methylated TSGs as a promising therapy for cancer and other diseases.
Collapse
|
13
|
Chaudhary K, Chattopadhyay A, Pratap D. The evolution of CRISPR/Cas9 and their cousins: hope or hype? Biotechnol Lett 2018; 40:465-477. [PMID: 29344851 DOI: 10.1007/s10529-018-2506-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 01/08/2018] [Indexed: 12/14/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system allows biologists to edit genomic DNA of any cell in precise and specific way, entailing great potential for crop improvement, drug development and gene therapy. The system involves a nuclease (Cas9) and a designed guide RNA that are involved in wide range of applications such as genome modification, transcriptional modulation, genomic loci marking and RNA tracking. The limitation of the technique, in view of resistance of thymidine-rich genome to Cas9 cleavage, has now been overcome by the use of Cpf1 nuclease. In this review, we present an overview of CRISPR nucleases (Cas9 or Cpf1) with particular emphasis on human genome modification and compare their advantages and limitations. Furthermore, we summarize some of the pros and cons of CRISPR technology particularly in human therapeutics.
Collapse
Affiliation(s)
- Kulbhushan Chaudhary
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - Anirudha Chattopadhyay
- Department of Plant Pathology, C.P. College of Agriculture, S.D. Agricultural University, S.K. Nagar, Gujrat, India
| | - Dharmendra Pratap
- Department of Genetics & Plant Breeding, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India.
| |
Collapse
|
14
|
Naseri G, Balazadeh S, Machens F, Kamranfar I, Messerschmidt K, Mueller-Roeber B. Plant-Derived Transcription Factors for Orthologous Regulation of Gene Expression in the Yeast Saccharomyces cerevisiae. ACS Synth Biol 2017; 6:1742-1756. [PMID: 28531348 DOI: 10.1021/acssynbio.7b00094] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Control of gene expression by transcription factors (TFs) is central in many synthetic biology projects for which a tailored expression of one or multiple genes is often needed. As TFs from evolutionary distant organisms are unlikely to affect gene expression in a host of choice, they represent excellent candidates for establishing orthogonal control systems. To establish orthogonal regulators for use in yeast (Saccharomyces cerevisiae), we chose TFs from the plant Arabidopsis thaliana. We established a library of 106 different combinations of chromosomally integrated TFs, activation domains (yeast GAL4 AD, herpes simplex virus VP64, and plant EDLL) and synthetic promoters harboring cognate cis-regulatory motifs driving a yEGFP reporter. Transcriptional output of the different driver/reporter combinations varied over a wide spectrum, with EDLL being a considerably stronger transcription activation domain in yeast than the GAL4 activation domain, in particular when fused to Arabidopsis NAC TFs. Notably, the strength of several NAC-EDLL fusions exceeded that of the strong yeast TDH3 promoter by 6- to 10-fold. We furthermore show that plant TFs can be used to build regulatory systems encoded by centromeric or episomal plasmids. Our library of TF-DNA binding site combinations offers an excellent tool for diverse synthetic biology applications in yeast.
Collapse
Affiliation(s)
| | - Salma Balazadeh
- Plant
Signalling Group, Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476, Germany
| | | | | | | | - Bernd Mueller-Roeber
- Plant
Signalling Group, Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476, Germany
| |
Collapse
|
15
|
Mehrotra R, Renganaath K, Kanodia H, Loake GJ, Mehrotra S. Towards combinatorial transcriptional engineering. Biotechnol Adv 2017; 35:390-405. [PMID: 28300614 DOI: 10.1016/j.biotechadv.2017.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/22/2017] [Accepted: 03/09/2017] [Indexed: 01/31/2023]
Abstract
The modular nature of the transcriptional unit makes it possible to design robust modules with predictable input-output characteristics using a ‘parts- off a shelf’ approach. Customized regulatory circuits composed of multiple such transcriptional units have immense scope for application in diverse fields of basic and applied research. Synthetic transcriptional engineering seeks to construct such genetic cascades. Here, we discuss the three principle strands of transcriptional engineering: promoter and transcriptional factor engineering, and programming inducibilty into synthetic modules. In this context, we review the scope and limitations of some recent technologies that seek to achieve these ends. Our discussion emphasizes a requirement for rational combinatorial engineering principles and the promise this approach holds for the future development of this field.
