1
|
Ning K, Tang X, Li Z, Zhong L, Zhou Y, Wang J, Huang W, Zhang H, Ke J, Luan T, Chen S, Zhai J. Specific Monitoring the DNA Helicase Function via Anchor-Embedded DNA Probe. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413368. [PMID: 39737862 PMCID: PMC11848566 DOI: 10.1002/advs.202413368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/16/2024] [Indexed: 01/01/2025]
Abstract
DNA helicases play a pivotal role in maintaining genome integrity by unwinding the DNA double helix and are often considered promising targets for drug development. However, assessing specific DNA helicase activity in living cells remains challenging. Herein, the first anchor-embedded duplex (ATED) probe, 17GC, is constructed to uniquely monitor the unwinding activity of Werner syndrome helicase (WRN), a clinical anticancer target. This probe integrates biophysical screening and molecular simulation approaches. The 17GC probe consists of two components: the first one is a bubble structure as an anchor for recruiting WRN in cells, and the second one is GC-rich double helices on both ends of the bubble, which allow high sensitivity in detecting WRN activity. In vitro evaluations demonstrate that 17GC is highly sensitive and specific to WRN (LOD = 33.5 pm) compared to a wide range of other enzymes, including helicases and nucleases. Cellular evaluation reveals that the ATED probe exhibits remarkable performance in monitoring WRN helicase activity and assessing the inhibitory efficiency of clinical WRN inhibitors in various cell types. This study introduces a novel approach for designing specific and sensitive probes for DNA helicases in cells, which holds promise for biological characterization and drug development.
Collapse
Affiliation(s)
- Keni Ning
- School of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Xiaoyan Tang
- School of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Zhe Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and EvaluationSun Yat‐Sen UniversityGuangzhou510006China
| | - Liting Zhong
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and EvaluationSun Yat‐Sen UniversityGuangzhou510006China
| | - Yingchen Zhou
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and EvaluationSun Yat‐Sen UniversityGuangzhou510006China
| | - Jiaen Wang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and EvaluationSun Yat‐Sen UniversityGuangzhou510006China
| | - Wanyi Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and EvaluationSun Yat‐Sen UniversityGuangzhou510006China
| | - Han Zhang
- School of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Jiajun Ke
- School of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Tiangang Luan
- School of Environmental and Chemical EngineeringWuyi UniversityJiangmen529020China
- School of Life SciencesSun Yat‐Sen UniversityGuangzhou510275China
| | - Shuo‐Bin Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and EvaluationSun Yat‐Sen UniversityGuangzhou510006China
| | - Junqiu Zhai
- School of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhou510006China
| |
Collapse
|
2
|
Heuser A, Abdul Rahman W, Bechter E, Blank J, Buhr S, Erdmann D, Fontana P, Mermet-Meillon F, Meyerhofer M, Strang R, Schrapp M, Zimmermann C, Cortes-Cros M, Möbitz H, Hamon J. Challenges for the Discovery of Non-Covalent WRN Helicase Inhibitors. ChemMedChem 2024; 19:e202300613. [PMID: 38334957 DOI: 10.1002/cmdc.202300613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/10/2024]
Abstract
The Werner Syndrome RecQ helicase (WRN) is a synthetic lethal target of interest for the treatment of cancers with microsatellite instability (MSI). Different hit finding approaches were initially tested. The identification of WRN inhibitors proved challenging due to a high propensity for artefacts via protein interference, i. e., hits inhibiting WRN enzymatic activities through multiple, unspecific mechanisms. Previously published WRN Helicase inhibitors (ML216, NSC19630 or NSC617145) were characterized in an extensive set of biochemical and biophysical assays and could be ruled out as specific WRN helicase probes. More innovative screening strategies need to be developed for successful drug discovery of non-covalent WRN helicase inhibitors.
