1
|
Chen Y, Chen Y, Qin W. Mapping RNA-Protein Interactions via Proximity Labeling-Based Approaches. Chem Asian J 2025:e202500118. [PMID: 40249647 DOI: 10.1002/asia.202500118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 04/19/2025]
Abstract
RNA-protein interactions are fundamental to a wide range of biological processes, and understanding these interactions in their native cellular context is both vital and challenging. Traditional methods for studying RNA-protein interactions rely on crosslinking, which can introduce artifacts. Recently, proximity labeling-based techniques have emerged as powerful alternatives, offering a crosslinking-free approach to investigate these interactions. This review highlights recent advancements in the development and application of proximity labeling methods, focusing on both RNA-centric and protein-centric strategies for profiling cellular RNA-protein interactions. By examining these innovative approaches, we aim to provide insights into their potential for enhancing our understanding of RNA-protein dynamics in various biological settings.
Collapse
Affiliation(s)
- Yongzuo Chen
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuxin Chen
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wei Qin
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
- The State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Yamada H, Iwai H, Hashiya F, Kimura Y, Abe H, Yamamoto J. Concise Affinity-Based Purification of Ligated mRNA for Structure-Activity Relationship Studies of Nucleosugar Modification Patterns. Chembiochem 2025; 26:e202400711. [PMID: 39533830 DOI: 10.1002/cbic.202400711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
Position-specific nucleoside sugar modifications have been shown to improve the translational activity and stability of chemically synthesized mRNA. For pharmaceutical applications of chemically modified mRNAs, a rapid purification methodology is imperative to identify the optimal modification pattern. However, while the chemical synthesis of mRNAs can be accomplished by splint ligation of oligonucleotide fragments, the current purification method for ligated mRNAs based on denaturing polyacrylamide gel electrophoresis tends to be time consuming. In this study, we developed a two-step affinity purification method for rapid sample preparation. In this method, ligated mRNA is captured by oligo dT magnetic beads and streptavidin magnetic beads with 3'-biotinylated oligo DNA, which are complementary to the 3'-poly(A) and 5' terminal sequences of the target mRNA, respectively. Therefore, the target mRNA can be isolated from a complex mixture of splint ligations. Using this method, six sugar-modified mRNAs were simultaneously purified, and the translational activities of these mRNAs were evaluated immediately after purification. The results demonstrate that this methodology is suitable for the rapid preparation of various chemically synthesized mRNAs to identify their optimal modification patterns.
Collapse
Affiliation(s)
- Hiroki Yamada
- Modality Research Laboratories 1, Research Unit, Research Division, Kyowa Kirin Co., Ltd., 3-6-6 Asahi, Machida, Tokyo, 194-8533, Japan
| | - Hiroto Iwai
- Modality Research Laboratories 1, Research Unit, Research Division, Kyowa Kirin Co., Ltd., 3-6-6 Asahi, Machida, Tokyo, 194-8533, Japan
| | - Fumitaka Hashiya
- Research Center for Materials Science, Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Yasuaki Kimura
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Hiroshi Abe
- Research Center for Materials Science, Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
- CREST, Japan Science and Technology Agency, 7, Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Junichiro Yamamoto
- Modality Research Laboratories 1, Research Unit, Research Division, Kyowa Kirin Co., Ltd., 3-6-6 Asahi, Machida, Tokyo, 194-8533, Japan
| |
Collapse
|
3
|
Ren Y, Liao H, Yan J, Lu H, Mao X, Wang C, Li YF, Liu Y, Chen C, Chen L, Wang X, Zhou KY, Liu HM, Liu Y, Hua YM, Yu L, Xue Z. Capture of RNA-binding proteins across mouse tissues using HARD-AP. Nat Commun 2024; 15:8421. [PMID: 39341811 PMCID: PMC11438895 DOI: 10.1038/s41467-024-52765-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
RNA-binding proteins (RBPs) modulate all aspects of RNA metabolism, but a comprehensive picture of RBP expression across tissues is lacking. Here, we describe our development of the method we call HARD-AP that robustly retrieves RBPs and tightly associated RNA regulatory complexes from cultured cells and fresh tissues. We successfully use HARD-AP to establish a comprehensive atlas of RBPs across mouse primary organs. We then systematically map RNA-binding sites of these RBPs using machine learning-based modeling. Notably, the modeling reveals that the LIM domain as an RNA-binding domain in many RBPs. We validate the LIM-domain-only protein Csrp1 as a tissue-dependent RNA binding protein. Taken together, HARD-AP is a powerful approach that can be used to identify RBPomes from any type of sample, allowing comprehensive and physiologically relevant networks of RNA-protein interactions.
Collapse
Affiliation(s)
- Yijia Ren
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hongyu Liao
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jun Yan
- National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| | - Hongyu Lu
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaowei Mao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
- Shimmer Center, Tianfu Jiangxi Laboratory, Chengdu, Sichuan, 641419, China
| | - Chuan Wang
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yi-Fei Li
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yu Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chong Chen
- Department of Urology, Institute of Urology, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lu Chen
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiangfeng Wang
- National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| | - Kai-Yu Zhou
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Han-Min Liu
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yi Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yi-Min Hua
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Lin Yu
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Zhihong Xue
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China.
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
4
|
Qi Z, Xue S, Chen J, Zhao W, Johnson K, Wen X, Richard JLC, Zhong S. Genome-Wide Mapping of RNA-Protein Associations via Sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611288. [PMID: 39282297 PMCID: PMC11398515 DOI: 10.1101/2024.09.04.611288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
RNA-protein interactions are crucial for regulating gene expression and cellular functions, with their dysregulation potentially impacting disease progression. Systematically mapping these interactions is resource-intensive due to the vast number of potential RNA and protein interactions. Here, we introduce PRIM-seq (Protein-RNA Interaction Mapping by sequencing), a method for the concurrent de novo identification of RNA-binding proteins (RBPs) and the elucidation of their associated RNAs. PRIM-seq works by converting each RNA-protein pair into a unique chimeric DNA sequence, which is then decoded through DNA sequencing. Applied to two human cell types, PRIM-seq generated a comprehensive human RNA-protein association network (HuRPA), consisting of more than 350,000 RNA-proteins pairs involving approximately 7,000 RNAs and 11,000 proteins. The data revealed an enrichment of previously reported RBPs and RNA-protein interactions within HuRPA. We also identified LINC00339 as a protein-associating non-coding RNA and PHGDH as an RNA-associating protein. Notably, PHGDH interacts with BECN1 and ATF4 mRNAs, suppressing their protein expression and consequently inhibiting autophagy, apoptosis, and neurite outgrowth while promoting cell proliferation. PRIM-seq offers a powerful tool for discovering RBPs and RNA-protein associations, contributing to more comprehensive functional genome annotations.
