1
|
de Oliveira GB, Pedrini H, Dias Z. SUPERMAGO: Protein Function Prediction Based on Transformer Embeddings. Proteins 2025; 93:981-996. [PMID: 39711079 DOI: 10.1002/prot.26782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024]
Abstract
Recent technological advancements have enabled the experimental determination of amino acid sequences for numerous proteins. However, analyzing protein functions, which is essential for understanding their roles within cells, remains a challenging task due to the associated costs and time constraints. To address this challenge, various computational approaches have been proposed to aid in the categorization of protein functions, mainly utilizing amino acid sequences. In this study, we introduce SUPERMAGO, a method that leverages amino acid sequences to predict protein functions. Our approach employs Transformer architectures, pre-trained on protein data, to extract features from the sequences. We use multilayer perceptrons for classification and a stacking neural network to aggregate the predictions, which significantly enhances the performance of our method. We also present SUPERMAGO+, an ensemble of SUPERMAGO and DIAMOND, based on neural networks that assign different weights to each term, offering a novel weighting mechanism compared with existing methods in the literature. Additionally, we introduce SUPERMAGO+Web, a web server-compatible version of SUPERMAGO+ designed to operate with reduced computational resources. Both SUPERMAGO and SUPERMAGO+ consistently outperformed state-of-the-art approaches in our evaluations, establishing them as leading methods for this task when considering only amino acid sequence information.
Collapse
Affiliation(s)
| | - Helio Pedrini
- Institute of Computing, University of Campinas, Campinas, Brazil
| | - Zanoni Dias
- Institute of Computing, University of Campinas, Campinas, Brazil
| |
Collapse
|
2
|
Kong Y, Chen H, Huang X, Chang L, Yang B, Chen W. Precise metabolic modeling in post-omics era: accomplishments and perspectives. Crit Rev Biotechnol 2025; 45:683-701. [PMID: 39198033 DOI: 10.1080/07388551.2024.2390089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024]
Abstract
Microbes have been extensively utilized for their sustainable and scalable properties in synthesizing desired bio-products. However, insufficient knowledge about intracellular metabolism has impeded further microbial applications. The genome-scale metabolic models (GEMs) play a pivotal role in facilitating a global understanding of cellular metabolic mechanisms. These models enable rational modification by exploring metabolic pathways and predicting potential targets in microorganisms, enabling precise cell regulation without experimental costs. Nonetheless, simplified GEM only considers genome information and network stoichiometry while neglecting other important bio-information, such as enzyme functions, thermodynamic properties, and kinetic parameters. Consequently, uncertainties persist particularly when predicting microbial behaviors in complex and fluctuant systems. The advent of the omics era with its massive quantification of genes, proteins, and metabolites under various conditions has led to the flourishing of multi-constrained models and updated algorithms with improved predicting power and broadened dimension. Meanwhile, machine learning (ML) has demonstrated exceptional analytical and predictive capacities when applied to training sets of biological big data. Incorporating the discriminant strength of ML with GEM facilitates mechanistic modeling efficiency and improves predictive accuracy. This paper provides an overview of research innovations in the GEM, including multi-constrained modeling, analytical approaches, and the latest applications of ML, which may contribute comprehensive knowledge toward genetic refinement, strain development, and yield enhancement for a broad range of biomolecules.
Collapse
Affiliation(s)
- Yawen Kong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Xinlei Huang
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Lulu Chang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Bo Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
3
|
Vu TTD, Kim J, Jung J. An experimental analysis of graph representation learning for Gene Ontology based protein function prediction. PeerJ 2024; 12:e18509. [PMID: 39553733 PMCID: PMC11569786 DOI: 10.7717/peerj.18509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
Understanding protein function is crucial for deciphering biological systems and facilitating various biomedical applications. Computational methods for predicting Gene Ontology functions of proteins emerged in the 2000s to bridge the gap between the number of annotated proteins and the rapidly growing number of newly discovered amino acid sequences. Recently, there has been a surge in studies applying graph representation learning techniques to biological networks to enhance protein function prediction tools. In this review, we provide fundamental concepts in graph embedding algorithms. This study described graph representation learning methods for protein function prediction based on four principal data categories, namely PPI network, protein structure, Gene Ontology graph, and integrated graph. The commonly used approaches for each category were summarized and diagrammed, with the specific results of each method explained in detail. Finally, existing limitations and potential solutions were discussed, and directions for future research within the protein research community were suggested.
Collapse
Affiliation(s)
- Thi Thuy Duong Vu
- Faculty of Fundamental Sciences, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Jeongho Kim
- Department of Information and Communication Engineering, Myongji University, Yongin, Republic of South Korea
| | - Jaehee Jung
- Department of Information and Communication Engineering, Myongji University, Yongin, Republic of South Korea
| |
Collapse
|
4
|
Ji M, Kan Y, Kim D, Lee S, Yi G. DeepPI: Alignment-Free Analysis of Flexible Length Proteins Based on Deep Learning and Image Generator. Interdiscip Sci 2024; 16:1-12. [PMID: 38568406 DOI: 10.1007/s12539-024-00618-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 09/19/2024]
Abstract
With the rapid development of NGS technology, the number of protein sequences has increased exponentially. Computational methods have been introduced in protein functional studies because the analysis of large numbers of proteins through biological experiments is costly and time-consuming. In recent years, new approaches based on deep learning have been proposed to overcome the limitations of conventional methods. Although deep learning-based methods effectively utilize features of protein function, they are limited to sequences of fixed-length and consider information from adjacent amino acids. Therefore, new protein analysis tools that extract functional features from proteins of flexible length and train models are required. We introduce DeepPI, a deep learning-based tool for analyzing proteins in large-scale database. The proposed model that utilizes Global Average Pooling is applied to proteins of flexible length and leads to reduced information loss compared to existing algorithms that use fixed sizes. The image generator converts a one-dimensional sequence into a distinct two-dimensional structure, which can extract common parts of various shapes. Finally, filtering techniques automatically detect representative data from the entire database and ensure coverage of large protein databases. We demonstrate that DeepPI has been successfully applied to large databases such as the Pfam-A database. Comparative experiments on four types of image generators illustrated the impact of structure on feature extraction. The filtering performance was verified by varying the parameter values and proved to be applicable to large databases. Compared to existing methods, DeepPI outperforms in family classification accuracy for protein function inference.
Collapse
Affiliation(s)
- Mingeun Ji
- Department of Multimedia Engineering, Dongguk University, Seoul, 04620, Korea
| | - Yejin Kan
- Department of Multimedia Engineering, Dongguk University, Seoul, 04620, Korea
| | - Dongyeon Kim
- Department of Artificial Intelligence, Dongguk University, Seoul, 04620, Korea
| | - Seungmin Lee
- Department of Multimedia Engineering, Dongguk University, Seoul, 04620, Korea
| | - Gangman Yi
- Department of Multimedia Engineering, Dongguk University, Seoul, 04620, Korea.
- Department of Artificial Intelligence, Dongguk University, Seoul, 04620, Korea.
- Division of AI Software Convergence, Dongguk University, Seoul, 04620, Korea.
| |
Collapse
|
5
|
Zhao S, Zhang X, Zhao Z, Qian P, Liu W, Zeng Z, Veeravalli B, Dai L, Nordlund P, Prabhu N, Tam WL, Yang X. Hybrid Model Design For Protein Function Prediction. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039529 DOI: 10.1109/embc53108.2024.10781799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Considering the significant role of protein function probes in medicine development and health monitoring, we design a hybrid model based on traditional and deep learning methods to predict protein functions with desirable accuracy. Our work aims to better utilize the protein sequence information in our hybrid prediction model. Firstly, we introduce the high-efficiency sequence alignment tool DIAMOND to obtain function prediction reference based on sequence homology since "similar" proteins have similar protein functions. Secondly, we adopt deep learning methods to extract features from encoded protein sequences, then combine sequence features with domain features and protein-protein interaction (PPI) features in the deep neural network. Finally, we determine the best weight parameter between prediction results from DIAMOND and deep neural network. The experimental results show our proposed hybrid model outperforms traditional and state-of-the-art deep learning methods for protein function prediction.
Collapse
|
6
|
Zhang C, Freddolino L. A large-scale assessment of sequence database search tools for homology-based protein function prediction. Brief Bioinform 2024; 25:bbae349. [PMID: 39038936 PMCID: PMC11262835 DOI: 10.1093/bib/bbae349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/03/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024] Open
Abstract
Sequence database searches followed by homology-based function transfer form one of the oldest and most popular approaches for predicting protein functions, such as Gene Ontology (GO) terms. These searches are also a critical component in most state-of-the-art machine learning and deep learning-based protein function predictors. Although sequence search tools are the basis of homology-based protein function prediction, previous studies have scarcely explored how to select the optimal sequence search tools and configure their parameters to achieve the best function prediction. In this paper, we evaluate the effect of using different options from among popular search tools, as well as the impacts of search parameters, on protein function prediction. When predicting GO terms on a large benchmark dataset, we found that BLASTp and MMseqs2 consistently exceed the performance of other tools, including DIAMOND-one of the most popular tools for function prediction-under default search parameters. However, with the correct parameter settings, DIAMOND can perform comparably to BLASTp and MMseqs2 in function prediction. Additionally, we developed a new scoring function to derive GO prediction from homologous hits that consistently outperform previously proposed scoring functions. These findings enable the improvement of almost all protein function prediction algorithms with a few easily implementable changes in their sequence homolog-based component. This study emphasizes the critical role of search parameter settings in homology-based function transfer and should have an important contribution to the development of future protein function prediction algorithms.
