1
|
Arachchige DL, Dwivedi SK, Agyemang P, Lanquaye H, Peters J, Rickauer G, Beatty AC, Plansinis M, Zhang Y, Ata A, Werner T, Liu H. Deep-Red Cyanine-Based Fluorescent Probes with 6-Quinolinium Acceptors for Mitochondrial NAD(P)H Imaging in Live Cells and Human Diseased Kidney Tissues. ACS APPLIED BIO MATERIALS 2025; 8:3205-3217. [PMID: 40193329 DOI: 10.1021/acsabm.5c00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
We developed two deep-red cyanine chromophores, probes A and B, for selective mitochondrial NAD(P)H detection in live cells. Probe A features a 1,2,3,3-tetramethyl-3H-indolium core, while probe B incorporates a 1,1,2,3-tetramethyl-1H-benzo[e]indol-3-ium moiety, both linked to quinolinium via a vinyl bond to enable fluorescence modulation upon NAD(P)H reduction of probes A and B. To explore the role of electron-withdrawing groups in probe sensitivity, we synthesized three additional cyanine dyes (probes C, D, and E) via condensation of 6-quinolinecarboxaldehyde with 2,3-dimethyl-1,3-benzothiazolium acceptor and malononitrile derivatives, followed by methylation. Under NAD(P)H-deficient conditions, probe A showed absorption at 382 nm with weak fluorescence at 636 nm, while probe B absorbed at 443 nm with weak fluorescence at 618 nm. Upon NAD(P)H reduction, probe A exhibited red-shifted absorption at 520 nm with enhanced emission at 589 nm, and probe B at 550 nm with strong emission at 610 nm. Probe C showed absorption at 524 nm with enhanced emission at 586 nm, while probes D and E exhibited no detectable NAD(P)H response, highlighting the critical role of quinolinium acceptors. Probe B demonstrated superior sensitivity, successfully tracking NAD(P)H fluctuations in HeLa cells under glycolysis stimulation (glucose, lactate, pyruvate) and treatments with LPS and methotrexate. It also visualized NAD(P)H in Drosophila larvae, revealing increased levels after drug treatments. Notably, probe B distinguished between healthy and diseased human kidney tissues, detecting significantly elevated NADH levels in autosomal dominant polycystic kidney disease (ADPKD) samples, emphasizing its diagnostic potential. This study introduces probe B as a versatile and reliable NAD(P)H sensor for metabolic research and disease diagnostics, offering valuable insights into redox processes in live cells, organisms, and clinical samples.
Collapse
Affiliation(s)
- Dilka Liyana Arachchige
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Sushil K Dwivedi
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Peter Agyemang
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Henry Lanquaye
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Joseph Peters
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Grace Rickauer
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Ashlyn Colleen Beatty
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Matthew Plansinis
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Yan Zhang
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Athar Ata
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Thomas Werner
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
2
|
Lanquaye H, Dwivedi SK, Li X, Agyemang P, Rickauer G, Arachchige DL, Wang C, Peters J, Zhen I, Knighton I, Ata A, Werner T, Liu H. A Rhodamine-Based Ratiometric Fluorescent Sensor for Dual-Channel Visible and Near-Infrared Emission Detection of NAD(P)H in Living Cells and Fruit Fly Larvae. ACS APPLIED BIO MATERIALS 2025; 8:1707-1719. [PMID: 39905910 PMCID: PMC12032585 DOI: 10.1021/acsabm.4c01912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The detection and dynamic monitoring of intracellular NAD(P)H concentrations are crucial for comprehending cellular metabolism, redox biology, and their roles in various physiological and pathological processes. To address this need, we introduce sensor A, a near-infrared ratiometric fluorescent sensor for real-time, quantitative imaging of NAD(P)H fluctuations in live cells. Sensor A combines a 3-quinolinium electron-deficient acceptor with a near-infrared rhodamine dye, offering high sensitivity and specificity for NAD(P)H with superior photophysical properties. In its unbound state, sensor A emits strongly at 650 nm and weakly at 465 nm upon 400 nm excitation. Upon binding to NAD(P)H, it shows a fluorescence increase at 465 nm and a decrease at 650 nm, enabling accurate ratiometric measurements. Sensor A also exhibits ratiometric upconversion fluorescence when excited at 800 or 810 nm, offering additional flexibility for different experimental setups. The sensor's response relies on the reduction of the 3-quinolinium acceptor by NAD(P)H, forming a 1,4-dihydroquinoline donor that enhances fluorescence at 465 nm and quenches the near-infrared emission at 650 nm through photoinduced electron transfer. This mechanism ensures high sensitivity and reliable quantification of NAD(P)H levels while minimizing interference from sensor concentration, excitation intensity, or environmental factors. Sensor A was validated in HeLa and MD-MB453 cells under various metabolic and pharmacological conditions, including glucose and maltose stimulation and treatments with chemotherapeutic agents. Co-localization with mitochondrial-specific dyes confirmed its mitochondrial targeting, enabling precise tracking of NAD(P)H fluctuations. In vivo imaging of Drosophila larvae under nutrient starvation or chemotherapeutic exposure revealed dose-dependent fluorescence responses, highlighting its potential for tracking NAD(P)H changes in live organisms. Sensor A represents a significant advancement in NAD(P)H imaging, providing a powerful tool for exploring cellular metabolism and redox biology in biomedical research.