Collapse
Affiliation(s)
- Zhijie Qi
- Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, USA
| | - Shuanghong Xue
- Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, USA
| | - Junchen Chen
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Wenxin Zhao
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Kara Johnson
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Xingzhao Wen
- Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, CA, USA
| | | | - Sheng Zhong
- Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
5
|
Reichel M, Schmidt O, Rettel M, Stein F, Köster T, Butter F, Staiger D. Revealing the Arabidopsis AtGRP7 mRNA binding proteome by specific enhanced RNA interactome capture. BMC PLANT BIOLOGY 2024; 24:552. [PMID: 38877390 PMCID: PMC11177498 DOI: 10.1186/s12870-024-05249-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND The interaction of proteins with RNA in the cell is crucial to orchestrate all steps of RNA processing. RNA interactome capture (RIC) techniques have been implemented to catalogue RNA- binding proteins in the cell. In RIC, RNA-protein complexes are stabilized by UV crosslinking in vivo. Polyadenylated RNAs and associated proteins are pulled down from cell lysates using oligo(dT) beads and the RNA-binding proteome is identified by quantitative mass spectrometry. However, insights into the RNA-binding proteome of a single RNA that would yield mechanistic information on how RNA expression patterns are orchestrated, are scarce. RESULTS Here, we explored RIC in Arabidopsis to identify proteins interacting with a single mRNA, using the circadian clock-regulated Arabidopsis thaliana GLYCINE-RICH RNA-BINDING PROTEIN 7 (AtGRP7) transcript, one of the most abundant transcripts in Arabidopsis, as a showcase. Seedlings were treated with UV light to covalently crosslink RNA and proteins. The AtGRP7 transcript was captured from cell lysates with antisense oligonucleotides directed against the 5'untranslated region (UTR). The efficiency of RNA capture was greatly improved by using locked nucleic acid (LNA)/DNA oligonucleotides, as done in the enhanced RIC protocol. Furthermore, performing a tandem capture with two rounds of pulldown with the 5'UTR oligonucleotide increased the yield. In total, we identified 356 proteins enriched relative to a pulldown from atgrp7 mutant plants. These were benchmarked against proteins pulled down from nuclear lysates by AtGRP7 in vitro transcripts immobilized on beads. Among the proteins validated by in vitro interaction we found the family of Acetylation Lowers Binding Affinity (ALBA) proteins. Interaction of ALBA4 with the AtGRP7 RNA was independently validated via individual-nucleotide resolution crosslinking and immunoprecipitation (iCLIP). The expression of the AtGRP7 transcript in an alba loss-of-function mutant was slightly changed compared to wild-type, demonstrating the functional relevance of the interaction. CONCLUSION We adapted specific RNA interactome capture with LNA/DNA oligonucleotides for use in plants using AtGRP7 as a showcase. We anticipate that with further optimization and up scaling the protocol should be applicable for less abundant transcripts.
Collapse
Affiliation(s)
- Marlene Reichel
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany.
- Department of Biology, University of Copenhagen, København N, 2200, Denmark.
| | - Olga Schmidt
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
| | - Mandy Rettel
- Proteomics Core Facility, EMBL, 69117, Heidelberg, Germany
| | - Frank Stein
- Proteomics Core Facility, EMBL, 69117, Heidelberg, Germany
| | - Tino Köster
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
| | - Falk Butter
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany.
| |
Collapse
|
6
|
Völkers M, Preiss T, Hentze MW. RNA-binding proteins in cardiovascular biology and disease: the beat goes on. Nat Rev Cardiol 2024; 21:361-378. [PMID: 38163813 DOI: 10.1038/s41569-023-00958-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
Cardiac development and function are becoming increasingly well understood from different angles, including signalling, transcriptional and epigenetic mechanisms. By contrast, the importance of the post-transcriptional landscape of cardiac biology largely remains to be uncovered, building on the foundation of a few existing paradigms. The discovery during the past decade of hundreds of additional RNA-binding proteins in mammalian cells and organs, including the heart, is expected to accelerate progress and has raised intriguing possibilities for better understanding the intricacies of cardiac development, metabolism and adaptive alterations. In this Review, we discuss the progress and new concepts on RNA-binding proteins and RNA biology and appraise them in the context of common cardiovascular clinical conditions, from cell and organ-wide perspectives. We also discuss how a better understanding of cardiac RNA-binding proteins can fill crucial knowledge gaps in cardiology and might pave the way to developing better treatments to reduce cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
- Mirko Völkers
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg and Mannheim, Germany
| | - Thomas Preiss
- Shine-Dalgarno Centre for RNA Innovation, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Matthias W Hentze
- European Molecular Biology Laboratory, Heidelberg, Germany.
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany.
| |
Collapse
|
7
|
Jin H, Li C, Jia Y, Qi Y, Piao W. Revealing the hidden RBP-RNA interactions with RNA modification enzyme-based strategies. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1863. [PMID: 39392204 PMCID: PMC11469752 DOI: 10.1002/wrna.1863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 10/12/2024]
Abstract
RNA-binding proteins (RBPs) are powerful and versatile regulators in living creatures, playing fundamental roles in organismal development, metabolism, and various diseases by the regulation of gene expression at multiple levels. The requirements of deep research on RBP function have promoted the rapid development of RBP-RNA interplay detection methods. Recently, the detection method of fusing RNA modification enzymes (RME) with RBP of interest has become a hot topic. Here, we reviewed RNA modification enzymes in adenosine deaminases that act on RNA (ADAR), terminal nucleotidyl transferase (TENT), and activation-induced cytosine deaminase/ApoB mRNA editing enzyme catalytic polypeptide-like (AID/APOBEC) protein family, regarding the biological function, biochemical activity, and substrate specificity originated from enzyme selves, their domains and partner proteins. In addition, we discussed the RME activity screening system, and the RME mutations with engineered enzyme activity. Furthermore, we provided a systematic overview of the basic principles, advantages, disadvantages, and applications of the RME-based and cross-linking and immunopurification (CLIP)-based RBP target profiling strategies, including targets of RNA-binding proteins identified by editing (TRIBE), RNA tagging, surveying targets by APOBEC-mediated profiling (STAMP), CLIP-seq, and their derivative technology. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Hua Jin
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
- Advanced Technology Research Institute, Beijing Institute of TechnologyJinanPeople's Republic of China
| | - Chong Li
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
| | - Yunxiao Jia
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
| | - Yuxuan Qi
- Faculty of ScienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Weilan Piao
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
- Advanced Technology Research Institute, Beijing Institute of TechnologyJinanPeople's Republic of China
| |
Collapse
|
8
|
Balzarini S, Van Ende R, Voet A, Geuten K. A widely applicable and cost-effective method for specific RNA-protein complex isolation. Sci Rep 2023; 13:6898. [PMID: 37106019 PMCID: PMC10140378 DOI: 10.1038/s41598-023-34157-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/24/2023] [Indexed: 04/29/2023] Open
Abstract
Although methodological advances have been made over the past years, a widely applicable, easily scalable and cost-effective procedure that can be routinely used to isolate specific ribonucleoprotein complexes (RNPs) remains elusive. We describe the "Silica-based Acidic Phase Separation (SAPS)-capture" workflow. This versatile method combines previously described techniques in a cost-effective, optimal and widely applicable protocol. The specific RNP isolation procedure is performed on a pre-purified RNP sample instead of cell lysate. This combination of protocols results in an increased RNP/bead ratio and by consequence a reduced experimental cost. To validate the method, the 18S rRNP of S. cerevisiae was captured and to illustrate its applicability we isolated the complete repertoire of RNPs in A. thaliana. The procedure we describe can provide the community with a powerful tool to advance the study of the ribonome of a specific RNA molecule in any organism or tissue type.