Collapse
Affiliation(s)
- Chengxin Zhang
- Department of Computational Medicine and Bioinformatics, Department of Biological Chemistry, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109, United States
| | - Lydia Freddolino
- Department of Computational Medicine and Bioinformatics, Department of Biological Chemistry, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109, United States
| |
Collapse
|
7
|
Zheng L, Shi S, Lu M, Fang P, Pan Z, Zhang H, Zhou Z, Zhang H, Mou M, Huang S, Tao L, Xia W, Li H, Zeng Z, Zhang S, Chen Y, Li Z, Zhu F. AnnoPRO: a strategy for protein function annotation based on multi-scale protein representation and a hybrid deep learning of dual-path encoding. Genome Biol 2024; 25:41. [PMID: 38303023 PMCID: PMC10832132 DOI: 10.1186/s13059-024-03166-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
Protein function annotation has been one of the longstanding issues in biological sciences, and various computational methods have been developed. However, the existing methods suffer from a serious long-tail problem, with a large number of GO families containing few annotated proteins. Herein, an innovative strategy named AnnoPRO was therefore constructed by enabling sequence-based multi-scale protein representation, dual-path protein encoding using pre-training, and function annotation by long short-term memory-based decoding. A variety of case studies based on different benchmarks were conducted, which confirmed the superior performance of AnnoPRO among available methods. Source code and models have been made freely available at: https://github.com/idrblab/AnnoPRO and https://zenodo.org/records/10012272.
Collapse
Affiliation(s)
- Lingyan Zheng
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Industry Solutions Research and Development, Alibaba Cloud Computing, Hangzhou, 330110, China
| | - Shuiyang Shi
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Mingkun Lu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Pan Fang
- Industry Solutions Research and Development, Alibaba Cloud Computing, Hangzhou, 330110, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Ziqi Pan
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Hongning Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Zhimeng Zhou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Hanyu Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Shijie Huang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Lin Tao
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Weiqi Xia
- Pharmaceutical Department, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | - Honglin Li
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhenyu Zeng
- Industry Solutions Research and Development, Alibaba Cloud Computing, Hangzhou, 330110, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Shun Zhang
- Industry Solutions Research and Development, Alibaba Cloud Computing, Hangzhou, 330110, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Yuzong Chen
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Zhaorong Li
- Industry Solutions Research and Development, Alibaba Cloud Computing, Hangzhou, 330110, China.
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China.
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Industry Solutions Research and Development, Alibaba Cloud Computing, Hangzhou, 330110, China.
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China.
| |
Collapse
|
8
|
Zhang C, Lydia Freddolino P. A large-scale assessment of sequence database search tools for homology-based protein function prediction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567021. [PMID: 38013998 PMCID: PMC10680702 DOI: 10.1101/2023.11.14.567021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Sequence database searches followed by homology-based function transfer form one of the oldest and most popular approaches for predicting protein functions, such as Gene Ontology (GO) terms. Although sequence search tools are the basis of homology-based protein function prediction, previous studies have scarcely explored how to select the optimal sequence search tools and configure their parameters to achieve the best function prediction. In this paper, we evaluate the effect of using different options from among popular search tools, as well as the impacts of search parameters, on protein function prediction. When predicting GO terms on a large benchmark dataset, we found that BLASTp and MMseqs2 consistently exceed the performance of other tools, including DIAMOND - one of the most popular tools for function prediction - under default search parameters. However, with the correct parameter settings, DIAMOND can perform comparably to BLASTp and MMseqs2 in function prediction. This study emphasizes the critical role of search parameter settings in homology-based function transfer.
Collapse
Affiliation(s)
- Chengxin Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, 48109, USA
| | - P. Lydia Freddolino
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, 48109, USA
| |
Collapse
|
9
|
Zhang X, Wang L, Liu H, Zhang X, Liu B, Wang Y, Li J. Prot2GO: Predicting GO Annotations From Protein Sequences and Interactions. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:2772-2780. [PMID: 34971539 DOI: 10.1109/tcbb.2021.3139841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protein is the main material basis of living organisms and plays crucial role in life activities. Understanding the function of protein is of great significance for new drug discovery, disease treatment and vaccine development. In recent years, with the widespread application of deep learning in bioinformatics, researchers have proposed many deep learning models to predict protein functions. However, the existing deep learning methods usually only consider protein sequences, and thus cannot effectively integrate multi-source data to annotate protein functions. In this article, we propose the Prot2GO model, which can integrate protein sequence and PPI network data to predict protein functions. We utilize an improved biased random walk algorithm to extract the features of PPI network. For sequence data, we use a convolutional neural network to obtain the local features of the sequence and a recurrent neural network to capture the long-range associations between amino acid residues in protein sequence. Moreover, Prot2GO adopts the attention mechanism to identify protein motifs and structural domains. Experiments show that Prot2GO model achieves the state-of-the-art performance on multiple metrics.
Collapse
|
10
|
Oliveira GB, Pedrini H, Dias Z. TEMPROT: protein function annotation using transformers embeddings and homology search. BMC Bioinformatics 2023; 24:242. [PMID: 37291492 DOI: 10.1186/s12859-023-05375-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/02/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND Although the development of sequencing technologies has provided a large number of protein sequences, the analysis of functions that each one plays is still difficult due to the efforts of laboratorial methods, making necessary the usage of computational methods to decrease this gap. As the main source of information available about proteins is their sequences, approaches that can use this information, such as classification based on the patterns of the amino acids and the inference based on sequence similarity using alignment tools, are able to predict a large collection of proteins. The methods available in the literature that use this type of feature can achieve good results, however, they present restrictions of protein length as input to their models. In this work, we present a new method, called TEMPROT, based on the fine-tuning and extraction of embeddings from an available architecture pre-trained on protein sequences. We also describe TEMPROT+, an ensemble between TEMPROT and BLASTp, a local alignment tool that analyzes sequence similarity, which improves the results of our former approach. RESULTS The evaluation of our proposed classifiers with the literature approaches has been conducted on our dataset, which was derived from CAFA3 challenge database. Both TEMPROT and TEMPROT+ achieved competitive results on [Formula: see text], [Formula: see text], AuPRC and IAuPRC metrics on Biological Process (BP), Cellular Component (CC) and Molecular Function (MF) ontologies compared to state-of-the-art models, with the main results equal to 0.581, 0.692 and 0.662 of [Formula: see text] on BP, CC and MF, respectively. CONCLUSIONS The comparison with the literature showed that our model presented competitive results compared the state-of-the-art approaches considering the amino acid sequence pattern recognition and homology analysis. Our model also presented improvements related to the input size that the model can use to train compared to the literature methods.
Collapse
Affiliation(s)
| | - Helio Pedrini
- Institute of Computing, University of Campinas, Campinas, Brazil
| | - Zanoni Dias
- Institute of Computing, University of Campinas, Campinas, Brazil
| |
Collapse
|
11
|
Taha Tolba EAEH, Ahmed Amer HZ. In silico Analysis of Tyrosine Kinases Receptor in Papillary and Medullary Thyroid Cancer Using Sequence-alignment-based Methods. BIOTECHNOLOGY(FAISALABAD) 2023; 22:18-27. [DOI: 10.3923/biotech.2023.18.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
12
|
Sarker B, Khare N, Devignes MD, Aridhi S. Improving automatic GO annotation with semantic similarity. BMC Bioinformatics 2022; 23:433. [PMID: 36510133 PMCID: PMC9743508 DOI: 10.1186/s12859-022-04958-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Automatic functional annotation of proteins is an open research problem in bioinformatics. The growing number of protein entries in public databases, for example in UniProtKB, poses challenges in manual functional annotation. Manual annotation requires expert human curators to search and read related research articles, interpret the results, and assign the annotations to the proteins. Thus, it is a time-consuming and expensive process. Therefore, designing computational tools to perform automatic annotation leveraging the high quality manual annotations that already exist in UniProtKB/SwissProt is an important research problem RESULTS: In this paper, we extend and adapt the GrAPFI (graph-based automatic protein function inference) (Sarker et al. in BMC Bioinform 21, 2020; Sarker et al., in: Proceedings of 7th international conference on complex networks and their applications, Cambridge, 2018) method for automatic annotation of proteins with gene ontology (GO) terms renaming it as GrAPFI-GO. The original GrAPFI method uses label propagation in a similarity graph where proteins are linked through the domains, families, and superfamilies that they share. Here, we also explore various types of similarity measures based on common neighbors in the graph. Moreover, GO terms are arranged in a hierarchical manner according to semantic parent-child relations. Therefore, we propose an efficient pruning and post-processing technique that integrates both semantic similarity and hierarchical relations between the GO terms. We produce experimental results comparing the GrAPFI-GO method with and without considering common neighbors similarity. We also test the performance of GrAPFI-GO and other annotation tools for GO annotation on a benchmark of proteins with and without the proposed pruning and post-processing procedure. CONCLUSION Our results show that the proposed semantic hierarchical post-processing potentially improves the performance of GrAPFI-GO and of other annotation tools as well. Thus, GrAPFI-GO exposes an original efficient and reusable procedure, to exploit the semantic relations among the GO terms in order to improve the automatic annotation of protein functions.
Collapse
Affiliation(s)
- Bishnu Sarker
- grid.29172.3f0000 0001 2194 6418CNRS, Inria, LORIA, University of Lorraine, 54000 Nancy, France ,grid.443078.c0000 0004 0371 4228Khulna University of Engineering and Technology, Khulna, Bangladesh ,grid.259870.10000 0001 0286 752XSchool of Applied Computational Sciences, Meharry Medical College, Nashville, TN USA
| | - Navya Khare
- grid.29172.3f0000 0001 2194 6418CNRS, Inria, LORIA, University of Lorraine, 54000 Nancy, France ,grid.419361.80000 0004 1759 7632International Institute of Information Technology, Hyderabad, India
| | | | - Sabeur Aridhi
- grid.29172.3f0000 0001 2194 6418CNRS, Inria, LORIA, University of Lorraine, 54000 Nancy, France
| |
Collapse
|
13
|
Zhu YH, Zhang C, Yu DJ, Zhang Y. Integrating unsupervised language model with triplet neural networks for protein gene ontology prediction. PLoS Comput Biol 2022; 18:e1010793. [PMID: 36548439 PMCID: PMC9822105 DOI: 10.1371/journal.pcbi.1010793] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/06/2023] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Accurate identification of protein function is critical to elucidate life mechanisms and design new drugs. We proposed a novel deep-learning method, ATGO, to predict Gene Ontology (GO) attributes of proteins through a triplet neural-network architecture embedded with pre-trained language models from protein sequences. The method was systematically tested on 1068 non-redundant benchmarking proteins and 3328 targets from the third Critical Assessment of Protein Function Annotation (CAFA) challenge. Experimental results showed that ATGO achieved a significant increase of the GO prediction accuracy compared to the state-of-the-art approaches in all aspects of molecular function, biological process, and cellular component. Detailed data analyses showed that the major advantage of ATGO lies in the utilization of pre-trained transformer language models which can extract discriminative functional pattern from the feature embeddings. Meanwhile, the proposed triplet network helps enhance the association of functional similarity with feature similarity in the sequence embedding space. In addition, it was found that the combination of the network scores with the complementary homology-based inferences could further improve the accuracy of the predicted models. These results demonstrated a new avenue for high-accuracy deep-learning function prediction that is applicable to large-scale protein function annotations from sequence alone.