Collapse
Affiliation(s)
- Henry Lanquaye
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Sushil K Dwivedi
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Xinzhu Li
- Department of Geological and Mining Engineering and Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Peter Agyemang
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Grace Rickauer
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Dilka Liyana Arachchige
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Crystal Wang
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
- Houghton High School, Houghton, Michigan 49931, United States
| | - Joseph Peters
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Ivy Zhen
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
- Carmel High School, 520 E Main St, Carmel, Indiana 46032, United States
| | - Isabelle Knighton
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Athar Ata
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
3
|
Olowolagba AM, Aworinde OR, Dwivedi SK, Idowu MO, Arachchige DL, Wang C, Graham OR, Peters J, Rickauer G, Werner T, Ata A, Luck RL, Liu H. Near-Infrared Probes Designed with Hemicyanine Fluorophores Featuring Rhodamine and 1,8-Naphthalic Derivatives for Viscosity and HSA Detection in Live Cells. ACS APPLIED BIO MATERIALS 2025; 8:879-892. [PMID: 39757836 PMCID: PMC11921759 DOI: 10.1021/acsabm.4c01721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
This paper presents the development of near-infrared (NIR) fluorescent probes, A and B, engineered from hemicyanine dyes with 1,8-naphthalic and rhodamine derivatives for optimized photophysical properties and precise mitochondrial targeting. Probes A and B exhibit absorption peaks at 737 nm and low fluorescence in phosphate-buffered saline (PBS) buffer. Notably, their fluorescence intensities, peaking at 684 (A) and 702 nm (B), increase significantly with viscosity, as demonstrated through glycerol-to-PBS ratio experiments. This increase is attributed to restricted rotational freedom in the fluorophore and its linkages to rhodamine or 1,8-naphthalic groups. Theoretical modeling suggests nonplanar configurations for both probes, with primary absorptions in the rhodamine and hemicyanine cores (A: 543; B: 536 nm), and additional transitions to 1,8-naphthalic (A: 478 nm) and rhodamine (B: 626 nm) groups. Probe A is also responsive to human serum albumin (HSA), a key biomarker, with fluorescence increasing in HeLa cells as HSA concentrations rise. In contrast, probe B shows no response to HSA, likely due to steric hindrance from its bulky rhodamine group, illustrating a selectivity difference between the probes. Probe B, however, excels in mitochondrial imaging, confirmed through cellular and in vivo studies. In HeLa cells, it tracked viscosity changes following treatment with monensin, nystatin, and lipopolysaccharide (LPS), with fluorescence increasing in a dose-dependent manner. In fruit flies, probe B effectively detected monensin-induced viscosity changes, demonstrating its stability and in vivo applicability. These findings highlight the versatility and sensitivity of probes A and B as tools in biological research, with potential applications in monitoring mitochondrial health, detecting biomarkers like HSA, and investigating mitochondrial dynamics in disease.
Collapse
Affiliation(s)
- Adenike Mary Olowolagba
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States; Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Omowunmi Rebecca Aworinde
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States; Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Sushil K. Dwivedi
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States; Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Micah Olamide Idowu
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Dilka Liyana Arachchige
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States; Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Crystal Wang
- Houghton High School, Houghton, Michigan 49931, United States
| | - Olivya Rose Graham
- Health Research Institute and Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Joseph Peters
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States; Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Grace Rickauer
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States; Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Thomas Werner
- Health Research Institute and Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Athar Ata
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Rudy Lin Luck
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States; Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
4
|
Jaeger S, Lanquaye H, Dwivedi SK, Arachchige DL, Xia J, Waters M, Bigari BL, Olowolagba AM, Agyemang P, Zhang Y, Zhang Y, Ata A, Kathuria I, Luck RL, Werner T, Liu H. Near-Infrared Visualization of NAD(P)H Dynamics in Live Cells and Drosophila melanogaster Larvae Using a Coumarin-Based Pyridinium Fluorescent Probe. ACS APPLIED BIO MATERIALS 2024; 7:8465-8478. [PMID: 39562316 PMCID: PMC11792162 DOI: 10.1021/acsabm.4c01294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