Collapse
Affiliation(s)
- Sam Balzarini
- Molecular Biotechnology of Plants and Micro-organisms, KU Leuven, 3001, Leuven, Belgium
| | - Roosje Van Ende
- Molecular Biotechnology of Plants and Micro-organisms, KU Leuven, 3001, Leuven, Belgium
| | - Arnout Voet
- Lab of biomolecular modelling and design, KU Leuven, 3001, Leuven, Belgium
| | - Koen Geuten
- Molecular Biotechnology of Plants and Micro-organisms, KU Leuven, 3001, Leuven, Belgium.
| |
Collapse
|
9
|
Kovalski JR, Kuzuoglu‐Ozturk D, Ruggero D. Protein synthesis control in cancer: selectivity and therapeutic targeting. EMBO J 2022; 41:e109823. [PMID: 35315941 PMCID: PMC9016353 DOI: 10.15252/embj.2021109823] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 11/09/2022] Open
Abstract
Translational control of mRNAs is a point of convergence for many oncogenic signals through which cancer cells tune protein expression in tumorigenesis. Cancer cells rely on translational control to appropriately adapt to limited resources while maintaining cell growth and survival, which creates a selective therapeutic window compared to non-transformed cells. In this review, we first discuss how cancer cells modulate the translational machinery to rapidly and selectively synthesize proteins in response to internal oncogenic demands and external factors in the tumor microenvironment. We highlight the clinical potential of compounds that target different translation factors as anti-cancer therapies. Next, we detail how RNA sequence and structural elements interface with the translational machinery and RNA-binding proteins to coordinate the translation of specific pro-survival and pro-growth programs. Finally, we provide an overview of the current and emerging technologies that can be used to illuminate the mechanisms of selective translational control in cancer cells as well as within the microenvironment.
Collapse
Affiliation(s)
- Joanna R Kovalski
- Helen Diller Family Comprehensive Cancer CenterUniversity of California, San FranciscoSan FranciscoCAUSA
- Department of UrologyUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Duygu Kuzuoglu‐Ozturk
- Helen Diller Family Comprehensive Cancer CenterUniversity of California, San FranciscoSan FranciscoCAUSA
- Department of UrologyUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Davide Ruggero
- Helen Diller Family Comprehensive Cancer CenterUniversity of California, San FranciscoSan FranciscoCAUSA
- Department of UrologyUniversity of California, San FranciscoSan FranciscoCAUSA
- Department of Cellular and Molecular PharmacologyUniversity of California, San FranciscoSan FranciscoCAUSA
| |
Collapse
|
10
|
Tay DJW, Lew ZZR, Chu JJH, Tan KS. Uncovering Novel Viral Innate Immune Evasion Strategies: What Has SARS-CoV-2 Taught Us? Front Microbiol 2022; 13:844447. [PMID: 35401477 PMCID: PMC8984613 DOI: 10.3389/fmicb.2022.844447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
The ongoing SARS-CoV-2 pandemic has tested the capabilities of public health and scientific community. Since the dawn of the twenty-first century, viruses have caused several outbreaks, with coronaviruses being responsible for 2: SARS-CoV in 2007 and MERS-CoV in 2013. As the border between wildlife and the urban population continue to shrink, it is highly likely that zoonotic viruses may emerge more frequently. Furthermore, it has been shown repeatedly that these viruses are able to efficiently evade the innate immune system through various strategies. The strong and abundant antiviral innate immunity evasion strategies shown by SARS-CoV-2 has laid out shortcomings in our approach to quickly identify and modulate these mechanisms. It is thus imperative that there be a systematic framework for the study of the immune evasion strategies of these viruses, to guide development of therapeutics and curtail transmission. In this review, we first provide a brief overview of general viral evasion strategies against the innate immune system. Then, we utilize SARS-CoV-2 as a case study to highlight the methods used to identify the mechanisms of innate immune evasion, and pinpoint the shortcomings in the current paradigm with its focus on overexpression and protein-protein interactions. Finally, we provide a recommendation for future work to unravel viral innate immune evasion strategies and suitable methods to aid in the study of virus-host interactions. The insights provided from this review may then be applied to other viruses with outbreak potential to remain ahead in the arms race against viral diseases.
Collapse
Affiliation(s)
- Douglas Jie Wen Tay
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhe Zhang Ryan Lew
- Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Justin Jang Hann Chu
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Collaborative and Translation Unit for Hand, Foot and Mouth Disease (HFMD), Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Kai Sen Tan
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- *Correspondence: Kai Sen Tan,
| |
Collapse
|
11
|
Cao H, Wang Y, Zhang N, Xia S, Tian P, Lu L, Du J, Du Y. Progress of CRISPR-Cas13 Mediated Live-Cell RNA Imaging and Detection of RNA-Protein Interactions. Front Cell Dev Biol 2022; 10:866820. [PMID: 35356276 PMCID: PMC8959342 DOI: 10.3389/fcell.2022.866820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/21/2022] [Indexed: 12/26/2022] Open
Abstract
Ribonucleic acid (RNA) and proteins play critical roles in gene expression and regulation. The relevant study increases the understanding of various life processes and contributes to the diagnosis and treatment of different diseases. RNA imaging and mapping RNA-protein interactions expand the understanding of RNA biology. However, the existing methods have some limitations. Recently, precise RNA targeting of CRISPR-Cas13 in cells has been reported, which is considered a new promising platform for RNA imaging in living cells and recognition of RNA-protein interactions. In this review, we first described the current findings on Cas13. Furthermore, we introduced current tools of RNA real-time imaging and mapping RNA-protein interactions and highlighted the latest advances in Cas13-mediated tools. Finally, we discussed the advantages and disadvantages of Cas13-based methods, providing a set of new ideas for the optimization of Cas13-mediated methods.
