1
|
Li C, Mi J, Wang H, Liu Z, Gao J, Wan J. MGMA-DTI: Drug target interaction prediction using multi-order gated convolution and multi-attention fusion. Comput Biol Chem 2025; 118:108449. [PMID: 40239449 DOI: 10.1016/j.compbiolchem.2025.108449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/11/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025]
Abstract
Accurately predicting drug-target interactions (DTI) is crucial for drug discovery and can reduce drug development costs. Recent deep learning-based DTI predictions have demonstrated promising performance, but they still face two challenges: (i) The over-reliance on the extraction of local features and insufficient learning of global features limit the model's performance. (ii) The lack of effective fusion of drug-target interaction features leads to the lack of interpretability of the model. To address these challenges, we propose a new model for predicting drug-target interactions based on multi-order gated convolution and multi-attention fusion, MGMA-DTI. The drug feature encoder obtains a two-dimensional molecular graph based on the drug's SMILES string and uses a graph convolutional neural network to encode the drug features. The protein encoder is based on a multi-order gated convolution, which enhances the model's ability to capture global feature between amino acid sequences. In order to better achieve interactive learning between drugs and proteins, we designed a multi-attention fusion module that effectively captures the drug-target interaction features. Experimental results show that MGMA-DTI outperforms other baseline models on three benchmark datasets: BindingDB, BioSNAP, and Human. Case studies further demonstrate that the model provides valuable insights for drug discovery. In addition, our model provides molecular-level interpretability, which can provide more scientifically meaningful guidance.
Collapse
Affiliation(s)
- Chang Li
- The College of Information Science and Technology, Beijing University of Chemical Technology, North Third Ring Road 15, Beijing, 100029, China
| | - Jia Mi
- The College of Information Science and Technology, Beijing University of Chemical Technology, North Third Ring Road 15, Beijing, 100029, China
| | - Han Wang
- The College of Information Science and Technology, Beijing University of Chemical Technology, North Third Ring Road 15, Beijing, 100029, China
| | - Zhikang Liu
- The College of Information Science and Technology, Beijing University of Chemical Technology, North Third Ring Road 15, Beijing, 100029, China
| | - Jingyang Gao
- The College of Information Science and Technology, Beijing University of Chemical Technology, North Third Ring Road 15, Beijing, 100029, China
| | - Jing Wan
- The College of Information Science and Technology, Beijing University of Chemical Technology, North Third Ring Road 15, Beijing, 100029, China.
| |
Collapse
|
2
|
Li J, Zhang J, Guo R, Dai J, Niu Z, Wang Y, Wang T, Jiang X, Hu W. Progress of machine learning in the application of small molecule druggability prediction. Eur J Med Chem 2025; 285:117269. [PMID: 39808972 DOI: 10.1016/j.ejmech.2025.117269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
Machine learning (ML) has become an important tool for predicting the pharmaceutical properties of small molecules. Recent advancements in ML algorithms enable the rapid and accurate evaluation of solubility, activity, toxicity, pharmacokinetics, and other molecular properties through ML-based models. By conducting virtual screening of drug targets and elucidating drug-target protein interactions, researchers can conduct preliminary evaluations of the activity and safety of compounds from the ultra-large drug compound libraries, thereby accelerating the screening process for lead compounds. Moreover, ML leverages existing experimental data to train and generate new datasets, addressing the challenge of limited compounds and protein target data. This review provided a concise overview of ML applications in predicting small molecule properties, focusing on model construction principles, molecular feature selection, and other essential aspects. It also discussed the potential applications of ML in the screening of pharmaceutical small molecules.