A near-infrared fluorescent probe, A, was designed by substituting the carbonyl group of the coumarin dye's lactone with a 4-cyano-1-methylpyridinium methylene group and then attaching an electron-withdrawing NADH-sensing methylquinolinium acceptor via a vinyl bond linkage to the coumarin dye at the 4-position. The probe exhibits primary absorption maxima at 603, 428, and 361 nm, and fluoresces weakly at 703 nm. The addition of NAD(P)H results in a significant blue shift in the fluorescence peak from 703 to 670 nm, accompanied by a substantial increase in fluorescence intensity. This spectral shift is attributed to the transformation from an A-π-A-π-D configuration to a D-π-A-π-D pyridinium platform in probe AH, owing to the addition of a hydride from NADH to the electron-accepting quinolinium acceptor producing the electron-contributing 1-methyl-1,4-dihydroquinoline donor in probe AH. This conclusion is supported by theoretical calculations. The probe was utilized to investigate NAD(P)H dynamics under various conditions. In HeLa cells, treatment with glucose or maltose resulted in a substantial elevation in near-infrared emission intensity, suggesting increased NAD(P)H levels. Chemotherapeutic agents including cisplatin and fludarabine at concentrations of 5, 10, and 20 μM brought about a dose-dependent increase in emission intensity, reflecting heightened NAD(P)H levels due to drug-induced stress and cellular damage. In vivo experiments with hatched, starved Drosophila melanogaster larvae were also conducted. The results showed a clear relationship between emission intensity and the levels of NADH, glucose, and oxaliplatin, confirming that the probe can detect variations in NAD(P)H levels in a living organism. Our investigation also demonstrates that NAD(P)H levels are significantly elevated in the cystic kidneys of ADPKD mouse models and human patients, indicating substantial metabolic alterations associated with the disease. This near-infrared emissive probe offers a highly sensitive and specific method for monitoring NAD(P)H levels across cellular, tissue and whole-organism systems. The ability to detect NAD(P)H variations in reaction to varying stimuli, including nutrient availability and chemotherapeutic stress, underscores its potential as a valuable resource for biomedical research and therapeutic monitoring.
Collapse
Affiliation(s)
- Sophia Jaeger
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Henry Lanquaye
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Sushil K Dwivedi
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Dilka Liyana Arachchige
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - James Xia
- Woodbury high school, 2665 Woodlane Drive, Woodbury, Minnesota 55125, United States
| | - May Waters
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Bella Lyn Bigari
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Adenike Mary Olowolagba
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Peter Agyemang
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Yang Zhang
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Yan Zhang
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Athar Ata
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Ishana Kathuria
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Rudy L Luck
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
5
|
Norouzi M, Amoli A, Zhang Y, Zhang Y, Beatty AC, Jarvi A, Ata A, Werner T, Liu H. Deep-Red and Near-Infrared Compact Cyanine Dyes for Sensitive NAD(P)H Sensing in Live Cells and Kidney Disease Tissues. ACS APPLIED BIO MATERIALS 2024; 7:8552-8564. [PMID: 39589839 PMCID: PMC11792095 DOI: 10.1021/acsabm.4c01345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Cyanine dyes constructed for NAD(P)H near-infrared sensing utilize extended π-conjugation but often exhibit delayed fluorescence responses to NAD(P)H due to reduced positive charge density in 3-quinolinium acceptors. This study introduces deep-red and near-infrared compact cyanine dyes represented by probes A and B for mitochondrial NAD(P)H detection in live cells. Probes A and B feature a unique structural design with a double bond connection linking 3-quinolinium to strategically positioned 1-methylquinolinium acceptor units at 2- and 4-positions, correspondingly. Probe A absorbs at 359 and 531 nm, while probe B absorbs at 324 and 370 nm, emitting subtle fluorescence at 587 and 628 nm, respectively, with no NADH present. Upon NADH exposure, probes A and B exhibit significant emission enhancements at 612 and 656 nm, correspondingly, attributed to the efficient reduction of 3-quinolinium units to electron-donative 1-methyl-1,4-dihydroquinoline units. Probe B, chosen for its near-infrared emission and fast response to NAD(P)H, effectively monitored dynamic intracellular NAD(P)H levels throughout diverse experimental conditions. In HeLa cells, minimal basal fluorescence increased upon NADH stimulation. It also identified increased NAD(P)H levels following chemical treatments with acesulfame potassium, cisplatin, carboplatin, and temozolomide, CoCl2-induced hypoxia, and TLR4 activation in macrophages and in disease models of kidney pathology, where diseased tissues exhibited higher fluorescence than normal tissues. In fruit fly larvae under starvation conditions, probe B tracked NAD(P)H increases triggered by exogenous NADH, demonstrating its in vivo applicability for metabolic studies. These findings highlight probe B's utility in elucidating dynamic NAD(P)H fluctuations in diverse biological contexts, offering insights into mitochondrial function and cellular metabolism.
