1
|
Tian L, Zhao Z, Gao W, Liu Z, Li X, Zhang W, Li Z. SARS-CoV-2 nsp16 is regulated by host E3 ubiquitin ligases, UBR5 and MARCHF7. eLife 2025; 13:RP102277. [PMID: 40358464 PMCID: PMC12074641 DOI: 10.7554/elife.102277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), remains a global public health threat with considerable economic consequences. The nonstructural protein 16 (nsp16), in complex with nsp10, facilitates the final viral mRNA capping step through its 2'-O-methylase activity, helping the virus to evade host immunity and prevent mRNA degradation. However, nsp16 regulation by host factors remains poorly understood. While various E3 ubiquitin ligases interact with SARS-CoV-2 proteins, their roles in targeting nsp16 for degradation remain unclear. In this study, we demonstrate that nsp16 undergoes ubiquitination and proteasomal degradation mediated by the host E3 ligases UBR5 and MARCHF7. UBR5 induces K48-linked ubiquitination, whereas MARCHF7 promotes K27-linked ubiquitination, independently suppressing SARS-CoV-2 replication in cell cultures and in mice. Notably, UBR5 and MARCHF7 also degrade nsp16 variants from different viral strains, exhibiting broad-spectrum antiviral activity. Our findings reveal novel antiviral mechanisms of the ubiquitin-proteasome system (UPS) and highlight their potential therapeutic targets against COVID-19.
Collapse
Affiliation(s)
- Li Tian
- Department of Infectious Diseases, Infectious Diseases and Pathogen Biology Center, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin UniversityChangchunChina
| | - Zongzheng Zhao
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural SciencesChangchunChina
| | - Wenying Gao
- Department of Infectious Diseases, Infectious Diseases and Pathogen Biology Center, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin UniversityChangchunChina
| | - Zirui Liu
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural SciencesChangchunChina
| | - Xiao Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural SciencesChangchunChina
| | - Wenyan Zhang
- Department of Infectious Diseases, Infectious Diseases and Pathogen Biology Center, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin UniversityChangchunChina
| | - Zhaolong Li
- Department of Infectious Diseases, Infectious Diseases and Pathogen Biology Center, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
2
|
Hackett NR, Crystal RG. Four decades of adenovirus gene transfer vectors: History and current use. Mol Ther 2025; 33:2192-2204. [PMID: 40181546 DOI: 10.1016/j.ymthe.2025.03.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/24/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025] Open
Abstract
Replication-deficient adenovirus-based gene therapy vectors were the first vectors demonstrated to mediate effective, robust in vivo gene transfer. The ease of genome engineering, large carrying capacity, and methods for large-scale vector production made adenoviral vectors a primary focus in the early days of gene therapy. Many vector modifications such as capsid engineering and regulated and cell-specific transgene expression were first demonstrated in adenovirus (Ad) vectors. However, early human studies proved disappointing, with safety and efficacy issues arising from anti-vector innate and acquired immune responses. While many gene therapy researchers moved to other vectors, others recognized that the immune response and limited duration of transgene expression were useful in the correct context. The striking example of this was the use of several effective adenovirus vectors engineered as COVID-19 vaccines estimated to have been administered to 2 billion people. In addition to vaccines, current applications of Ad vectors relate to anti-cancer therapies, tissue remodeling, and gene editing.
Collapse
Affiliation(s)
- Neil R Hackett
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
3
|
Wang D, Stevens G, Flotte TR. Gene therapy then and now: A look back at changes in the field over the past 25 years. Mol Ther 2025; 33:1889-1902. [PMID: 40022444 DOI: 10.1016/j.ymthe.2025.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025] Open
Abstract
Since the inception of Molecular Therapy in 2000, the field of gene therapy has made remarkable progress, evolving from no approved clinical products to 23 clinical gene therapy products today. In this review, we aim to capture the transformative changes in the field by surveying the literature over this period, with a particular focus on advancements in gene delivery vector technology, disease and tissue targeting, and the revolutionary molecular tools that have become central to the field. We also discuss the current challenges facing gene therapy and the need for greater collaboration to ensure its accessibility worldwide.
Collapse
Affiliation(s)
- Dan Wang
- Department of Genetic and Cellular Medicine, UMass Chan Medical School, Worcester, MA, USA
| | - Gregg Stevens
- Lamar Soutter Library, UMass Chan Medical School, Worcester, MA, USA
| | - Terence R Flotte
- Department of Genetic and Cellular Medicine, UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
4
|
Odio-Herrera M, Orozco-Loaiza G, Wu L. Gene Therapy in Diabetic Retinopathy and Diabetic Macular Edema: An Update. J Clin Med 2025; 14:3205. [PMID: 40364236 PMCID: PMC12072420 DOI: 10.3390/jcm14093205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/22/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Diabetic retinopathy (DR) is one of the leading causes of preventable blindness worldwide. It is characterized by a spectrum of disease that spans mild non-proliferative diabetic retinopathy (NPDR) all the way to neovascular glaucoma and tractional retinal detachment secondary to proliferative diabetic retinopathy (PDR). Most eyes with DR remain asymptomatic unless vision-threatening complications, such as diabetic macular edema (DME) and/or PDR, develop. Current treatment options include laser photocoagulation and/or anti-VEGF intravitreal injections. Patients under treatment with anti-VEGF agents usually require constant monitoring and multiple injections to optimize outcomes. This treatment burden plays a key role in suboptimal adherence to treatment in many patients, compromising their outcomes. Gene therapy has emerged as a promising therapeutic option for DR. The mechanism for current trials evaluating gene therapies for DR consists of delivering transgenes to the retina that express anti-angiogenic proteins that inhibit VEGF. Preliminary results from the SPECTRA (4D-150) and ALTITUDE (ABBV-RGX-314) studies are promising, demonstrating an improvement in the diabetic retinopathy severity score and a reduction in the treatment burden. In contrast, the INFINITY (ADVM-022) trial was complicated by several cases of severe inflammation and hypotony that led the sponsor to discontinue further development of this product for DME.
Collapse
Affiliation(s)
| | | | - Lihteh Wu
- Asociados de Mácula Vitreo y Retina de Costa Rica, San José 60612, Costa Rica; (M.O.-H.); (G.O.-L.)
| |
Collapse
|
5
|
Ay C, Reinisch A. Gene therapy: principles, challenges and use in clinical practice. Wien Klin Wochenschr 2025; 137:261-271. [PMID: 38713227 PMCID: PMC12081535 DOI: 10.1007/s00508-024-02368-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/12/2024] [Indexed: 05/08/2024]
Abstract
INTRODUCTION Gene therapy is an emerging topic in medicine. The first products have already been licensed in the European Union for the treatment of immune deficiency, spinal muscular atrophy, hemophilia, retinal dystrophy, a rare neurotransmitter disorder and some hematological cancers, while many more are being assessed in preclinical and clinical trials. OBJECTIVE The purpose of this review is to provide an overview of the core principles of gene therapy along with information on challenges and risks. Benefits, adverse effects and potential risks are illustrated based on the examples of hemophilia and spinal muscular atrophy. RESULTS At present, in-vitro and in-vivo gene addition or gene augmentation is the most commonly established type of gene therapy. More recently, more sophisticated and precise approaches such as in situ gene editing have moved into focus. However, all types of gene therapy require long-term observation of treated patients to ensure safety, efficacy, predictability and durability. Important safety concerns include immune reactions to the vector, the foreign DNA or the new protein resulting from gene therapy, and a remaining low cancer risk based on insertional mutagenesis. Ethical and regulatory issues need to be addressed, and new reimbursement models are called for to ease the financial burden that this new treatment poses for the health care system. CONCLUSION Gene therapy holds great promise for considerable improvement or even cure of genetic diseases with serious clinical consequences. However, a number of questions and issues need to be clarified to ensure broad accessibility of safe and efficacious products.
Collapse
Affiliation(s)
- Cihan Ay
- Department of Medicine I, Clinical Division of Haematology and Haemostaseology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Andreas Reinisch
- Department of Medicine, Division of Hematology & Department for Blood Group Serology and Transfusion Medicine, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria.
| |
Collapse
|
6
|
Purdy R, John M, Bray A, Clare AJ, Copland DA, Chan YK, Henderson RH, Nerinckx F, Leroy BP, Yang P, Pennesi ME, MacLaren RE, Fischer MD, Dick AD, Xue K. Gene Therapy-Associated Uveitis (GTAU): Understanding and mitigating the adverse immune response in retinal gene therapy. Prog Retin Eye Res 2025; 106:101354. [PMID: 40090458 DOI: 10.1016/j.preteyeres.2025.101354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/04/2025] [Accepted: 03/14/2025] [Indexed: 03/18/2025]
Abstract
Retinal gene therapy using adeno-associated viral (AAV) vectors has been a groundbreaking step-change in the treatment of inherited retinal diseases (IRDs) and could also be used to treat more common retinal diseases such as age-related macular degeneration and diabetic retinopathy. The delivery and expression of therapeutic transgenes in the eye is limited by innate and adaptive immune responses against components of the vector product, which has been termed gene therapy-associated uveitis (GTAU). This is clinically important as intraocular inflammation could lead to irreversible loss of retinal cells, deterioration of visual function and reduced durability of treatment effect associated with a costly one-off treatment. For retinal gene therapy to achieve an improved efficacy and safety profile for treating additional IRDs and more common diseases, the risk of GTAU must be minimised. We have collated insights from pre-clinical research, clinical trials, and the real-world implementation of AAV-mediated retinal gene therapy to help understand the risk factors for GTAU. We draw attention to an emerging framework, which includes patient demographics, vector construct, vector dose, route of administration, and choice of immunosuppression regime. Importantly, we consider efforts to date and potential future strategies to mitigate the adverse immune response across each of these domains. We advocate for more targeted immunomodulatory approaches to the prevention and treatment of GTAU based on better understanding of the underlying immune response.
Collapse
Affiliation(s)
- Ryan Purdy
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Molly John
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | - Alison J Clare
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK; University College London (UCL) Institute of Ophthalmology, London, UK; NIHR Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital, London, UK
| | - David A Copland
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK; University College London (UCL) Institute of Ophthalmology, London, UK; NIHR Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital, London, UK
| | - Ying Kai Chan
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA; Cirrus Therapeutics, Cambridge, MA, USA
| | - Robert H Henderson
- University College London (UCL) Great Ormond Street Institute of Child Health, London, UK; Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Fanny Nerinckx
- Chirec Delta Hospital, Brussels, Belgium; Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium
| | - Bart P Leroy
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium; Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, Ghent, Belgium; Department of Head & Skin, Ghent University, Ghent, Belgium
| | - Paul Yang
- Casey Eye Institute, Oregon Health & Science University, Portland, USA
| | - Mark E Pennesi
- Casey Eye Institute, Oregon Health & Science University, Portland, USA; Retina Foundation of the Southwest, Dallas, TX, USA
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - M Dominik Fischer
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Andrew D Dick
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK; University College London (UCL) Institute of Ophthalmology, London, UK; NIHR Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital, London, UK
| | - Kanmin Xue
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| |
Collapse
|
7
|
Quesada E, Rojas S, Campos X, Wu L. Gene therapy in neovascular age related macular degeneration: an update. Graefes Arch Clin Exp Ophthalmol 2025:10.1007/s00417-025-06837-2. [PMID: 40293479 DOI: 10.1007/s00417-025-06837-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/11/2025] [Accepted: 04/21/2025] [Indexed: 04/30/2025] Open
Abstract
Neovascular age-related macular degeneration (NV-AMD) is a leading cause of preventable blindness in the elderly. Intravitreal injections of anti-VEGF agents are currently the treatment of choice for NV-AMD. However this treatment is burdensome and fosters non-compliance which leads to inferior visual outcomes. Gene therapy has emerged as a promising therapeutic option for NV-AMD that may improve these outcomes. Potential risks of gene therapy include a potential immune response that may be elicited by the vector, accidental activation of oncogenes or inactivation of tumor suppresor genes leading to malignant transformation via insertational mutagenesis and integration of the viral DNA inserts into the host's DNA. The main strategy of current gene therapy for NV-AMD has focused on delivering transgenes that express anti-angiogenic proteins that directly or indirectly inhibit the VEGF pathway. Ixoberogene soroparvovec, RGX-314 and 4D-150 are the leading NV-AMD genetic treatment programs. Pre-clinical models suggest that genome surgery with clustered regularly interspaced short palindromic repeats (CRISPR) may be another option in the future.