Collapse
Affiliation(s)
- Yi-Heng Zhu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, People’s Republic of China
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Chengxin Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Dong-Jun Yu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, People’s Republic of China
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
14
|
Integration of Human Protein Sequence and Protein-Protein Interaction Data by Graph Autoencoder to Identify Novel Protein-Abnormal Phenotype Associations. Cells 2022; 11:cells11162485. [PMID: 36010562 PMCID: PMC9406402 DOI: 10.3390/cells11162485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 11/18/2022] Open
Abstract
Understanding gene functions and their associated abnormal phenotypes is crucial in the prevention, diagnosis and treatment against diseases. The Human Phenotype Ontology (HPO) is a standardized vocabulary for describing the phenotype abnormalities associated with human diseases. However, the current HPO annotations are far from completion, and only a small fraction of human protein-coding genes has HPO annotations. Thus, it is necessary to predict protein-phenotype associations using computational methods. Protein sequences can indicate the structure and function of the proteins, and interacting proteins are more likely to have same function. It is promising to integrate these features for predicting HPO annotations of human protein. We developed GraphPheno, a semi-supervised method based on graph autoencoders, which does not require feature engineering to capture deep features from protein sequences, while also taking into account the topological properties in the protein–protein interaction network to predict the relationships between human genes/proteins and abnormal phenotypes. Cross validation and independent dataset tests show that GraphPheno has satisfactory prediction performance. The algorithm is further confirmed on automatic HPO annotation for no-knowledge proteins under the benchmark of the second Critical Assessment of Functional Annotation, 2013–2014 (CAFA2), where GraphPheno surpasses most existing methods. Further bioinformatics analysis shows that predicted certain phenotype-associated genes using GraphPheno share similar biological properties with known ones. In a case study on the phenotype of abnormality of mitochondrial respiratory chain, top prioritized genes are validated by recent papers. We believe that GraphPheno will help to reveal more associations between genes and phenotypes, and contribute to the discovery of drug targets.
Collapse
|
15
|
Reijnders MJMF, Waterhouse RM. CrowdGO: Machine learning and semantic similarity guided consensus Gene Ontology annotation. PLoS Comput Biol 2022; 18:e1010075. [PMID: 35560159 PMCID: PMC9132264 DOI: 10.1371/journal.pcbi.1010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 05/25/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022] Open
Abstract
Characterising gene function for the ever-increasing number and diversity of species with annotated genomes relies almost entirely on computational prediction methods. These software are also numerous and diverse, each with different strengths and weaknesses as revealed through community benchmarking efforts. Meta-predictors that assess consensus and conflict from individual algorithms should deliver enhanced functional annotations. To exploit the benefits of meta-approaches, we developed CrowdGO, an open-source consensus-based Gene Ontology (GO) term meta-predictor that employs machine learning models with GO term semantic similarities and information contents. By re-evaluating each gene-term annotation, a consensus dataset is produced with high-scoring confident annotations and low-scoring rejected annotations. Applying CrowdGO to results from a deep learning-based, a sequence similarity-based, and two protein domain-based methods, delivers consensus annotations with improved precision and recall. Furthermore, using standard evaluation measures CrowdGO performance matches that of the community’s best performing individual methods. CrowdGO therefore offers a model-informed approach to leverage strengths of individual predictors and produce comprehensive and accurate gene functional annotations. New technologies mean that we are able to read the genetic blueprints in the form of complete genome sequences from many different species. We are also able to use computational methods combined with evidence from experiments to map out the locations in the genomes of many thousands of genes and other important regions. However, discovering and characterising the biological functions of all these genes and their protein products requires considerably more experimental work. In order to gain insights into the possible functions of the many genes currently lacking functional information from experiments we must therefore rely on methods that computationally predict protein functions. Many different software tools have been developed to tackle this challenge, each with their own strengths and weaknesses as shown by several community-based competitions that assess the performance of the predictors. Taking advantage of powerful modern machine learning techniques, we developed CrowdGO, a new software that aims to combine predictions from several tools and produce comprehensive and accurate gene functional annotations. CrowdGO is able to computationally assess agreements and conflicts amongst annotations from different predictors to then re-evaluate the results and deliver enhanced predictions of protein functions.
Collapse
Affiliation(s)
- Maarten J. M. F. Reijnders
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, Lausanne, Switzerland
- * E-mail: (MJMFR); (RMW)
| | - Robert M. Waterhouse
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, Lausanne, Switzerland
- * E-mail: (MJMFR); (RMW)
| |
Collapse
|
16
|
Hakala K, Kaewphan S, Bjorne J, Mehryary F, Moen H, Tolvanen M, Salakoski T, Ginter F. Neural Network and Random Forest Models in Protein Function Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:1772-1781. [PMID: 33306472 DOI: 10.1109/tcbb.2020.3044230] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Over the past decade, the demand for automated protein function prediction has increased due to the volume of newly sequenced proteins. In this paper, we address the function prediction task by developing an ensemble system automatically assigning Gene Ontology (GO) terms to the given input protein sequence. We develop an ensemble system which combines the GO predictions made by random forest (RF) and neural network (NN) classifiers. Both RF and NN models rely on features derived from BLAST sequence alignments, taxonomy and protein signature analysis tools. In addition, we report on experiments with a NN model that directly analyzes the amino acid sequence as its sole input, using a convolutional layer. The Swiss-Prot database is used as the training and evaluation data. In the CAFA3 evaluation, which relies on experimental verification of the functional predictions, our submitted ensemble model demonstrates competitive performance ranking among top-10 best-performing systems out of over 100 submitted systems. In this paper, we evaluate and further improve the CAFA3-submitted system. Our machine learning models together with the data pre-processing and feature generation tools are publicly available as an open source software at https://github.com/TurkuNLP/CAFA3.
Collapse
|
17
|
Xia W, Zheng L, Fang J, Li F, Zhou Y, Zeng Z, Zhang B, Li Z, Li H, Zhu F. PFmulDL: a novel strategy enabling multi-class and multi-label protein function annotation by integrating diverse deep learning methods. Comput Biol Med 2022; 145:105465. [PMID: 35366467 DOI: 10.1016/j.compbiomed.2022.105465] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023]
Abstract
Bioinformatic annotation of protein function is essential but extremely sophisticated, which asks for extensive efforts to develop effective prediction method. However, the existing methods tend to amplify the representativeness of the families with large number of proteins by misclassifying the proteins in the families with small number of proteins. That is to say, the ability of the existing methods to annotate proteins in the 'rare classes' remains limited. Herein, a new protein function annotation strategy, PFmulDL, integrating multiple deep learning methods, was thus constructed. First, the recurrent neural network was integrated, for the first time, with the convolutional neural network to facilitate the function annotation. Second, a transfer learning method was introduced to the model construction for further improving the prediction performances. Third, based on the latest data of Gene Ontology, the newly constructed model could annotate the largest number of protein families comparing with the existing methods. Finally, this newly constructed model was found capable of significantly elevating the prediction performance for the 'rare classes' without sacrificing that for the 'major classes'. All in all, due to the emerging requirements on improving the prediction performance for the proteins in 'rare classes', this new strategy would become an essential complement to the existing methods for protein function prediction. All the models and source codes are freely available and open to all users at: https://github.com/idrblab/PFmulDL.
Collapse
Affiliation(s)
- Weiqi Xia
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Lingyan Zheng
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Jiebin Fang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Fengcheng Li
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Ying Zhou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Zhenyu Zeng
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Bing Zhang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Zhaorong Li
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Honglin Li
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China.
| |
Collapse
|
18
|
Elhaj-Abdou MEM, El-Dib H, El-Helw A, El-Habrouk M. Deep_CNN_LSTM_GO: Protein function prediction from amino-acid sequences. Comput Biol Chem 2021; 95:107584. [PMID: 34601431 DOI: 10.1016/j.compbiolchem.2021.107584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/08/2021] [Accepted: 09/21/2021] [Indexed: 11/15/2022]
Abstract
Protein amino acid sequences can be used to determine the functions of the protein. However, determining the function of a single protein requires many resources and a tremendous amount of time. Computational Intelligence methods such as Deep learning have been shown to predict the proteins' functions. This paper proposes a hybrid deep neural network model to predict an unknown protein's functions from sequences. The proposed model is named Deep_CNN_LSTM_GO. Deep_CNN_LSTM_GO is an Integration between Convolutional Neural network (CNN) and Long Short-Term Memory (LSTM) Neural Network to learn features from amino acid sequences and outputs the three different Gene Ontology (GO). The gene ontology represents the protein functions in the three sub-ontologies: Molecular Functions (MF), Biological Process (BP), and Cellular Component (CC). The proposed model has been trained and tested using UniProt-SwissProt's dataset. Another test has been done using Computational Assessment of Function Annotation (CAFA) on the three sub-ontologies. The proposed model outperforms different methods proposed in the field with better performance using three different evaluation metrics (Fmax, Smin, and AUPR) in the three sub-ontologies (MF, BP, CC).