Collapse
Affiliation(s)
- Huake Cao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yuechen Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Second School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Ning Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
- First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Siyuan Xia
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Second School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Pengfei Tian
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
- First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Lu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Juan Du
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
- Longgang District People’s Hospital of Shenzhen & The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
- *Correspondence: Yinan Du, ; Juan Du,
| | - Yinan Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Yinan Du, ; Juan Du,
| |
Collapse
|
12
|
Li Y, Liu S, Cao L, Luo Y, Du H, Li S, Zhang Z, Guo X, Tian W, Wong CC, You F. CBRPP: a new RNA-centric method to study RNA-protein interactions. RNA Biol 2021; 18:1608-1621. [PMID: 33596778 PMCID: PMC8594927 DOI: 10.1080/15476286.2021.1873620] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/23/2020] [Accepted: 01/05/2021] [Indexed: 12/26/2022] Open
Abstract
RNA and protein are interconnected biomolecules that can influence each other's life cycles and functions through physical interactions. Abnormal RNA-protein interactions lead to cell dysfunctions and human diseases. Therefore, mapping networks of RNA-protein interactions is crucial for understanding cellular processes and pathogenesis of related diseases. Different practical protein-centric methods for studying RNA-protein interactions have been reported, but few robust RNA-centric methods exist. Here, we developed CRISPR-based RNA proximity proteomics (CBRPP), a new RNA-centric method to identify proteins associated with an endogenous RNA of interest in native cellular context without pre-editing of the target RNA, cross-linking or RNA-protein complexes manipulation in vitro. CBRPP is based on a fusion of dCas13 and proximity-based labelling (PBL) enzyme. dCas13 can deliver PBL enzyme to the target RNA with high specificity, while PBL enzyme labels the surrounding proteins of the target RNA, which are then identified by mass spectrometry.
Collapse
Affiliation(s)
- Yunfei Li
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Shengde Liu
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Lili Cao
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Yujie Luo
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Hongqiang Du
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Siji Li
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Zeming Zhang
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Xuefei Guo
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Wenmin Tian
- Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, Beijing, China
| | - Catherine Cl Wong
- Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, Beijing, China
| | - Fuping You
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
13
|
Li Y, Liu S, Cao L, Luo Y, Du H, Li S, Zhang Z, Guo X, Tian W, Wong CC, You F. CBRPP: a new RNA-centric method to study RNA-protein interactions. RNA Biol 2021; 18:1608-1621. [PMID: 33596778 DOI: 10.1101/2020.04.09.033290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Abstract
RNA and protein are interconnected biomolecules that can influence each other's life cycles and functions through physical interactions. Abnormal RNA-protein interactions lead to cell dysfunctions and human diseases. Therefore, mapping networks of RNA-protein interactions is crucial for understanding cellular processes and pathogenesis of related diseases. Different practical protein-centric methods for studying RNA-protein interactions have been reported, but few robust RNA-centric methods exist. Here, we developed CRISPR-based RNA proximity proteomics (CBRPP), a new RNA-centric method to identify proteins associated with an endogenous RNA of interest in native cellular context without pre-editing of the target RNA, cross-linking or RNA-protein complexes manipulation in vitro. CBRPP is based on a fusion of dCas13 and proximity-based labelling (PBL) enzyme. dCas13 can deliver PBL enzyme to the target RNA with high specificity, while PBL enzyme labels the surrounding proteins of the target RNA, which are then identified by mass spectrometry.
Collapse
Affiliation(s)
- Yunfei Li
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Shengde Liu
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Lili Cao
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Yujie Luo
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Hongqiang Du
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Siji Li
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Zeming Zhang
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Xuefei Guo
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Wenmin Tian
- Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, Beijing, China
| | - Catherine Cl Wong
- Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, Beijing, China
| | - Fuping You
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
14
|
Lisy S, Rothamel K, Ascano M. RNA Binding Proteins as Pioneer Determinants of Infection: Protective, Proviral, or Both? Viruses 2021; 13:2172. [PMID: 34834978 PMCID: PMC8625426 DOI: 10.3390/v13112172] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 12/18/2022] Open
Abstract
As the first intracellular host factors that directly interact with the genomes of RNA viruses, RNA binding proteins (RBPs) have a profound impact on the outcome of an infection. Recent discoveries brought about by new methodologies have led to an unprecedented ability to peer into the earliest events between viral RNA and the RBPs that act upon them. These discoveries have sparked a re-evaluation of current paradigms surrounding RBPs and post-transcriptional gene regulation. Here, we highlight questions that have bloomed from the implementation of these novel approaches. Canonical RBPs can impact the fates of both cellular and viral RNA during infection, sometimes in conflicting ways. Noncanonical RBPs, some of which were first characterized via interactions with viral RNA, may encompass physiological roles beyond viral pathogenesis. We discuss how these RBPs might discriminate between an RNA of either cellular or viral origin and thus exert either pro- or antiviral effects-which is a particular challenge as viruses contain mechanisms to mimic molecular features of cellular RNA.
Collapse
Affiliation(s)
- Samantha Lisy
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (S.L.); (K.R.)
| | - Katherine Rothamel
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (S.L.); (K.R.)
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Manuel Ascano
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (S.L.); (K.R.)
| |
Collapse
|
15
|
Philip M, Chen T, Tyagi S. A Survey of Current Resources to Study lncRNA-Protein Interactions. Noncoding RNA 2021; 7:ncrna7020033. [PMID: 34201302 PMCID: PMC8293367 DOI: 10.3390/ncrna7020033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 12/15/2022] Open
Abstract
Phenotypes are driven by regulated gene expression, which in turn are mediated by complex interactions between diverse biological molecules. Protein-DNA interactions such as histone and transcription factor binding are well studied, along with RNA-RNA interactions in short RNA silencing of genes. In contrast, lncRNA-protein interaction (LPI) mechanisms are comparatively unknown, likely directed by the difficulties in studying LPI. However, LPI are emerging as key interactions in epigenetic mechanisms, playing a role in development and disease. Their importance is further highlighted by their conservation across kingdoms. Hence, interest in LPI research is increasing. We therefore review the current state of the art in lncRNA-protein interactions. We specifically surveyed recent computational methods and databases which researchers can exploit for LPI investigation. We discovered that algorithm development is heavily reliant on a few generic databases containing curated LPI information. Additionally, these databases house information at gene-level as opposed to transcript-level annotations. We show that early methods predict LPI using molecular docking, have limited scope and are slow, creating a data processing bottleneck. Recently, machine learning has become the strategy of choice in LPI prediction, likely due to the rapid growth in machine learning infrastructure and expertise. While many of these methods have notable limitations, machine learning is expected to be the basis of modern LPI prediction algorithms.