Collapse
Affiliation(s)
- Junyao Li
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China; School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China; Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Jianmei Zhang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
| | - Rui Guo
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China; Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Jiawei Dai
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Zhiqiang Niu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Yan Wang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
| | - Taoyun Wang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China.
| | - Xiaojian Jiang
- School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China.
| | - Weicheng Hu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
3
|
Peng L, Liu X, Yang L, Liu L, Bai Z, Chen M, Lu X, Nie L. BINDTI: A Bi-Directional Intention Network for Drug-Target Interaction Identification Based on Attention Mechanisms. IEEE J Biomed Health Inform 2025; 29:1602-1612. [PMID: 38457318 DOI: 10.1109/jbhi.2024.3375025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
The identification of drug-target interactions (DTIs) is an essential step in drug discovery. In vitro experimental methods are expensive, laborious, and time-consuming. Deep learning has witnessed promising progress in DTI prediction. However, how to precisely represent drug and protein features is a major challenge for DTI prediction. Here, we developed an end-to-end DTI identification framework called BINDTI based on bi-directional Intention network. First, drug features are encoded with graph convolutional networks based on its 2D molecular graph obtained by its SMILES string. Next, protein features are encoded based on its amino acid sequence through a mixed model called ACmix, which integrates self-attention mechanism and convolution. Third, drug and target features are fused through bi-directional Intention network, which combines Intention and multi-head attention. Finally, unknown drug-target (DT) pairs are classified through multilayer perceptron based on the fused DT features. The results demonstrate that BINDTI greatly outperformed four baseline methods (i.e., CPI-GNN, TransfomerCPI, MolTrans, and IIFDTI) on the BindingDB, BioSNAP, DrugBank, and Human datasets. More importantly, it was more appropriate to predict new DTIs than the four baseline methods on imbalanced datasets. Ablation experimental results elucidated that both bi-directional Intention and ACmix could greatly advance DTI prediction. The fused feature visualization and case studies manifested that the predicted results by BINDTI were basically consistent with the true ones. We anticipate that the proposed BINDTI framework can find new low-cost drug candidates, improve drugs' virtual screening, and further facilitate drug repositioning as well as drug discovery.
Collapse
|
4
|
Su YY, Huang HC, Lin YT, Chuang YF, Sheu SY, Lin CC. HEDDI-Net: heterogeneous network embedding for drug-disease association prediction and drug repurposing, with application to Alzheimer's disease. J Transl Med 2025; 23:57. [PMID: 39891114 PMCID: PMC11786366 DOI: 10.1186/s12967-024-05938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/03/2024] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND The traditional process of developing new drugs is time-consuming and often unsuccessful, making drug repurposing an appealing alternative due to its speed and safety. Graph neural networks (GCNs) have emerged as a leading approach for predicting drug-disease associations by integrating drug and disease-related networks with advanced deep learning algorithms. However, GCNs generally infer association probabilities only for existing drugs and diseases, requiring network re-establishment and retraining for novel entities. Additionally, these methods often struggle with sparse networks and fail to elucidate the biological mechanisms underlying newly predicted drugs. METHODS To address the limitations of traditional methods, we developed HEDDI-Net, a heterogeneous embedding architecture designed to accurately detect drug-disease associations while preserving the interpretability of biological mechanisms. HEDDI-Net integrates graph and shallow learning techniques to extract representative diseases and proteins, respectively. These representative diseases and proteins are used to embed the input features, which are then utilized in a multilayer perceptron for predicting drug-disease associations. RESULTS In experiments, HEDDI-Net achieves areas under the receiver operating characteristic curve of over 0.98, outperforming state-of-the-art methods. Rigorous recovery analyses reveal a median recovery rate of 73% for the top 100 diseases, demonstrating its efficacy in identifying novel target diseases for existing drugs, known as drug repurposing. A case study on Alzheimer's disease highlighted the model's practical applicability and interpretability, identifying potential drug candidates like Baclofen, Fluoxetine, Pentoxifylline and Phenytoin. Notably, over 40% of the predicted candidates in the clusters of commonly prescribed clinical drugs Donepezil and Galantamine had been tested in clinical trials, validating the model's predictive accuracy and practical relevance. CONCLUSIONS HEDDI-NET represents a significant advancement by allowing direct application to new diseases and drugs without the need for retraining, a limitation of most GCN-based methods. Furthermore, HEDDI-Net provides detailed affinity patterns with representative proteins for predicted candidate drugs, facilitating an understanding of their physiological effects. This capability also supports the design and testing of alternative drugs that are similar to existing medications, enhancing the reliability and interpretability of potential repurposed drugs. The case study on Alzheimer's disease further underscores HEDDI-Net's ability to predict promising drugs and its applicability in drug repurposing.