Collapse
Affiliation(s)
- Mohamed E M Elhaj-Abdou
- Faculty of Engineering, Arab Academy for Science and Technology and Maritime Transport, Alexandria, Egypt.
| | - Hassan El-Dib
- Faculty of Engineering, Arab Academy for Science and Technology and Maritime Transport, Alexandria, Egypt.
| | - Amr El-Helw
- Faculty of Engineering, Arab Academy for Science and Technology and Maritime Transport, Alexandria, Egypt.
| | | |
Collapse
|
19
|
Vu TTD, Jung J. Protein function prediction with gene ontology: from traditional to deep learning models. PeerJ 2021; 9:e12019. [PMID: 34513334 PMCID: PMC8395570 DOI: 10.7717/peerj.12019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/29/2021] [Indexed: 11/25/2022] Open
Abstract
Protein function prediction is a crucial part of genome annotation. Prediction methods have recently witnessed rapid development, owing to the emergence of high-throughput sequencing technologies. Among the available databases for identifying protein function terms, Gene Ontology (GO) is an important resource that describes the functional properties of proteins. Researchers are employing various approaches to efficiently predict the GO terms. Meanwhile, deep learning, a fast-evolving discipline in data-driven approach, exhibits impressive potential with respect to assigning GO terms to amino acid sequences. Herein, we reviewed the currently available computational GO annotation methods for proteins, ranging from conventional to deep learning approach. Further, we selected some suitable predictors from among the reviewed tools and conducted a mini comparison of their performance using a worldwide challenge dataset. Finally, we discussed the remaining major challenges in the field, and emphasized the future directions for protein function prediction with GO.
Collapse
Affiliation(s)
- Thi Thuy Duong Vu
- Department of Information and Communication Engineering, Myongji University, Yongin-si, Gyeonggi-do, South Korea
| | - Jaehee Jung
- Department of Information and Communication Engineering, Myongji University, Yongin-si, Gyeonggi-do, South Korea
| |
Collapse
|
20
|
Seyyedsalehi SF, Soleymani M, Rabiee HR, Mofrad MRK. PFP-WGAN: Protein function prediction by discovering Gene Ontology term correlations with generative adversarial networks. PLoS One 2021; 16:e0244430. [PMID: 33630862 PMCID: PMC7906332 DOI: 10.1371/journal.pone.0244430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
Understanding the functionality of proteins has emerged as a critical problem in recent years due to significant roles of these macro-molecules in biological mechanisms. However, in-laboratory techniques for protein function prediction are not as efficient as methods developed and processed for protein sequencing. While more than 70 million protein sequences are available today, only the functionality of around one percent of them are known. These facts have encouraged researchers to develop computational methods to infer protein functionalities from their sequences. Gene Ontology is the most well-known database for protein functions which has a hierarchical structure, where deeper terms are more determinative and specific. However, the lack of experimentally approved annotations for these specific terms limits the performance of computational methods applied on them. In this work, we propose a method to improve protein function prediction using their sequences by deeply extracting relationships between Gene Ontology terms. To this end, we construct a conditional generative adversarial network which helps to effectively discover and incorporate term correlations in the annotation process. In addition to the baseline algorithms, we compare our method with two recently proposed deep techniques that attempt to utilize Gene Ontology term correlations. Our results confirm the superiority of the proposed method compared to the previous works. Moreover, we demonstrate how our model can effectively help to assign more specific terms to sequences.
Collapse
Affiliation(s)
- Seyyede Fatemeh Seyyedsalehi
- Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, California, United States of America
| | - Mahdieh Soleymani
- Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
| | - Hamid R. Rabiee
- Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad R. K. Mofrad
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, California, United States of America
| |
Collapse
|
21
|
Zohra Smaili F, Tian S, Roy A, Alazmi M, Arold ST, Mukherjee S, Scott Hefty P, Chen W, Gao X. QAUST: Protein Function Prediction Using Structure Similarity, Protein Interaction, and Functional Motifs. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 19:998-1011. [PMID: 33631427 PMCID: PMC9403031 DOI: 10.1016/j.gpb.2021.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 04/03/2019] [Accepted: 05/17/2019] [Indexed: 11/25/2022]
Abstract
The number of available protein sequences in public databases is increasing exponentially. However, a significant percentage of these sequences lack functional annotation, which is essential for the understanding of how biological systems operate. Here, we propose a novel method, Quantitative Annotation of Unknown STructure (QAUST), to infer protein functions, specifically Gene Ontology (GO) terms and Enzyme Commission (EC) numbers. QAUST uses three sources of information: structure information encoded by global and local structure similarity search, biological network information inferred by protein–protein interaction data, and sequence information extracted from functionally discriminative sequence motifs. These three pieces of information are combined by consensus averaging to make the final prediction. Our approach has been tested on 500 protein targets from the Critical Assessment of Functional Annotation (CAFA) benchmark set. The results show that our method provides accurate functional annotation and outperforms other prediction methods based on sequence similarity search or threading. We further demonstrate that a previously unknown function of human tripartite motif-containing 22 (TRIM22) protein predicted by QAUST can be experimentally validated.
Collapse
Affiliation(s)
- Fatima Zohra Smaili
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Shuye Tian
- Department of Biology, Southern University of Science and Technology of China (SUSTC), Shenzhen 518055, China
| | - Ambrish Roy
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Meshari Alazmi
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; College of Computer Science and Engineering, University of Hail, Hail 55476, Saudi Arabia
| | - Stefan T Arold
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Srayanta Mukherjee
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - P Scott Hefty
- Department of Molecular Bioscience, University of Kansas, Lawrence, KS 66047, USA
| | - Wei Chen
- Department of Biology, Southern University of Science and Technology of China (SUSTC), Shenzhen 518055, China.
| | - Xin Gao
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
| |
Collapse
|
22
|
Barot M, Gligorijević V, Cho K, Bonneau R. NetQuilt: Deep Multispecies Network-based Protein Function Prediction using Homology-informed Network Similarity. Bioinformatics 2021; 37:2414-2422. [PMID: 33576802 PMCID: PMC8388039 DOI: 10.1093/bioinformatics/btab098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 02/02/2023] Open
Abstract
Motivation Transferring knowledge between species is challenging: different species contain distinct proteomes and cellular architectures, which cause their proteins to carry out different functions via different interaction networks. Many approaches to protein functional annotation use sequence similarity to transfer knowledge between species. These approaches cannot produce accurate predictions for proteins without homologues of known function, as many functions require cellular context for meaningful prediction. To supply this context, network-based methods use protein-protein interaction (PPI) networks as a source of information for inferring protein function and have demonstrated promising results in function prediction. However, most of these methods are tied to a network for a single species, and many species lack biological networks. Results In this work, we integrate sequence and network information across multiple species by computing IsoRank similarity scores to create a meta-network profile of the proteins of multiple species. We use this integrated multispecies meta-network as input to train a maxout neural network with Gene Ontology terms as target labels. Our multispecies approach takes advantage of more training examples, and consequently leads to significant improvements in function prediction performance compared to two network-based methods, a deep learning sequence-based method and the BLAST annotation method used in the Critial Assessment of Functional Annotation. We are able to demonstrate that our approach performs well even in cases where a species has no network information available: when an organism’s PPI network is left out we can use our multi-species method to make predictions for the left-out organism with good performance. Availability and implementation The code is freely available at https://github.com/nowittynamesleft/NetQuilt. The data, including sequences, PPI networks and GO annotations are available at https://string-db.org/. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Meet Barot
- Center for Data Science, New York University, New York, 10011, USA
| | | | - Kyunghyun Cho
- Center for Data Science, New York University, New York, 10011, USA
| | - Richard Bonneau
- Center for Data Science, New York University, New York, 10011, USA.,Center for Computational Biology, Flatiron Institute, New York, 10010, USA
| |
Collapse
|
23
|
Li HD, Zhang W, Luo Y, Wang J. IsoDetect: Detection of Splice Isoforms from Third Generation Long Reads Based on Short Feature Sequences. Curr Bioinform 2021. [DOI: 10.2174/1574893615666200316101205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Transcriptome annotation is the basis for understanding gene structures
and analysing gene expression. The transcriptome annotation of many organisms such as humans
is far from incomplete, due partly to the challenge in the identification of isoforms that are
produced from the same gene through alternative splicing. Third generation sequencing (TGS)
reads provide unprecedented opportunity for detecting isoforms due to their long length that
exceeds the length of most isoforms. One limitation of current TGS reads-based isoform detection
methods is that they are exclusively based on sequence reads, without incorporating the sequence
information of annotated isoforms.
Objective:
We aim to develop a method to detect isoforms by incorporating annotated isoforms.
Methods:
Based on annotated isoforms, we propose a splice isoform detection method called
IsoDetect. First, the sequence at exon-exon junctions is extracted from annotated isoforms as
“short feature sequences”, which is used to distinguish splice isoforms. Second, we align these
feature sequences to long reads and partition long reads into groups that contain the same set of
feature sequences, thereby avoiding the pair-wise comparison among the large number of long
reads. Third, clustering and consensus generation are carried out based on sequence similarity. For
the long reads that do not contain any short feature sequence, clustering analysis based on
sequence similarity is performed to identify isoforms. Therefore, our method can detect not only
known but also novel isoforms.
Result:
Tested on two datasets from Calypte anna and Zebra Finch, IsoDetect shows higher speed
and good accuracies compared with four existing methods.
Conclusion:
IsoDetect may become a promising method for isoform detection.
Collapse
Affiliation(s)
- Hong-Dong Li
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
| | - Wenjing Zhang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
| | - Yuwen Luo
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
| | - Jianxin Wang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
| |
Collapse
|
24
|
Du Z, He Y, Li J, Uversky VN. DeepAdd: Protein function prediction from k-mer embedding and additional features. Comput Biol Chem 2020; 89:107379. [PMID: 33011616 DOI: 10.1016/j.compbiolchem.2020.107379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 10/23/2022]
Abstract
With the application of new high throughput sequencing technology, a large number of protein sequences is becoming available. Determination of the functional characteristics of these proteins by experiments is an expensive endeavor that requires a lot of time. Furthermore, at the organismal level, such kind of experimental functional analyses can be conducted only for a very few selected model organisms. Computational function prediction methods can be used to fill this gap. The functions of proteins are classified by Gene Ontology (GO), which contains more than 40,000 classifications in three domains, Molecular Function (MF), Biological Process (BP), and Cellular Component (CC). Additionally, since proteins have many functions, function prediction represents a multi-label and multi-class problem. We developed a new method to predict protein function from sequence. To this end, natural language model was used to generate word embedding of sequence and learn features from it by deep learning, and additional features to locate every protein. Our method uses the dependencies between GO classes as background information to construct a deep learning model. We evaluate our method using the standards established by the Computational Assessment of Function Annotation (CAFA) and have noticeable improvement over several algorithms, such as FFPred, DeepGO, GoFDR and other methods compared on the CAFA3 datasets.