Collapse
Affiliation(s)
- Rajesh Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani 333031, Rajasthan, India.
| | - Kaushik Renganaath
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani 333031, Rajasthan, India
| | - Harsh Kanodia
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani 333031, Rajasthan, India
| | - Gary J Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, United Kingdom
| | - Sandhya Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani 333031, Rajasthan, India
| |
Collapse
|
16
|
Gerace D, Martiniello-Wilks R, Nassif NT, Lal S, Steptoe R, Simpson AM. CRISPR-targeted genome editing of mesenchymal stem cell-derived therapies for type 1 diabetes: a path to clinical success? Stem Cell Res Ther 2017; 8:62. [PMID: 28279194 PMCID: PMC5345178 DOI: 10.1186/s13287-017-0511-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Due to their ease of isolation, differentiation capabilities, and immunomodulatory properties, the therapeutic potential of mesenchymal stem cells (MSCs) has been assessed in numerous pre-clinical and clinical settings. Currently, whole pancreas or islet transplantation is the only cure for people with type 1 diabetes (T1D) and, due to the autoimmune nature of the disease, MSCs have been utilised either natively or transdifferentiated into insulin-producing cells (IPCs) as an alternative treatment. However, the initial success in pre-clinical animal models has not translated into successful clinical outcomes. Thus, this review will summarise the current state of MSC-derived therapies for the treatment of T1D in both the pre-clinical and clinical setting, in particular their use as an immunomodulatory therapy and targets for the generation of IPCs via gene modification. In this review, we highlight the limitations of current clinical trials of MSCs for the treatment of T1D, and suggest the novel clustered regularly interspaced short palindromic repeat (CRISPR) gene-editing technology and improved clinical trial design as strategies to translate pre-clinical success to the clinical setting.
Collapse
Affiliation(s)
- Dario Gerace
- The School of Life Sciences, Chronic Disease Solutions Team and the Centre for Health Technologies, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Rosetta Martiniello-Wilks
- The School of Life Sciences, Chronic Disease Solutions Team and the Centre for Health Technologies, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.,Translational Cancer Research Group, University of Technology Sydney, Sydney, Australia
| | - Najah Therese Nassif
- The School of Life Sciences, Chronic Disease Solutions Team and the Centre for Health Technologies, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Sara Lal
- The School of Life Sciences, Chronic Disease Solutions Team and the Centre for Health Technologies, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.,Neuroscience Research Unit, University of Technology Sydney, Sydney, Australia
| | - Raymond Steptoe
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Ann Margaret Simpson
- The School of Life Sciences, Chronic Disease Solutions Team and the Centre for Health Technologies, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.
| |
Collapse
|
17
|
Kang L, Park SC, Ji CY, Kim HS, Lee HS, Kwak SS. Metabolic engineering of carotenoids in transgenic sweetpotato. BREEDING SCIENCE 2017; 67:27-34. [PMID: 28465665 PMCID: PMC5407916 DOI: 10.1270/jsbbs.16118] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 12/24/2016] [Indexed: 05/08/2023]
Abstract
Sweetpotato [Ipomoea batatas (L.) Lam], which contains high levels of antioxidants such as ascorbate and carotenoids in its storage root, is one of the healthiest foods, as well as one of the best starch crops for growth on marginal lands. In plants, carotenoid pigments are involved in light harvesting for photosynthesis and are also essential for photo-protection against excess light. As dietary antioxidants in humans, these compounds benefit health by alleviating aging-related diseases. The storage root of sweetpotato is a good source of both carotenoids and carbohydrates for human consumption. Therefore, metabolic engineering of sweetpotato to increase the content of useful carotenoids represents an important agricultural goal. This effort has been facilitated by cloning of most of the carotenoid biosynthetic genes, as well as the Orange gene involved in carotenoid accumulation. In this review, we describe our current understanding of the regulation of biosynthesis, accumulation and catabolism of carotenoids in sweetpotato. A deeper understanding of these topics should contribute to development of new sweetpotato cultivars with higher levels of nutritional carotenoids and abiotic stress tolerance.