Collapse
Affiliation(s)
- Melcy Philip
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, VIC 3800, Australia; (M.P.); (T.C.)
| | - Tyrone Chen
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, VIC 3800, Australia; (M.P.); (T.C.)
| | - Sonika Tyagi
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, VIC 3800, Australia; (M.P.); (T.C.)
- Monash eResearch Centre, Monash University, Clayton, VIC 3800, Australia
- Department of Infectious Disease, Monash University (Alfred Campus), 85 Commercial Road, Melbourne, VIC 3004, Australia
- Correspondence:
| |
Collapse
|
16
|
Weissinger R, Heinold L, Akram S, Jansen RP, Hermesh O. RNA Proximity Labeling: A New Detection Tool for RNA-Protein Interactions. Molecules 2021; 26:2270. [PMID: 33919831 PMCID: PMC8070807 DOI: 10.3390/molecules26082270] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 12/26/2022] Open
Abstract
Multiple cellular functions are controlled by the interaction of RNAs and proteins. Together with the RNAs they control, RNA interacting proteins form RNA protein complexes, which are considered to serve as the true regulatory units for post-transcriptional gene expression. To understand how RNAs are modified, transported, and regulated therefore requires specific knowledge of their interaction partners. To this end, multiple techniques have been developed to characterize the interaction between RNAs and proteins. In this review, we briefly summarize the common methods to study RNA-protein interaction including crosslinking and immunoprecipitation (CLIP), and aptamer- or antisense oligonucleotide-based RNA affinity purification. Following this, we focus on in vivo proximity labeling to study RNA-protein interactions. In proximity labeling, a labeling enzyme like ascorbate peroxidase or biotin ligase is targeted to specific RNAs, RNA-binding proteins, or even cellular compartments and uses biotin to label the proteins and RNAs in its vicinity. The tagged molecules are then enriched and analyzed by mass spectrometry or RNA-Seq. We highlight the latest studies that exemplify the strength of this approach for the characterization of RNA protein complexes and distribution of RNAs in vivo.
Collapse
Affiliation(s)
| | | | | | | | - Orit Hermesh
- Interfaculty Institute for Biochemistry (IFIB), Tübingen University, 72076 Tübingen, Germany; (R.W.); (L.H.); (S.A.); (R.-P.J.)
| |
Collapse
|
17
|
Compendium of Methods to Uncover RNA-Protein Interactions In Vivo. Methods Protoc 2021; 4:mps4010022. [PMID: 33808611 PMCID: PMC8006020 DOI: 10.3390/mps4010022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 01/01/2023] Open
Abstract
Control of gene expression is critical in shaping the pro-and eukaryotic organisms’ genotype and phenotype. The gene expression regulatory pathways solely rely on protein–protein and protein–nucleic acid interactions, which determine the fate of the nucleic acids. RNA–protein interactions play a significant role in co- and post-transcriptional regulation to control gene expression. RNA-binding proteins (RBPs) are a diverse group of macromolecules that bind to RNA and play an essential role in RNA biology by regulating pre-mRNA processing, maturation, nuclear transport, stability, and translation. Hence, the studies aimed at investigating RNA–protein interactions are essential to advance our knowledge in gene expression patterns associated with health and disease. Here we discuss the long-established and current technologies that are widely used to study RNA–protein interactions in vivo. We also present the advantages and disadvantages of each method discussed in the review.
Collapse
|
18
|
Kalathiya U, Padariya M, Faktor J, Coyaud E, Alfaro JA, Fahraeus R, Hupp TR, Goodlett DR. Interfaces with Structure Dynamics of the Workhorses from Cells Revealed through Cross-Linking Mass Spectrometry (CLMS). Biomolecules 2021; 11:382. [PMID: 33806612 PMCID: PMC8001575 DOI: 10.3390/biom11030382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/28/2022] Open
Abstract
The fundamentals of how protein-protein/RNA/DNA interactions influence the structures and functions of the workhorses from the cells have been well documented in the 20th century. A diverse set of methods exist to determine such interactions between different components, particularly, the mass spectrometry (MS) methods, with its advanced instrumentation, has become a significant approach to analyze a diverse range of biomolecules, as well as bring insights to their biomolecular processes. This review highlights the principal role of chemistry in MS-based structural proteomics approaches, with a particular focus on the chemical cross-linking of protein-protein/DNA/RNA complexes. In addition, we discuss different methods to prepare the cross-linked samples for MS analysis and tools to identify cross-linked peptides. Cross-linking mass spectrometry (CLMS) holds promise to identify interaction sites in larger and more complex biological systems. The typical CLMS workflow allows for the measurement of the proximity in three-dimensional space of amino acids, identifying proteins in direct contact with DNA or RNA, and it provides information on the folds of proteins as well as their topology in the complexes. Principal CLMS applications, its notable successes, as well as common pipelines that bridge proteomics, molecular biology, structural systems biology, and interactomics are outlined.
Collapse
Affiliation(s)
- Umesh Kalathiya
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland; (M.P.); (J.F.); (J.A.A.); (R.F.); (T.R.H.)
| | - Monikaben Padariya
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland; (M.P.); (J.F.); (J.A.A.); (R.F.); (T.R.H.)
| | - Jakub Faktor
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland; (M.P.); (J.F.); (J.A.A.); (R.F.); (T.R.H.)
| | - Etienne Coyaud
- Protéomique Réponse Inflammatoire Spectrométrie de Mass—PRISM, Inserm U1192, University Lille, CHU Lille, F-59000 Lille, France;
| | - Javier A. Alfaro
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland; (M.P.); (J.F.); (J.A.A.); (R.F.); (T.R.H.)
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH4 2XR, UK
| | - Robin Fahraeus
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland; (M.P.); (J.F.); (J.A.A.); (R.F.); (T.R.H.)
| | - Ted R. Hupp
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland; (M.P.); (J.F.); (J.A.A.); (R.F.); (T.R.H.)
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH4 2XR, UK
| | - David R. Goodlett
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland; (M.P.); (J.F.); (J.A.A.); (R.F.); (T.R.H.)