Collapse
Affiliation(s)
- Zhihua Du
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Guangdong Province, PR China.
| | - Yufeng He
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Guangdong Province, PR China
| | - Jianqiang Li
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Guangdong Province, PR China
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL, USA; USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL, USA; Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
25
|
You R, Yao S, Xiong Y, Huang X, Sun F, Mamitsuka H, Zhu S. NetGO: improving large-scale protein function prediction with massive network information. Nucleic Acids Res 2020; 47:W379-W387. [PMID: 31106361 PMCID: PMC6602452 DOI: 10.1093/nar/gkz388] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/24/2019] [Accepted: 05/01/2019] [Indexed: 01/19/2023] Open
Abstract
Automated function prediction (AFP) of proteins is of great significance in biology. AFP can be regarded as a problem of the large-scale multi-label classification where a protein can be associated with multiple gene ontology terms as its labels. Based on our GOLabeler—a state-of-the-art method for the third critical assessment of functional annotation (CAFA3), in this paper we propose NetGO, a web server that is able to further improve the performance of the large-scale AFP by incorporating massive protein-protein network information. Specifically, the advantages of NetGO are threefold in using network information: (i) NetGO relies on a powerful learning to rank framework from machine learning to effectively integrate both sequence and network information of proteins; (ii) NetGO uses the massive network information of all species (>2000) in STRING (other than only some specific species) and (iii) NetGO still can use network information to annotate a protein by homology transfer, even if it is not contained in STRING. Separating training and testing data with the same time-delayed settings of CAFA, we comprehensively examined the performance of NetGO. Experimental results have clearly demonstrated that NetGO significantly outperforms GOLabeler and other competing methods. The NetGO web server is freely available at http://issubmission.sjtu.edu.cn/netgo/.
Collapse
Affiliation(s)
- Ronghui You
- School of Computer Science and Shanghai Key Lab of Intelligent Information Processing, Fudan University, Shanghai 200433, China.,Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Shuwei Yao
- School of Computer Science and Shanghai Key Lab of Intelligent Information Processing, Fudan University, Shanghai 200433, China.,Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Yi Xiong
- Department of Bioinformatics and Biostatistics, Shanghai Jiao Tong University
| | - Xiaodi Huang
- School of Computing and Mathematics, Charles Sturt University, Albury, NSW 2640, Australia
| | - Fengzhu Sun
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China.,Quantitative and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Hiroshi Mamitsuka
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan.,Department of Computer Science, Aalto University, Espoo and Helsinki, Finland
| | - Shanfeng Zhu
- School of Computer Science and Shanghai Key Lab of Intelligent Information Processing, Fudan University, Shanghai 200433, China.,Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| |
Collapse
|
26
|
Strodthoff N, Wagner P, Wenzel M, Samek W. UDSMProt: universal deep sequence models for protein classification. Bioinformatics 2020; 36:2401-2409. [PMID: 31913448 PMCID: PMC7178389 DOI: 10.1093/bioinformatics/btaa003] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/13/2019] [Accepted: 01/02/2020] [Indexed: 01/03/2023] Open
Abstract
MOTIVATION Inferring the properties of a protein from its amino acid sequence is one of the key problems in bioinformatics. Most state-of-the-art approaches for protein classification are tailored to single classification tasks and rely on handcrafted features, such as position-specific-scoring matrices from expensive database searches. We argue that this level of performance can be reached or even be surpassed by learning a task-agnostic representation once, using self-supervised language modeling, and transferring it to specific tasks by a simple fine-tuning step. RESULTS We put forward a universal deep sequence model that is pre-trained on unlabeled protein sequences from Swiss-Prot and fine-tuned on protein classification tasks. We apply it to three prototypical tasks, namely enzyme class prediction, gene ontology prediction and remote homology and fold detection. The proposed method performs on par with state-of-the-art algorithms that were tailored to these specific tasks or, for two out of three tasks, even outperforms them. These results stress the possibility of inferring protein properties from the sequence alone and, on more general grounds, the prospects of modern natural language processing methods in omics. Moreover, we illustrate the prospects for explainable machine learning methods in this field by selected case studies. AVAILABILITY AND IMPLEMENTATION Source code is available under https://github.com/nstrodt/UDSMProt. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Nils Strodthoff
- Department of Video Coding & Analytics, Fraunhofer Heinrich Hertz Institute, Berlin 10587, Germany
| | - Patrick Wagner
- Department of Video Coding & Analytics, Fraunhofer Heinrich Hertz Institute, Berlin 10587, Germany
| | - Markus Wenzel
- Department of Video Coding & Analytics, Fraunhofer Heinrich Hertz Institute, Berlin 10587, Germany
| | - Wojciech Samek
- Department of Video Coding & Analytics, Fraunhofer Heinrich Hertz Institute, Berlin 10587, Germany
| |
Collapse
|
27
|
Makrodimitris S, van Ham RCHJ, Reinders MJT. Improving protein function prediction using protein sequence and GO-term similarities. Bioinformatics 2020; 35:1116-1124. [PMID: 30169569 PMCID: PMC6449755 DOI: 10.1093/bioinformatics/bty751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 07/04/2018] [Accepted: 08/28/2018] [Indexed: 12/26/2022] Open
Abstract
MOTIVATION Most automatic functional annotation methods assign Gene Ontology (GO) terms to proteins based on annotations of highly similar proteins. We advocate that proteins that are less similar are still informative. Also, despite their simplicity and structure, GO terms seem to be hard for computers to learn, in particular the Biological Process ontology, which has the most terms (>29 000). We propose to use Label-Space Dimensionality Reduction (LSDR) techniques to exploit the redundancy of GO terms and transform them into a more compact latent representation that is easier to predict. RESULTS We compare proteins using a sequence similarity profile (SSP) to a set of annotated training proteins. We introduce two new LSDR methods, one based on the structure of the GO, and one based on semantic similarity of terms. We show that these LSDR methods, as well as three existing ones, improve the Critical Assessment of Functional Annotation performance of several function prediction algorithms. Cross-validation experiments on Arabidopsis thaliana proteins pinpoint the superiority of our GO-aware LSDR over generic LSDR. Our experiments on A.thaliana proteins show that the SSP representation in combination with a kNN classifier outperforms state-of-the-art and baseline methods in terms of cross-validated F-measure. AVAILABILITY AND IMPLEMENTATION Source code for the experiments is available at https://github.com/stamakro/SSP-LSDR. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Stavros Makrodimitris
- Department of Intelligent Systems, Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands.,Department of Bioinformatics, Keygene N.V., Wageningen, The Netherlands
| | - Roeland C H J van Ham
- Department of Intelligent Systems, Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands.,Department of Bioinformatics, Keygene N.V., Wageningen, The Netherlands
| | - Marcel J T Reinders
- Department of Intelligent Systems, Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
28
|
Jain A, Kihara D. Phylo-PFP: improved automated protein function prediction using phylogenetic distance of distantly related sequences. Bioinformatics 2019; 35:753-759. [PMID: 30165572 DOI: 10.1093/bioinformatics/bty704] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/30/2018] [Accepted: 08/23/2018] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Function annotation of proteins is fundamental in contemporary biology across fields including genomics, molecular biology, biochemistry, systems biology and bioinformatics. Function prediction is indispensable in providing clues for interpreting omics-scale data as well as in assisting biologists to build hypotheses for designing experiments. As sequencing genomes is now routine due to the rapid advancement of sequencing technologies, computational protein function prediction methods have become increasingly important. A conventional method of annotating a protein sequence is to transfer functions from top hits of a homology search; however, this approach has substantial short comings including a low coverage in genome annotation. RESULTS Here we have developed Phylo-PFP, a new sequence-based protein function prediction method, which mines functional information from a broad range of similar sequences, including those with a low sequence similarity identified by a PSI-BLAST search. To evaluate functional similarity between identified sequences and the query protein more accurately, Phylo-PFP reranks retrieved sequences by considering their phylogenetic distance. Compared to the Phylo-PFP's predecessor, PFP, which was among the top ranked methods in the second round of the Critical Assessment of Functional Annotation (CAFA2), Phylo-PFP demonstrated substantial improvement in prediction accuracy. Phylo-PFP was further shown to outperform prediction programs to date that were ranked top in CAFA2. AVAILABILITY AND IMPLEMENTATION Phylo-PFP web server is available for at http://kiharalab.org/phylo_pfp.php. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Aashish Jain
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, IN, USA.,Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
29
|
Zhang C, Lane L, Omenn GS, Zhang Y. Blinded Testing of Function Annotation for uPE1 Proteins by I-TASSER/COFACTOR Pipeline Using the 2018-2019 Additions to neXtProt and the CAFA3 Challenge. J Proteome Res 2019; 18:4154-4166. [PMID: 31581775 PMCID: PMC6900986 DOI: 10.1021/acs.jproteome.9b00537] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In 2018, we reported a hybrid pipeline that predicts protein structures with I-TASSER and function with COFACTOR. I-TASSER/COFACTOR achieved Gene Ontology (GO) high prediction accuracies of Fmax = 0.69 and 0.57 for molecular function (MF) and biological process (BP), respectively, on 100 comprehensively annotated proteins. Now we report blinded analyses of newly annotated proteins in the critical assessment of function annotation (CAFA) three function prediction challenge and in neXtProt. For CAFA3 results released in May 2019, our predictions on 267 and 912 human proteins with newly annotated MF and BP terms achieved Fmax = 0.50 and 0.42, respectively, on "No Knowledge" proteins, and 0.51 and 0.74, respectively, on "Limited Knowledge" proteins. While COFACTOR consistently outperforms simple homology-based analysis, its accuracy still depends on template availability. Meanwhile, in neXtProt 2019-01, 25 proteins acquired new function annotation through literature curation at UniProt/Swiss-Prot. Before the release of these curated results, we submitted to neXtProt blinded predictions of free-text function annotation based on predicted GO terms. For 10 of the 25, a good match of free-text or GO term annotation was obtained. These blind tests represent rigorous assessments of I-TASSER/COFACTOR. neXtProt now provides links to precomputed I-TASSER/COFACTOR predictions for proteins without function annotation to facilitate experimental planning on "dark proteins".