Collapse
Affiliation(s)
- Le Kang
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB),
Daejeon 34141,
Republic of Korea
- Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology (UST),
Daejeon 305-350,
Republic of Korea
| | - Sung-Chul Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB),
Daejeon 34141,
Republic of Korea
| | - Chang Yoon Ji
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB),
Daejeon 34141,
Republic of Korea
- Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology (UST),
Daejeon 305-350,
Republic of Korea
| | - Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB),
Daejeon 34141,
Republic of Korea
| | - Haeng-Soon Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB),
Daejeon 34141,
Republic of Korea
- Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology (UST),
Daejeon 305-350,
Republic of Korea
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB),
Daejeon 34141,
Republic of Korea
- Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology (UST),
Daejeon 305-350,
Republic of Korea
- Corresponding author (e-mail: )
| |
Collapse
|
18
|
Junne S, Kabisch J. Fueling the future with biomass: Processes and pathways for a sustainable supply of hydrocarbon fuels and biogas. Eng Life Sci 2016; 17:14-26. [PMID: 32624725 DOI: 10.1002/elsc.201600112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 08/08/2016] [Accepted: 08/23/2016] [Indexed: 12/11/2022] Open
Abstract
Global economic growth, wealth and security rely upon the availability of cheap, mostly fossil-derived energy and chemical compounds. The replacement by sustainable resources is widely discussed. However, the current state of biotechnological processes usually restricts them to be used as a true alternative in terms of economic feasibility and even sustainability. Among the rare examples of bioprocesses applied for the energetic use of biomass are biogas and bioethanol production. Usually, these processes lack in efficiency and they cannot be operated without the support of legislation. Although they represent a first step towards a greater share of bio-based processes for energy provision, there is no doubt that tremendous improvements in strain and process development, feedstock and process flexibility as well as in the integration of these processes into broader supply and production networks, in this review called smart bioproduction grids, are required to make them economically attractive, robust enough, and wider acceptance by society. All this requires an interdisciplinary approach, which includes the use of residues in closed carbon cycles and issues concerning the process safety. This short review aims to depict some of the promising strategies to achieve an improved process performance as a basis for future application.
Collapse
Affiliation(s)
- Stefan Junne
- Department of Biotechnology Chair of Bioprocess Engineering Technische Universität Berlin Berlin Germany
| | - Johannes Kabisch
- Institute of Biochemistry Ernst-Moritz-Arndt University Greifswald Greifswald Germany
| |
Collapse
|
19
|
Abstract
The enabling technologies of synthetic biology are opening up new opportunities for engineering and enhancement of mammalian cells. This will stimulate diverse applications in many life science sectors such as regenerative medicine, development of biosensing cell lines, therapeutic protein production, and generation of new synthetic genetic regulatory circuits. Harnessing the full potential of these new engineering-based approaches requires the design and assembly of large DNA constructs-potentially up to chromosome scale-and the effective delivery of these large DNA payloads to the host cell. Random integration of large transgenes, encoding therapeutic proteins or genetic circuits into host chromosomes, has several drawbacks such as risks of insertional mutagenesis, lack of control over transgene copy-number and position-specific effects; these can compromise the intended functioning of genetic circuits. The development of a system orthogonal to the endogenous genome is therefore beneficial. Mammalian artificial chromosomes (MACs) are functional, add-on chromosomal elements, which behave as normal chromosomes-being replicating and portioned to daughter cells at each cell division. They are deployed as useful gene expression vectors as they remain independent from the host genome. MACs are maintained as a single-copy and can accommodate multiple gene expression cassettes of, in theory, unlimited DNA size (MACs up to 10 megabases have been constructed). MACs therefore enabled control over ectopic gene expression and represent an excellent platform to rapidly prototype and characterize novel synthetic gene circuits without recourse to engineering the host genome. This review describes the obstacles synthetic biologists face when working with mammalian systems and how the development of improved MACs can overcome these-particularly given the spectacular advances in DNA synthesis and assembly that are fuelling this research area.