Collapse
Affiliation(s)
- Alisa Heuser
- Novartis Biomedical Research, Novartis Campus, CH-4056, Basel, Switzerland
| | | | - Elisabeth Bechter
- Novartis Biomedical Research, Novartis Campus, CH-4056, Basel, Switzerland
| | - Jutta Blank
- Novartis Biomedical Research, Novartis Campus, CH-4056, Basel, Switzerland
| | - Sylvia Buhr
- Novartis Biomedical Research, Novartis Campus, CH-4056, Basel, Switzerland
| | - Dirk Erdmann
- Novartis Biomedical Research, Novartis Campus, CH-4056, Basel, Switzerland
| | - Patrizia Fontana
- Novartis Biomedical Research, Novartis Campus, CH-4056, Basel, Switzerland
| | | | - Marco Meyerhofer
- Novartis Biomedical Research, Novartis Campus, CH-4056, Basel, Switzerland
| | - Ross Strang
- Novartis Biomedical Research, Novartis Campus, CH-4056, Basel, Switzerland
| | - Maxime Schrapp
- Novartis Biomedical Research, Novartis Campus, CH-4056, Basel, Switzerland
| | | | - Marta Cortes-Cros
- Novartis Biomedical Research, Novartis Campus, CH-4056, Basel, Switzerland
| | - Henrik Möbitz
- Novartis Biomedical Research, Novartis Campus, CH-4056, Basel, Switzerland
| | - Jacques Hamon
- Novartis Biomedical Research, Novartis Campus, CH-4056, Basel, Switzerland
| |
Collapse
|
3
|
Gotur D, Case A, Liu J, Sickmier EA, Holt N, Knockenhauer KE, Yao S, Lee YT, Copeland RA, Buker SM, Boriack-Sjodin PA. Development of assays to support identification and characterization of modulators of DExH-box helicase DHX9. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:376-384. [PMID: 37625785 DOI: 10.1016/j.slasd.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/02/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
DHX9 is a DExH-box RNA helicase that utilizes hydrolysis of all four nucleotide triphosphates (NTPs) to power cycles of 3' to 5' directional movement to resolve and/or unwind double stranded RNA, DNA, and RNA/DNA hybrids, R-loops, triplex-DNA and G-quadraplexes. DHX9 activity is important for both viral amplification and maintaining genomic stability in cancer cells; therefore, it is a therapeutic target of interest for drug discovery efforts. Biochemical assays measuring ATP hydrolysis and oligonucleotide unwinding for DHX9 have been developed and characterized, and these assays can support high-throughput compound screening efforts under balanced conditions. Assay development efforts revealed DHX9 can use double stranded RNA with 18-mer poly(U) 3' overhangs and as well as significantly shorter overhangs at the 5' or 3' end as substrates. The enzymatic assays are augmented by a robust SPR assay for compound validation. A mechanism-derived inhibitor, GTPγS, was characterized as part of the validation of these assays and a crystal structure of GDP bound to cat DHX9 has been solved. In addition to enabling drug discovery efforts for DHX9, these assays may be extrapolated to other RNA helicases providing a valuable toolkit for this important target class.
Collapse
Affiliation(s)
- Deepali Gotur
- Accent Therapeutics, 1050 Waltham Street, Lexington, MA 02421, USA
| | - April Case
- Accent Therapeutics, 1050 Waltham Street, Lexington, MA 02421, USA
| | - Julie Liu
- Accent Therapeutics, 1050 Waltham Street, Lexington, MA 02421, USA
| | - E Allen Sickmier
- Accent Therapeutics, 1050 Waltham Street, Lexington, MA 02421, USA
| | - Nicholas Holt
- Accent Therapeutics, 1050 Waltham Street, Lexington, MA 02421, USA
| | | | - Shihua Yao
- Accent Therapeutics, 1050 Waltham Street, Lexington, MA 02421, USA
| | - Young-Tae Lee
- Accent Therapeutics, 1050 Waltham Street, Lexington, MA 02421, USA
| | | | - Shane M Buker
- Accent Therapeutics, 1050 Waltham Street, Lexington, MA 02421, USA
| | | |
Collapse
|
4
|
Dey R, Samadder A, Nandi S. Exploring the Targets of Novel Corona Virus and Docking-based Screening of Potential Natural Inhibitors to Combat COVID-19. Curr Top Med Chem 2022; 22:2410-2434. [PMID: 36281864 DOI: 10.2174/1568026623666221020163831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/07/2022] [Accepted: 09/21/2022] [Indexed: 01/20/2023]
Abstract
There is a need to explore natural compounds against COVID-19 due to their multitargeted actions against various targets of nCoV. They act on multiple sites rather than single targets against several diseases. Thus, there is a possibility that natural resources can be repurposed to combat COVID-19. However, the biochemical mechanisms of these inhibitors were not known. To reveal the mode of anti-nCoV action, structure-based docking plays a major role. The present study is an attempt to explore various potential targets of SARS-CoV-2 and the structure-based screening of various potential natural inhibitors to combat the novel coronavirus.