Collapse
Affiliation(s)
- Erika Quesada
- Asociados de Mácula, Vítreo y Retina de Costa Rica, Primer Piso Torre Mercedes Paseo Colón, San José, Costa Rica
| | - Sofía Rojas
- Asociados de Mácula, Vítreo y Retina de Costa Rica, Primer Piso Torre Mercedes Paseo Colón, San José, Costa Rica
| | - Xiomara Campos
- Asociados de Mácula, Vítreo y Retina de Costa Rica, Primer Piso Torre Mercedes Paseo Colón, San José, Costa Rica
| | - Lihteh Wu
- Asociados de Mácula, Vítreo y Retina de Costa Rica, Primer Piso Torre Mercedes Paseo Colón, San José, Costa Rica.
| |
Collapse
|
8
|
Dipalo LL, Mikkelsen JG, Gijsbers R, Carlon MS. Trojan Horse-Like Vehicles for CRISPR-Cas Delivery: Engineering Extracellular Vesicles and Virus-Like Particles for Precision Gene Editing in Cystic Fibrosis. Hum Gene Ther 2025. [PMID: 40295092 DOI: 10.1089/hum.2024.258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
The advent of genome editing has kindled the hope to cure previously uncurable, life-threatening genetic diseases. However, whether this promise can be ultimately fulfilled depends on how efficiently gene editing agents can be delivered to therapeutically relevant cells. Over time, viruses have evolved into sophisticated, versatile, and biocompatible nanomachines that can be engineered to shuttle payloads to specific cell types. Despite the advances in safety and selectivity, the long-term expression of gene editing agents sustained by viral vectors remains a cause for concern. Cell-derived vesicles (CDVs) are gaining traction as elegant alternatives. CDVs encompass extracellular vesicles (EVs), a diverse set of intrinsically biocompatible and low-immunogenic membranous nanoparticles, and virus-like particles (VLPs), bioparticles with virus-like scaffold and envelope structures, but devoid of genetic material. Both EVs and VLPs can efficiently deliver ribonucleoprotein cargo to the target cell cytoplasm, ensuring that the editing machinery is only transiently active in the cell and thereby increasing its safety. In this review, we explore the natural diversity of CDVs and their potential as delivery vectors for the clustered regularly interspaced short palindromic repeats (CRISPR) machinery. We illustrate different strategies for the optimization of CDV cargo loading and retargeting, highlighting the versatility and tunability of these vehicles. Nonetheless, the lack of robust and standardized protocols for CDV production, purification, and quality assessment still hinders their widespread adoption to further CRISPR-based therapies as advanced "living drugs." We believe that a collective, multifaceted effort is urgently needed to address these critical issues and unlock the full potential of genome-editing technologies to yield safe, easy-to-manufacture, and pharmacologically well-defined therapies. Finally, we discuss the current clinical landscape of lung-directed gene therapies for cystic fibrosis and explore how CDVs could drive significant breakthroughs in in vivo gene editing for this disease.
Collapse
Affiliation(s)
- Laudonia Lidia Dipalo
- Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | | | - Rik Gijsbers
- Department of Pharmaceutical and Pharmacological Sciences, Advanced Disease Modelling, Targeted Drug Discovery, and Gene Therapy (ADVANTAGE) labs, KU Leuven, Leuven, Belgium
- Leuven Viral Vector Core, group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Marianne S Carlon
- Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Al-Shihabi AM, Al-Mohaya M, Haider M, Demiralp B. Exploring the promise of lipoplexes: From concept to clinical applications. Int J Pharm 2025; 674:125424. [PMID: 40043964 DOI: 10.1016/j.ijpharm.2025.125424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/02/2025] [Accepted: 02/28/2025] [Indexed: 03/09/2025]
Abstract
Lipoplexes are non-viral lipid vectors that effectively form complexes with genetic material, positioning them as promising alternatives to viral vectors in gene therapy. Their advantages include lower toxicity, reduced immunogenicity, improved targetability, and ease of large-scale production. A typical lipoplex is composed of cationic lipids, neutral lipids, and anionic nucleic acids (e.g., DNA, mRNA, miRNA, siRNA, shRNA). Neutral lipids play an auxiliary role and are often used as transfection enhancers. Enhancing lipoplex efficiency often involves modifying the cationic lipid structure through functional groups like PEG polymers and targeting ligands. The assembly of lipoplexes occurs spontaneously. This process involves the binding of the positively charged polar head group of the cationic lipid to the negatively charged DNA spontaneously as a result of electrostatic interaction, then irreversible rearrangement and condensation of the lipoplex occurs to form either lamellar or hexagonal structures. The transfection process encompasses several steps: cellular entry, endosomal escape and cargo release, cytoplasmic trafficking, and nuclear entry. The physicochemical and biological properties of lipoplexes are influenced by factors such as lipid structure, charge ratio, and environmental conditions. Despite certain limitations like low gene transfer efficiency and rapid clearance by serum proteins, lipoplexes show promise for clinical applications. They can be administered through various routes, offering potential treatments for diseases such as cancer, bone damage, infection, and cystic fibrosis. The study aims to examine the potential of lipoplexes as a promising vehicle for delivering therapeutic agents and their progression from theoretical concepts to practical clinical applications.
Collapse
Affiliation(s)
- Alaa M Al-Shihabi
- Institute of Health Sciences, Istanbul University, 34216, Beyazıt, Istanbul, Turkey; Istanbul University, Faculty of Pharmacy, Pharmaceutical Technology Dept., 34126, Beyazıt, Istanbul, Turkey
| | - Mazen Al-Mohaya
- Institute of Health Sciences, Istanbul University, 34216, Beyazıt, Istanbul, Turkey; Istanbul University, Faculty of Pharmacy, Pharmaceutical Technology Dept., 34126, Beyazıt, Istanbul, Turkey
| | - Mohamed Haider
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah 27272 Sharjah, United Arab Emirates; Research Institute of Medical & Health Sciences, University of Sharjah 27272 Sharjah, United Arab Emirates.
| | - Burcu Demiralp
- Istanbul University, Faculty of Pharmacy, Pharmaceutical Technology Dept., 34126, Beyazıt, Istanbul, Turkey.
| |
Collapse
|
10
|
Tsoplaktsoglou M, Spyratou E, Droulias A, Zachou ME, Efstathopoulos EP. The Contribution of Nanomedicine in Ocular Oncology. Cancers (Basel) 2025; 17:1186. [PMID: 40227824 PMCID: PMC11987995 DOI: 10.3390/cancers17071186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/29/2025] [Accepted: 03/30/2025] [Indexed: 04/15/2025] Open
Abstract
Nanomedicine is a novel and emerging field that has noted significant progress in both the fields of ophthalmology and cancer treatment. Expanding into ocular oncology, it holds the potential to overcome the limitations of conventional therapies, such as poor drug penetration due to anatomical and physiological ocular barriers and insufficient targeting, which can lead to collateral damage to healthy tissues. By reviewing a series of clinical and preclinical studies, we aim to outline the recent advancements, current trends and future perspectives in nanomedicine for ocular cancer treatment. Beyond improving the existing therapies, like chemotherapy, phototherapies and brachytherapy, nanomedicine enables multimodal applications by combining multiple treatments or integrating imaging for theranostic approaches. Additionally, it paves the way for experimental therapies, such as gene therapy, offering new possibilities for more effective and less invasive treatment strategies in ocular oncology.
Collapse
Affiliation(s)
- Margarita Tsoplaktsoglou
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.T.); (A.D.)
| | - Ellas Spyratou
- Department of Applied Medical Physics, Medical School, Attikon University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.S.); (M.-E.Z.)
| | - Andreas Droulias
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.T.); (A.D.)
| | - Maria-Eleni Zachou
- Department of Applied Medical Physics, Medical School, Attikon University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.S.); (M.-E.Z.)
| | - Efstathios P. Efstathopoulos
- Department of Applied Medical Physics, Medical School, Attikon University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.S.); (M.-E.Z.)
| |
Collapse
|
11
|
Yang Q, Davidson BA, Pajic P, Chen X, Gokcumen O, Gao M, Neelamegham S. Tuning the tropism and infectivity of SARS-CoV-2 virus-like particles for mRNA delivery. Nucleic Acids Res 2025; 53:gkaf133. [PMID: 40037714 PMCID: PMC11879429 DOI: 10.1093/nar/gkaf133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 03/06/2025] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus-like particles (VLPs) are ∼100-nm-sized bioinspired mimetics of the authentic virus. We undertook molecular engineering to optimize the VLP platform for messenger RNA (mRNA) delivery. Cloning the nucleocapsid protein upstream of M-IRES-E resulted in a three-plasmid (3P) VLP system that displayed ∼7-fold higher viral entry efficiency compared with VLPs formed by co-transfection with four plasmids. More than 90% of human ACE2-expressing cells could be transduced using these 3P VLPs. Viral tropism could be programmed by switching glycoproteins from other viral strains, including other betacoronaviruses and the vesicular stomatitis virus G protein. An infectious two-plasmid VLP system was also advanced where one vector carried the viral surface glycoprotein and the second carried the remaining SARS-CoV-2 structural proteins and reporter gene. SARS-CoV-2 VLPs could be engineered to carry up to four transgenes, including functional Cas9 mRNA for genome editing. Gene editing of specific target cell types was feasible by modifying VLP tropism. Successful mRNA delivery to mouse lungs suggests that the SARS-CoV-2 VLPs can overcome natural biological barriers to enable pulmonary gene delivery. Overall, the study describes the advancement of the SARS-CoV-2 VLP platform for robust mRNA delivery both in vitro and in vivo.
Collapse
Affiliation(s)
- Qi Yang
- Chemical & Biological Engineering, State University of New York, Buffalo, NY 14260, United States
| | - Bruce A Davidson
- Department of Anesthesiology, State University of New York, Buffalo, NY 14203, United States
- Veterans Administration Western New York Healthcare System, Buffalo, NY 14215, United States
| | - Petar Pajic
- Department of Biological Sciences, State University of New York, Buffalo, NY 14260, United States
| | - Xuyang Chen
- Chemical & Biological Engineering, State University of New York, Buffalo, NY 14260, United States
| | - Omer Gokcumen
- Department of Biological Sciences, State University of New York, Buffalo, NY 14260, United States
| | - Min Gao
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, United States
| | - Sriram Neelamegham
- Chemical & Biological Engineering, State University of New York, Buffalo, NY 14260, United States
- Biomedical Engineering, State University of New York, Buffalo, NY 14260, United States
- Cell, Gene and Tissue Engineering Center, State University of New York, Buffalo, NY 14260, United States
- Medicine, State University of New York, Buffalo, NY 14260, United States
- Clinical & Translational Research Center, Buffalo, NY 14260, United States
| |
Collapse
|
12
|
Garcia-Montero M, Fanous Y, Krahn AD, Davies B, Cadrin-Tourigny J, Roberts JD. New Insights Into Genetic Right Ventricular Cardiomyopathies. Can J Cardiol 2025:S0828-282X(25)00130-8. [PMID: 39956378 DOI: 10.1016/j.cjca.2025.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/24/2025] [Accepted: 02/05/2025] [Indexed: 02/18/2025] Open
Abstract
Inherited right ventricular disease in the form of arrhythmogenic right ventricular cardiomyopathy (ARVC) was first described 40 years ago. The ARVC-causing genes have progressively been identified from the year 2000, accompanied by a robust journey of deep phenotyping. The explosion of genotype and phenotype data coupled with a collaborative spirit in the ARVC community has led to an immense advance in our understanding of the various faces of this disease, with a recent focus on gene-specific phenotypes and risk assessment and mitigation. The modern cardiogenetic team has a wealth of information that informs the biology of the disease, its phenotypic expression, and the processes of care to detect the presence and progression of disease. Gene-specific considerations will raise the bar in precision medicine applied to diagnosis, natural history, and potentially curative interventions with targeted small molecules and gene therapy. This is an exciting time for the ARVC collaborative community to usher in a new era in changing the course of ARVC for patients and their families.