Collapse
Affiliation(s)
- Andrea Martella
- School of Biological Sciences, The University of Edinburgh , The King's Buildings, Edinburgh EH9 3BF, U.K
| | - Steven M Pollard
- MRC Centre for Regenerative Medicine, The University of Edinburgh , Edinburgh bioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, U.K
| | - Junbiao Dai
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University , Beijing 100084, China
| | - Yizhi Cai
- School of Biological Sciences, The University of Edinburgh , The King's Buildings, Edinburgh EH9 3BF, U.K
| |
Collapse
|
20
|
Schaeffer SM, Nakata PA. The expanding footprint of CRISPR/Cas9 in the plant sciences. PLANT CELL REPORTS 2016; 35:1451-68. [PMID: 27137209 DOI: 10.1007/s00299-016-1987-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 04/19/2016] [Indexed: 05/18/2023]
Abstract
CRISPR/Cas9 has evolved and transformed the field of biology at an unprecedented pace. From the initial purpose of introducing a site specific mutation within a genome of choice, this technology has morphed into enabling a wide array of molecular applications, including site-specific transgene insertion and multiplexing for the simultaneous induction of multiple cleavage events. Efficiency, specificity, and flexibility are key attributes that have solidified CRISPR/Cas9 as the genome-editing tool of choice by scientists from all areas of biology. Within the field of plant biology, several CRISPR/Cas9 technologies, developed in other biological systems, have been successfully implemented to probe plant gene function and to modify specific crop traits. It is anticipated that this trend will persist and lead to the development of new applications and modifications of the CRISPR technology, adding to an ever-expanding collection of genome-editing tools. We envision that these tools will bestow plant researchers with new utilities to alter genome complexity, engineer site-specific integration events, control gene expression, generate transgene-free edited crops, and prevent or cure plant viral disease. The successful implementation of such utilities will represent a new frontier in plant biotechnology.
Collapse
Affiliation(s)
- Scott M Schaeffer
- Department of Pediatrics, Baylor College of Medicine, USDA/ARS Children's Nutrition Research Center, 1100 Bates St., Houston, TX, 77030-2600, USA
| | - Paul A Nakata
- Department of Pediatrics, Baylor College of Medicine, USDA/ARS Children's Nutrition Research Center, 1100 Bates St., Houston, TX, 77030-2600, USA.
| |
Collapse
|
21
|
Piatek A, Mahfouz MM. Targeted genome regulation via synthetic programmable transcriptional regulators. Crit Rev Biotechnol 2016; 37:429-440. [DOI: 10.3109/07388551.2016.1165180] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
22
|
Liu W, Stewart CN. Plant synthetic promoters and transcription factors. Curr Opin Biotechnol 2016; 37:36-44. [DOI: 10.1016/j.copbio.2015.10.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/06/2015] [Indexed: 10/22/2022]
|
23
|
Trapani I, Banfi S, Simonelli F, Surace EM, Auricchio A. Gene therapy of inherited retinal degenerations: prospects and challenges. Hum Gene Ther 2016; 26:193-200. [PMID: 25762209 DOI: 10.1089/hum.2015.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Because of its favorable anatomical and immunological characteristics, the eye has been at the forefront of translational gene therapy. Dozens of promising proofs of concept have been obtained in animal models of inherited retinal degenerations (IRDs), and some of them have been relayed to the clinic. The results from the first clinical trials for a congenital form of blindness have generated great interest and have demonstrated the safety and efficacy of intraocular administrations of viral vectors in humans. However, this progress has also generated new questions and posed challenges that need to be addressed to further expand the applicability of gene therapy in the eye, including safe delivery of viral vectors to the outer retina, treatment of dominant IRDs as well as of IRDs caused by mutations in large genes, and, finally, selection of the appropriate IRDs and patients to maximize the efficacy of gene transfer. This review summarizes the strategies that are currently being exploited to overcome these challenges and drive the clinical development of retinal gene therapy.
Collapse
Affiliation(s)
- Ivana Trapani
- 1 Telethon Institute of Genetics and Medicine (TIGEM) , Pozzuoli, Naples 80078, Italy
| | | | | | | | | |
Collapse
|
24
|
Du D, Qi LS. An Introduction to CRISPR Technology for Genome Activation and Repression in Mammalian Cells. Cold Spring Harb Protoc 2016; 2016:pdb.top086835. [PMID: 26729914 DOI: 10.1101/pdb.top086835] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
CRISPR interference/activation (CRISPRi/a) technology provides a simple and efficient approach for targeted repression or activation of gene expression in the mammalian genome. It is highly flexible and programmable, using an RNA-guided nuclease-deficient Cas9 (dCas9) protein fused with transcriptional regulators for targeting specific genes to effect their regulation. Multiple studies have shown how this method is an effective way to achieve efficient and specific transcriptional repression or activation of single or multiple genes. Sustained transcriptional modulation can be obtained by stable expression of CRISPR components, which enables directed reprogramming of cell fate. Here, we introduce the basics of CRISPRi/a technology for genome repression or activation.