Collapse
Affiliation(s)
- Rishita Dey
- Department of Zoology, Cytogenetics and Molecular Biology Lab., University of Kalyani, Kalyani, Nadia, 741235, India.,Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur, 244713, India
| | - Asmita Samadder
- Department of Zoology, Cytogenetics and Molecular Biology Lab., University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur, 244713, India
| |
Collapse
|
5
|
Mal S, Malik U, Mahapatra M, Mishra A, Pal D, Paidesetty SK. A review on synthetic strategy, molecular pharmacology of indazole derivatives, and their future perspective. Drug Dev Res 2022; 83:1469-1504. [PMID: 35971890 DOI: 10.1002/ddr.21979] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/04/2022] [Accepted: 07/22/2022] [Indexed: 11/09/2022]
Abstract
With different nitrogen-containing heterocyclic moieties, Indazoles earn one of the places among the top investigated molecules in medicinal research. Indazole, an important fused aromatic heterocyclic system containing benzene and pyrazole ring with a chemical formula of C7 H6 N2 , is also called benzopyrazole. Indazoles consist of three tautomeric forms in which 1H-tautomers (indazoles) and 2H-tautomers (isoindazoles) exist in all phases. The tautomerism in indazoles greatly influences synthesis, reactivity, physical and even the biological properties of indazoles. The thermodynamic internal energy calculation of these tautomers points view 1H-indazole as the predominant and stable form over 2H-indazole. The natural source of indazole is limited and exists in alkaloidal nature (i.e., nigellidine, nigeglanine, nigellicine, etc.) found from Nigella plants. Some of the FDA-approved drugs like Axitinib, Entrectinib, Niraparib, Benzydamine, and Granisetron are being used to treat renal cell cancer, non-small cell lung cancer (NSCLC), epithelial ovarian cancer, chronic inflammation, chemotherapy-induced nausea, vomiting, and many more uses. Besides all these advantages regarding its biological activity, the main issue about indazoles is the less abundance in plant sources, and their synthetic derivatives also often face problems with low yield. In this review article, we discuss its chemistry, tautomerism along with their effects, different schematics for the synthesis of indazole derivatives, and their different biological activities.
Collapse
Affiliation(s)
- Suvadeep Mal
- Department of Pharmaceutical Chemistry, Siksha 'O' Anusandhan University (Deemed to be University), Bhubaneswar, Odisha, India
| | - Udita Malik
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Monalisa Mahapatra
- Department of Pharmaceutical Chemistry, Siksha 'O' Anusandhan University (Deemed to be University), Bhubaneswar, Odisha, India
| | | | - Dilipkumar Pal
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Sudhir K Paidesetty
- Department of Pharmaceutical Chemistry, Siksha 'O' Anusandhan University (Deemed to be University), Bhubaneswar, Odisha, India
| |
Collapse
|
6
|
Datta A, Brosh RM. WRN rescues replication forks compromised by a BRCA2 deficiency: Predictions for how inhibition of a helicase that suppresses premature aging tilts the balance to fork demise and chromosomal instability in cancer. Bioessays 2022; 44:e2200057. [PMID: 35751457 PMCID: PMC9527950 DOI: 10.1002/bies.202200057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 11/08/2022]
Abstract
Hereditary breast and ovarian cancers are frequently attributed to germline mutations in the tumor suppressor genes BRCA1 and BRCA2. BRCA1/2 act to repair double-strand breaks (DSBs) and suppress the demise of unstable replication forks. Our work elucidated a dynamic interplay between BRCA2 and the WRN DNA helicase/exonuclease defective in the premature aging disorder Werner syndrome. WRN and BRCA2 participate in complementary pathways to stabilize replication forks in cancer cells, allowing them to proliferate. Whether the functional overlap of WRN and BRCA2 is relevant to replication at gaps between newly synthesized DNA fragments, protection of telomeres, and/or metabolism of secondary DNA structures remain to be determined. Advances in understanding the mechanisms elicited during replication stress have prompted the community to reconsider avenues for cancer therapy. Insights from studies of PARP or topoisomerase inhibitors provide working models for the investigation of WRN's mechanism of action. We discuss these topics, focusing on the implications of the WRN-BRCA2 genetic interaction under conditions of replication stress.