Collapse
Affiliation(s)
- Yin-Yuan Su
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Ting Lin
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Fang Chuang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Public Health, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Psychiatry, Far Eastern Memorial Hospital, New Taipei, Taiwan
| | - Sheh-Yi Sheu
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Life Science and Institute of Genome Science, National Yang-Ming University, Taipei, Taiwan
| | - Chen-Ching Lin
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
5
|
Shen X, Yan S, Zeng T, Xia F, Jiang D, Wan G, Cao D, Wu R. TarIKGC: A Target Identification Tool Using Semantics-Enhanced Knowledge Graph Completion with Application to CDK2 Inhibitor Discovery. J Med Chem 2025; 68:1793-1809. [PMID: 39745279 DOI: 10.1021/acs.jmedchem.4c02543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Target identification is a critical stage in the drug discovery pipeline. Various computational methodologies have been dedicated to enhancing the classification performance of compound-target interactions, yet significant room remains for improving the recommendation performance. To address this challenge, we developed TarIKGC, a tool for target prioritization that leverages semantics enhanced knowledge graph (KG) completion. This method harnesses knowledge representation learning within a heterogeneous compound-target-disease network. Specifically, TarIKGC combines an attention-based aggregation graph neural network with a multimodal feature extractor network to simultaneously learn internal semantic features from biomedical entities and topological features from the KG. Furthermore, a KG embedding model is employed to identify missing relationships among compounds and targets. In silico evaluations highlighted the superior performance of TarIKGC in drug repositioning tasks. In addition, TarIKGC successfully identified two potential cyclin-dependent kinase 2 (CDK2) inhibitors with novel scaffolds through reverse target fishing. Both compounds exhibited antiproliferative activities across multiple therapeutic indications targeting CDK2.
Collapse
Affiliation(s)
- Xiaojuan Shen
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shijia Yan
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Tao Zeng
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Fei Xia
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Dejun Jiang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Guohui Wan
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Dongsheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Ruibo Wu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
6
|
E U, T M, A V G, D P. A comprehensive survey of drug-target interaction analysis in allopathy and siddha medicine. Artif Intell Med 2024; 157:102986. [PMID: 39326289 DOI: 10.1016/j.artmed.2024.102986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 08/13/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Effective drug delivery is the cornerstone of modern healthcare, ensuring therapeutic compounds reach their intended targets efficiently. This paper explores the potential of personalized and holistic healthcare, driven by the synergy between traditional and allopathic medicine systems, with a specific focus on the vast reservoir of medicinal compounds found in plants rooted in the historical legacy of traditional medicine. Motivated by the desire to unlock the therapeutic potential of medicinal plants and bridge the gap between traditional and allopathic medicine, this survey delves into in-silico computational approaches for studying Drug-Target Interactions (DTI) within the contexts of allopathy and siddha medicine. The contributions of this survey are multifaceted: it offers a comprehensive overview of in-silico methods for DTI analysis in both systems, identifies common challenges in DTI studies, provides insights into future directions to advance DTI analysis, and includes a comparative analysis of DTI in allopathy and siddha medicine. The findings of this survey highlight the pivotal role of in-silico computational approaches in advancing drug research and development in both allopathy and siddha medicine, emphasizing the importance of integrating these methods to drive the future of personalized healthcare.