Collapse
Affiliation(s)
- Chengxin Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109-2218, United States
| | - Lydie Lane
- CALIPHO Group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gilbert S. Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109-2218, United States
- Departments of Internal Medicine and Human Genetics and School of Public Health, and University of Michigan, Ann Arbor, Michigan 48109-2218, United States
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109-2218, United States
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-2218, United States
| |
Collapse
|
30
|
Lv Z, Ao C, Zou Q. Protein Function Prediction: From Traditional Classifier to Deep Learning. Proteomics 2019; 19:e1900119. [PMID: 31187588 DOI: 10.1002/pmic.201900119] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/20/2019] [Indexed: 11/12/2022]
Abstract
Deep learning demonstrates greater competence over traditional machine learning techniques for many tasks. In last several years, deep learning has been applied to protein function prediction and a series of good achievements has been obtained. These findings extensively advanced our understanding of protein function. However, the accuracy of protein function prediction based upon deep learning still has yet to be improved. In article number 1900019, Issue 12, Zhang et al. construct DeepFunc, a deep learning framework using derived feature information of protein sequence and protein interactions network. They find that implementing DeepFunc for protein function prediction is more accurate than using DeepGO, a similar method reported previously. Meanwhile, they find that the method of combining multiple derived feature information in DeepFunc is much better than the method of using only single derived feature information. Due to its fully exploiting feature representation learning ability, deep learning with more derived feature information will enable it to be a promising method for solving more complicated protein function prediction problems and other bioinformatics challenges. Recent researches have provided some major insights into the value for using deep learning to protein function prediction problem.
Collapse
Affiliation(s)
- Zhibin Lv
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Chunyan Ao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, P. R. China.,Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| |
Collapse
|
31
|
Teso S, Masera L, Diligenti M, Passerini A. Combining learning and constraints for genome-wide protein annotation. BMC Bioinformatics 2019; 20:338. [PMID: 31208327 PMCID: PMC6580517 DOI: 10.1186/s12859-019-2875-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 05/03/2019] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The advent of high-throughput experimental techniques paved the way to genome-wide computational analysis and predictive annotation studies. When considering the joint annotation of a large set of related entities, like all proteins of a certain genome, many candidate annotations could be inconsistent, or very unlikely, given the existing knowledge. A sound predictive framework capable of accounting for this type of constraints in making predictions could substantially contribute to the quality of machine-generated annotations at a genomic scale. RESULTS We present OCELOT, a predictive pipeline which simultaneously addresses functional and interaction annotation of all proteins of a given genome. The system combines sequence-based predictors for functional and protein-protein interaction (PPI) prediction with a consistency layer enforcing (soft) constraints as fuzzy logic rules. The enforced rules represent the available prior knowledge about the classification task, including taxonomic constraints over each GO hierarchy (e.g. a protein labeled with a GO term should also be labeled with all ancestor terms) as well as rules combining interaction and function prediction. An extensive experimental evaluation on the Yeast genome shows that the integration of prior knowledge via rules substantially improves the quality of the predictions. The system largely outperforms GoFDR, the only high-ranking system at the last CAFA challenge with a readily available implementation, when GoFDR is given access to intra-genome information only (as OCELOT), and has comparable or better results (depending on the hierarchy and performance measure) when GoFDR is allowed to use information from other genomes. Our system also compares favorably to recent methods based on deep learning.
Collapse
Affiliation(s)
- Stefano Teso
- Computer Science Department, KULeuven, Celestijnenlaan 200 A bus 2402, Leuven, 3001 Belgium
| | - Luca Masera
- Department of Information Engineering and Computer Science, University of Trento, Via Sommarive, 5, Povo di Trento, 38123 Italy
| | - Michelangelo Diligenti
- Department of Information Engineering and Mathematics, University of Siena, San Niccolò, via Roma, 56, Siena, 53100 Italy
| | - Andrea Passerini
- Department of Information Engineering and Computer Science, University of Trento, Via Sommarive, 5, Povo di Trento, 38123 Italy
| |
Collapse
|
32
|
Zhang F, Song H, Zeng M, Li Y, Kurgan L, Li M. DeepFunc: A Deep Learning Framework for Accurate Prediction of Protein Functions from Protein Sequences and Interactions. Proteomics 2019; 19:e1900019. [PMID: 30941889 DOI: 10.1002/pmic.201900019] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/18/2019] [Indexed: 01/06/2023]
Abstract
Annotation of protein functions plays an important role in understanding life at the molecular level. High-throughput sequencing produces massive numbers of raw proteins sequences and only about 1% of them have been manually annotated with functions. Experimental annotations of functions are expensive, time-consuming and do not keep up with the rapid growth of the sequence numbers. This motivates the development of computational approaches that predict protein functions. A novel deep learning framework, DeepFunc, is proposed which accurately predicts protein functions from protein sequence- and network-derived information. More precisely, DeepFunc uses a long and sparse binary vector to encode information concerning domains, families, and motifs collected from the InterPro tool that is associated with the input protein sequence. This vector is processed with two neural layers to obtain a low-dimensional vector which is combined with topological information extracted from protein-protein interactions (PPIs) and functional linkages. The combined information is processed by a deep neural network that predicts protein functions. DeepFunc is empirically and comparatively tested on a benchmark testing dataset and the Critical Assessment of protein Function Annotation algorithms (CAFA) 3 dataset. The experimental results demonstrate that DeepFunc outperforms current methods on the testing dataset and that it secures the highest Fmax = 0.54 and AUC = 0.94 on the CAFA3 dataset.
Collapse
Affiliation(s)
- Fuhao Zhang
- School of Computer Science and Engineering, Central South University, Changsha, 410083, P. R. China
| | - Hong Song
- School of Computer Science and Engineering, Central South University, Changsha, 410083, P. R. China
| | - Min Zeng
- School of Computer Science and Engineering, Central South University, Changsha, 410083, P. R. China
| | - Yaohang Li
- School of Computer Science and Engineering, Central South University, Changsha, 410083, P. R. China.,Department of Computer Science, Old Dominion University, Norfolk, VA, 23529, USA
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Min Li
- School of Computer Science and Engineering, Central South University, Changsha, 410083, P. R. China
| |
Collapse
|
33
|
Sureyya Rifaioglu A, Doğan T, Jesus Martin M, Cetin-Atalay R, Atalay V. DEEPred: Automated Protein Function Prediction with Multi-task Feed-forward Deep Neural Networks. Sci Rep 2019; 9:7344. [PMID: 31089211 PMCID: PMC6517386 DOI: 10.1038/s41598-019-43708-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 04/27/2019] [Indexed: 01/22/2023] Open
Abstract
Automated protein function prediction is critical for the annotation of uncharacterized protein sequences, where accurate prediction methods are still required. Recently, deep learning based methods have outperformed conventional algorithms in computer vision and natural language processing due to the prevention of overfitting and efficient training. Here, we propose DEEPred, a hierarchical stack of multi-task feed-forward deep neural networks, as a solution to Gene Ontology (GO) based protein function prediction. DEEPred was optimized through rigorous hyper-parameter tests, and benchmarked using three types of protein descriptors, training datasets with varying sizes and GO terms form different levels. Furthermore, in order to explore how training with larger but potentially noisy data would change the performance, electronically made GO annotations were also included in the training process. The overall predictive performance of DEEPred was assessed using CAFA2 and CAFA3 challenge datasets, in comparison with the state-of-the-art protein function prediction methods. Finally, we evaluated selected novel annotations produced by DEEPred with a literature-based case study considering the 'biofilm formation process' in Pseudomonas aeruginosa. This study reports that deep learning algorithms have significant potential in protein function prediction; particularly when the source data is large. The neural network architecture of DEEPred can also be applied to the prediction of the other types of ontological associations. The source code and all datasets used in this study are available at: https://github.com/cansyl/DEEPred .
Collapse
Affiliation(s)
- Ahmet Sureyya Rifaioglu
- Department of Computer Engineering, METU, Ankara, 06800, Turkey
- Department of Computer Engineering, İskenderun Technical University, Hatay, 31200, Turkey
| | - Tunca Doğan
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, CB10 1SD, UK.
- KanSiL, Department of Health Informatics, Graduate School of Informatics, METU, Ankara, 06800, Turkey.
| | - Maria Jesus Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, CB10 1SD, UK
| | - Rengul Cetin-Atalay
- KanSiL, Department of Health Informatics, Graduate School of Informatics, METU, Ankara, 06800, Turkey
| | - Volkan Atalay
- Department of Computer Engineering, METU, Ankara, 06800, Turkey.