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, BC V8Z 7X8, Canada
- Genome BC Proteome Centre, University of Victoria, Victoria, BC V8Z 5N3, Canada
| |
Collapse
|
19
|
Hafner M, Katsantoni M, Köster T, Marks J, Mukherjee J, Staiger D, Ule J, Zavolan M. CLIP and complementary methods. ACTA ACUST UNITED AC 2021. [DOI: 10.1038/s43586-021-00018-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Gerber AP. RNA-Centric Approaches to Profile the RNA-Protein Interaction Landscape on Selected RNAs. Noncoding RNA 2021; 7:ncrna7010011. [PMID: 33671874 PMCID: PMC7930960 DOI: 10.3390/ncrna7010011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
RNA–protein interactions frame post-transcriptional regulatory networks and modulate transcription and epigenetics. While the technological advances in RNA sequencing have significantly expanded the repertoire of RNAs, recently developed biochemical approaches combined with sensitive mass-spectrometry have revealed hundreds of previously unrecognized and potentially novel RNA-binding proteins. Nevertheless, a major challenge remains to understand how the thousands of RNA molecules and their interacting proteins assemble and control the fate of each individual RNA in a cell. Here, I review recent methodological advances to approach this problem through systematic identification of proteins that interact with particular RNAs in living cells. Thereby, a specific focus is given to in vivo approaches that involve crosslinking of RNA–protein interactions through ultraviolet irradiation or treatment of cells with chemicals, followed by capture of the RNA under study with antisense-oligonucleotides and identification of bound proteins with mass-spectrometry. Several recent studies defining interactomes of long non-coding RNAs, viral RNAs, as well as mRNAs are highlighted, and short reference is given to recent in-cell protein labeling techniques. These recent experimental improvements could open the door for broader applications and to study the remodeling of RNA–protein complexes upon different environmental cues and in disease.
Collapse
Affiliation(s)
- André P Gerber
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
21
|
Qin W, Cho KF, Cavanagh PE, Ting AY. Deciphering molecular interactions by proximity labeling. Nat Methods 2021; 18:133-143. [PMID: 33432242 PMCID: PMC10548357 DOI: 10.1038/s41592-020-01010-5] [Citation(s) in RCA: 336] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023]
Abstract
Many biological processes are executed and regulated through the molecular interactions of proteins and nucleic acids. Proximity labeling (PL) is a technology for tagging the endogenous interaction partners of specific protein 'baits', via genetic fusion to promiscuous enzymes that catalyze the generation of diffusible reactive species in living cells. Tagged molecules that interact with baits can then be enriched and identified by mass spectrometry or nucleic acid sequencing. Here we review the development of PL technologies and highlight studies that have applied PL to the discovery and analysis of molecular interactions. In particular, we focus on the use of PL for mapping protein-protein, protein-RNA and protein-DNA interactions in living cells and organisms.
Collapse
Affiliation(s)
- Wei Qin
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Kelvin F Cho
- Department of Genetics, Stanford University, Stanford, CA, USA
- Cancer Biology Program, Stanford University, Stanford, CA, USA
| | - Peter E Cavanagh
- Department of Biochemistry, Stanford University, Stanford, CA, USA
| | - Alice Y Ting
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Department of Biology, Stanford University, Stanford, CA, USA.
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
22
|
Busby KN, Fulzele A, Zhang D, Bennett EJ, Devaraj NK. Enzymatic RNA Biotinylation for Affinity Purification and Identification of RNA-Protein Interactions. ACS Chem Biol 2020; 15:2247-2258. [PMID: 32706237 DOI: 10.1021/acschembio.0c00445] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Throughout their cellular lifetime, RNA transcripts are bound to proteins, playing crucial roles in RNA metabolism, trafficking, and function. Despite the importance of these interactions, identifying the proteins that interact with an RNA of interest in mammalian cells represents a major challenge in RNA biology. Leveraging the ability to site-specifically and covalently label an RNA of interest using E. coli tRNA guanine transglycosylase and an unnatural nucleobase substrate, we establish the identification of RNA-protein interactions and the selective enrichment of cellular RNA in mammalian systems. We demonstrate the utility of this approach through the identification of known binding partners of 7SK snRNA via mass spectrometry. Through a minimal 4-nucleotide mutation of the long noncoding RNA HOTAIR, enzymatic biotinylation enables identification of putative HOTAIR binding partners in MCF7 breast cancer cells that suggest new potential pathways for oncogenic function. Furthermore, using RNA sequencing and qPCR, we establish that an engineered enzyme variant achieves high levels of labeling selectivity against the human transcriptome allowing for 145-fold enrichment of cellular RNA directly from mammalian cell lysates. The flexibility and breadth of this approach suggests that this system could be routinely applied to the functional characterization of RNA, greatly expanding the toolbox available for studying mammalian RNA biology.
Collapse
Affiliation(s)
- Kayla N Busby
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Amitkumar Fulzele
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Dongyang Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Eric J Bennett
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
23
|
Single and Combined Methods to Specifically or Bulk-Purify RNA-Protein Complexes. Biomolecules 2020; 10:biom10081160. [PMID: 32784769 PMCID: PMC7464009 DOI: 10.3390/biom10081160] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
The ribonome interconnects the proteome and the transcriptome. Specific biology is situated at this interface, which can be studied in bulk using omics approaches or specifically by targeting an individual protein or RNA species. In this review, we focus on both RNA- and ribonucleoprotein-(RNP) centric methods. These methods can be used to study the dynamics of the ribonome in response to a stimulus or to identify the proteins that interact with a specific RNA species. The purpose of this review is to provide and discuss an overview of strategies to cross-link RNA to proteins and the currently available RNA- and RNP-centric approaches to study RNPs. We elaborate on some major challenges common to most methods, involving RNP yield, purity and experimental cost. We identify the origin of these difficulties and propose to combine existing approaches to overcome these challenges. The solutions provided build on the recently developed organic phase separation protocols, such as Cross-Linked RNA eXtraction (XRNAX), orthogonal organic phase separation (OOPS) and Phenol-Toluol extraction (PTex).
Collapse
|
24
|
Abstract
3' untranslated regions (3' UTRs) of messenger RNAs (mRNAs) are best known to regulate mRNA-based processes, such as mRNA localization, mRNA stability, and translation. In addition, 3' UTRs can establish 3' UTR-mediated protein-protein interactions (PPIs), and thus can transmit genetic information encoded in 3' UTRs to proteins. This function has been shown to regulate diverse protein features, including protein complex formation or posttranslational modifications, but is also expected to alter protein conformations. Therefore, 3' UTR-mediated information transfer can regulate protein features that are not encoded in the amino acid sequence. This review summarizes both 3' UTR functions-the regulation of mRNA and protein-based processes-and highlights how each 3' UTR function was discovered with a focus on experimental approaches used and the concepts that were learned. This review also discusses novel approaches to study 3' UTR functions in the future by taking advantage of recent advances in technology.