Collapse
Affiliation(s)
- Marta Garcia-Montero
- Cardiovascular Genetics Centre and Electrophysiology Service, Montréal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Yehia Fanous
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada
| | - Andrew D Krahn
- Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Brianna Davies
- Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julia Cadrin-Tourigny
- Cardiovascular Genetics Centre and Electrophysiology Service, Montréal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Jason D Roberts
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada; Population Health Research Institute, Hamilton, Ontario, Canada
| |
Collapse
|
13
|
Qie B, Tuo J, Chen F, Ding H, Lyu L. Gene therapy for genetic diseases: challenges and future directions. MedComm (Beijing) 2025; 6:e70091. [PMID: 39949979 PMCID: PMC11822459 DOI: 10.1002/mco2.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 02/16/2025] Open
Abstract
Genetic diseases constitute the majority of rare human diseases, resulting from abnormalities in an individual's genetic composition. Traditional treatments offer limited relief for these challenging conditions. In contrast, the rapid advancement of gene therapy presents significant advantages by directly addressing the underlying causes of genetic diseases, thereby providing the potential for precision treatment and the possibility of curing these disorders. This review aims to delineate the mechanisms and outcomes of current gene therapy approaches in clinical applications across various genetic diseases affecting different body systems. Additionally, genetic muscular disorders will be examined as a case study to investigate innovative strategies of novel therapeutic approaches, including gene replacement, gene suppression, gene supplementation, and gene editing, along with their associated advantages and limitations at both clinical and preclinical levels. Finally, this review emphasizes the existing challenges of gene therapy, such as vector packaging limitations, immunotoxicity, therapy specificity, and the subcellular localization and immunogenicity of therapeutic cargos, while discussing potential optimization directions for future research. Achieving delivery specificity, as well as long-term effectiveness and safety, will be crucial for the future development of gene therapies targeting genetic diseases.
Collapse
Affiliation(s)
- Beibei Qie
- Institute of Sports Medicine and Health, School of Sports Medicine and HealthChengdu Sport UniversityChengduChina
| | - Jianghua Tuo
- Institute of Sports Medicine and Health, School of Sports Medicine and HealthChengdu Sport UniversityChengduChina
| | - Feilong Chen
- Institute of Sports Medicine and Health, School of Sports Medicine and HealthChengdu Sport UniversityChengduChina
| | - Haili Ding
- Institute of Sports Medicine and Health, School of Sports Medicine and HealthChengdu Sport UniversityChengduChina
| | - Lei Lyu
- Institute of Sports Medicine and Health, School of Sports Medicine and HealthChengdu Sport UniversityChengduChina
| |
Collapse
|
14
|
Bloom K, Ely A, Maepa MB, Arbuthnot P. Bridging gene therapy and next-generation vaccine technologies. Gene Ther 2025; 32:4-7. [PMID: 39558149 PMCID: PMC11785526 DOI: 10.1038/s41434-024-00502-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 10/18/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024]
Affiliation(s)
- Kristie Bloom
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Abdullah Ely
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mohube Betty Maepa
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
15
|
Jacobs R, Singh P, Smith T, Arbuthnot P, Maepa MB. Prospects of viral vector-mediated delivery of sequences encoding anti-HBV designer endonucleases. Gene Ther 2025; 32:8-15. [PMID: 35606493 DOI: 10.1038/s41434-022-00342-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/09/2022]
Abstract
Available treatment for chronic hepatitis B virus (HBV) infection offers modest functional curative efficacy. The viral replicative intermediate comprising covalently closed circular DNA (cccDNA) is responsible for persistent chronic HBV infection. Hence, current efforts have focused on developing therapies that disable cccDNA. Employing gene editing tools has emerged as an attractive strategy, with the end goal of establishing permanently inactivated cccDNA. Although anti-HBV designer nucleases are effective in vivo, none has yet progressed to clinical trial. Lack of safe and efficient delivery systems remains the limiting factor. Several vectors may be used to deliver anti-HBV gene editor-encoding sequences, with viral vectors being at the forefront. Despite the challenges associated with packaging large gene editor-encoding sequences into viral vectors, advancement in the field is overcoming such limitations. Translation of viral vector-mediated gene editing against HBV to clinical application is within reach. This review discusses the prospects of delivering HBV targeted designer nucleases using viral vectors.
Collapse
Affiliation(s)
- Ridhwaanah Jacobs
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Prashika Singh
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tiffany Smith
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mohube Betty Maepa
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
16
|
Upadhyaya A, Dasgupta S, Kumar S, Maiti PK. Stability and conformation of DNA-hairpin in cylindrical confinement. Biophys Chem 2025; 316:107331. [PMID: 39427369 DOI: 10.1016/j.bpc.2024.107331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/21/2024] [Accepted: 09/29/2024] [Indexed: 10/22/2024]
Abstract
We conducted atomistic Molecular Dynamics (MD) simulations of DNA-Hairpin molecules encapsulated within Single-Walled Carbon Nanotubes (SWCNTs) at a temperature of 300 K. Our investigation revealed that the structural integrity of the DNA-Hairpin can be maintained within SWCNTs, provided that the diameter of the SWCNT exceeds a critical threshold value. Conversely, when the SWCNT diameter falls below this critical threshold, the DNA-Hairpin undergoes denaturation, even at a temperature of 300 K. The DNA-Hairpin model we employed consisted of a 12-base pair stem and a 3-base loop, and we studied various SWCNTs with different diameters. Our analyses identified a critical SWCNT diameter of 3.39 nm at 300 K. Examination of key structural features, such as hydrogen bonds (H-bonds), van der Waals (vdW) interactions, and other inter-base interactions, demonstrated a significant reduction in the number of H-bonds, vdW energy, and electrostatic energies among the DNA hairpin's constituent bases when confined within narrower SWCNTs (with diameters of 2.84 nm and 3.25 nm). However, it was observed that the increased interaction energy between the DNA-Hairpin and the inner surface of narrower SWCNTs promoted the denaturation of the DNA-Hairpin. In-depth analysis of electrostatic mapping and hydration status further revealed that the DNA-Hairpin experienced inadequate hydration and non-uniform distribution of counter ions within SWCNTs having diameters below the critical value of 3.39 nm. Our inference is that the inappropriate hydration of counter ions, along with their non-uniform spatial distribution around the DNA hairpin, contributes to the denaturation of the molecule within SWCNTs of smaller diameters. For DNA-Hairpin molecules that remained undenatured within SWCNTs, we investigated their mechanical properties, particularly the elastic properties. Our findings demonstrated an increase in the persistence length of the DNA-Hairpin with increasing SWCNT diameter. Additionally, the stretch modulus and torsional stiffness of the DNA-Hairpin were observed to increase as a function of SWCNT diameter, indicating that confinement within SWCNTs enhances the mechanical flexibility of the DNA-Hairpin.
Collapse
Affiliation(s)
- Anurag Upadhyaya
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| | - Subhadeep Dasgupta
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Sanjay Kumar
- Department of Physics, Banaras Hindu University, Varanasi, India
| | - Prabal K Maiti
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
17
|
Corydon TJ, Bek T. Multiple gene therapy as a tool for regulating the expression of molecules involved in neovascular age-related macular degeneration. Prog Retin Eye Res 2025; 104:101323. [PMID: 39672501 DOI: 10.1016/j.preteyeres.2024.101323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/08/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
Anti-vascular endothelial growth factor (VEGF) therapies have revolutionized the treatment of neovascular age-related macular degeneration (nAMD) and other retinal diseases. However, the necessity for repeated intravitreal injections and the observation of variable treatment responses calls for new treatment modalities where fewer and more effective interventions can result in a clinical effect. Gene therapy might be such an alternative, and therefore the development and clinical application of gene therapy aimed at modifying gene expression has received considerable attention. The article reviews current knowledge of the background, pathophysiological mechanisms, technologies, limitations, and future directions for gene therapy aimed at modifying the synthesis of compounds involved in acquired and senescent retinal disease. The authors have contributed to the field by developing gene therapy to reduce the expression of vascular endothelial growth factor (VEGF), as well as multiple gene therapy for simultaneous downregulation of the synthesis of VEGF and upregulation of pigment epithelium-derived factor (PEDF) using adeno-associated virus (AAV) vectors. It is suggested that such multi-target gene therapy might be included in future treatments of retinal diseases where the underlying mechanisms are complex and cannot be attributed to one specific mediator. Such diseases might include dry AMD (dAMD) with geographic atrophy, but also diabetic macular edema (DME) and retinal vein occlusion (RVO). Gene therapy can be expected to be most beneficial for the patients in need of multiple intra-vitreal injections and in whom the therapeutic response is insufficient. It is concluded, that in parallel with basic research, there is a need for clinical studies aimed at identifying factors that can be used to identify patients who will benefit from gene therapy already at the time of diagnosis of the retinal disease.
Collapse
Affiliation(s)
- Thomas J Corydon
- Department of Biomedicine, Hoegh Guldbergs Gade 10, Aarhus University, 8000, Aarhus C, Denmark; Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.
| | - Toke Bek
- Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| |
Collapse
|
18
|
Muravyeva A, Smirnikhina S. Adenoviral Vectors for Gene Therapy of Hereditary Diseases. BIOLOGY 2024; 13:1052. [PMID: 39765719 PMCID: PMC11673936 DOI: 10.3390/biology13121052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
Adenoviral vectors (AdVs) are effective vectors for gene therapy due to their broad tropism, high capacity, and high transduction efficiency, which makes them actively used as oncolytic vectors and for creating vector vaccines. However, despite their numerous advantages, AdVs have not yet found their place in gene therapy for hereditary diseases. This review provides an overview of AdVs, their features, and clinical trials using them for gene replacement therapy in monogenic diseases and analyzes the reasons for the failures of these studies. Additionally, current research on the modification of AdVs to reduce immune responses and target delivery is discussed.
Collapse
Affiliation(s)
| | - Svetlana Smirnikhina
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia
| |
Collapse
|
19
|
Sang Y, Xu L, Bao Z. Development of artificial transcription factors and their applications in cell reprograming, genetic screen, and disease treatment. Mol Ther 2024; 32:4208-4234. [PMID: 39473180 PMCID: PMC11638881 DOI: 10.1016/j.ymthe.2024.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/18/2024] [Accepted: 10/25/2024] [Indexed: 11/21/2024] Open
Abstract
Gene dysregulations are associated with many human diseases, such as cancers and hereditary diseases. Artificial transcription factors (ATFs) are synthetic molecular tools to regulate the expression of disease-associated genes, which is of great significance in basic biological research and biomedical applications. Recent advances in the engineering of ATFs for regulating endogenous gene expression provide an expanded set of tools for understanding and treating diseases. However, the potential immunogenicity, large size, inefficient delivery, and off-target effects persist as obstacles for ATFs to be developed into therapeutics. Moreover, the activation of an endogenous gene following ATF activity lacks durability. In this review, we first describe the functional components of ATFs, including DNA-binding domains, transcriptional effector domains, and control switches. We then highlight examples of applications of ATFs, including cell reprogramming and differentiation, pathogenic gene screening, and disease treatment. Finally, we analyze and summarize major challenges for the clinical translation of ATFs and propose potential strategies to improve these useful molecular tools.