- KanSiL, Department of Health Informatics, Graduate School of Informatics, METU, Ankara, 06800, Turkey.
| |
Collapse
|
34
|
Leveraging implicit knowledge in neural networks for functional dissection and engineering of proteins. NAT MACH INTELL 2019. [DOI: 10.1038/s42256-019-0049-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Wu J, Yin Q, Zhang C, Geng J, Wu H, Hu H, Ke X, Zhang Y. Function Prediction for G Protein-Coupled Receptors through Text Mining and Induction Matrix Completion. ACS OMEGA 2019; 4:3045-3054. [PMID: 31459527 PMCID: PMC6649004 DOI: 10.1021/acsomega.8b02454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/11/2019] [Indexed: 06/10/2023]
Abstract
G protein-coupled receptors (GPCRs) constitute the key component of cellular signal transduction. Accurately annotating the biological functions of GPCR proteins is vital to the understanding of the physiological processes they involve in. With the rapid development of text mining technologies and the exponential growth of biomedical literature, it becomes urgent to explore biological functional information from various literature for systematically and reliably annotating these known GPCRs. We design a novel three-stage approach, TM-IMC, using text mining and inductive matrix completion, for automated prediction of the gene ontology (GO) terms of the GPCR proteins. Large-scale benchmark tests show that inductive matrix completion models contribute to GPCR-GO association prediction for both molecular function and biological process aspects. Moreover, our detailed data analysis shows that information extracted from GPCR-associated literature indeed contributes to the prediction of GPCR-GO associations. The study demonstrated a new avenue to enhance the accuracy of GPCR function annotation through the combination of text mining and induction matrix completion over baseline methods in critical assessment of protein function annotation algorithms and literature-based GO annotation methods. Source codes of TM-IMC and the involved datasets can be freely downloaded from https://zhanglab.ccmb.med.umich.edu/TM-IMC for academic purposes.
Collapse
Affiliation(s)
- Jiansheng Wu
- School
of Geographic and Biological Information and School of Telecommunication and
Information Engineering, Nanjing University
of Posts and Telecommunications, Nanjing 210023, China
| | - Qin Yin
- School
of Geographic and Biological Information and School of Telecommunication and
Information Engineering, Nanjing University
of Posts and Telecommunications, Nanjing 210023, China
| | - Chengxin Zhang
- Department of Computational Medicine
and Bioinformatics and Department of Biological
Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jingjing Geng
- School
of Geographic and Biological Information and School of Telecommunication and
Information Engineering, Nanjing University
of Posts and Telecommunications, Nanjing 210023, China
| | - Hongjie Wu
- School
of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Haifeng Hu
- School
of Geographic and Biological Information and School of Telecommunication and
Information Engineering, Nanjing University
of Posts and Telecommunications, Nanjing 210023, China
| | - Xiaoyan Ke
- Child
Mental Health Research Center, Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Yang Zhang
- Department of Computational Medicine
and Bioinformatics and Department of Biological
Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
36
|
Zhang C, Wei X, Omenn GS, Zhang Y. Structure and Protein Interaction-Based Gene Ontology Annotations Reveal Likely Functions of Uncharacterized Proteins on Human Chromosome 17. J Proteome Res 2018; 17:4186-4196. [PMID: 30265558 PMCID: PMC6438760 DOI: 10.1021/acs.jproteome.8b00453] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Understanding the function of human proteins is essential to decipher the molecular mechanisms of human diseases and phenotypes. Of the 17 470 human protein coding genes in the neXtProt 2018-01-17 database with unequivocal protein existence evidence (PE1), 1260 proteins do not have characterized functions. To reveal the function of poorly annotated human proteins, we developed a hybrid pipeline that creates protein structure prediction using I-TASSER and infers functional insights for the target protein from the functional templates recognized by COFACTOR. As a case study, the pipeline was applied to all 66 PE1 proteins with unknown or insufficiently specific function (uPE1) on human chromosome 17 as of neXtProt 2017-07-01. Benchmark testing on a control set of 100 well-characterized proteins randomly selected from the same chromosome shows high Gene Ontology (GO) term prediction accuracies of 0.69, 0.57, and 0.67 for molecular function (MF), biological process (BP), and cellular component (CC), respectively. Three pipelines of function annotations (homology detection, protein-protein interaction network inference, and structure template identification) have been exploited by COFACTOR. Detailed analyses show that structure template detection based on low-resolution protein structure prediction made the major contribution to the enhancement of the sensitivity and precision of the annotation predictions, especially for cases that do not have sequence-level homologous templates. For the chromosome 17 uPE1 proteins, the I-TASSER/COFACTOR pipeline confidently assigned MF, BP, and CC for 13, 33, and 49 proteins, respectively, with predicted functions ranging from sphingosine N-acyltransferase activity and sugar transmembrane transporter to cytoskeleton constitution. We highlight the 13 proteins with confident MF predictions; 11 of these are among the 33 proteins with confident BP predictions and 12 are among the 49 proteins with confident CC. This study demonstrates a novel computational approach to systematically annotate protein function in the human proteome and provides useful insights to guide experimental design and follow-up validation studies of these uncharacterized proteins.
Collapse
Affiliation(s)
- Chengxin Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109-2218, United States
| | - Xiaoqiong Wei
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109-2218, United States
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People’s Republic of China
| | - Gilbert S. Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109-2218, United States
- Departments of Internal Medicine and Human Genetics and School of Public Health, University of Michigan, Ann Arbor, Michigan 48109-2218, United States
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109-2218, United States
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-2218, United States
| |
Collapse
|
37
|
Kulmanov M, Khan MA, Hoehndorf R, Wren J. DeepGO: predicting protein functions from sequence and interactions using a deep ontology-aware classifier. Bioinformatics 2018; 34:660-668. [PMID: 29028931 PMCID: PMC5860606 DOI: 10.1093/bioinformatics/btx624] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/27/2017] [Indexed: 12/29/2022] Open
Abstract
Motivation A large number of protein sequences are becoming available through the application of novel high-throughput sequencing technologies. Experimental functional characterization of these proteins is time-consuming and expensive, and is often only done rigorously for few selected model organisms. Computational function prediction approaches have been suggested to fill this gap. The functions of proteins are classified using the Gene Ontology (GO), which contains over 40 000 classes. Additionally, proteins have multiple functions, making function prediction a large-scale, multi-class, multi-label problem. Results We have developed a novel method to predict protein function from sequence. We use deep learning to learn features from protein sequences as well as a cross-species protein–protein interaction network. Our approach specifically outputs information in the structure of the GO and utilizes the dependencies between GO classes as background information to construct a deep learning model. We evaluate our method using the standards established by the Computational Assessment of Function Annotation (CAFA) and demonstrate a significant improvement over baseline methods such as BLAST, in particular for predicting cellular locations. Availability and implementation Web server: http://deepgo.bio2vec.net, Source code: https://github.com/bio-ontology-research-group/deepgo Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Maxat Kulmanov
- Computer, Electrical and Mathematical Sciences & Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Mohammed Asif Khan
- Computer, Electrical and Mathematical Sciences & Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Robert Hoehndorf
- Computer, Electrical and Mathematical Sciences & Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | | |
Collapse
|
38
|
Kulmanov M, Schofield PN, Gkoutos GV, Hoehndorf R. Ontology-based validation and identification of regulatory phenotypes. Bioinformatics 2018; 34:i857-i865. [PMID: 30423068 PMCID: PMC6129279 DOI: 10.1093/bioinformatics/bty605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Motivation Function annotations of gene products, and phenotype annotations of genotypes, provide valuable information about molecular mechanisms that can be utilized by computational methods to identify functional and phenotypic relatedness, improve our understanding of disease and pathobiology, and lead to discovery of drug targets. Identifying functions and phenotypes commonly requires experiments which are time-consuming and expensive to carry out; creating the annotations additionally requires a curator to make an assertion based on reported evidence. Support to validate the mutual consistency of functional and phenotype annotations as well as a computational method to predict phenotypes from function annotations, would greatly improve the utility of function annotations. Results We developed a novel ontology-based method to validate the mutual consistency of function and phenotype annotations. We apply our method to mouse and human annotations, and identify several inconsistencies that can be resolved to improve overall annotation quality. We also apply our method to the rule-based prediction of regulatory phenotypes from functions and demonstrate that we can predict these phenotypes with Fmax of up to 0.647. Availability and implementation https://github.com/bio-ontology-research-group/phenogocon.
Collapse
Affiliation(s)
- Maxat Kulmanov
- Computer, Electrical and Mathematical Sciences and Engineering Division, Computational Bioscience Research Centre, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Paul N Schofield
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Georgios V Gkoutos
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, Birmingham, UK
- Institute of Translational Medicine, University Hospitals Birmingham, NHS Foundation Trust, Birmingham, UK
- NIHR Experimental Cancer Medicine Centre, Birmingham, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, Birmingham, UK
- NIHR Biomedical Research Centre, Birmingham, UK
| | - Robert Hoehndorf
- Computer, Electrical and Mathematical Sciences and Engineering Division, Computational Bioscience Research Centre, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
39
|
Savojardo C, Martelli P, Fariselli P, Profiti G, Casadio R. BUSCA: an integrative web server to predict subcellular localization of proteins. Nucleic Acids Res 2018; 46:W459-W466. [PMID: 29718411 PMCID: PMC6031068 DOI: 10.1093/nar/gky320] [Citation(s) in RCA: 280] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/12/2018] [Accepted: 04/17/2018] [Indexed: 12/28/2022] Open
Abstract
Here, we present BUSCA (http://busca.biocomp.unibo.it), a novel web server that integrates different computational tools for predicting protein subcellular localization. BUSCA combines methods for identifying signal and transit peptides (DeepSig and TPpred3), GPI-anchors (PredGPI) and transmembrane domains (ENSEMBLE3.0 and BetAware) with tools for discriminating subcellular localization of both globular and membrane proteins (BaCelLo, MemLoci and SChloro). Outcomes from the different tools are processed and integrated for annotating subcellular localization of both eukaryotic and bacterial protein sequences. We benchmark BUSCA against protein targets derived from recent CAFA experiments and other specific data sets, reporting performance at the state-of-the-art. BUSCA scores better than all other evaluated methods on 2732 targets from CAFA2, with a F1 value equal to 0.49 and among the best methods when predicting targets from CAFA3. We propose BUSCA as an integrated and accurate resource for the annotation of protein subcellular localization.