Collapse
Affiliation(s)
- Arindam Datta
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Robert M Brosh
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Jo U, Murai Y, Takebe N, Thomas A, Pommier Y. Precision Oncology with Drugs Targeting the Replication Stress, ATR, and Schlafen 11. Cancers (Basel) 2021; 13:4601. [PMID: 34572827 PMCID: PMC8465591 DOI: 10.3390/cancers13184601] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022] Open
Abstract
Precision medicine aims to implement strategies based on the molecular features of tumors and optimized drug delivery to improve cancer diagnosis and treatment. DNA replication is a logical approach because it can be targeted by a broad range of anticancer drugs that are both clinically approved and in development. These drugs increase deleterious replication stress (RepStress); however, how to selectively target and identify the tumors with specific molecular characteristics are unmet clinical needs. Here, we provide background information on the molecular processes of DNA replication and its checkpoints, and discuss how to target replication, checkpoint, and repair pathways with ATR inhibitors and exploit Schlafen 11 (SLFN11) as a predictive biomarker.
Collapse
Affiliation(s)
- Ukhyun Jo
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-4264, USA; (Y.M.); (A.T.)
| | - Yasuhisa Murai
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-4264, USA; (Y.M.); (A.T.)
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Naoko Takebe
- Developmental Therapeutics Branch and Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, MD 20892-4264, USA;
| | - Anish Thomas
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-4264, USA; (Y.M.); (A.T.)
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-4264, USA; (Y.M.); (A.T.)
| |
Collapse
|
8
|
|
9
|
Vallamkondu J, John A, Wani WY, Ramadevi SP, Jella KK, Reddy PH, Kandimalla R. SARS-CoV-2 pathophysiology and assessment of coronaviruses in CNS diseases with a focus on therapeutic targets. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165889. [PMID: 32603829 PMCID: PMC7320676 DOI: 10.1016/j.bbadis.2020.165889] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 02/06/2023]
Abstract
The novel Coronavirus disease of 2019 (nCOV-19) is a viral outbreak noted first in Wuhan, China. This disease is caused by Severe Acute Respiratory Syndrome (SARS) Coronavirus (CoV)-2. In the past, other members of the coronavirus family, such as SARS and Middle East Respiratory Syndrome (MERS), have made an impact in China and the Arabian peninsula respectively. Both SARS and COVID-19 share similar symptoms such as fever, cough, and difficulty in breathing that can become fatal in later stages. However, SARS and MERS infections were epidemic diseases constrained to limited regions. By March 2020 the SARS-CoV-2 had spread across the globe and on March 11th, 2020 the World Health Organization (WHO) declared COVID-19 as pandemic disease. In severe SARS-CoV-2 infection, many patients succumbed to pneumonia. Higher rates of deaths were seen in older patients who had co-morbidities such as diabetes mellitus, hypertension, cardiovascular disease (CVD), and dementia. In this review paper, we discuss the effect of SARS-CoV-2 on CNS diseases, such as Alzheimer's-like dementia, and diabetes mellitus. We also focus on the virus genome, pathophysiology, theranostics, and autophagy mechanisms. We will assess the multiorgan failure reported in advanced stages of SARS-CoV-2 infection. Our paper will provide mechanistic clues and therapeutic targets for physicians and investigators to combat COVID-19.
Collapse
Affiliation(s)
| | - Albin John
- Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Willayat Yousuf Wani
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | | | | | - P Hemachandra Reddy
- Professor of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Internal Medicine, Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Ramesh Kandimalla
- Department of Biochemistry, Kakatiya Medical College, Warangal 506007, Telangana, India; Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India.