Collapse
Affiliation(s)
- Christine Mayr
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
25
|
Theil K, Imami K, Rajewsky N. Identification of proteins and miRNAs that specifically bind an mRNA in vivo. Nat Commun 2019; 10:4205. [PMID: 31527589 PMCID: PMC6746756 DOI: 10.1038/s41467-019-12050-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 08/19/2019] [Indexed: 12/26/2022] Open
Abstract
Understanding regulation of an mRNA requires knowledge of its regulators. However, methods for reliable de-novo identification of proteins binding to a particular RNA are scarce and were thus far only successfully applied to abundant noncoding RNAs in cell culture. Here, we present vIPR, an RNA-protein crosslink, RNA pulldown, and shotgun proteomics approach to identify proteins bound to selected mRNAs in C. elegans. Applying vIPR to the germline-specific transcript gld-1 led to enrichment of known and novel interactors. By comparing enrichment upon gld-1 and lin-41 pulldown, we demonstrate that vIPR recovers both common and specific RNA-binding proteins, and we validate DAZ-1 as a specific gld-1 regulator. Finally, combining vIPR with small RNA sequencing, we recover known and biologically important transcript-specific miRNA interactions, and we identify miR-84 as a specific interactor of the gld-1 transcript. We envision that vIPR will provide a platform for investigating RNA in vivo regulation in diverse biological systems.
Collapse
Affiliation(s)
- Kathrin Theil
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany.
| | - Koshi Imami
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
- Laboratory of Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Nikolaus Rajewsky
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany.
| |
Collapse
|
26
|
Iadevaia V, Wouters MD, Kanitz A, Matia-González AM, Laing EE, Gerber AP. Tandem RNA isolation reveals functional rearrangement of RNA-binding proteins on CDKN1B/p27Kip1 3'UTRs in cisplatin treated cells. RNA Biol 2019; 17:33-46. [PMID: 31522610 PMCID: PMC6948961 DOI: 10.1080/15476286.2019.1662268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Post-transcriptional control of gene expression is mediated via RNA-binding proteins (RBPs) that interact with mRNAs in a combinatorial fashion. While recent global RNA interactome capture experiments expanded the repertoire of cellular RBPs quiet dramatically, little is known about the assembly of RBPs on particular mRNAs; and how these associations change and control the fate of the mRNA in drug-treatment conditions. Here we introduce a novel biochemical approach, termed tobramycin-based tandem RNA isolation procedure (tobTRIP), to quantify proteins associated with the 3ʹUTRs of cyclin-dependent kinase inhibitor 1B (CDKN1B/p27Kip1) mRNAs in vivo. P27Kip1 plays an important role in mediating a cell’s response to cisplatin (CP), a widely used chemotherapeutic cancer drug that induces DNA damage and cell cycle arrest. We found that p27Kip1 mRNA is stabilized upon CP treatment of HEK293 cells through elements in its 3ʹUTR. Applying tobTRIP, we further compared the associated proteins in CP and non-treated cells, and identified more than 50 interacting RBPs, many functionally related and evoking a coordinated response. Knock-downs of several of the identified RBPs in HEK293 cells confirmed their involvement in CP-induced p27 mRNA regulation; while knock-down of the KH-type splicing regulatory protein (KHSRP) further enhanced the sensitivity of MCF7 adenocarcinoma cancer cells to CP treatment. Our results highlight the benefit of specific in vivo mRNA-protein interactome capture to reveal post-transcriptional regulatory networks implicated in cellular drug response and adaptation.
Collapse
Affiliation(s)
- Valentina Iadevaia
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Maikel D Wouters
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | | | - Ana M Matia-González
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Emma E Laing
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - André P Gerber
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| |
Collapse
|
27
|
Lin C, Miles WO. Beyond CLIP: advances and opportunities to measure RBP-RNA and RNA-RNA interactions. Nucleic Acids Res 2019; 47:5490-5501. [PMID: 31076772 PMCID: PMC6582316 DOI: 10.1093/nar/gkz295] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 12/14/2022] Open
Abstract
RNA is an essential player in almost all biological processes, and has an ever-growing number of roles in regulating cellular growth and organization. RNA functions extend far beyond just coding for proteins and RNA has been shown to function in signaling events, chromatin organization and transcriptional regulation. Dissecting how the complex network of RNA-binding proteins (RBPs) and regulatory RNAs interact with their substrates within the cell is a real, but exciting, challenge for the RNA community. Investigating these biological questions has fueled the development of new quantitative technologies to measure how RNA and RBPs interact both locally and on a global scale. In this review, we provide an assessment of available approaches to enable researchers to select the protocol most applicable for their experimental question.
Collapse
Affiliation(s)
- Chenyu Lin
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Wayne O Miles
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
28
|
Ramanathan M, Porter DF, Khavari PA. Methods to study RNA-protein interactions. Nat Methods 2019; 16:225-234. [PMID: 30804549 PMCID: PMC6692137 DOI: 10.1038/s41592-019-0330-1] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/28/2019] [Indexed: 12/26/2022]
Abstract
Noncoding RNA sequences, including long noncoding RNAs, small nucleolar RNAs, and untranslated mRNA regions, accomplish many of their diverse functions through direct interactions with RNA-binding proteins (RBPs). Recent efforts have identified hundreds of new RBPs that lack known RNA-binding domains, thus underscoring the complexity and diversity of RNA-protein complexes. Recent progress has expanded the number of methods for studying RNA-protein interactions in two general categories: approaches that characterize proteins bound to an RNA of interest (RNA-centric), and those that examine RNAs bound to a protein of interest (protein-centric). Each method has unique strengths and limitations, which makes it important to select optimal approaches for the biological question being addressed. Here we review methods for the study of RNA-protein interactions, with a focus on their suitability for specific applications.
Collapse
Affiliation(s)
- Muthukumar Ramanathan
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Douglas F Porter
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Paul A Khavari
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA.
| |
Collapse
|
29
|
Beckmann BM, Granneman S. Probing the RNA-Binding Proteome from Yeast to Man: Major Advances and Challenges. Methods Mol Biol 2019; 2049:213-231. [PMID: 31602614 DOI: 10.1007/978-1-4939-9736-7_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
RNA-binding proteins are important for core cellular processes such as mRNA transcription, splicing, transport, translation, and degradation. Recently, hundreds of novel RNA-binders have been identified in vivo in various organisms and cell types. We discuss the RNA interactome capture technique which enabled this boost in identifying new RNA-binding proteins in eukaryotes. A focus of this chapter, however, is the presentation of different challenges and problems that need to be addressed to be able to understand the conserved mRNA-bound proteomes from yeast to man.