Collapse
Affiliation(s)
- Dan Du
- Department of Bioengineering, Stanford University, Stanford, California 94305
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, California 94305; Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305; ChEM-H; Stanford University, Stanford, California 94305
| |
Collapse
|
25
|
Thakore PI, Gersbach CA. Design, Assembly, and Characterization of TALE-Based Transcriptional Activators and Repressors. Methods Mol Biol 2016; 1338:71-88. [PMID: 26443215 DOI: 10.1007/978-1-4939-2932-0_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Transcription activator-like effectors (TALEs) are modular DNA-binding proteins that can be fused to a variety of effector domains to regulate the epigenome. Nucleotide recognition by TALE monomers follows a simple cipher, making this a powerful and versatile method to activate or repress gene expression. Described here are methods to design, assemble, and test TALE transcription factors (TALE-TFs) for control of endogenous gene expression. In this protocol, TALE arrays are constructed by Golden Gate cloning and tested for activity by transfection and quantitative RT-PCR. These methods for engineering TALE-TFs are useful for studies in reverse genetics and genomics, synthetic biology, and gene therapy.
Collapse
Affiliation(s)
- Pratiksha I Thakore
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Room 136 Hudson Hall, Box 90281, Durham, NC, 27708-0281, USA. .,Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA. .,Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
26
|
Tak YG, Farnham PJ. Making sense of GWAS: using epigenomics and genome engineering to understand the functional relevance of SNPs in non-coding regions of the human genome. Epigenetics Chromatin 2015; 8:57. [PMID: 26719772 PMCID: PMC4696349 DOI: 10.1186/s13072-015-0050-4] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/09/2015] [Indexed: 12/13/2022] Open
Abstract
Considerable progress towards an understanding of complex diseases has been made in recent years due to the development of high-throughput genotyping technologies. Using microarrays that contain millions of single-nucleotide polymorphisms (SNPs), Genome Wide Association Studies (GWASs) have identified SNPs that are associated with many complex diseases or traits. For example, as of February 2015, 2111 association studies have identified 15,396 SNPs for various diseases and traits, with the number of identified SNP-disease/trait associations increasing rapidly in recent years. However, it has been difficult for researchers to understand disease risk from GWAS results. This is because most GWAS-identified SNPs are located in non-coding regions of the genome. It is important to consider that the GWAS-identified SNPs serve only as representatives for all SNPs in the same haplotype block, and it is equally likely that other SNPs in high linkage disequilibrium (LD) with the array-identified SNPs are causal for the disease. Because it was hoped that disease-associated coding variants would be identified if the true casual SNPs were known, investigators have expanded their analyses using LD calculation and fine-mapping. However, such analyses also identified risk-associated SNPs located in non-coding regions. Thus, the GWAS field has been left with the conundrum as to how a single-nucleotide change in a non-coding region could confer increased risk for a specific disease. One possible answer to this puzzle is that the variant SNPs cause changes in gene expression levels rather than causing changes in protein function. This review provides a description of (1) advances in genomic and epigenomic approaches that incorporate functional annotation of regulatory elements to prioritize the disease risk-associated SNPs that are located in non-coding regions of the genome for follow-up studies, (2) various computational tools that aid in identifying gene expression changes caused by the non-coding disease-associated SNPs, and (3) experimental approaches to identify target genes of, and study the biological phenotypes conferred by, non-coding disease-associated SNPs.
Collapse
Affiliation(s)
- Yu Gyoung Tak
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089 USA
| | - Peggy J Farnham
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089 USA
| |
Collapse
|
27
|
Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nat Rev Mol Cell Biol 2015; 17:5-15. [PMID: 26670017 DOI: 10.1038/nrm.2015.2] [Citation(s) in RCA: 600] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The bacterial CRISPR-Cas9 system has emerged as a multifunctional platform for sequence-specific regulation of gene expression. This Review describes the development of technologies based on nuclease-deactivated Cas9, termed dCas9, for RNA-guided genomic transcription regulation, both by repression through CRISPR interference (CRISPRi) and by activation through CRISPR activation (CRISPRa). We highlight different uses in diverse organisms, including bacterial and eukaryotic cells, and summarize current applications of harnessing CRISPR-dCas9 for multiplexed, inducible gene regulation, genome-wide screens and cell fate engineering. We also provide a perspective on future developments of the technology and its applications in biomedical research and clinical studies.