Collapse
Affiliation(s)
- Mahmood Norouzi
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Adonis Amoli
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Yang Zhang
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Yan Zhang
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Ashlyn Colleen Beatty
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Anna Jarvi
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Athar Ata
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Thomas Werner
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
6
|
Cui L, Lou W, Sun M, Wei X, Yang S, Zhang L, Qu L. Early Diagnosis of Tumorigenesis via Ratiometric Carbon Dots with Deep-Red Emissive Fluorescence Based on NAD + Dependence. Molecules 2024; 29:5308. [PMID: 39598697 PMCID: PMC11596318 DOI: 10.3390/molecules29225308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
The early diagnosis of tumorigenesis is crucial for clinical treatment, but the resolution and sensitivity of conventional short-wavelength biomarkers are not ideal because of the complicated interference in living tissue. Herein, a nicotinamide adenine dinucleotide (NAD+)-responsive probe with deep-red emissive ratiometric fluorescence was synthetized as a promising target for energy metabolism patterns during tumorigenesis. Interestingly, the solvents H3PO4 and 2,2'-dithiodibenzoic acid enhanced the red emission (640 and 680 nm) of o-phenylenediamine-based carbon dots (CDs), leading to the formation of a nanoscale graphite-like skeleton covered with -P=O, -CONH-, -COOH and -NH2 on their surfaces. Meanwhile, this method exhibited high sensitivity to the discriminating target NAD+, with a detection limit of 63 μM due to the inner filter effect and fluorescence resonance energy transfer process between NAD+ and CDs, which is superior to the reported capillary electrophoresis and liquid chromatographic detection methods (the reported detection limit was about 0.2 mM) in complex biological samples and even cancer cells. Encouragingly, NAD+ significantly promoted nucleus-targeting fluorescence and cell migration compared to GSH and pH stimulation, which were gradually eliminated in human hepatocellular carcinoma (HepG2) cells after 2-deoxy-d-Glucose inhibited the glycolytic phenotype. The proposed method holds great potential for the temporal and spatial resolution of NAD+-dependent tumor diagnosis in complex living systems.
Collapse
Affiliation(s)
- Lan Cui
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (W.L.); (M.S.); (X.W.); (S.Y.); (L.Z.)
| | - Weishuang Lou
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (W.L.); (M.S.); (X.W.); (S.Y.); (L.Z.)
| | - Mengyao Sun
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (W.L.); (M.S.); (X.W.); (S.Y.); (L.Z.)
| | - Xin Wei
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (W.L.); (M.S.); (X.W.); (S.Y.); (L.Z.)
| | - Shuoye Yang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (W.L.); (M.S.); (X.W.); (S.Y.); (L.Z.)
| | - Lu Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (W.L.); (M.S.); (X.W.); (S.Y.); (L.Z.)
| | - Lingbo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
7
|
Arachchige DL, Dwivedi SK, Olowolagba AM, Peters J, Beatty AC, Guo A, Wang C, Werner T, Luck RL, Liu H. Dynamic insights into mitochondrial function: Monitoring viscosity and SO 2 levels in living cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 258:112986. [PMID: 39084140 PMCID: PMC11419399 DOI: 10.1016/j.jphotobiol.2024.112986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 08/02/2024]
Abstract
Mitochondria, central organelles pivotal for eukaryotic cell function, extend their influence beyond ATP production, encompassing roles in apoptosis, calcium signaling, and biosynthesis. Recent studies spotlight two emerging determinants of mitochondrial functionality: intramitochondrial viscosity and sulfur dioxide (SO2) levels. While optimal mitochondrial viscosity governs molecular diffusion and vital processes like oxidative phosphorylation, aberrations are linked with neurodegenerative conditions, diabetes, and cancer. Similarly, SO2, a gaseous signaling molecule, modulates energy pathways and oxidative stress responses; however, imbalances lead to cytotoxic sulfite and bisulfite accumulation, triggering disorders such as cancer and cardiovascular anomalies. Our research focused on development of a dual-channel fluorescent probe, applying electron-withdrawing acceptors within a coumarin dye matrix, facilitating monitoring of mitochondrial viscosity and SO2 in live cells. This probe distinguishes fluorescence peaks at 650 nm and 558 nm, allowing ratiometric quantification of SO2 without interference from other sulfur species. Moreover, it enables near-infrared viscosity determination, particularly within mitochondria. The investigation employed theoretical calculations utilizing Density Functional Theory (DFT) methods to ascertain molecular geometries and calculate rotational energies. Notably, the indolium segment of the probe exhibited the lowest rotational energy, quantified at 7.38 kcals/mol. The probe featured heightened mitochondrial viscosity dynamics when contained within HeLa cells subjected to agents like nystatin, monensin, and bacterial lipopolysaccharide (LPS). Overall, our innovative methodology elucidates intricate mitochondrial factors, presenting transformative insights into cellular energetics, redox homeostasis, and therapeutic avenues for mitochondrial-related disorders.