Collapse
Affiliation(s)
- Yetong Sang
- Institute of Bioengineering & Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China
| | - Lingjie Xu
- Institute of Bioengineering & Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China
| | - Zehua Bao
- Institute of Bioengineering & Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China; Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
20
|
Yudaeva A, Kostyusheva A, Kachanov A, Brezgin S, Ponomareva N, Parodi A, Pokrovsky VS, Lukashev A, Chulanov V, Kostyushev D. Clinical and Translational Landscape of Viral Gene Therapies. Cells 2024; 13:1916. [PMID: 39594663 PMCID: PMC11592828 DOI: 10.3390/cells13221916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/29/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Gene therapies hold significant promise for treating previously incurable diseases. A number of gene therapies have already been approved for clinical use. Currently, gene therapies are mostly limited to the use of adeno-associated viruses and the herpes virus. Viral vectors, particularly those derived from human viruses, play a critical role in this therapeutic approach due to their ability to efficiently deliver genetic material to target cells. Despite their advantages, such as stable gene expression and efficient transduction, viral vectors face numerous limitations that hinder their broad application. These limitations include small cloning capacities, immune and inflammatory responses, and risks of insertional mutagenesis. This review explores the current landscape of viral vectors used in gene therapy, discussing the different types of DNA- and RNA-based viral vectors, their characteristics, limitations, and current medical and potential clinical applications. The review also highlights strategies to overcome existing challenges, including optimizing vector design, improving safety profiles, and enhancing transgene expression both using molecular techniques and nanotechnologies, as well as by approved drug formulations.
Collapse
Affiliation(s)
- Alexandra Yudaeva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.Y.); (A.K.); (A.K.); (S.B.); (N.P.); (A.L.)
| | - Anastasiya Kostyusheva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.Y.); (A.K.); (A.K.); (S.B.); (N.P.); (A.L.)
| | - Artyom Kachanov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.Y.); (A.K.); (A.K.); (S.B.); (N.P.); (A.L.)
| | - Sergey Brezgin
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.Y.); (A.K.); (A.K.); (S.B.); (N.P.); (A.L.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.P.); (V.S.P.)
| | - Natalia Ponomareva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.Y.); (A.K.); (A.K.); (S.B.); (N.P.); (A.L.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.P.); (V.S.P.)
- Department of Pharmaceutical and Toxicological Chemistry, Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| | - Alessandro Parodi
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.P.); (V.S.P.)
| | - Vadim S. Pokrovsky
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.P.); (V.S.P.)
- Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
- Department of Biochemistry, People’s Friendship University, 117198 Moscow, Russia
| | - Alexander Lukashev
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.Y.); (A.K.); (A.K.); (S.B.); (N.P.); (A.L.)
- Research Institute for Systems Biology and Medicine, 117246 Moscow, Russia
| | - Vladimir Chulanov
- Department of Infectious Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Dmitry Kostyushev
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.Y.); (A.K.); (A.K.); (S.B.); (N.P.); (A.L.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.P.); (V.S.P.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
21
|
Kawakami H, Ijichi N, Obama Y, Matsuda E, Mitsui K, Nishikawaji Y, Watanabe M, Nagano S, Taniguchi N, Komiya S, Kosai KI. An optimal promoter regulating cytokine transgene expression is crucial for safe and effective oncolytic virus immunotherapy. Transl Res 2024; 273:32-45. [PMID: 38969167 DOI: 10.1016/j.trsl.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
In general, ensuring safety is the top priority of a new modality. Although oncolytic virus armed with an immune stimulatory transgene (OVI) showed some promise, the strategic concept of simultaneously achieving maximum effectiveness and minimizing side effects has not been fully explored. We generated a variety of survivin-responsive "conditionally replicating adenoviruses that can target and treat cancer cells with multiple factors (m-CRAs)" (Surv.m-CRAs) armed with the granulocyte-macrophage colony-stimulating factor (GM-CSF) transgene downstream of various promoters using our m-CRA platform technology. We carefully analyzed both therapeutic and adverse effects of them in the in vivo syngeneic Syrian hamster cancer models. Surprisingly, an intratumor injection of a conventional OVI, which expresses the GM-CSF gene under the constitutively and strongly active "cytomegalovirus enhancer and β-actin promoter", provoked systemic and lethal GM-CSF circulation and shortened overall survival (OS). In contrast, a new conceptual type of OVI, which expressed GM-CSF under the cancer-predominant and mildly active E2F promoter or the moderately active "Rous sarcoma virus long terminal repeat", not only abolished lethal adverse events but also prolonged OS and systemic anti-cancer immunity. Our study revealed a novel concept that optimal expression levels of an immune stimulatory transgene regulated by a suitable upstream promoter is crucial for achieving high safety and maximal therapeutic effects simultaneously in OVI therapy. These results pave the way for successful development of the next-generation OVI and alert researchers about possible problems with ongoing clinical trials.
Collapse
Affiliation(s)
- Hirotaka Kawakami
- Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; Department of Orthopaedic Surgery, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Nobuhiro Ijichi
- Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Yuki Obama
- Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Eriko Matsuda
- Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Kaoru Mitsui
- Center for Innovative Therapy Research and Application, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Yuya Nishikawaji
- Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Maki Watanabe
- Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Satoshi Nagano
- Department of Orthopaedic Surgery, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; Center for Innovative Therapy Research and Application, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; Department of Clinical Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; Center for Clinical and Translational Research, Kagoshima University Hospital, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Noboru Taniguchi
- Department of Orthopaedic Surgery, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; Center for Innovative Therapy Research and Application, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Setsuro Komiya
- Department of Orthopaedic Surgery, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; Center for Innovative Therapy Research and Application, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Ken-Ichiro Kosai
- Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; Center for Innovative Therapy Research and Application, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; South Kyushu Center for Innovative Medical Research and Application, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; Center for Clinical and Translational Research, Kagoshima University Hospital, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan.
| |
Collapse
|
22
|
Ansari AS, Kucharski C, Kc R, Nisakar D, Rahim R, Jiang X, Brandwein J, Uludağ H. Lipopolymer/siRNA complexes engineered for optimal molecular and functional response with chemotherapy in FLT3-mutated acute myeloid leukemia. Acta Biomater 2024; 188:297-314. [PMID: 39236794 DOI: 10.1016/j.actbio.2024.08.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Approximately 25% of newly diagnosed AML patients display an internal tandem duplication (ITD) in the fms-like tyrosine kinase 3 (FLT3) gene. Although both multi-targeted and FLT3 specific tyrosine kinase inhibitors (TKIs) are being utilized for clinical therapy, drug resistance, short remission periods, and high relapse rates are challenges that still need to be tackled. RNA interference (RNAi), mediated by short interfering RNA (siRNA), presents a mechanistically distinct therapeutic platform with the potential of personalization due to its gene sequence-driven mechanism of action. This study explored the use of a non-viral approach for delivery of FLT3 siRNA (siFLT3) in FLT3-ITD positive AML cell lines and primary cells as well as the feasibility of combining this treatment with drugs currently used in the clinic. Treatment of AML cell lines with FLT3 siRNA nanocomplexes resulted in prominent reduction in cell proliferation rates and induction of apoptosis. Quantitative analysis of relative mRNA transcript levels revealed downregulation of the FLT3 gene, which was accompanied by a similar decline in FLT3 protein levels. Moreover, an impact on leukemic stem cells was observed in a small pool of primary AML samples through significantly reduced colony numbers. An absence of a molecular response post-treatment with lipopolymer/siFLT3 complexes in peripheral blood mononuclear cells, obtained from healthy individuals, denoted a passive selectivity of the complexes towards malignant cells. The effect of combining lipopolymer/siFLT3 complexes with daunorubucin and FLT3 targeting TKI gilteritinib led to a significant augmentation of anti-leukemic activity. These findings demonstrate the promising potential of RNAi implemented with lipopolymer complexes for AML molecular therapy. The study prospectively supports the addition of RNAi therapy to current treatment modalities available to target the heterogeneity prevalent in AML. STATEMENT OF SIGNIFICANCE: We show that a clinically validated target, the FLT3 gene, can be eradicated in leukemia cells using non-viral RNAi. We validated these lipopolymers as effective vehicles to deliver nucleic acids to leukemic cells. The potency of the lipopolymers was superior to that of the 'gold-standard' delivery agent, lipid nanoparticles (LNPs), which are not effective in leukemia cells at clinically relevant doses. Mechanistic studies were undertaken to probe structure-function relationships for effective biomaterial formulations. Cellular and molecular responses to siRNA treatment have been characterized in cell models, including leukemia patient-derived cells. The use of the siRNA therapy with clinically used chemotherapy was demonstrated.
Collapse
MESH Headings
- Humans
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- RNA, Small Interfering/pharmacology
- Cell Line, Tumor
- Mutation/genetics
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Polymers/chemistry
- Polymers/pharmacology
- Aniline Compounds
- Pyrazines
Collapse
Affiliation(s)
- Aysha S Ansari
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Cezary Kucharski
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Remant Kc
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel Nisakar
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Ramea Rahim
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Xiaoyan Jiang
- Terry Fox Laboratory, BC Cancer Research Institute and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joseph Brandwein
- Division of Hematology, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Hasan Uludağ
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
23
|
Wang Q, Jia S, Wang Z, Chen H, Jiang X, Li Y, Ji P. Nanogene editing drug delivery systems in the treatment of liver fibrosis. Front Med (Lausanne) 2024; 11:1418786. [PMID: 39386741 PMCID: PMC11461213 DOI: 10.3389/fmed.2024.1418786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Liver fibrosis is a group of diseases that seriously affect the health of the world's population. Despite significant progress in understanding the mechanisms of liver fibrogenesis, the technologies and drugs used to treat liver fibrosis have limited efficacy. As a revolutionary genetic tool, gene editing technology brings new hope for treating liver fibrosis. Combining nano-delivery systems with gene editing tools to achieve precise delivery and efficient expression of gene editing tools that can be used to treat liver fibrosis has become a rapidly developing field. This review provides a comprehensive overview of the principles and methods of gene editing technology and commonly used gene editing targets for liver fibrosis. We also discuss recent advances in common gene editing delivery vehicles and nano-delivery formulations in liver fibrosis research. Although gene editing technology has potential advantages in liver fibrosis, it still faces some challenges regarding delivery efficiency, specificity, and safety. Future studies need to address these issues further to explore the potential and application of liver fibrosis technologies in treating liver fibrosis.
Collapse
Affiliation(s)
- Qun Wang
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, China
| | - Siyu Jia
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, China
| | - Zihan Wang
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, China
| | - Hui Chen
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, China
| | - Xinyi Jiang
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, China
| | - Yan Li
- Department of International Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Peng Ji
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, China
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
24
|
Saruuldalai E, Lee HH, Lee YS, Hong EK, Ro S, Kim Y, Ahn T, Park JL, Kim SY, Shin SP, Im WR, Cho E, Choi BK, Jang JJ, Choi BH, Jung YS, Kim IH, Lee SJ, Lee YS. Adenovirus expressing nc886, an anti-interferon and anti-apoptotic non-coding RNA, is an improved gene delivery vector. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102270. [PMID: 39171141 PMCID: PMC11338102 DOI: 10.1016/j.omtn.2024.102270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/12/2024] [Indexed: 08/23/2024]
Abstract
Recombinant adenovirus (rAdV) vector is the most promising vehicle to deliver an exogenous gene into target cells and is preferred for gene therapy. Exogenous gene expression from rAdV is often too inefficient to induce phenotypic changes and the amount of administered rAdV must be very high to achieve a therapeutic dose. However, it is often hampered because a high dose of rAdV is likely to induce cytotoxicity by activating immune responses. nc886, a 102-nucleotide non-coding RNA that is transcribed by RNA polymerase III, acts as an immune suppressor and a facilitator of AdV entry into the nucleus. Therefore, in this study, we have constructed an rAdV expressing nc886 (AdV:nc886) to explore whether AdV:nc886 overcomes the aforementioned drawbacks of conventional rAdV vectors. When infected into mouse cell lines and mice, AdV:nc886 expresses a sufficient amount of nc886, which suppresses the induction of interferon-stimulated genes and apoptotic pathways triggered by AdV infection. As a result, AdV:nc886 is less cytotoxic and produces more rAdV-delivered gene products, compared with the parental rAdV vector lacking nc886. In conclusion, this study demonstrates that the nc886-expressing rAdV could become a superior gene delivery vehicle with greater safety and higher efficiency for in vivo gene therapy.