| |
Collapse
|
10
|
Lodovichi S, Cervelli T, Pellicioli A, Galli A. Inhibition of DNA Repair in Cancer Therapy: Toward a Multi-Target Approach. Int J Mol Sci 2020; 21:E6684. [PMID: 32932697 PMCID: PMC7554826 DOI: 10.3390/ijms21186684] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022] Open
Abstract
Alterations in DNA repair pathways are one of the main drivers of cancer insurgence. Nevertheless, cancer cells are more susceptible to DNA damage than normal cells and they rely on specific functional repair pathways to survive. Thanks to advances in genome sequencing, we now have a better idea of which genes are mutated in specific cancers and this prompted the development of inhibitors targeting DNA repair players involved in pathways essential for cancer cells survival. Currently, the pivotal concept is that combining the inhibition of mechanisms on which cancer cells viability depends is the most promising way to treat tumorigenesis. Numerous inhibitors have been developed and for many of them, efficacy has been demonstrated either alone or in combination with chemo or radiotherapy. In this review, we will analyze the principal pathways involved in cell cycle checkpoint and DNA repair focusing on how their alterations could predispose to cancer, then we will explore the inhibitors developed or in development specifically targeting different proteins involved in each pathway, underscoring the rationale behind their usage and how their combination and/or exploitation as adjuvants to classic therapies could help in patients clinical outcome.
Collapse
Affiliation(s)
- Samuele Lodovichi
- Bioscience Department, University of Milan, Via Celoria 26, 20131 Milan, Italy;
| | - Tiziana Cervelli
- Yeast Genetics and Genomics Group, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology CNR, Via Moruzzi 1, 56125 Pisa, Italy;
| | - Achille Pellicioli
- Bioscience Department, University of Milan, Via Celoria 26, 20131 Milan, Italy;
| | - Alvaro Galli
- Yeast Genetics and Genomics Group, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology CNR, Via Moruzzi 1, 56125 Pisa, Italy;
| |
Collapse
|
11
|
Prajapat M, Sarma P, Shekhar N, Avti P, Sinha S, Kaur H, Kumar S, Bhattacharyya A, Kumar H, Bansal S, Medhi B. Drug targets for corona virus: A systematic review. Indian J Pharmacol 2020; 52:56-65. [PMID: 32201449 PMCID: PMC7074424 DOI: 10.4103/ijp.ijp_115_20] [Citation(s) in RCA: 278] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 12/31/2022] Open
Abstract
The 2019-novel coronavirus (nCoV) is a major source of disaster in the 21th century. However, the lack of specific drugs to prevent/treat an attack is a major need at this current point of time. In this regard, we conducted a systematic review to identify major druggable targets in coronavirus (CoV). We searched PubMed and RCSB database with keywords HCoV, NCoV, corona virus, SERS-CoV, MERS-CoV, 2019-nCoV, crystal structure, X-ray crystallography structure, NMR structure, target, and drug target till Feb 3, 2020. The search identified seven major targets (spike protein, envelop protein, membrane protein, protease, nucleocapsid protein, hemagglutinin esterase, and helicase) for which drug design can be considered. There are other 16 nonstructural proteins (NSPs), which can also be considered from the drug design perspective. The major structural proteins and NSPs may serve an important role from drug design perspectives. However, the occurrence of frequent recombination events is a major deterrent factor toward the development of CoV-specific vaccines/drugs.
Collapse
Affiliation(s)
- Manisha Prajapat
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Phulen Sarma
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Nishant Shekhar
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pramod Avti
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shweta Sinha
- Department of Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Hardeep Kaur
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Subodh Kumar
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Anusuya Bhattacharyya
- Departments of Ophthalmology, Government Medical College and Hospital, Chandigarh, India
| | - Harish Kumar
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Seema Bansal
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
12
|
Prajapat M, Sarma P, Shekhar N, Avti P, Sinha S, Kaur H, Kumar S, Bhattacharyya A, Kumar H, Bansal S, Medhi B. Drug targets for corona virus: A systematic review. Indian J Pharmacol 2020. [PMID: 32201449 DOI: 10.4103/ijp.ijp.115-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/15/2023] Open
Abstract
The 2019-novel coronavirus (nCoV) is a major source of disaster in the 21th century. However, the lack of specific drugs to prevent/treat an attack is a major need at this current point of time. In this regard, we conducted a systematic review to identify major druggable targets in coronavirus (CoV). We searched PubMed and RCSB database with keywords HCoV, NCoV, corona virus, SERS-CoV, MERS-CoV, 2019-nCoV, crystal structure, X-ray crystallography structure, NMR structure, target, and drug target till Feb 3, 2020. The search identified seven major targets (spike protein, envelop protein, membrane protein, protease, nucleocapsid protein, hemagglutinin esterase, and helicase) for which drug design can be considered. There are other 16 nonstructural proteins (NSPs), which can also be considered from the drug design perspective. The major structural proteins and NSPs may serve an important role from drug design perspectives. However, the occurrence of frequent recombination events is a major deterrent factor toward the development of CoV-specific vaccines/drugs.