Collapse
Affiliation(s)
- Dilka Liyana Arachchige
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, United States of America; Health Research Institute, Michigan Technological University, Houghton, MI 49931, United States of America
| | - Sushil K Dwivedi
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, United States of America; Health Research Institute, Michigan Technological University, Houghton, MI 49931, United States of America.
| | - Adenike Mary Olowolagba
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, United States of America; Health Research Institute, Michigan Technological University, Houghton, MI 49931, United States of America
| | - Joseph Peters
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, United States of America; Health Research Institute, Michigan Technological University, Houghton, MI 49931, United States of America
| | - Ashlyn Colleen Beatty
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, United States of America
| | - Alicia Guo
- Trinity School at River Ridge/Eagan, St Paul, MN 55121, United States of America
| | - Crystal Wang
- Houghton High School, 1603 Gundlach Rd, Houghton, MI 49931, United States of America
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, United States of America
| | - Rudy L Luck
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, United States of America.
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, United States of America; Health Research Institute, Michigan Technological University, Houghton, MI 49931, United States of America.
| |
Collapse
|
8
|
Olowolagba AM, Idowu MO, Arachchige DL, Aworinde OR, Dwivedi SK, Graham OR, Werner T, Luck RL, Liu H. Syntheses and Applications of Coumarin-Derived Fluorescent Probes for Real-Time Monitoring of NAD(P)H Dynamics in Living Cells across Diverse Chemical Environments. ACS APPLIED BIO MATERIALS 2024; 7:5437-5451. [PMID: 38995885 PMCID: PMC11333170 DOI: 10.1021/acsabm.4c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Fluorescent probes play a crucial role in elucidating cellular processes, with NAD(P)H sensing being pivotal in understanding cellular metabolism and redox biology. Here, the development and characterization of three fluorescent probes, A, B, and C, based on the coumarin platform for monitoring of NAD(P)H levels in living cells are described. Probes A and B incorporate a coumarin-cyanine hybrid structure with vinyl and thiophene connection bridges to 3-quinolinium acceptors, respectively, while probe C introduces a dicyano moiety for replacement of the lactone carbonyl group of probe A which increases the reaction rate of the probe with NAD(P)H. Initially, all probes exhibit subdued fluorescence due to intramolecular charge transfer (ICT) quenching. However, upon hydride transfer by NAD(P)H, fluorescence activation is triggered through enhanced ICT. Theoretical calculations confirm that the electronic absorption changes upon the addition of hydride to originate from the quinoline moiety instead of the coumarin section and end up in the middle section, illustrating how the addition of hydride affects the nature of this absorption. Control and dose-response experiments provide conclusive evidence of probe C's specificity and reliability in identifying intracellular NAD(P)H levels within HeLa cells. Furthermore, colocalization studies indicate probe C's selective targeting of mitochondria. Investigation into metabolic substrates reveals the influence of glucose, maltose, pyruvate, lactate, acesulfame potassium, and aspartame on NAD(P)H levels, shedding light on cellular responses to nutrient availability and artificial sweeteners. Additionally, we explore the consequence of oxaliplatin on cellular NAD(P)H levels, revealing complex interplays between DNA damage repair, metabolic reprogramming, and enzyme activities. In vivo studies utilizing starved fruit fly larvae underscore probe C's efficacy in monitoring NAD(P)H dynamics in response to external compounds. These findings highlight probe C's utility as a versatile tool for investigating NAD(P)H signaling pathways in biomedical research contexts, offering insights into cellular metabolism, stress responses, and disease mechanisms.
Collapse
Affiliation(s)
- Adenike Mary Olowolagba
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Micah Olamide Idowu
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Dilka Liyana Arachchige
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | | | - Sushil K Dwivedi
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Olivya Rose Graham
- Department of Biological Science, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Thomas Werner
- Department of Biological Science, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Rudy L Luck
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
9
|
Dwivedi SK, Arachchige DL, Waters M, Jaeger S, Mahmoud M, Olowolagba AM, Tucker DR, Geborkoff MR, Werner T, Luck RL, Godugu B, Liu H. Near-infrared Absorption and Emission Probes with Optimal Connection Bridges for Live Monitoring of NAD(P)H Dynamics in Living Systems. SENSORS AND ACTUATORS. B, CHEMICAL 2024; 402:135073. [PMID: 38559378 PMCID: PMC10976508 DOI: 10.1016/j.snb.2023.135073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Two NAD(P)H-biosensing probes consisting of 1,3,3-trimethyl-3H-indolium and 3-quinolinium acceptors, linked by thiophene, A, and 3,4-ethylenedioxythiophene, B, bridges are detailed. We synthesized probes C and D, replacing the thiophene connection in probe A with phenyl and 2,1,3-benzothiadiazole units, respectively. Probe E was prepared by substituting probe A's 3-quinolinium unit with a 1-methylquinoxalin-1-ium unit. Solutions are non-fluorescent but in the presence of NADH, exhibit near-infrared fluorescence at 742.1 nm and 727.2 nm for probes A and B, respectively, and generate absorbance signals at 690.6 nm and 685.9 nm. In contrast, probes C and D displayed pronounced interference from NADH fluorescence at 450 nm, whereas probe E exhibited minimal fluorescence alterations in response to NAD(P)H. Pre-treatment of A549 cells with glucose in the presence of probe A led to a significant increase in fluorescence intensity. Additionally, subjecting probe A to lactate and pyruvate molecules resulted in opposite changes in NAD(P)H levels, with lactate causing a substantial increase in fluorescence intensity, conversely, pyruvate resulted in a sharp decrease. Treatment of A549 cells with varying concentrations of the drugs cisplatin, gemcitabine, and camptothecin (5, 10, and 20 μM) led to a concentration-dependent increase in intracellular fluorescence intensity, signifying a rise in NAD(P)H levels. Finally, fruit fly larvae were treated with different concentrations of NADH and cisplatin illustrating applicability to live organisms. The results demonstrated a direct correlation between fluorescence intensity and the concentration of NADH and cisplatin, respectively, further confirming the efficacy of probe A in sensing changes in NAD(P)H levels within a whole organism.