Collapse
Affiliation(s)
- Enkhjin Saruuldalai
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Korea
| | - Hwi-Ho Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Korea
| | - Yeon-Su Lee
- Division of Rare Cancer, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Eun Kyung Hong
- Research Institute and Hospital, National Cancer Center, Goyang 10408, Korea
| | - Soyoun Ro
- Division of Immuno-Oncology, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Yeochan Kim
- Department of Life Science, Handong Global University, Pohang 37554, Korea
| | - TaeJin Ahn
- Department of Life Science, Handong Global University, Pohang 37554, Korea
| | - Jong-Lyul Park
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon 34141, Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon 34113, Korea
| | - Seon-Young Kim
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon 34141, Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon 34113, Korea
| | - Seung-Phil Shin
- Division of Immuno-Oncology, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Wonkyun Ronny Im
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Korea
| | - Eunjung Cho
- Division of Immuno-Oncology, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Beom K. Choi
- Division of Immuno-Oncology, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Jiyoung Joan Jang
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Korea
| | - Byung-Han Choi
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Korea
| | - Yuh-Seog Jung
- Division of Immuno-Oncology, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - In-Hoo Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Korea
| | - Sang-Jin Lee
- Division of Immuno-Oncology, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Yong Sun Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Korea
| |
Collapse
|
25
|
Johnston JR, Adler ED. Precision Genetic Therapies: Balancing Risk and Benefit in Patients with Heart Failure. Curr Cardiol Rep 2024; 26:973-983. [PMID: 39110386 PMCID: PMC11379760 DOI: 10.1007/s11886-024-02096-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 09/07/2024]
Abstract
PURPOSE OF REVIEW Precision genetic medicine is evolving at a rapid pace and bears significant implications for clinical cardiology. Herein, we discuss the latest advancements and emerging strategies in gene therapy for cardiomyopathy and heart failure. RECENT FINDINGS Elucidating the genetic architecture of heart failure has paved the way for precision therapies in cardiovascular medicine. Recent preclinical studies and early-phase clinical trials have demonstrated encouraging results that support the development of gene therapies for heart failure arising from a variety of etiologies. In addition to the discovery of new therapeutic targets, innovative delivery platforms are being leveraged to improve the safety and efficacy of cardiac gene therapies. Precision genetic therapy represents a potentially safe and effective approach for improving outcomes in patients with heart failure. It holds promise for radically transforming the treatment paradigm for heart failure by directly targeting the underlying etiology. As this new generation of cardiovascular medicines progress to the clinic, it is especially important to carefully evaluate the benefits and risks for patients.
Collapse
Affiliation(s)
- Jamie R Johnston
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, 32306, USA
| | - Eric D Adler
- Division of Cardiology, Department of Internal Medicine, University of California San Diego, La Jolla, CA, 92037, USA.
| |
Collapse
|
26
|
Simoni C, Barbon E, Muro AF, Cantore A. In vivo liver targeted genome editing as therapeutic approach: progresses and challenges. Front Genome Ed 2024; 6:1458037. [PMID: 39246827 PMCID: PMC11378722 DOI: 10.3389/fgeed.2024.1458037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024] Open
Abstract
The liver is an essential organ of the body that performs several vital functions, including the metabolism of biomolecules, foreign substances, and toxins, and the production of plasma proteins, such as coagulation factors. There are hundreds of genetic disorders affecting liver functions and, for many of them, the only curative option is orthotopic liver transplantation, which nevertheless entails many risks and long-term complications. Some peculiar features of the liver, such as its large blood flow supply and the tolerogenic immune environment, make it an attractive target for in vivo gene therapy approaches. In recent years, several genome-editing tools mainly based on the clustered regularly interspaced short palindromic repeats associated protein 9 (CRISPR-Cas9) system have been successfully exploited in the context of liver-directed preclinical or clinical therapeutic applications. These include gene knock-out, knock-in, activation, interference, or base and prime editing approaches. Despite many achievements, important challenges still need to be addressed to broaden clinical applications, such as the optimization of the delivery methods, the improvement of the editing efficiency, and the risk of on-target or off-target unwanted effects and chromosomal rearrangements. In this review, we highlight the latest progress in the development of in vivo liver-targeted genome editing approaches for the treatment of genetic disorders. We describe the technological advancements that are currently under investigation, the challenges to overcome for clinical applicability, and the future perspectives of this technology.
Collapse
Affiliation(s)
- Chiara Simoni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Elena Barbon
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrés F Muro
- International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Alessio Cantore
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
27
|
Taghdiri M, Mussolino C. Viral and Non-Viral Systems to Deliver Gene Therapeutics to Clinical Targets. Int J Mol Sci 2024; 25:7333. [PMID: 39000440 PMCID: PMC11242246 DOI: 10.3390/ijms25137333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Clustered regularly interspersed short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) technology has revolutionized the field of gene therapy as it has enabled precise genome editing with unprecedented accuracy and efficiency, paving the way for clinical applications to treat otherwise incurable genetic disorders. Typically, precise genome editing requires the delivery of multiple components to the target cells that, depending on the editing platform used, may include messenger RNA (mRNA), protein complexes, and DNA fragments. For clinical purposes, these have to be efficiently delivered into transplantable cells, such as primary T lymphocytes or hematopoietic stem and progenitor cells that are typically sensitive to exogenous substances. This challenge has limited the broad applicability of precise gene therapy applications to those strategies for which efficient delivery methods are available. Electroporation-based methodologies have been generally applied for gene editing applications, but procedure-associated toxicity has represented a major burden. With the advent of novel and less disruptive methodologies to deliver genetic cargo to transplantable cells, it is now possible to safely and efficiently deliver multiple components for precise genome editing, thus expanding the applicability of these strategies. In this review, we describe the different delivery systems available for genome editing components, including viral and non-viral systems, highlighting their advantages, limitations, and recent clinical applications. Recent improvements to these delivery methods to achieve cell specificity represent a critical development that may enable in vivo targeting in the future and will certainly play a pivotal role in the gene therapy field.
Collapse
Affiliation(s)
- Maryam Taghdiri
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, 79106 Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, 79106 Freiburg, Germany
- Ph.D. Program, Faculty of Biology, University of Freiburg, 79106 Freiburg, Germany
| | - Claudio Mussolino
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, 79106 Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
28
|
Du Q, Dickinson A, Nakuleswaran P, Maghami S, Alagoda S, Hook AL, Ghaemmaghami AM. Targeting Macrophage Polarization for Reinstating Homeostasis following Tissue Damage. Int J Mol Sci 2024; 25:7278. [PMID: 39000385 PMCID: PMC11242417 DOI: 10.3390/ijms25137278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Tissue regeneration and remodeling involve many complex stages. Macrophages are critical in maintaining micro-environmental homeostasis by regulating inflammation and orchestrating wound healing. They display high plasticity in response to various stimuli, showing a spectrum of functional phenotypes that vary from M1 (pro-inflammatory) to M2 (anti-inflammatory) macrophages. While transient inflammation is an essential trigger for tissue healing following an injury, sustained inflammation (e.g., in foreign body response to implants, diabetes or inflammatory diseases) can hinder tissue healing and cause tissue damage. Modulating macrophage polarization has emerged as an effective strategy for enhancing immune-mediated tissue regeneration and promoting better integration of implantable materials in the host. This article provides an overview of macrophages' functional properties followed by discussing different strategies for modulating macrophage polarization. Advances in the use of synthetic and natural biomaterials to fabricate immune-modulatory materials are highlighted. This reveals that the development and clinical application of more effective immunomodulatory systems targeting macrophage polarization under pathological conditions will be driven by a detailed understanding of the factors that regulate macrophage polarization and biological function in order to optimize existing methods and generate novel strategies to control cell phenotype.
Collapse
Affiliation(s)
- Qiran Du
- Immuno-Bioengineering Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Anna Dickinson
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Pruthvi Nakuleswaran
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Susan Maghami
- Hull York Medical School, University of York, York YO10 5DD, UK;
| | - Savindu Alagoda
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Andrew L. Hook
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Amir M. Ghaemmaghami
- Immuno-Bioengineering Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| |
Collapse
|
29
|
Qiu L, Sun M, Chen L, Jiang J, Fu Z, Wang Y, Bi Y, Guo Q, Bai H, Chen S, Gao L, Chang G. Iron-Confined CRISPR/Cas9-Ribonucleoprotein Delivery System for Redox-Responsive Gene Editing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309431. [PMID: 38402425 DOI: 10.1002/smll.202309431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/08/2024] [Indexed: 02/26/2024]
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (Cas9) is a promising gene editing tool to treat diseases at the genetic level. Nonetheless, the challenge of the safe and efficient delivery of CRISPR/Cas9 to host cells constrains its clinical applicability. In the current study, a facile, redox-responsive CRISPR/Cas9-Ribonucleoprotein (RNP) delivery system by combining iron-coordinated aggregation with liposomes (Fe-RNP@L) is reported. The Fe-RNP is formed by the coordination of Fe3+ with amino and carboxyl groups of Cas9, which modifies the lipophilicity and surface charge of RNP and alters cellular uptake from primary endocytosis to endocytosis and cholesterol-dependent membrane fusion. RNP can be rapidly and reversibly released from Fe-RNP in response to glutathione without loss of structural integrity and enzymatic activity. In addition, iron coordination also improves the stability of RNP and substantially mitigates cytotoxicity. This construct enabled highly efficient cytoplasmic/nuclear delivery (≈90%) and gene-editing efficiency (≈70%) even at low concentrations. The high payload content, high editing efficiency, good stability, low immunogenicity, and ease of production and storage, highlight its potential for diverse genome editing and clinical applications.
Collapse
Affiliation(s)
- Lingling Qiu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Minmin Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Lei Chen
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Jiang
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhendong Fu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Ying Wang
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Engineering Medicine, Beihang University, Beijing, China
| | - Yulin Bi
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Qixin Guo
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Hao Bai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Shihao Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guobin Chang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
30
|
Metanat Y, Viktor P, Amajd A, Kaur I, Hamed AM, Abed Al-Abadi NK, Alwan NH, Chaitanya MVNL, Lakshmaiya N, Ghildiyal P, Khalaf OM, Ciongradi CI, Sârbu I. The paths toward non-viral CAR-T cell manufacturing: A comprehensive review of state-of-the-art methods. Life Sci 2024; 348:122683. [PMID: 38702027 DOI: 10.1016/j.lfs.2024.122683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/11/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Although CAR-T cell therapy has emerged as a game-changer in cancer immunotherapy several bottlenecks limit its widespread use as a front-line therapy. Current protocols for the production of CAR-T cells rely mainly on the use of lentiviral/retroviral vectors. Nevertheless, according to the safety concerns around the use of viral vectors, there are several regulatory hurdles to their clinical use. Large-scale production of viral vectors under "Current Good Manufacturing Practice" (cGMP) involves rigorous quality control assessments and regulatory requirements that impose exorbitant costs on suppliers and as a result, lead to a significant increase in the cost of treatment. Pursuing an efficient non-viral method for genetic modification of immune cells is a hot topic in cell-based gene therapy. This study aims to investigate the current state-of-the-art in non-viral methods of CAR-T cell manufacturing. In the first part of this study, after reviewing the advantages and disadvantages of the clinical use of viral vectors, different non-viral vectors and the path of their clinical translation are discussed. These vectors include transposons (sleeping beauty, piggyBac, Tol2, and Tc Buster), programmable nucleases (ZFNs, TALENs, and CRISPR/Cas9), mRNA, plasmids, minicircles, and nanoplasmids. Afterward, various methods for efficient delivery of non-viral vectors into the cells are reviewed.