Collapse
Affiliation(s)
- Manisha Prajapat
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Phulen Sarma
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Nishant Shekhar
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pramod Avti
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shweta Sinha
- Department of Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Hardeep Kaur
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Subodh Kumar
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Anusuya Bhattacharyya
- Departments of Ophthalmology, Government Medical College and Hospital, Chandigarh, India
| | - Harish Kumar
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Seema Bansal
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
13
|
Sommers JA, Kulikowicz T, Croteau DL, Dexheimer T, Dorjsuren D, Jadhav A, Maloney DJ, Simeonov A, Bohr VA, Brosh RM. A high-throughput screen to identify novel small molecule inhibitors of the Werner Syndrome Helicase-Nuclease (WRN). PLoS One 2019; 14:e0210525. [PMID: 30625228 PMCID: PMC6326523 DOI: 10.1371/journal.pone.0210525] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/26/2018] [Indexed: 01/26/2023] Open
Abstract
Werner syndrome (WS), an autosomal recessive genetic disorder, displays accelerated clinical symptoms of aging leading to a mean lifespan less than 50 years. The WS helicase-nuclease (WRN) is involved in many important pathways including DNA replication, recombination and repair. Replicating cells are dependent on helicase activity, leading to the pursuit of human helicases as potential therapeutic targets for cancer treatment. Small molecule inhibitors of DNA helicases can be used to induce synthetic lethality, which attempts to target helicase-dependent compensatory DNA repair pathways in tumor cells that are already genetically deficient in a specific pathway of DNA repair. Alternatively, helicase inhibitors may be useful as tools to study the specialized roles of helicases in replication and DNA repair. In this study, approximately 350,000 small molecules were screened based on their ability to inhibit duplex DNA unwinding by a catalytically active WRN helicase domain fragment in a high-throughput fluorometric assay to discover new non-covalent small molecule inhibitors of the WRN helicase. Select compounds were screened to exclude ones that inhibited DNA unwinding by other helicases in the screen, bound non-specifically to DNA, acted as irreversible inhibitors, or possessed unfavorable chemical properties. Several compounds were tested for their ability to impair proliferation of cultured tumor cells. We observed that two of the newly identified WRN helicase inhibitors inhibited proliferation of cancer cells in a lineage-dependent manner. These studies represent the first high-throughput screen for WRN helicase inhibitors and the results have implications for anti-cancer strategies targeting WRN in different cancer cells and genetic backgrounds.
Collapse
Affiliation(s)
- Joshua A. Sommers
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Tomasz Kulikowicz
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Deborah L. Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Thomas Dexheimer
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Dorjbal Dorjsuren
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Ajit Jadhav
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - David J. Maloney
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Vilhelm A. Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Robert M. Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
14
|
Datta A, Brosh RM. New Insights Into DNA Helicases as Druggable Targets for Cancer Therapy. Front Mol Biosci 2018; 5:59. [PMID: 29998112 PMCID: PMC6028597 DOI: 10.3389/fmolb.2018.00059] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/06/2018] [Indexed: 12/28/2022] Open
Abstract
Small molecules that deter the functions of DNA damage response machinery are postulated to be useful for enhancing the DNA damaging effects of chemotherapy or ionizing radiation treatments to combat cancer by impairing the proliferative capacity of rapidly dividing cells that accumulate replicative lesions. Chemically induced or genetic synthetic lethality is a promising area in personalized medicine, but it remains to be optimized. A new target in cancer therapy is DNA unwinding enzymes known as helicases. Helicases play critical roles in all aspects of nucleic acid metabolism. We and others have investigated small molecule targeted inhibition of helicase function by compound screens using biochemical and cell-based approaches. Small molecule-induced trapping of DNA helicases may represent a generalized mechanism exemplified by certain topoisomerase and PARP inhibitors that exert poisonous consequences, especially in rapidly dividing cancer cells. Taking the lead from the broader field of DNA repair inhibitors and new information gleaned from structural and biochemical studies of DNA helicases, we predict that an emerging strategy to identify useful helicase-interacting compounds will be structure-based molecular docking interfaced with a computational approach. Potency, specificity, drug resistance, and bioavailability of helicase inhibitor drugs and targeting such compounds to subcellular compartments where the respective helicases operate must be addressed. Beyond cancer therapy, continued and new developments in this area may lead to the discovery of helicase-interacting compounds that chemically rescue clinically relevant helicase missense mutant proteins or activate the catalytic function of wild-type DNA helicases, which may have novel therapeutic application.