Collapse
Affiliation(s)
- Sushil K Dwivedi
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
- Health Research Institute, Michigan Technological University, Houghton, MI 49931
| | - Dilka Liyana Arachchige
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
- Health Research Institute, Michigan Technological University, Houghton, MI 49931
| | - May Waters
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
- Health Research Institute, Michigan Technological University, Houghton, MI 49931
| | - Sophia Jaeger
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
- Health Research Institute, Michigan Technological University, Houghton, MI 49931
| | - Mohamed Mahmoud
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
- Health Research Institute, Michigan Technological University, Houghton, MI 49931
| | - Adenike Mary Olowolagba
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
- Health Research Institute, Michigan Technological University, Houghton, MI 49931
| | - Daniel R Tucker
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| | - Micaela R Geborkoff
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931
| | - Rudy L Luck
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| | - Bhaskar Godugu
- Department of Chemistry, University of Pittsburgh, Chevron Science Center, 219 Parkman Avenue, Pittsburgh, PA 15260
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| |
Collapse
|
10
|
Arachchige DL, Dwivedi SK, Waters M, Jaeger S, Peters J, Tucker DR, Geborkoff M, Werner T, Luck RL, Godugu B, Liu H. Sensitive monitoring of NAD(P)H levels within cancer cells using mitochondria-targeted near-infrared cyanine dyes with optimized electron-withdrawing acceptors. J Mater Chem B 2024; 12:448-465. [PMID: 38063074 PMCID: PMC10918806 DOI: 10.1039/d3tb02124f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A series of near-infrared fluorescent probes, labeled A to E, were developed by combining electron-rich thiophene and 3,4-ethylenedioxythiophene bridges with 3-quinolinium and various electron deficient groups, enabling the sensing of NAD(P)H. Probes A and B exhibit absorptions and emissions in the near-infrared range, offering advantages such as minimal interference from autofluorescence, negligible photo impairment in cells and tissues, and exceptional tissue penetration. These probes show negligible fluorescence when NADH is not present, and their absorption maxima are at 438 nm and 470 nm, respectively. In contrast, probes C-E feature absorption maxima at 450, 334 and 581 nm, respectively. Added NADH triggers the transformation of the electron-deficient 3-quinolinium units into electron-rich 1,4-dihydroquinoline units resulting in fluorescence responses which were established at 748, 730, 575, 625 and 661 for probes AH-EH, respectively, at detection limits of 0.15 μM and 0.07 μM for probes A and B, respectively. Optimized geometries based on theoretical calculations reveal non-planar geometries for probes A-E due to twisting of the 3-quinolinium and benzothiazolium units bonded to the central thiophene group, which all attain planarity upon addition of hydride resulting in absorption and fluorescence in the near-IR region for probes AH and BH in contrast to probes CH-EH which depict fluorescence in the visible range. Probe A has been successfully employed to monitor NAD(P)H levels in glycolysis and specific mitochondrial targeting. Furthermore, it has been used to assess the influence of lactate and pyruvate on the levels of NAD(P)H, to explore how hypoxia in cancer cells can elevate levels of NAD(P)H, and to visualize changes in levels of NAD(P)H under hypoxic conditions with CoCl2 treatment. Additionally, probe A has facilitated the examination of the potential impact of chemotherapy drugs, namely gemcitabine, camptothecin, and cisplatin, on metabolic processes and energy generation within cancer cells by affecting NAD(P)H levels. Treatment of A549 cancer cells with these drugs has been shown to increase NAD(P)H levels, which may contribute to their anticancer effects ultimately leading to programmed cell death or apoptosis. Moreover, probe A has been successfully employed in monitoring NAD(P)H level changes in D. melanogaster larvae treated with cisplatin.