Collapse
Affiliation(s)
- Yekta Metanat
- Faculty of Medicine, Zahedan University of Medical Sciences, Sistan and Baluchestan Province, Iran
| | - Patrik Viktor
- Óbuda University, Karoly Keleti faculty, Tavaszmező u. 15-17, H-1084 Budapest, Hungary
| | - Ayesha Amajd
- Faculty of Transport and Aviation Engineering, Silesian University of Technology, Krasińskiego 8 Street, 40-019 Katowice, Poland
| | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bangalore, Karnataka, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan-303012, India
| | | | | | | | - M V N L Chaitanya
- School of pharmaceutical sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab - 144411, India
| | | | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | - Carmen Iulia Ciongradi
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania.
| | - Ioan Sârbu
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania.
| |
Collapse
|
31
|
Mackall CL, Bollard CM, Goodman N, Carr C, Gardner R, Rouce R, Sotillo E, Stoner R, Urnov FD, Wayne AS, Park J, Kohn DB. Enhancing pediatric access to cell and gene therapies. Nat Med 2024; 30:1836-1846. [PMID: 38886624 DOI: 10.1038/s41591-024-03035-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/30/2024] [Indexed: 06/20/2024]
Abstract
Increasing numbers of cell and gene therapies (CGTs) are emerging to treat and cure pediatric diseases. However, small market sizes limit the potential return on investment within the traditional biopharmaceutical drug development model, leading to a market failure. In this Perspective, we discuss major factors contributing to this failure, including high manufacturing costs, regulatory challenges, and licensing practices that do not incorporate pediatric development milestones, as well as potential solutions. We propose the creation of a new entity, the Pediatric Advanced Medicines Biotech, to lead late-stage development and commercialize pediatric CGTs outside the traditional biopharmaceutical model in the United States-where organized efforts to solve this problem have been lacking. The Pediatric Advanced Medicines Biotech would partner with the academic ecosystem, manufacture products in academic good manufacturing practice facilities and work closely with regulatory bodies, to ferry CGTs across the drug development 'valley of death' and, ultimately, increase access to lifesaving treatments for children in need.
Collapse
Affiliation(s)
- Crystal L Mackall
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Pediatrics, Division of Pediatric Hematology, Oncology, Stem Cell Transplant and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Medicine, Division of Bone Marrow Transplant and Cell Therapy, Stanford University School of Medicine, Stanford, CA, USA.
| | - Catherine M Bollard
- Center for Cancer and Immunology Research and Department of Pediatrics, Children's National Hospital and The George Washington University, Washington, DC, USA
| | | | - Casey Carr
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Rayne Rouce
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX, USA
| | - Elena Sotillo
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Fyodor D Urnov
- Innovative Genomics Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Alan S Wayne
- Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Julie Park
- St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Donald B Kohn
- Departments of Microbiology, Immunology & Molecular Genetics; Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
32
|
Ward C, Beharry A, Tennakoon R, Rozik P, Wilhelm SDP, Heinemann IU, O’Donoghue P. Mechanisms and Delivery of tRNA Therapeutics. Chem Rev 2024; 124:7976-8008. [PMID: 38801719 PMCID: PMC11212642 DOI: 10.1021/acs.chemrev.4c00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/11/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Abstract
Transfer ribonucleic acid (tRNA) therapeutics will provide personalized and mutation specific medicines to treat human genetic diseases for which no cures currently exist. The tRNAs are a family of adaptor molecules that interpret the nucleic acid sequences in our genes into the amino acid sequences of proteins that dictate cell function. Humans encode more than 600 tRNA genes. Interestingly, even healthy individuals contain some mutant tRNAs that make mistakes. Missense suppressor tRNAs insert the wrong amino acid in proteins, and nonsense suppressor tRNAs read through premature stop signals to generate full length proteins. Mutations that underlie many human diseases, including neurodegenerative diseases, cancers, and diverse rare genetic disorders, result from missense or nonsense mutations. Thus, specific tRNA variants can be strategically deployed as therapeutic agents to correct genetic defects. We review the mechanisms of tRNA therapeutic activity, the nature of the therapeutic window for nonsense and missense suppression as well as wild-type tRNA supplementation. We discuss the challenges and promises of delivering tRNAs as synthetic RNAs or as gene therapies. Together, tRNA medicines will provide novel treatments for common and rare genetic diseases in humans.
Collapse
Affiliation(s)
- Cian Ward
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Aruun Beharry
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Rasangi Tennakoon
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Peter Rozik
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Sarah D. P. Wilhelm
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Ilka U. Heinemann
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Patrick O’Donoghue
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
33
|
Defois A, Bon N, Mével M, Deniaud D, Maugars Y, Guicheux J, Adjali O, Vinatier C. Gene therapies for osteoarthritis: progress and prospects. JOURNAL OF CARTILAGE & JOINT PRESERVATION 2024; 4:100186. [DOI: 10.1016/j.jcjp.2024.100186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
34
|
Moaveni AK, Amiri M, Shademan B, Farhadi A, Behroozi J, Nourazarian A. Advances and challenges in gene therapy strategies for pediatric cancer: a comprehensive update. Front Mol Biosci 2024; 11:1382190. [PMID: 38836106 PMCID: PMC11149429 DOI: 10.3389/fmolb.2024.1382190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/27/2024] [Indexed: 06/06/2024] Open
Abstract
Pediatric cancers represent a tragic but also promising area for gene therapy. Although conventional treatments have improved survival rates, there is still a need for targeted and less toxic interventions. This article critically analyzes recent advances in gene therapy for pediatric malignancies and discusses the challenges that remain. We explore the innovative vectors and delivery systems that have emerged, such as adeno-associated viruses and non-viral platforms, which show promise in addressing the unique pathophysiology of pediatric tumors. Specifically, we examine the field of chimeric antigen receptor (CAR) T-cell therapies and their adaptation for solid tumors, which historically have been more challenging to treat than hematologic malignancies. We also discuss the genetic and epigenetic complexities inherent to pediatric cancers, such as tumor heterogeneity and the dynamic tumor microenvironment, which pose significant hurdles for gene therapy. Ethical considerations specific to pediatric populations, including consent and long-term follow-up, are also analyzed. Additionally, we scrutinize the translation of research from preclinical models that often fail to mimic pediatric cancer biology to the regulatory landscapes that can either support or hinder innovation. In summary, this article provides an up-to-date overview of gene therapy in pediatric oncology, highlighting both the rapid scientific progress and the substantial obstacles that need to be addressed. Through this lens, we propose a roadmap for future research that prioritizes the safety, efficacy, and complex ethical considerations involved in treating pediatric patients. Our ultimate goal is to move from incremental advancements to transformative therapies.
Collapse
Affiliation(s)
- Amir Kian Moaveni
- Pediatric Urology and Regenerative Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Amiri
- Pediatric Urology and Regenerative Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Behrouz Shademan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo Farhadi
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Javad Behroozi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| |
Collapse
|
35
|
Hoekstra M, Van Eck M. Gene Editing for the Treatment of Hypercholesterolemia. Curr Atheroscler Rep 2024; 26:139-146. [PMID: 38498115 PMCID: PMC11087331 DOI: 10.1007/s11883-024-01198-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2024] [Indexed: 03/20/2024]
Abstract
PURPOSE OF REVIEW Here, we summarize the key findings from preclinical studies that tested the concept that editing of hepatic genes can lower plasma low-density lipoprotein (LDL)-cholesterol levels to subsequently reduce atherosclerotic cardiovascular disease risk. RECENT FINDINGS Selective delivery of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated gene editing tools targeting proprotein convertase subtilisin/kexin type 9 (PCSK9) to hepatocytes, i.e., through encapsulation into N-acetylgalactosamine-coupled lipid nanoparticles, is able to induce a stable ~ 90% decrease in plasma PCSK9 levels and a concomitant 60% reduction in LDL-cholesterol levels in mice and non-humane primates. Studies in mice have shown that this state-of-the-art technology can be extended to include additional targets related to dyslipidemia such as angiopoietin-like 3 and several apolipoproteins. The use of gene editors holds great promise to lower plasma LDL-cholesterol levels also in the human setting. However, gene editing safety has to be guaranteed before this approach can become a clinical success.
Collapse
Affiliation(s)
- Menno Hoekstra
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
- Pharmacy Leiden, Leiden, The Netherlands.
| | - Miranda Van Eck
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Pharmacy Leiden, Leiden, The Netherlands
| |
Collapse
|
36
|
Piñón Hofbauer J, Guttmann-Gruber C, Wally V, Sharma A, Gratz IK, Koller U. Challenges and progress related to gene editing in rare skin diseases. Adv Drug Deliv Rev 2024; 208:115294. [PMID: 38527624 DOI: 10.1016/j.addr.2024.115294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/01/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
Genodermatoses represent a large group of inherited skin disorders encompassing clinically-heterogeneous conditions that manifest in the skin and other organs. Depending on disease variant, associated clinical manifestations and secondary complications can severely impact patients' quality of life and currently available treatments are transient and not curative. Multiple emerging approaches using CRISPR-based technologies offer promising prospects for therapy. Here, we explore current advances and challenges related to gene editing in rare skin diseases, including different strategies tailored to mutation type and structural organization of the affected gene, considerations for in vivo and ex vivo applications, the critical issue of delivery into the skin, and immune aspects of therapy. Against the backdrop of a landmark FDA approval for the first re-dosable gene replacement therapy for a rare genetic skin disorder, gene editing approaches are inching closer to the clinics and the possibility of a local permanent cure for patients affected by these disorders.
Collapse
Affiliation(s)
- Josefina Piñón Hofbauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Christina Guttmann-Gruber
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Verena Wally
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Anshu Sharma
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Iris K Gratz
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; Center for Tumor Biology and Immunology, University of Salzburg, 5020 Salzburg, Austria
| | - Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria.
| |
Collapse
|
37
|
Gao Q, Kahan R, Gonzalez TJ, Zhang M, Alderete IS, DeLaura I, Kesseli SJ, Song M, Asokan A, Barbas AS, Hartwig MG. Gene delivery followed by ex vivo lung perfusion using an adeno-associated viral vector in a rodent lung transplant model. J Thorac Cardiovasc Surg 2024; 167:e131-e139. [PMID: 37678606 DOI: 10.1016/j.jtcvs.2023.08.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/14/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
OBJECTIVE Ex vivo lung perfusion has emerged as a platform for organ preservation, evaluation, and restoration. Gene delivery using a clinically relevant adeno-associated vector during ex vivo lung perfusion may be useful in optimizing donor allografts while the graft is maintained physiologically active. We evaluated the feasibility of adeno-associated vector-mediated gene delivery during ex vivo lung perfusion in a rat transplant model. Additionally, we assessed off-target effects and explored different routes of delivery. METHODS Rat heart-lung blocks were procured and underwent 1-hour ex vivo lung perfusion. Before ex vivo lung perfusion, 4e11 viral genome luciferase encoding adeno-associated vector 9 was administered via the left bronchus (Br group, n = 4), via the left pulmonary artery (PA group, n = 3), or directly into the circuit (Circuit group, n = 3). Donor lungs in the Control group (n = 3) underwent ex vivo lung perfusion without adeno-associated vector 9. Only the left lung was transplanted. Animals underwent bioluminescence imaging weekly before being killed at 2 weeks. Tissues were collected for luciferase activity measurement. RESULTS All recipients tolerated the transplant well. At 2 weeks post-transplant, luciferase activity in the transplanted lung was significantly higher among animals in the Br group compared with the other 3 groups (Br: 1.1 × 106 RLU/g, PA: 8.3 × 104 RLU/g, Circuit: 3.8 × 103 RLU/g, Control: 2.5 × 103 RLU/g, P = .0003). No off-target transgene expression was observed. CONCLUSIONS In this work, we demonstrate that a clinically relevant adeno-associated vector 9 vector mediates gene transduction during ex vivo lung perfusion in rat lung grafts when administered via the airway and potentially the pulmonary artery. Our preliminary results suggest a higher transduction efficiency when adeno-associated vector 9 was delivered via the airway, and delivery during ex vivo lung perfusion reduces off-target effects after graft implant.