Collapse
Affiliation(s)
- Uma E
- Department of Information Science and Technology, College of Engineering Guindy, Chennai, India.
| | - Mala T
- Department of Information Science and Technology, College of Engineering Guindy, Chennai, India
| | - Geetha A V
- Department of Information Science and Technology, College of Engineering Guindy, Chennai, India
| | - Priyanka D
- Department of Information Science and Technology, College of Engineering Guindy, Chennai, India
| |
Collapse
|
7
|
Jia ZC, Yang X, Wu YK, Li M, Das D, Chen MX, Wu J. The Art of Finding the Right Drug Target: Emerging Methods and Strategies. Pharmacol Rev 2024; 76:896-914. [PMID: 38866560 PMCID: PMC11334170 DOI: 10.1124/pharmrev.123.001028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
Drug targets are specific molecules in biological tissues and body fluids that interact with drugs. Drug target discovery is a key component of drug discovery and is essential for the development of new drugs in areas such as cancer therapy and precision medicine. Traditional in vitro or in vivo target discovery methods are time-consuming and labor-intensive, limiting the pace of drug discovery. With the development of modern discovery methods, the discovery and application of various emerging technologies have greatly improved the efficiency of drug discovery, shortened the cycle time, and reduced the cost. This review provides a comprehensive overview of various emerging drug target discovery strategies, including computer-assisted approaches, drug affinity response target stability, multiomics analysis, gene editing, and nonsense-mediated mRNA degradation, and discusses the effectiveness and limitations of the various approaches, as well as their application in real cases. Through the review of the aforementioned contents, a general overview of the development of novel drug targets and disease treatment strategies will be provided, and a theoretical basis will be provided for those who are engaged in pharmaceutical science research. SIGNIFICANCE STATEMENT: Target-based drug discovery has been the main approach to drug discovery in the pharmaceutical industry for the past three decades. Traditional drug target discovery methods based on in vivo or in vitro validation are time-consuming and costly, greatly limiting the development of new drugs. Therefore, the development and selection of new methods in the drug target discovery process is crucial.
Collapse
Affiliation(s)
- Zi-Chang Jia
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.)
| | - Xue Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.)
| | - Yi-Kun Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.)
| | - Min Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.)
| | - Debatosh Das
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.) ;
| | - Mo-Xian Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.) ;
| | - Jian Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.) ;
| |
Collapse
|
8
|
Abubakar ML, Kapoor N, Sharma A, Gambhir L, Jasuja ND, Sharma G. Artificial Intelligence in Drug Identification and Validation: A Scoping Review. Drug Res (Stuttg) 2024; 74:208-219. [PMID: 38830370 DOI: 10.1055/a-2306-8311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The end-to-end process in the discovery of drugs involves therapeutic candidate identification, validation of identified targets, identification of hit compound series, lead identification and optimization, characterization, and formulation and development. The process is lengthy, expensive, tedious, and inefficient, with a large attrition rate for novel drug discovery. Today, the pharmaceutical industry is focused on improving the drug discovery process. Finding and selecting acceptable drug candidates effectively can significantly impact the price and profitability of new medications. Aside from the cost, there is a need to reduce the end-to-end process time, limiting the number of experiments at various stages. To achieve this, artificial intelligence (AI) has been utilized at various stages of drug discovery. The present study aims to identify the recent work that has developed AI-based models at various stages of drug discovery, identify the stages that need more concern, present the taxonomy of AI methods in drug discovery, and provide research opportunities. From January 2016 to September 1, 2023, the study identified all publications that were cited in the electronic databases including Scopus, NCBI PubMed, MEDLINE, Anthropology Plus, Embase, APA PsycInfo, SOCIndex, and CINAHL. Utilising a standardized form, data were extracted, and presented possible research prospects based on the analysis of the extracted data.