Collapse
Affiliation(s)
- Dilka Liyana Arachchige
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Sushil K Dwivedi
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - May Waters
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Sophia Jaeger
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Joe Peters
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Daniel R Tucker
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
| | - Micaela Geborkoff
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | - Rudy L Luck
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
| | - Bhaskar Godugu
- Department of Chemistry, University of Pittsburgh, Chevron Science Center, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
11
|
Zhang R. Guest Editor's Introduction: Optical methods for characterisation of biomolecules. Methods 2023; 218:25-26. [PMID: 37479004 DOI: 10.1016/j.ymeth.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023] Open
Affiliation(s)
- Run Zhang
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|
12
|
Arachchige DL, Dwivedi SK, Jaeger S, Olowolagba AM, Mahmoud M, Tucker DR, Fritz DR, Werner T, Tanasova M, Luck RL, Liu H. Highly Sensitive Cyanine Dyes for Rapid Sensing of NAD(P)H in Mitochondria and First-Instar Larvae of Drosophila melanogaster. ACS APPLIED BIO MATERIALS 2023; 6:3199-3212. [PMID: 37556116 PMCID: PMC10584401 DOI: 10.1021/acsabm.3c00320] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
We have developed two highly sensitive cyanine dyes, which we refer to as probes A and B. These dyes are capable of quick and sensitive sensing of NAD(P)H. The dyes were fabricated by connecting benzothiazolium and 2,3-dimethylnaphtho[1,2-d]thiazol-3-ium units to 3-quinolinium through a vinyl bond. In the absence of NAD(P)H, both probes have low fluorescence and absorption peaks at 370 and 400 nm, correspondingly. This is because of their two electron-withdrawing acceptor systems with high charge densities. However, when NAD(P)H reduces the probes' electron-withdrawing 3-quinolinium units to electron-donating 1,4-dihydroquinoline units, the probes absorb at 533 and 535 nm and fluoresce at 572 and 586 nm for A and B correspondingly. This creates well-defined donor-π-acceptor cyanine dyes. We successfully used probe A to monitor NAD(P)H levels in live cells during glycolysis, under hypoxic conditions induced by CoCl2 treatment and after treatment with cancer drugs, including cisplatin, camptothecin, and gemcitabine. Probe A was also employed to visualize NAD(P)H in Drosophila melanogaster first-instar larvae. We observed an increase in NAD(P)H levels in A549 cancer cells both under hypoxic conditions and after treatment with cancer drugs, including cisplatin, camptothecin, and gemcitabine.
Collapse
Affiliation(s)
- Dilka Liyana Arachchige
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Department of Chemistry, and Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Sushil K Dwivedi
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Department of Chemistry, and Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Sophia Jaeger
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Department of Chemistry, and Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Adenike Mary Olowolagba
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Department of Chemistry, and Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Mohamed Mahmoud
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Department of Chemistry, and Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Daniel R Tucker
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Delaney Raine Fritz
- Department of Biological Sciences, and Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Thomas Werner
- Department of Biological Sciences, and Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Marina Tanasova
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Rudy L Luck
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
13
|
Dwivedi SK, Arachchige DL, Olowolagba A, Mahmoud M, Cunnien J, Tucker DR, Fritz D, Werner T, Luck RL, Liu H. Thiophene-based organic dye with large Stokes shift and deep red emission for live cell NAD(P)H detection under varying chemical stimuli. J Mater Chem B 2023; 11:6296-6307. [PMID: 37249441 PMCID: PMC10524713 DOI: 10.1039/d3tb00645j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We report a novel method for synthesizing red and deep red cyanine dyes with large Stokes shifts, probes A and B, for live cell NAD(P)H detection. The probes were prepared using thiophene-based organic dyes featuring a π-conjugated bridge of thiophene and 3,4-ethylenedioxythiophene units linking the 1-methylquinolinium acceptor and formyl acceptor, respectively. These probes display weak absorption peaks at 315 nm (A) and 334 nm (B) and negligible fluorescence in the absence of NADH. However, upon the presence of NADH, new absorption and fluorescence peaks appear at 477 nm and 619 nm for probe A and at 486 nm and 576 nm for probe B, respectively. This is due to the NADH-facilitated reduction of the 1-methylquinolinium unit into 1-methyl-1,4-dihydroquinoline, which then acts as the electron donor for the probes, leading to the formation of well-defined electron donor-acceptor dye systems. Probe A has a large Stokes shift of 144 nm, which allows for better separation between the excitation and emission spectra, reducing spectral overlap and improving the accuracy of fluorescence measurements. The probes are highly selective for NAD(P)H, water-soluble, biocompatible, and easily permeable to cells. They are also photostable and were successfully used to monitor changes in NADH concentration in live cells during glycolysis in the presence of glucose, lactate, and pyruvate, treatment of FCCP and cancer drug cisplatin, and under hypoxia triggered by CoCl2. Furthermore, the probes were able to image NAD(P)H in Drosophila melanogaster larvae. Notably, cisplatin treatment increased the NAD(P)H concentration in A459 cells over time. Overall, this work presents a significant advancement in the field of live cell imaging by providing a simple and cost-effective method for detecting changes in NAD(P)H concentration under varying chemical stimuli.