Collapse
Affiliation(s)
- Qimeng Gao
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Riley Kahan
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Trevor J Gonzalez
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC
| | - Min Zhang
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Isaac S Alderete
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Isabel DeLaura
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Samuel J Kesseli
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Mingqing Song
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Aravind Asokan
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Andrew S Barbas
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Mathew G Hartwig
- Department of Surgery, Duke University Medical Center, Durham, NC.
| |
Collapse
|
38
|
Cho SY, Lee YJ, Jung SM, Son YM, Shin CG, Kim ET, Kim KD. Establishment of a Dual-Vector System for Gene Delivery Utilizing Prototype Foamy Virus. J Microbiol Biotechnol 2024; 34:804-811. [PMID: 38379304 DOI: 10.4014/jmb.2312.12026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024]
Abstract
Foamy viruses (FVs) are generally recognized as non-pathogenic, often causing asymptomatic or mild symptoms in infections. Leveraging these unique characteristics, FV vectors hold significant promise for applications in gene therapy. This study introduces a novel platform technology using a pseudo-virus with single-round infectivity. In contrast to previous vector approaches, we developed a technique employing only two vectors, pcHFV lacking Env and pCMV-Env, to introduce the desired genes into target cells. Our investigation demonstrated the efficacy of the prototype foamy virus (PFV) dual-vector system in producing viruses and delivering transgenes into host cells. To optimize viral production, we incorporated the codon-optimized Env (optEnv) gene in pCMV-Env and the Woodchuck Hepatitis Virus Posttranscriptional Regulatory Element (WPRE) at the 3' end of the transgene in the transfer vector. Consequently, the use of optEnv led to a significant enhancement in transgene expression in host cells. Additionally, the WPRE exhibited an enhancing effect. Furthermore, the introduced EGFP transgene was present in host cells for a month. In an effort to expand transgene capacity, we further streamlined the viral vector, anticipating the delivery of approximately 4.3 kbp of genes through our PFV dual-vector system. This study underscores the potential of PFVs as an alternative to lentiviruses or other retroviruses in the realm of gene therapy.
Collapse
Affiliation(s)
- Soo-Yeon Cho
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17456, Republic of Korea
| | - Yoon Jae Lee
- Department of Microbiology and Immunology, Jeju National University College of Medicine, Jeju 63241, Republic of Korea
- Department of Biomedicine & Drug Development, Jeju National University, Jeju 63241, Republic of Korea
| | - Seong-Mook Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17456, Republic of Korea
| | - Young Min Son
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17456, Republic of Korea
| | - Cha-Gyun Shin
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17456, Republic of Korea
| | - Eui Tae Kim
- Department of Microbiology and Immunology, Jeju National University College of Medicine, Jeju 63241, Republic of Korea
- Department of Biomedicine & Drug Development, Jeju National University, Jeju 63241, Republic of Korea
| | - Kyoung-Dong Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17456, Republic of Korea
| |
Collapse
|
39
|
Hordeaux J, Lamontagne RJ, Song C, Buchlis G, Dyer C, Buza EL, Ramezani A, Wielechowski E, Greig JA, Chichester JA, Bell P, Wilson JM. High-dose systemic adeno-associated virus vector administration causes liver and sinusoidal endothelial cell injury. Mol Ther 2024; 32:952-968. [PMID: 38327046 PMCID: PMC11163197 DOI: 10.1016/j.ymthe.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/15/2023] [Accepted: 02/02/2024] [Indexed: 02/09/2024] Open
Abstract
We analyzed retrospective data from toxicology studies involving administration of high doses of adeno-associated virus expressing different therapeutic transgenes to 21 cynomolgus and 15 rhesus macaques. We also conducted prospective studies to investigate acute toxicity following high-dose systemic administration of enhanced green fluorescent protein-expressing adeno-associated virus to 10 rhesus macaques. Toxicity was characterized by transaminitis, thrombocytopenia, and alternative complement pathway activation that peaked on post-administration day 3. Although most animals recovered, some developed ascites, generalized edema, hyperbilirubinemia, and/or coagulopathy that prompted unscheduled euthanasia. Study endpoint livers from animals that recovered and from unscheduled necropsies of those that succumbed to toxicity were analyzed via hypothesis-driven histopathology and unbiased single-nucleus RNA sequencing. All liver cell types expressed high transgene transcript levels at early unscheduled timepoints that subsequently decreased. Thrombocytopenia coincided with sinusoidal platelet microthrombi and sinusoidal endothelial injury identified via immunohistology and single-nucleus RNA sequencing. Acute toxicity, sinusoidal injury, and liver platelet sequestration were similarly observed with therapeutic transgenes and enhanced green fluorescent protein at doses ≥1 × 1014 GC/kg, suggesting it was the consequence of high-dose systemic adeno-associated virus administration, not green fluorescent protein toxicity. These findings highlight a potential toxic effect of high-dose intravenous adeno-associated virus on nonhuman primate liver microvasculature.
Collapse
Affiliation(s)
- Juliette Hordeaux
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - R Jason Lamontagne
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chunjuan Song
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - George Buchlis
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cecilia Dyer
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elizabeth L Buza
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ali Ramezani
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erik Wielechowski
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jenny A Greig
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica A Chichester
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter Bell
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James M Wilson
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
40
|
Grol MW. The evolving landscape of gene therapy strategies for the treatment of osteoarthritis. Osteoarthritis Cartilage 2024; 32:372-384. [PMID: 38199296 DOI: 10.1016/j.joca.2023.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/05/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
OBJECTIVES Significant advances have been made in our understanding of osteoarthritis (OA) pathogenesis; however, no disease-modifying therapies have been identified. This review will summarize the gene therapy landscape, its initial successes for OA, and possible challenges using recent studies and examples of gene therapies in clinical trials. DESIGN This narrative review has three major sections: 1) vector systems for OA gene therapy, 2) current and emerging targets for OA gene therapy, and 3) considerations and future directions. RESULTS Gene therapy is the strategy by which nucleic acids are delivered to treat and reverse disease progression. Specificity and prolonged expression of these nucleic acids are achieved by manipulating promoters, genes, and vector systems. Certain vector systems also allow for the development of combinatorial nucleic acid strategies that can be delivered in a single intraarticular injection - an approach likely required to treat the complexity of OA pathogenesis. Several viral and non-viral vector-based gene therapies are in clinical trials for OA, and many more are being evaluated in the preclinical arena. CONCLUSIONS In a post-coronavirus disease 2019 (COVID-19) era, the future of gene therapy for OA is certainly promising; however, the majority of preclinical validation continues to focus heavily on post-traumatic models and changes in only cartilage and subchondral bone. To ensure successful translation, new candidates in the preclinical arena should be examined against all joint tissues as well as pain using diverse models of injury-, obesity-, and age-induced disease. Lastly, consideration must be given to strategies for repeat administration and the cost of treatment owing to the chronic nature of OA.
Collapse
Affiliation(s)
- Matthew W Grol
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
41
|
Khawajakhail R, Khan RU, Gondal MUR, Toru HK, Malik M, Iqbal A, Malik J, Faraz M, Awais M. Advancements in gene therapy approaches for atrial fibrillation: Targeted delivery, mechanistic insights and future prospects. Curr Probl Cardiol 2024; 49:102431. [PMID: 38309546 DOI: 10.1016/j.cpcardiol.2024.102431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Atrial fibrillation (AF) remains a complex and challenging arrhythmia to treat, necessitating innovative therapeutic strategies. This review explores the evolving landscape of gene therapy for AF, focusing on targeted delivery methods, mechanistic insights, and future prospects. Direct myocardial injection, reversible electroporation, and gene painting techniques are discussed as effective means of delivering therapeutic genes, emphasizing their potential to modulate both structural and electrical aspects of the AF substrate. The importance of identifying precise targets for gene therapy, particularly in the context of AF-associated genetic, structural, and electrical abnormalities, is highlighted. Current studies employing animal models, such as mice and large animals, provide valuable insights into the efficacy and limitations of gene therapy approaches. The significance of imaging methods for detecting atrial fibrosis and guiding targeted gene delivery is underscored. Activation mapping techniques offer a nuanced understanding of AF-specific mechanisms, enabling tailored gene therapy interventions. Future prospects include the integration of advanced imaging, activation mapping, and percutaneous catheter-based techniques to refine transendocardial gene delivery, with potential applications in both ventricular and atrial contexts. As gene therapy for AF progresses, bridging the translational gap between preclinical models and clinical applications is imperative for the successful implementation of these promising approaches.
Collapse
Affiliation(s)
| | | | | | - Hamza Khan Toru
- Department of Medicine, King's Mill Hospital, Nottinghamshire, United Kingdom
| | - Maria Malik
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group, Islamabad, Pakistan
| | - Arham Iqbal
- Department of Medicine, Dow International Medical College, Karachi, Pakistan
| | - Jahanzeb Malik
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group, Islamabad, Pakistan
| | - Maria Faraz
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group, Islamabad, Pakistan
| | - Muhammad Awais
- Department of Cardiology, Islamic International Medical College, Rawalpindi, Pakistan.
| |
Collapse
|
42
|
Ghanim HY, Porteus MH. Gene regulation in inborn errors of immunity: Implications for gene therapy design and efficacy. Immunol Rev 2024; 322:157-177. [PMID: 38233996 DOI: 10.1111/imr.13305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024]
Abstract
Inborn errors of immunity (IEI) present a unique paradigm in the realm of gene therapy, emphasizing the need for precision in therapeutic design. As gene therapy transitions from broad-spectrum gene addition to careful modification of specific genes, the enduring safety and effectiveness of these therapies in clinical settings have become crucial. This review discusses the significance of IEIs as foundational models for pioneering and refining precision medicine. We explore the capabilities of gene addition and gene correction platforms in modifying the DNA sequence of primary cells tailored for IEIs. The review uses four specific IEIs to highlight key issues in gene therapy strategies: X-linked agammaglobulinemia (XLA), X-linked chronic granulomatous disease (X-CGD), X-linked hyper IgM syndrome (XHIGM), and immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX). We detail the regulatory intricacies and therapeutic innovations for each disorder, incorporating insights from relevant clinical trials. For most IEIs, regulated expression is a vital aspect of the underlying biology, and we discuss the importance of endogenous regulation in developing gene therapy strategies.
Collapse
Affiliation(s)
- Hana Y Ghanim
- Division of Pediatrics, Division of Oncology, Hematology, Stem Cell Transplantation, Stanford University, Stanford, California, USA
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Matthew H Porteus
- Division of Pediatrics, Division of Oncology, Hematology, Stem Cell Transplantation, Stanford University, Stanford, California, USA
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
- Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
43
|
Dawson LM, Alshawabkeh M, Schröer K, Arakrak F, Ehrhardt A, Zhang W. Role of homologous recombination/recombineering on human adenovirus genome engineering: Not the only but the most competent solution. ENGINEERING MICROBIOLOGY 2024; 4:100140. [PMID: 39628785 PMCID: PMC11611009 DOI: 10.1016/j.engmic.2024.100140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 12/06/2024]
Abstract
Adenoviruses typically cause mild illnesses, but severe diseases may occur primarily in immunodeficient individuals, particularly children. Recently, adenoviruses have garnered significant interest as a versatile tool in gene therapy, tumor treatment, and vaccine vector development. Over the past two decades, the advent of recombineering, a method based on homologous recombination, has notably enhanced the utility of adenoviral vectors in therapeutic applications. This review summarizes recent advancements in the use of human adenoviral vectors in medicine and discusses the pivotal role of recombineering in the development of these vectors. Additionally, it highlights the current achievements and potential future impact of therapeutic adenoviral vectors.