Collapse
Affiliation(s)
| | - Neha Kapoor
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
| | - Asha Sharma
- Department of Zoology, Swargiya P. N. K. S. Govt. PG College, Dausa, Rajasthan, India
| | - Lokesh Gambhir
- School of Basic and Applied Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | | | - Gaurav Sharma
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
| |
Collapse
|
9
|
Shan W, Chen L, Xu H, Zhong Q, Xu Y, Yao H, Lin K, Li X. GcForest-based compound-protein interaction prediction model and its application in discovering small-molecule drugs targeting CD47. Front Chem 2023; 11:1292869. [PMID: 37927570 PMCID: PMC10623438 DOI: 10.3389/fchem.2023.1292869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Identifying compound-protein interaction plays a vital role in drug discovery. Artificial intelligence (AI), especially machine learning (ML) and deep learning (DL) algorithms, are playing increasingly important roles in compound-protein interaction (CPI) prediction. However, ML relies on learning from large sample data. And the CPI for specific target often has a small amount of data available. To overcome the dilemma, we propose a virtual screening model, in which word2vec is used as an embedding tool to generate low-dimensional vectors of SMILES of compounds and amino acid sequences of proteins, and the modified multi-grained cascade forest based gcForest is used as the classifier. This proposed method is capable of constructing a model from raw data, adjusting model complexity according to the scale of datasets, especially for small scale datasets, and is robust with few hyper-parameters and without over-fitting. We found that the proposed model is superior to other CPI prediction models and performs well on the constructed challenging dataset. We finally predicted 2 new inhibitors for clusters of differentiation 47(CD47) which has few known inhibitors. The IC50s of enzyme activities of these 2 new small molecular inhibitors targeting CD47-SIRPα interaction are 3.57 and 4.79 μM respectively. These results fully demonstrate the competence of this concise but efficient tool for CPI prediction.
Collapse
Affiliation(s)
- Wenying Shan
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Lvqi Chen
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hao Xu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, China
- National Engineering Laboratory for Biomass Chemical Utilization, Nanjing, China
| | - Qinghao Zhong
- School of Humanities and Social Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Yinqiu Xu
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hequan Yao
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kejiang Lin
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xuanyi Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
10
|
Kim Y, Cho YR. Predicting Drug-Gene-Disease Associations by Tensor Decomposition for Network-Based Computational Drug Repositioning. Biomedicines 2023; 11:1998. [PMID: 37509637 PMCID: PMC10377142 DOI: 10.3390/biomedicines11071998] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Drug repositioning offers the significant advantage of greatly reducing the cost and time of drug discovery by identifying new therapeutic indications for existing drugs. In particular, computational approaches using networks in drug repositioning have attracted attention for inferring potential associations between drugs and diseases efficiently based on the network connectivity. In this article, we proposed a network-based drug repositioning method to construct a drug-gene-disease tensor by integrating drug-disease, drug-gene, and disease-gene associations and predict drug-gene-disease triple associations through tensor decomposition. The proposed method, which ensembles generalized tensor decomposition (GTD) and multi-layer perceptron (MLP), models drug-gene-disease associations through GTD and learns the features of drugs, genes, and diseases through MLP, providing more flexibility and non-linearity than conventional tensor decomposition. We experimented with drug-gene-disease association prediction using two distinct networks created by chemical structures and ATC codes as drug features. Moreover, we leveraged drug, gene, and disease latent vectors obtained from the predicted triple associations to predict drug-disease, drug-gene, and disease-gene pairwise associations. Our experimental results revealed that the proposed ensemble method was superior for triple association prediction. The ensemble model achieved an AUC of 0.96 in predicting triple associations for new drugs, resulting in an approximately 7% improvement over the performance of existing models. It also showed competitive accuracy for pairwise association prediction compared with previous methods. This study demonstrated that incorporating genetic information leads to notable advancements in drug repositioning.