Collapse
|
28
|
Bao Z, Cobb RE, Zhao H. Accelerated genome engineering through multiplexing. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2015; 8:5-21. [PMID: 26394307 DOI: 10.1002/wsbm.1319] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/19/2015] [Accepted: 08/19/2015] [Indexed: 12/27/2022]
Abstract
Throughout the biological sciences, the past 15 years have seen a push toward the analysis and engineering of biological systems at the organism level. Given the complexity of even the simplest organisms, though, to elicit a phenotype of interest often requires genotypic manipulation of several loci. By traditional means, sequential editing of genomic targets requires a significant investment of time and labor, as the desired editing event typically occurs at a very low frequency against an overwhelming unedited background. In recent years, the development of a suite of new techniques has greatly increased editing efficiency, opening up the possibility for multiple editing events to occur in parallel. Termed as multiplexed genome engineering, this approach to genome editing has greatly expanded the scope of possible genome manipulations in diverse hosts, ranging from bacteria to human cells. The enabling technologies for multiplexed genome engineering include oligonucleotide-based and nuclease-based methodologies, and their application has led to the great breadth of successful examples described in this review. While many technical challenges remain, there also exists a multiplicity of opportunities in this rapidly expanding field.
Collapse
Affiliation(s)
- Zehua Bao
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ryan E Cobb
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Huimin Zhao
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Chemistry, Department of Bioengineering, and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
29
|
Kabadi AM, Thakore PI, Vockley CM, Ousterout DG, Gibson TM, Guilak F, Reddy TE, Gersbach CA. Enhanced MyoD-induced transdifferentiation to a myogenic lineage by fusion to a potent transactivation domain. ACS Synth Biol 2015; 4:689-99. [PMID: 25494287 PMCID: PMC4475448 DOI: 10.1021/sb500322u] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Genetic reprogramming holds great potential for disease modeling, drug screening, and regenerative medicine. Genetic reprogramming of mammalian cells is typically achieved by forced expression of natural transcription factors that control master gene networks and cell lineage specification. However, in many instances, the natural transcription factors do not induce a sufficiently robust response to completely reprogram cell phenotype. In this study, we demonstrate that protein engineering of the master transcription factor MyoD can enhance the conversion of human dermal fibroblasts and adult stem cells to a skeletal myocyte phenotype. Fusion of potent transcriptional activation domains to MyoD led to increased myogenic gene expression, myofiber formation, cell fusion, and global reprogramming of the myogenic gene network. This work supports a general strategy for synthetically enhancing the direct conversion between cell types that can be applied in both synthetic biology and regenerative medicine.
Collapse
Affiliation(s)
| | | | | | | | | | - Farshid Guilak
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina 27710, United States
| | | | - Charles A. Gersbach
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina 27710, United States
| |
Collapse
|
30
|
Polstein LR, Perez-Pinera P, Kocak DD, Vockley CM, Bledsoe P, Song L, Safi A, Crawford GE, Reddy TE, Gersbach CA. Genome-wide specificity of DNA binding, gene regulation, and chromatin remodeling by TALE- and CRISPR/Cas9-based transcriptional activators. Genome Res 2015; 25:1158-69. [PMID: 26025803 PMCID: PMC4510000 DOI: 10.1101/gr.179044.114] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 05/27/2015] [Indexed: 12/26/2022]
Abstract
Genome engineering technologies based on the CRISPR/Cas9 and TALE systems are enabling new approaches in science and biotechnology. However, the specificity of these tools in complex genomes and the role of chromatin structure in determining DNA binding are not well understood. We analyzed the genome-wide effects of TALE- and CRISPR-based transcriptional activators in human cells using ChIP-seq to assess DNA-binding specificity and RNA-seq to measure the specificity of perturbing the transcriptome. Additionally, DNase-seq was used to assess genome-wide chromatin remodeling that occurs as a result of their action. Our results show that these transcription factors are highly specific in both DNA binding and gene regulation and are able to open targeted regions of closed chromatin independent of gene activation. Collectively, these results underscore the potential for these technologies to make precise changes to gene expression for gene and cell therapies or fundamental studies of gene function.