Collapse
Affiliation(s)
- Benedikt M Beckmann
- Molecular Infection Biology, IRI Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Sander Granneman
- Centre for Systems and Synthetic Biology (SynthSys), University of Edinburgh, Edinburgh, UK
| |
Collapse
|
30
|
Iadevaia V, Matia-González AM, Gerber AP. An Oligonucleotide-based Tandem RNA Isolation Procedure to Recover Eukaryotic mRNA-Protein Complexes. J Vis Exp 2018. [PMID: 30176020 PMCID: PMC6128116 DOI: 10.3791/58223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
RNA-binding proteins (RBPs) play key roles in the post-transcriptional control of gene expression. Therefore, biochemical characterization of mRNA-protein complexes is essential to understanding mRNA regulation inferred by interacting proteins or non-coding RNAs. Herein, we describe a tandem RNA isolation procedure (TRIP) that enables the purification of endogenously formed mRNA-protein complexes from cellular extracts. The two-step protocol involves the isolation of polyadenylated mRNAs with antisense oligo(dT) beads and subsequent capture of an mRNA of interest with 3'-biotinylated 2'-O-methylated antisense RNA oligonucleotides, which can then be isolated with streptavidin beads. TRIP was used to recover in vivo crosslinked mRNA-ribonucleoprotein (mRNP) complexes from yeast, nematodes and human cells for further RNA and protein analysis. Thus, TRIP is a versatile approach that can be adapted to all types of polyadenylated RNAs across organisms to study the dynamic re-arrangement of mRNPs imposed by intracellular or environmental cues.
Collapse
Affiliation(s)
- Valentina Iadevaia
- Dept. of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey
| | - Ana M Matia-González
- Dept. of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey
| | - André P Gerber
- Dept. of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey;
| |
Collapse
|
31
|
Ramanathan M, Majzoub K, Rao DS, Neela PH, Zarnegar BJ, Mondal S, Roth JG, Gai H, Kovalski JR, Siprashvili Z, Palmer TD, Carette JE, Khavari PA. RNA-protein interaction detection in living cells. Nat Methods 2018; 15:207-212. [PMID: 29400715 DOI: 10.1038/nmeth.4601] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 12/19/2017] [Indexed: 12/30/2022]
Abstract
RNA-protein interactions play numerous roles in cellular function and disease. Here we describe RNA-protein interaction detection (RaPID), which uses proximity-dependent protein labeling, based on the BirA* biotin ligase, to rapidly identify the proteins that bind RNA sequences of interest in living cells. RaPID displays utility in multiple applications, including in evaluating protein binding to mutant RNA motifs in human genetic disorders, in uncovering potential post-transcriptional networks in breast cancer, and in discovering essential host proteins that interact with Zika virus RNA. To improve the BirA*-labeling component of RaPID, moreover, a new mutant BirA* was engineered from Bacillus subtilis, termed BASU, that enables >1,000-fold faster kinetics and >30-fold increased signal-to-noise ratio over the prior standard Escherichia coli BirA*, thereby enabling direct study of RNA-protein interactions in living cells on a timescale as short as 1 min.
Collapse
Affiliation(s)
- Muthukumar Ramanathan
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Karim Majzoub
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Deepti S Rao
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Poornima H Neela
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Brian J Zarnegar
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Smarajit Mondal
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Julien G Roth
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Hui Gai
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Joanna R Kovalski
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Zurab Siprashvili
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Theo D Palmer
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Paul A Khavari
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California, USA.,Veterans Affairs Palo Alto Healthcare System, Palo Alto, California, USA
| |
Collapse
|
32
|
Quintas A, Pérez-Núñez D, Sánchez EG, Nogal ML, Hentze MW, Castelló A, Revilla Y. Characterization of the African Swine Fever Virus Decapping Enzyme during Infection. J Virol 2017; 91:e00990-17. [PMID: 29021398 PMCID: PMC5709586 DOI: 10.1128/jvi.00990-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/03/2017] [Indexed: 01/13/2023] Open
Abstract
African swine fever virus (ASFV) infection is characterized by a progressive decrease in cellular protein synthesis with a concomitant increase in viral protein synthesis, though the mechanism by which the virus achieves this is still unknown. Decrease of cellular mRNA is observed during ASFV infection, suggesting that inhibition of cellular proteins is due to an active mRNA degradation process. ASFV carries a gene (Ba71V D250R/Malawi g5R) that encodes a decapping protein (ASFV-DP) that has a Nudix hydrolase motif and decapping activity in vitro Here, we show that ASFV-DP was expressed from early times and accumulated throughout the infection with a subcellular localization typical of the endoplasmic reticulum, colocalizing with the cap structure and interacting with the ribosomal protein L23a. ASFV-DP was capable of interaction with poly(A) RNA in cultured cells, primarily mediated by the N-terminal region of the protein. ASFV-DP also interacted with viral and cellular RNAs in the context of infection, and its overexpression in infected cells resulted in decreased levels of both types of transcripts. This study points to ASFV-DP as a viral decapping enzyme involved in both the degradation of cellular mRNA and the regulation of viral transcripts.IMPORTANCE Virulent ASFV strains cause a highly infectious and lethal disease in domestic pigs for which there is no vaccine. Since 2007, an outbreak in the Caucasus region has spread to Russia, jeopardizing the European pig population and making it essential to deepen knowledge about the virus. Here, we demonstrate that ASFV-DP is a novel RNA-binding protein implicated in the regulation of mRNA metabolism during infection, making it a good target for vaccine development.
Collapse
Affiliation(s)
- Ana Quintas
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Universidad Autónoma de Madrid, Madrid, Spain
| | - Daniel Pérez-Núñez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Universidad Autónoma de Madrid, Madrid, Spain
| | - Elena G Sánchez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maria L Nogal
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Alfredo Castelló
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Yolanda Revilla
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
33
|
Discovery of new RNA classes and global RNA-binding proteins. Curr Opin Microbiol 2017; 39:152-160. [PMID: 29179042 DOI: 10.1016/j.mib.2017.11.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/17/2017] [Indexed: 12/15/2022]
Abstract
The identification of new RNA functions and the functional annotation of transcripts in genomes represent exciting yet challenging endeavours of modern biology. Crucial insights into the biological roles of RNA molecules can be gained from the identification of the proteins with which they form specific complexes. Modern interactome techniques permit to profile RNA-protein interactions in a genome-wide manner and identify new RNA classes associated with globally acting RNA-binding proteins. Applied to a variety of organisms, these methods are already revolutionising our understanding of RNA-mediated biological processes. Here, we focus on one such approach-Gradient sequencing or Grad-seq-which has recently guided the discovery of protein ProQ and its associated small RNAs as a new domain of post-transcriptional control in bacteria.
Collapse
|
34
|
Protein-RNA: Structure function and recognition. Methods 2017; 118-119:1-2. [DOI: 10.1016/j.ymeth.2017.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|