Collapse
Affiliation(s)
- Castrense Savojardo
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40100, Italy
| | - Pier Luigi Martelli
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40100, Italy
| | - Piero Fariselli
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova 35020, Italy
| | - Giuseppe Profiti
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40100, Italy
- Institute of Biomembrane, Bioenergetics and Molecular Biotechnologies, Italian National Research Council (CNR), Bari 70126, Italy
| | - Rita Casadio
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40100, Italy
- Institute of Biomembrane, Bioenergetics and Molecular Biotechnologies, Italian National Research Council (CNR), Bari 70126, Italy
| |
Collapse
|
40
|
Zhang C, Zheng W, Freddolino PL, Zhang Y. MetaGO: Predicting Gene Ontology of Non-homologous Proteins Through Low-Resolution Protein Structure Prediction and Protein-Protein Network Mapping. J Mol Biol 2018. [PMID: 29534977 DOI: 10.1016/j.jmb.2018.03.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Homology-based transferal remains the major approach to computational protein function annotations, but it becomes increasingly unreliable when the sequence identity between query and template decreases below 30%. We propose a novel pipeline, MetaGO, to deduce Gene Ontology attributes of proteins by combining sequence homology-based annotation with low-resolution structure prediction and comparison, and partner's homology-based protein-protein network mapping. The pipeline was tested on a large-scale set of 1000 non-redundant proteins from the CAFA3 experiment. Under the stringent benchmark conditions where templates with >30% sequence identity to the query are excluded, MetaGO achieves average F-measures of 0.487, 0.408, and 0.598, for Molecular Function, Biological Process, and Cellular Component, respectively, which are significantly higher than those achieved by other state-of-the-art function annotations methods. Detailed data analysis shows that the major advantage of the MetaGO lies in the new functional homolog detections from partner's homology-based network mapping and structure-based local and global structure alignments, the confidence scores of which can be optimally combined through logistic regression. These data demonstrate the power of using a hybrid model incorporating protein structure and interaction networks to deduce new functional insights beyond traditional sequence homology-based referrals, especially for proteins that lack homologous function templates. The MetaGO pipeline is available at http://zhanglab.ccmb.med.umich.edu/MetaGO/.
Collapse
Affiliation(s)
- Chengxin Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wei Zheng
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter L Freddolino
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
41
|
You R, Zhang Z, Xiong Y, Sun F, Mamitsuka H, Zhu S. GOLabeler: improving sequence-based large-scale protein function prediction by learning to rank. Bioinformatics 2018. [DOI: 10.1093/bioinformatics/bty130] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Ronghui You
- School of Computer Science and Shanghai Key Lab of Intelligent Information Processing
- Center for Computational System Biology, ISTBI, Fudan University, Shanghai, China
| | - Zihan Zhang
- School of Computer Science and Shanghai Key Lab of Intelligent Information Processing
- Center for Computational System Biology, ISTBI, Fudan University, Shanghai, China
| | - Yi Xiong
- Department of Bioinformatics and Biostatistics, Shanghai Jiaotong University, Shanghai, China
| | - Fengzhu Sun
- Center for Computational System Biology, ISTBI, Fudan University, Shanghai, China
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, USA
| | - Hiroshi Mamitsuka
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto Prefecture, Japan
- Department of Computer Science, Aalto University, Helsinki, Finland
| | - Shanfeng Zhu
- School of Computer Science and Shanghai Key Lab of Intelligent Information Processing
- Center for Computational System Biology, ISTBI, Fudan University, Shanghai, China
| |
Collapse
|
42
|
Zhao Y, Fu G, Wang J, Guo M, Yu G. Gene function prediction based on Gene Ontology Hierarchy Preserving Hashing. Genomics 2018; 111:334-342. [PMID: 29477548 DOI: 10.1016/j.ygeno.2018.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/02/2018] [Accepted: 02/16/2018] [Indexed: 12/27/2022]
Abstract
Gene Ontology (GO) uses structured vocabularies (or terms) to describe the molecular functions, biological roles, and cellular locations of gene products in a hierarchical ontology. GO annotations associate genes with GO terms and indicate the given gene products carrying out the biological functions described by the relevant terms. However, predicting correct GO annotations for genes from a massive set of GO terms as defined by GO is a difficult challenge. To combat with this challenge, we introduce a Gene Ontology Hierarchy Preserving Hashing (HPHash) based semantic method for gene function prediction. HPHash firstly measures the taxonomic similarity between GO terms. It then uses a hierarchy preserving hashing technique to keep the hierarchical order between GO terms, and to optimize a series of hashing functions to encode massive GO terms via compact binary codes. After that, HPHash utilizes these hashing functions to project the gene-term association matrix into a low-dimensional one and performs semantic similarity based gene function prediction in the low-dimensional space. Experimental results on three model species (Homo sapiens, Mus musculus and Rattus norvegicus) for interspecies gene function prediction show that HPHash performs better than other related approaches and it is robust to the number of hash functions. In addition, we also take HPHash as a plugin for BLAST based gene function prediction. From the experimental results, HPHash again significantly improves the prediction performance. The codes of HPHash are available at: http://mlda.swu.edu.cn/codes.php?name=HPHash.
Collapse
Affiliation(s)
- Yingwen Zhao
- College of Computer and Information Science, Southwest University, Chongqing 400715, China
| | - Guangyuan Fu
- College of Computer and Information Science, Southwest University, Chongqing 400715, China
| | - Jun Wang
- College of Computer and Information Science, Southwest University, Chongqing 400715, China
| | - Maozu Guo
- School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Key Laboratory of Intelligent Processing for Building Big Data, Beijing 100044, China.
| | - Guoxian Yu
- College of Computer and Information Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
43
|
Mitchell JB. Enzyme function and its evolution. Curr Opin Struct Biol 2017; 47:151-156. [PMID: 29107208 DOI: 10.1016/j.sbi.2017.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 08/29/2017] [Accepted: 10/02/2017] [Indexed: 01/10/2023]
Abstract
With rapid increases over recent years in the determination of protein sequence and structure, alongside knowledge of thousands of enzyme functions and hundreds of chemical mechanisms, it is now possible to combine breadth and depth in our understanding of enzyme evolution. Phylogenetics continues to move forward, though determining correct evolutionary family trees is not trivial. Protein function prediction has spawned a variety of promising methods that offer the prospect of identifying enzymes across the whole range of chemical functions and over numerous species. This knowledge is essential to understand antibiotic resistance, as well as in protein re-engineering and de novo enzyme design.
Collapse
Affiliation(s)
- John Bo Mitchell
- EaStCHEM School of Chemistry and Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Scotland KY16 9ST, United Kingdom
| |
Collapse
|
44
|
Zhang C, Freddolino PL, Zhang Y. COFACTOR: improved protein function prediction by combining structure, sequence and protein-protein interaction information. Nucleic Acids Res 2017; 45:W291-W299. [PMID: 28472402 PMCID: PMC5793808 DOI: 10.1093/nar/gkx366] [Citation(s) in RCA: 411] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/09/2017] [Accepted: 04/21/2017] [Indexed: 12/22/2022] Open
Abstract
The COFACTOR web server is a unified platform for structure-based multiple-level protein function predictions. By structurally threading low-resolution structural models through the BioLiP library, the COFACTOR server infers three categories of protein functions including gene ontology, enzyme commission and ligand-binding sites from various analogous and homologous function templates. Here, we report recent improvements of the COFACTOR server in the development of new pipelines to infer functional insights from sequence profile alignments and protein-protein interaction networks. Large-scale benchmark tests show that the new hybrid COFACTOR approach significantly improves the function annotation accuracy of the former structure-based pipeline and other state-of-the-art functional annotation methods, particularly for targets that have no close homology templates. The updated COFACTOR server and the template libraries are available at http://zhanglab.ccmb.med.umich.edu/COFACTOR/.
Collapse
Affiliation(s)
- Chengxin Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter L. Freddolino
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
45
|
Zhao B, Hu S, Li X, Zhang F, Tian Q, Ni W. An efficient method for protein function annotation based on multilayer protein networks. Hum Genomics 2016; 10:33. [PMID: 27678214 PMCID: PMC5039885 DOI: 10.1186/s40246-016-0087-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/14/2016] [Indexed: 12/31/2022] Open
Abstract
Background Accurate annotation of protein functions is still a big challenge for understanding life in the post-genomic era. Many computational methods based on protein-protein interaction (PPI) networks have been proposed to predict the function of proteins. However, the precision of these predictions still needs to be improved, due to the incompletion and noise in PPI networks. Integrating network topology and biological information could improve the accuracy of protein function prediction and may also lead to the discovery of multiple interaction types between proteins. Current algorithms generate a single network, which is archived using a weighted sum of all types of protein interactions. Method The influences of different types of interactions on the prediction of protein functions are not the same. To address this, we construct multilayer protein networks (MPN) by integrating PPI networks, the domain of proteins, and information on protein complexes. In the MPN, there is more than one type of connections between pairwise proteins. Different types of connections reflect different roles and importance in protein function prediction. Based on the MPN, we propose a new protein function prediction method, named function prediction based on multilayer protein networks (FP-MPN). Given an un-annotated protein, the FP-MPN method visits each layer of the MPN in turn and generates a set of candidate neighbors with known functions. A set of predicted functions for the testing protein is then formed and all of these functions are scored and sorted. Each layer plays different importance on the prediction of protein functions. A number of top-ranking functions are selected to annotate the unknown protein. Conclusions The method proposed in this paper was a better predictor when used on Saccharomyces cerevisiae protein data than other function prediction methods previously used. The proposed FP-MPN method takes different roles of connections in protein function prediction into account to reduce the artificial noise by introducing biological information. Electronic supplementary material The online version of this article (doi:10.1186/s40246-016-0087-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bihai Zhao
- Department of Mathematics and Computing Science, Changsha University, Changsha, Hunan, 410022, China
| | - Sai Hu
- Department of Mathematics and Computing Science, Changsha University, Changsha, Hunan, 410022, China.
| | - Xueyong Li
- Department of Mathematics and Computing Science, Changsha University, Changsha, Hunan, 410022, China
| | - Fan Zhang
- Department of Mathematics and Computing Science, Changsha University, Changsha, Hunan, 410022, China
| | - Qinglong Tian
- Department of Mathematics and Computing Science, Changsha University, Changsha, Hunan, 410022, China
| | - Wenyin Ni
- Department of Mathematics and Computing Science, Changsha University, Changsha, Hunan, 410022, China.
| |
Collapse
|
46
|
|