Collapse
Affiliation(s)
- Arindam Datta
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, Baltimore, MD, United States
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, Baltimore, MD, United States
| |
Collapse
|
15
|
Interactive Roles of DNA Helicases and Translocases with the Single-Stranded DNA Binding Protein RPA in Nucleic Acid Metabolism. Int J Mol Sci 2017; 18:ijms18061233. [PMID: 28594346 PMCID: PMC5486056 DOI: 10.3390/ijms18061233] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/30/2017] [Accepted: 06/01/2017] [Indexed: 01/05/2023] Open
Abstract
Helicases and translocases use the energy of nucleoside triphosphate binding and hydrolysis to unwind/resolve structured nucleic acids or move along a single-stranded or double-stranded polynucleotide chain, respectively. These molecular motors facilitate a variety of transactions including replication, DNA repair, recombination, and transcription. A key partner of eukaryotic DNA helicases/translocases is the single-stranded DNA binding protein Replication Protein A (RPA). Biochemical, genetic, and cell biological assays have demonstrated that RPA interacts with these human molecular motors physically and functionally, and their association is enriched in cells undergoing replication stress. The roles of DNA helicases/translocases are orchestrated with RPA in pathways of nucleic acid metabolism. RPA stimulates helicase-catalyzed DNA unwinding, enlists translocases to sites of action, and modulates their activities in DNA repair, fork remodeling, checkpoint activation, and telomere maintenance. The dynamic interplay between DNA helicases/translocases and RPA is just beginning to be understood at the molecular and cellular levels, and there is still much to be learned, which may inform potential therapeutic strategies.
Collapse
|
16
|
Targeted inhibition of WRN helicase, replication stress and cancer. Biochim Biophys Acta Rev Cancer 2016; 1867:42-48. [PMID: 27902925 DOI: 10.1016/j.bbcan.2016.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/16/2016] [Accepted: 11/24/2016] [Indexed: 11/21/2022]
Abstract
WRN helicase has several roles in genome maintenance, such as replication, base excision repair, recombination, DNA damage response and transcription. These processes are often found upregulated in human cancers, many of which display increased levels of WRN. Therefore, directed inhibition of this RecQ helicase could be beneficial to selective cancer therapy. Inhibition of WRN is feasible by the use of small-molecule inhibitors or application of RNA interference and EGS/RNase P targeting systems. Remarkably, helicase depletion leads to a severe reduction in cell viability due to mitotic catastrophe, which is triggered by replication stress induced by DNA repair failure and fork progression arrest. Moreover, we present new evidence that WRN depletion results in early changes of RNA polymerase III and RNase P activities, thereby implicating chromatin-associated tRNA enzymes in WRN-related stress response. Combined with the recently discovered roles of RecQ helicases in cancer, current data support the targeting prospect of these genome guardians, as a means of developing clinical phases aimed at diminishing adaptive resistance to present targeted therapies.
Collapse
|
17
|
Abstract
In this special Methods collection on DNA helicases, I have solicited articles from leading experts in the field with a priority to gather a defined series of papers on highly relevant topics that encompass biological, biochemical, and biophysical aspects of helicase function. The experimental approaches described provide an opportunity for both new and more experienced scientists to use the information for the design of their own investigations. The reader will find detailed methods for single-molecule studies, novel biochemical experiments, genetic analyses, and cell biological assays in a variety of systems with an emphasis placed on state-of-the-art techniques to measure helicase function. Contributing authors were strongly encouraged to provide a carefully constructed description of the methods employed so that others might use this information in a manner that will be useful for their own particular application and helicase of interest. This special issue of Methods dedicated to DNA helicases offers readers a treasure chest of unique experimental approaches and protocols focused on rapidly developing techniques that are useful for studying both in vivo and in vitro aspects of helicase function.
Collapse
Affiliation(s)
- Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, 251 Bayview Blvd, Baltimore, MD 21224, USA.
| |
Collapse
|