Collapse
Affiliation(s)
- Lauren R Polstein
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Pablo Perez-Pinera
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - D Dewran Kocak
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Christopher M Vockley
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA; Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Peggy Bledsoe
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA
| | - Lingyun Song
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA
| | - Alexias Safi
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA
| | - Gregory E Crawford
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA; Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Timothy E Reddy
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA; Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA; Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA; Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
31
|
Zalatan JG, Lee ME, Almeida R, Gilbert LA, Whitehead EH, La Russa M, Tsai JC, Weissman JS, Dueber JE, Qi LS, Lim WA. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 2015; 160:339-50. [PMID: 25533786 PMCID: PMC4297522 DOI: 10.1016/j.cell.2014.11.052] [Citation(s) in RCA: 693] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/27/2014] [Accepted: 11/19/2014] [Indexed: 12/28/2022]
Abstract
Eukaryotic cells execute complex transcriptional programs in which specific loci throughout the genome are regulated in distinct ways by targeted regulatory assemblies. We have applied this principle to generate synthetic CRISPR-based transcriptional programs in yeast and human cells. By extending guide RNAs to include effector protein recruitment sites, we construct modular scaffold RNAs that encode both target locus and regulatory action. Sets of scaffold RNAs can be used to generate synthetic multigene transcriptional programs in which some genes are activated and others are repressed. We apply this approach to flexibly redirect flux through a complex branched metabolic pathway in yeast. Moreover, these programs can be executed by inducing expression of the dCas9 protein, which acts as a single master regulatory control point. CRISPR-associated RNA scaffolds provide a powerful way to construct synthetic gene expression programs for a wide range of applications, including rewiring cell fates or engineering metabolic pathways.
Collapse
Affiliation(s)
- Jesse G Zalatan
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Michael E Lee
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ricardo Almeida
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Luke A Gilbert
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Evan H Whitehead
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; UCSF Center for Systems and Synthetic Biology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Marie La Russa
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; UCSF Center for Systems and Synthetic Biology, University of California San Francisco, San Francisco, CA 94158, USA; Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jordan C Tsai
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biomedical Research, San Francisco, CA 94158, USA
| | - John E Dueber
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Lei S Qi
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; UCSF Center for Systems and Synthetic Biology, University of California San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, San Francisco, CA 94158, USA.
| | - Wendell A Lim
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94158, USA; UCSF Center for Systems and Synthetic Biology, University of California San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, San Francisco, CA 94158, USA.
| |
Collapse
|
32
|
Kabadi AM, Ousterout DG, Hilton IB, Gersbach CA. Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector. Nucleic Acids Res 2014; 42:e147. [PMID: 25122746 PMCID: PMC4231726 DOI: 10.1093/nar/gku749] [Citation(s) in RCA: 251] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 08/01/2014] [Accepted: 08/04/2014] [Indexed: 01/08/2023] Open
Abstract
Engineered DNA-binding proteins that manipulate the human genome and transcriptome have enabled rapid advances in biomedical research. In particular, the RNA-guided CRISPR/Cas9 system has recently been engineered to create site-specific double-strand breaks for genome editing or to direct targeted transcriptional regulation. A unique capability of the CRISPR/Cas9 system is multiplex genome engineering by delivering a single Cas9 enzyme and two or more single guide RNAs (sgRNAs) targeted to distinct genomic sites. This approach can be used to simultaneously create multiple DNA breaks or to target multiple transcriptional activators to a single promoter for synergistic enhancement of gene induction. To address the need for uniform and sustained delivery of multiplex CRISPR/Cas9-based genome engineering tools, we developed a single lentiviral system to express a Cas9 variant, a reporter gene and up to four sgRNAs from independent RNA polymerase III promoters that are incorporated into the vector by a convenient Golden Gate cloning method. Each sgRNA is efficiently expressed and can mediate multiplex gene editing and sustained transcriptional activation in immortalized and primary human cells. This delivery system will be significant to enabling the potential of CRISPR/Cas9-based multiplex genome engineering in diverse cell types.
Collapse
Affiliation(s)
- Ami M Kabadi
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - David G Ousterout
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Isaac B Hilton
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|