Collapse
Affiliation(s)
- Yoonbee Kim
- Division of Software, Yonsei University Mirae Campus, Wonju-si 26493, Gangwon-do, Republic of Korea
| | - Young-Rae Cho
- Division of Software, Yonsei University Mirae Campus, Wonju-si 26493, Gangwon-do, Republic of Korea
- Division of Digital Healthcare, Yonsei University Mirae Campus, Wonju-si 26493, Gangwon-do, Republic of Korea
| |
Collapse
|
11
|
Sharma B, Yadav DK. Metabolomics and Network Pharmacology in the Exploration of the Multi-Targeted Therapeutic Approach of Traditional Medicinal Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233243. [PMID: 36501282 PMCID: PMC9737206 DOI: 10.3390/plants11233243] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 05/20/2023]
Abstract
Metabolomic is generally characterized as a comprehensive and the most copious analytical technique for the identification of targeted and untargeted metabolite diversity in a biological system. Recently, it has exponentially been used for phytochemical analysis and variability among plant metabolites, followed by chemometric analysis. Network pharmacology analysis is a computational technique used for the determination of multi-mechanistic and therapeutic evaluation of chemicals via interaction with the genomes involved in targeted or untargeted diseases. In considering the facts, the present review aims to explore the role of metabolomics and network pharmacology in the scientific validation of therapeutic claims as well as to evaluate the multi-targeted therapeutic approach of traditional Indian medicinal plants. The data was collected from different electronic scientific databases such as Google Scholar, Science Direct, ACS publication, PubMed, Springer, etc., using different keywords such as metabolomics, techniques used in metabolomics, chemometric analysis, a bioinformatic tool for drug discovery and development, network pharmacology, methodology and its role in biological evaluation of chemicals, etc. The screened articles were gathered and evaluated by different experts for their exclusion and inclusion in the final draft of the manuscript. The review findings suggest that metabolomics is one of the recent most precious and effective techniques for metabolite identification in the plant matrix. Various chemometric techniques are copiously used for metabolites discrimination analysis hence validating the unique characteristic of herbal medicines and their derived products concerning their authenticity. Network pharmacology remains the only option for the unique and effective analysis of hundreds of chemicals or metabolites via genomic interaction and thus validating the multi-mechanistic and therapeutic approach to explore the pharmacological aspects of herbal medicines for the management of the disease.
Collapse
Affiliation(s)
- Bharti Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York, NY 11439, USA
| | - Dinesh Kumar Yadav
- Department of Pharmacognosy, SGT College of Pharmacy, SGT University, Gurugram 122505, Haryana, India
- Correspondence: ; Tel.: +91-7042348251
| |
Collapse
|
12
|
Drug-Disease Association Prediction Using Heterogeneous Networks for Computational Drug Repositioning. Biomolecules 2022; 12:biom12101497. [PMID: 36291706 PMCID: PMC9599692 DOI: 10.3390/biom12101497] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/18/2022] Open
Abstract
Drug repositioning, which involves the identification of new therapeutic indications for approved drugs, considerably reduces the time and cost of developing new drugs. Recent computational drug repositioning methods use heterogeneous networks to identify drug–disease associations. This review reveals existing network-based approaches for predicting drug–disease associations in three major categories: graph mining, matrix factorization or completion, and deep learning. We selected eleven methods from the three categories to compare their predictive performances. The experiment was conducted using two uniform datasets on the drug and disease sides, separately. We constructed heterogeneous networks using drug–drug similarities based on chemical structures and ATC codes, ontology-based disease–disease similarities, and drug–disease associations. An improved evaluation metric was used to reflect data imbalance as positive associations are typically sparse. The prediction results demonstrated that methods in the graph mining and matrix factorization or completion categories performed well in the overall assessment. Furthermore, prediction on the drug side had higher accuracy than on the disease side. Selecting and integrating informative drug features in drug–drug similarity measurement are crucial for improving disease-side prediction.
Collapse
|
13
|
Li J, Yang X, Guan Y, Pan Z. Prediction of Drug–Target Interaction Using Dual-Network Integrated Logistic Matrix Factorization and Knowledge Graph Embedding. Molecules 2022; 27:molecules27165131. [PMID: 36014371 PMCID: PMC9412517 DOI: 10.3390/molecules27165131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Nowadays, drug–target interactions (DTIs) prediction is a fundamental part of drug repositioning. However, on the one hand, drug–target interactions prediction models usually consider drugs or targets information, which ignore prior knowledge between drugs and targets. On the other hand, models incorporating priori knowledge cannot make interactions prediction for under-studied drugs and targets. Hence, this article proposes a novel dual-network integrated logistic matrix factorization DTIs prediction scheme (Ro-DNILMF) via a knowledge graph embedding approach. This model adds prior knowledge as input data into the prediction model and inherits the advantages of the DNILMF model, which can predict under-studied drug–target interactions. Firstly, a knowledge graph embedding model based on relational rotation (RotatE) is trained to construct the interaction adjacency matrix and integrate prior knowledge. Secondly, a dual-network integrated logistic matrix factorization prediction model (DNILMF) is used to predict new drugs and targets. Finally, several experiments conducted on the public datasets are used to demonstrate that the proposed method outperforms the single base-line model and some mainstream methods on efficiency.