Collapse
Affiliation(s)
| | | | | | - Fatima Arakrak
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), School of Medicine, Faculty of Health, Witten/Herdecke University, Stockumer Str. 10 58453 Witten, Germany
| | - Anja Ehrhardt
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), School of Medicine, Faculty of Health, Witten/Herdecke University, Stockumer Str. 10 58453 Witten, Germany
| | - Wenli Zhang
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), School of Medicine, Faculty of Health, Witten/Herdecke University, Stockumer Str. 10 58453 Witten, Germany
| |
Collapse
|
44
|
Staedtke V, Anstett K, Bedwell D, Giovannini M, Keeling K, Kesterson R, Kim Y, Korf B, Leier A, McManus ML, Sarnoff H, Vitte J, Walker JA, Plotkin SR, Wallis D. Gene-targeted therapy for neurofibromatosis and schwannomatosis: The path to clinical trials. Clin Trials 2024; 21:51-66. [PMID: 37937606 DOI: 10.1177/17407745231207970] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Numerous successful gene-targeted therapies are arising for the treatment of a variety of rare diseases. At the same time, current treatment options for neurofibromatosis 1 and schwannomatosis are limited and do not directly address loss of gene/protein function. In addition, treatments have mostly focused on symptomatic tumors, but have failed to address multisystem involvement in these conditions. Gene-targeted therapies hold promise to address these limitations. However, despite intense interest over decades, multiple preclinical and clinical issues need to be resolved before they become a reality. The optimal approaches to gene-, mRNA-, or protein restoration and to delivery to the appropriate cell types remain elusive. Preclinical models that recapitulate manifestations of neurofibromatosis 1 and schwannomatosis need to be refined. The development of validated assays for measuring neurofibromin and merlin activity in animal and human tissues will be critical for early-stage trials, as will the selection of appropriate patients, based on their individual genotypes and risk/benefit balance. Once the safety of gene-targeted therapy for symptomatic tumors has been established, the possibility of addressing a wide range of symptoms, including non-tumor manifestations, should be explored. As preclinical efforts are underway, it will be essential to educate both clinicians and those affected by neurofibromatosis 1/schwannomatosis about the risks and benefits of gene-targeted therapy for these conditions.
Collapse
Affiliation(s)
- Verena Staedtke
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Kara Anstett
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - David Bedwell
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Marco Giovannini
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA and Jonsson Comprehensive Cancer Center (JCCC), University of California Los Angeles, Los Angeles, CA, USA
| | - Kim Keeling
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert Kesterson
- Department of Cancer Precision Medicine, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - YooRi Kim
- Gilbert Family Foundation, Detroit, MI, USA
| | - Bruce Korf
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - André Leier
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | - Jeremie Vitte
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA and Jonsson Comprehensive Cancer Center (JCCC), University of California Los Angeles, Los Angeles, CA, USA
| | - James A Walker
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Scott R Plotkin
- Department of Neurology and Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Deeann Wallis
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
45
|
Yao J, Atasheva S, Wagner N, Di Paolo NC, Stewart PL, Shayakhmetov DM. Targeted, safe, and efficient gene delivery to human hematopoietic stem and progenitor cells in vivo using the engineered AVID adenovirus vector platform. Mol Ther 2024; 32:103-123. [PMID: 37919899 PMCID: PMC10787117 DOI: 10.1016/j.ymthe.2023.10.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/10/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023] Open
Abstract
Targeted delivery and cell-type-specific expression of gene-editing proteins in various cell types in vivo represent major challenges for all viral and non-viral delivery platforms developed to date. Here, we describe the development and analysis of artificial vectors for intravascular delivery (AVIDs), an engineered adenovirus-based gene delivery platform that allows for highly targeted, safe, and efficient gene delivery to human hematopoietic stem and progenitor cells (HSPCs) in vivo after intravenous vector administration. Due to a set of refined structural modifications, intravenous administration of AVIDs did not trigger cytokine storm, hepatotoxicity, or thrombocytopenia. Single intravenous administration of AVIDs to humanized mice, grafted with human CD34+ cells, led to up to 20% transduction of CD34+CD38-CD45RA- HSPC subsets in the bone marrow. Importantly, targeted in vivo transduction of CD34+CD38-CD45RA-CD90-CD49f+ subsets, highly enriched for human hematopoietic stem cells (HSCs), reached up to 19%, which represented a 1,900-fold selectivity in gene delivery to HSC-enriched over lineage-committed CD34-negative cell populations. Because the AVID platform allows for regulated, cell-type-specific expression of gene-editing technologies as well as expression of immunomodulatory proteins to ensure persistence of corrected HSCs in vivo, the HSC-targeted AVID platform may enable development of curative therapies through in vivo gene correction in human HSCs after a single intravenous administration.
Collapse
Affiliation(s)
- Jia Yao
- Lowance Center for Human Immunology, Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Svetlana Atasheva
- Lowance Center for Human Immunology, Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nicole Wagner
- Cleveland Center for Membrane and Structural Biology, Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nelson C Di Paolo
- AdCure Bio, LLC, Century Spring West, 6000 Lake Forrest Drive, Atlanta, GA 30328, USA
| | - Phoebe L Stewart
- Cleveland Center for Membrane and Structural Biology, Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Dmitry M Shayakhmetov
- Lowance Center for Human Immunology, Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA; Discovery and Developmental Therapeutics Program, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
46
|
Rossi A, Brunetti-Pierri N. Gene therapies for mucopolysaccharidoses. J Inherit Metab Dis 2024; 47:135-144. [PMID: 37204267 DOI: 10.1002/jimd.12626] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/27/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Current specific treatments for mucopolysaccharidoses (MPSs) include enzyme replacement therapy (ERT) and hematopoietic stem cell transplantation (HSCT). Both treatments are hampered by several limitations, including lack of efficacy on brain and skeletal manifestations, need for lifelong injections, and high costs. Therefore, more effective treatments are needed. Gene therapy in MPSs is aimed at obtaining high levels of the therapeutic enzyme in multiple tissues either by engrafted gene-modified hematopoietic stem progenitor cells (ex vivo) or by direct infusion of a viral vector expressing the therapeutic gene (in vivo). This review focuses on the most recent clinical progress in gene therapies for MPSs. The various gene therapy approaches with their strengths and limitations are discussed.
Collapse
Affiliation(s)
- Alessandro Rossi
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, University of Naples Federico II, Naples, Italy
| |
Collapse
|
47
|
Duff C, Alexander IE, Baruteau J. Gene therapy for urea cycle defects: An update from historical perspectives to future prospects. J Inherit Metab Dis 2024; 47:50-62. [PMID: 37026568 PMCID: PMC10953416 DOI: 10.1002/jimd.12609] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023]
Abstract
Urea cycle defects (UCDs) are severe inherited metabolic diseases with high unmet needs which present a permanent risk of hyperammonaemic decompensation and subsequent acute death or neurological sequelae, when treated with conventional dietetic and medical therapies. Liver transplantation is currently the only curative option, but has the potential to be supplanted by highly effective gene therapy interventions without the attendant need for life-long immunosuppression or limitations imposed by donor liver supply. Over the last three decades, pioneering genetic technologies have been explored to circumvent the consequences of UCDs, improve quality of life and long-term outcomes: adenoviral vectors, adeno-associated viral vectors, gene editing, genome integration and non-viral technology with messenger RNA. In this review, we present a summarised view of this historical path, which includes some seminal milestones of the gene therapy's epic. We provide an update about the state of the art of gene therapy technologies for UCDs and the current advantages and pitfalls driving future directions for research and development.
Collapse
Affiliation(s)
- Claire Duff
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | - Ian E. Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and HealthThe University of Sydney and Sydney Children's Hospitals NetworkWestmeadNew South WalesAustralia
- Discipline of Child and Adolescent HealthThe University of SydneyWestmeadNew South WalesAustralia
| | - Julien Baruteau
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
- National Institute of Health Research Great Ormond Street Biomedical Research CentreLondonUK
- Metabolic Medicine DepartmentGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| |
Collapse
|
48
|
Zhao L, Yang Z, Zheng M, Shi L, Gu M, Liu G, Miao F, Chang Y, Huang F, Tang N. Recombinant adeno-associated virus 8 vector in gene therapy: Opportunities and challenges. Genes Dis 2024; 11:283-293. [PMID: 37588223 PMCID: PMC10425794 DOI: 10.1016/j.gendis.2023.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/26/2022] [Accepted: 02/08/2023] [Indexed: 04/09/2023] Open
Abstract
In recent years, significant breakthroughs have been made in the field of gene therapy. Adeno-associated virus (AAV) is one of the most promising gene therapy vectors and a powerful tool for delivering the gene of interest. Among the AAV vectors, AAV serotype 8 (AAV8) has attracted much attention for its efficient and stable gene transfection into specific tissues. Currently, recombinant AAV8 has been widely used in gene therapy research on a variety of diseases, including genetic diseases, cancers, autoimmune diseases, and viral diseases. This paper reviewed the applications and challenges of using AAV8 as a vector for gene therapy, with the aim of providing a valuable resource for those pursuing the application of viral vectors in gene therapy.
Collapse
Affiliation(s)
- Liyuan Zhao
- Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230000, China
- Yangtze Delta Drug Advanced Research Institute, Yangtze Delta Pharmaceutical College, Nantong, Jiangsu 226133, China
- InnoStar Bio-tech Nantong Co., Ltd., Nantong, Jiangsu 226133, China
| | - Zixuan Yang
- Shanghai Innostar Bio-Technology Co., Ltd, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Minhui Zheng
- Shanghai Innostar Bio-Technology Co., Ltd, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Lei Shi
- Shanghai Innostar Bio-Technology Co., Ltd, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Mengyun Gu
- Shanghai Innostar Bio-Technology Co., Ltd, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Gang Liu
- InnoStar Bio-tech Nantong Co., Ltd., Nantong, Jiangsu 226133, China
| | - Feng Miao
- InnoStar Bio-tech Nantong Co., Ltd., Nantong, Jiangsu 226133, China
| | - Yan Chang
- Shanghai Innostar Bio-Technology Co., Ltd, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Fanghua Huang
- Center for Drug Evaluation, National Medical Products Administration, Beijing 100022, China
| | - Naping Tang
- Yangtze Delta Drug Advanced Research Institute, Yangtze Delta Pharmaceutical College, Nantong, Jiangsu 226133, China
- Shanghai Innostar Bio-Technology Co., Ltd, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| |
Collapse
|
49
|
Christofi P, Pantazi C, Psatha N, Sakellari I, Yannaki E, Papadopoulou A. Promises and Pitfalls of Next-Generation Treg Adoptive Immunotherapy. Cancers (Basel) 2023; 15:5877. [PMID: 38136421 PMCID: PMC10742252 DOI: 10.3390/cancers15245877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Regulatory T cells (Tregs) are fundamental to maintaining immune homeostasis by inhibiting immune responses to self-antigens and preventing the excessive activation of the immune system. Their functions extend beyond immune surveillance and subpopulations of tissue-resident Treg cells can also facilitate tissue repair and homeostasis. The unique ability to regulate aberrant immune responses has generated the concept of harnessing Tregs as a new cellular immunotherapy approach for reshaping undesired immune reactions in autoimmune diseases and allo-responses in transplantation to ultimately re-establish tolerance. However, a number of issues limit the broad clinical applicability of Treg adoptive immunotherapy, including the lack of antigen specificity, heterogeneity within the Treg population, poor persistence, functional Treg impairment in disease states, and in vivo plasticity that results in the loss of suppressive function. Although the early-phase clinical trials of Treg cell therapy have shown the feasibility and tolerability of the approach in several conditions, its efficacy has remained questionable. Leveraging the smart tools and platforms that have been successfully developed for primary T cell engineering in cancer, the field has now shifted towards "next-generation" adoptive Treg immunotherapy, where genetically modified Treg products with improved characteristics are being generated, as regards antigen specificity, function, persistence, and immunogenicity. Here, we review the state of the art on Treg adoptive immunotherapy and progress beyond it, while critically evaluating the hurdles and opportunities towards the materialization of Tregs as a living drug therapy for various inflammation states and the broad clinical translation of Treg therapeutics.
Collapse
Affiliation(s)
- Panayiota Christofi
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
- University General Hospital of Patras, 26504 Rio, Greece
| | - Chrysoula Pantazi
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Institute of Applied Biosciences (INAB), Centre for Research and Technology Hellas (CERTH), 57001 Thessaloniki, Greece
| | - Nikoleta Psatha
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Ioanna Sakellari
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
| | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
- Department of Medicine, University of Washington, Seattle, WA 98195-7710, USA
| | - Anastasia Papadopoulou
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
| |
Collapse
|
50
|
Brunet de Courssou JB, Deiva K. Les thérapies géniques en neurologie. PRATIQUE NEUROLOGIQUE - FMC 2023; 14:208-224. [DOI: 10.1016/j.praneu.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|