Collapse
Affiliation(s)
- Sushil K Dwivedi
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Dilka Liyana Arachchige
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Adenike Olowolagba
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Mohamed Mahmoud
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Jenna Cunnien
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Daniel R Tucker
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
| | - Delaney Fritz
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | - Rudy L Luck
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
| |
Collapse
|
14
|
Duan DC, Liu J, Zheng YL, Chen H, Zhang X, Zhang Y, Dai F, Zhang S, Zhou B. Cellular and Intravital Imaging of NAD(P)H by a Red-Emitting Quinolinium-Based Fluorescent Probe that Features a Shift of Its Product from Mitochondria to the Nucleus. Anal Chem 2023; 95:1335-1342. [PMID: 36573639 DOI: 10.1021/acs.analchem.2c04238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
NAD(P)H is a vital hydrogen donor and electron carrier involved in numerous biological processes. The development of small-molecule tools for intravital imaging of NAD(P)H is significant for further exploring their pathophysiological roles. Herein, we rationally designed a fluorescent probe NADH-R by a simple graft of pyridiniumylbutenenitrile on a 1-methylquinolinium moiety in the 3-position. Benefited from the reduction of quinolinium by NAD(P)H, this probe releases the free push-pull fluorophore NADH-RH, allowing a turn-on red-emitting fluorescence response together with an ultralow detection limit of 12 nM. Under the assistance of the probe, we first monitored exogenous and endogenous generation of NAD(P)H in living cells, subsequently observed dynamic changes of NAD(P)H levels in living cells under different metabolic perturbations, and finally visualized the declined NAD(P)H levels in live mouse brain in a stroke model. Unexpectedly, the time-dependent colocalization experiment revealed that the probe reacts with mitochondrial NAD(P)H, followed by a shift of its reduced product NADH-RH from mitochondria to the nucleus, highlighting that NADH-RH is a novel nucleus-directed dye scaffold, which would facilitate the development of nucleus-targeting fluorescent probes and drugs.
Collapse
Affiliation(s)
- De-Chen Duan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Street S., Lanzhou 730000, Gansu, China
| | - Junru Liu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, 222 Tianshui Street S., Lanzhou 730000, Gansu, China
| | - Ya-Long Zheng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Street S., Lanzhou 730000, Gansu, China
| | - Hao Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Street S., Lanzhou 730000, Gansu, China
| | - Xinying Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, 222 Tianshui Street S., Lanzhou 730000, Gansu, China
| | - Yu Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Street S., Lanzhou 730000, Gansu, China
| | - Fang Dai
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Street S., Lanzhou 730000, Gansu, China
| | - Shengxiang Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, 222 Tianshui Street S., Lanzhou 730000, Gansu, China
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Street S., Lanzhou 730000, Gansu, China
| |
Collapse
|
15
|
Li L, Liu Q, Cai R, Ma Q, Mao G, Zhu N, Liu S. A novel rhodamine-based fluorescent probe for high selectively determining cysteine in lysosomes. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
16
|
Lee J, Suh HN, Ahn S, Park HB, Lee JY, Kim HJ, Kim SH. Disposable electrocatalytic sensor for whole blood NADH monitoring. Sci Rep 2022; 12:16716. [PMID: 36202932 PMCID: PMC9537416 DOI: 10.1038/s41598-022-20995-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/21/2022] [Indexed: 11/10/2022] Open
Abstract
Monitoring nicotinamide adenine dinucleotide (NADH) is important because NADH is involved in cellular redox reactions and cellular energy production. Currently, few biosensors quantify NADH in whole blood. However, they still have limitations due to several defects, including poor repeatability, long analysis time, and their requirement of extra sample pretreatment. In this study, we developed electrocatalytic sensors using screen-printed electrodes with a redox-active monolayer 4′-mercapto-N-phenylquinone diamine formed by a self-assembled monolayer of a 4-aminothiophenol (4-ATP). We exhibited their behavior as electrocatalysts toward the oxidation of NADH in whole blood. Finally, the electrocatalytic sensors maintained stability and exhibited 3.5 µM limit of detection, with 0.0076 ± 0.0006 µM/µA sensitivity in a mouse’s whole blood. As proof of concept, a polyhexamethylene guanidine phosphate–treated mouse model was used to induce inflammatory and fibrotic responses, and NADH level was measured for 45 days. This work demonstrates the potential of electrocatalytic sensors to analyze NADH in whole blood and to be developed for extensive applications.
Collapse
|
17
|
Zhang Y, Yan Q, Cheng Y, Wang B, Rong X, Kuang Y, Qiu X, Sun L, Zhou Y. A Novel “Off–On” NIR Fluorescent Probe for Detecting Hg2+ Based on Dicyanoisophorone and Its Application in Bio-imaging and Real Water Samples. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
18
|
Morphology transition of Ag nanoprisms as a platform to design a dual sensor for NADH sensitive assay. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|