Collapse
Affiliation(s)
- Jiaxin Li
- College of Computer Science & Technology, Qingdao University, Qingdao 266071, China
| | - Xixin Yang
- College of Computer Science & Technology, Qingdao University, Qingdao 266071, China
- School of Automation, Qingdao University, Qingdao 266017, China
- Correspondence:
| | - Yuanlin Guan
- Key Lab of Industrial Fluid Energy Conservation and Pollution Control, Ministry of Education, Qingdao University of Technology, Qingdao 266520, China
- School of Mechanical & Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Zhenkuan Pan
- College of Computer Science & Technology, Qingdao University, Qingdao 266071, China
| |
Collapse
|
14
|
Pneumonia Detection in Chest X-Ray Images Using Enhanced Restricted Boltzmann Machine. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:1678000. [PMID: 35991297 PMCID: PMC9391129 DOI: 10.1155/2022/1678000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/11/2022] [Accepted: 03/22/2022] [Indexed: 11/24/2022]
Abstract
The process of pneumonia detection has been the focus of researchers as it has proved itself to be one of the most dangerous and life-threatening disorders. In recent years, many machine learning and deep learning algorithms have been applied in an attempt to automate this process but none of them has been successful significantly to achieve the highest possible accuracy. In a similar attempt, we propose an enhanced approach of a deep learning model called restricted Boltzmann machine (RBM) which is named enhanced RBM (ERBM). One of the major drawbacks associated with the standard format of RBM is its random weight initialization which leads to improper feature learning of the model during the training phase, resulting in poor performance of the machine. This problem has been tried to eliminate in this work by finding the differences between the means of a specific feature vector and the means of all features given as inputs to the machine. By performing this process, the reconstruction of the actual features is increased which ultimately reduces the error generated during the training phase of the model. The developed model has been applied to three different datasets of pneumonia diseases and the results have been compared with other state of the art techniques using different performance evaluation parameters. The proposed model gave highest accuracy of 98.56% followed by standard RBM, SVM, KNN, and decision tree which gave accuracies of 97.53%, 92.62%, 91.64%, and 88.77%, respectively, for dataset named dataset 2. Similarly, for the dataset 1, the highest accuracy of 96.66 has been observed for the eRBM followed by srRBM, KNN, decision tree, and SVM which gave accuracies of 90.22%, 89.34%, 87.65%, and 86.55%, respectively. In the same way, the accuracies observed for the dataset 3 by eRBM, standard RBM, KNN, decision tree, and SVM are 92.45%, 90.98%, 87.54%, 85.49%, and 84.54%, respectively. Similar observations can also be seen for other performance parameters showing the efficiency of the proposed model. As revealed in the results obtained, a significant improvement has been observed in the working of the RBM by introducing a new method of weight initialization during the training phase. The results show that the improved model outperforms other models in terms of different performance evaluation parameters, namely, accuracy, sensitivity, specificity, F1-score, and ROC curve.
Collapse
|
15
|
DTIP-TC2A: An analytical framework for drug-target interactions prediction methods. Comput Biol Chem 2022; 99:107707. [DOI: 10.1016/j.compbiolchem.2022.107707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 05/01/2022] [Accepted: 05/26/2022] [Indexed: 11/18/2022]
|
16
|
Affiliation(s)
- Young-Rae Cho
- Division of Software, Yonsei University - Mirae Campus, Wonju, Republic of Korea.
| | - Xiaohua Hu
- College of Computing & Informatics, Drexel University, Philadelphia, PA, USA
| |
Collapse
|