1
|
He M, Li S, Sun J, Lv X, Li Y, Song L. CgVDAC2 participated in haemocyte mitophagy induced by Vibrio splendidus in the Pacific oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2025; 160:110226. [PMID: 39993486 DOI: 10.1016/j.fsi.2025.110226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/21/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
VDAC2 (Voltage dependent anion channel 2) is a highly conserved pore-forming protein expressed in the outer membrane of eukaryotic mitochondria. In the present study, CgVDAC2 identified from Crassostrea gigas regulated the mitophagy of haemocytes induced by Vibrio splendidus. CgVDAC2 was distributed in the cytoplasm of three subpopulations of haemocytes. After V. splendidus stimulation, the mRNA and protein expressions of CgVDAC2 were induced in haemocytes. Furthermore, the green signals of CgVDAC2 were colocalized with the red signals of mitochondria and Mtphagy Dye, respectively. And their co-localization values were both increased significantly in haemocytes at 12 h after V. splendidus stimulation, respectively. In siCgVDAC2-treated oysters, the mRNA expressions of mitophagy-related genes (CgLC3, CgPINK1, CgParkin1, CgPHB2, and CgATG16L) and the levels of mitophagy decreased significantly in haemocytes after V. splendidus stimulation. In addition, both the fluorescence intensities of the JC-1 monomer/aggregate ratio (Q4/Q2) and mitochondrial reactive oxygen species (mtROS) increased significantly. Collectively, all the results indicated that CgVDAC2 participated in oyster antibacterial immune response through regulating the haemocyte mitophagy.
Collapse
Affiliation(s)
- Muchun He
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Shurong Li
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Xiaoqian Lv
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yinan Li
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
2
|
Roy M, Nandy S, Marchesan E, Banerjee C, Mondal R, Caicci F, Ziviani E, Chakraborty J. Efficient PHB2 (prohibitin 2) exposure during mitophagy depends on VDAC1 (voltage dependent anion channel 1). Autophagy 2025; 21:897-909. [PMID: 39513197 DOI: 10.1080/15548627.2024.2426116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/15/2024] Open
Abstract
Exposure of inner mitochondrial membrane resident protein PHB2 (prohibitin 2) during autophagic removal of depolarized mitochondria (mitophagy) depends on the ubiquitin-proteasome system. This uncovering facilitates the PHB2 interaction with phagophore membrane-associated protein MAP1LC3/LC3. It is unclear whether PHB2 is exposed randomly at mitochondrial rupture sites. Prior knowledge and initial screening indicated that VDAC1 (voltage dependent anion channel 1) might play a role in this phenomenon. Through in vitro biochemical assays and imaging, we have found that VDAC1-PHB2 interaction increases during mitochondrial depolarization. Subsequently, this interaction enhances the efficiency of PHB2 exposure and mitophagy. To investigate the relevance in vivo, we utilized porin (equivalent to VDAC1) knockout Drosophila line. Our findings demonstrate that during mitochondrial stress, porin is essential for Phb2 exposure, Phb2-Atg8 interaction and mitophagy. This study highlights that VDAC1 predominantly synchronizes efficient PHB2 exposure through mitochondrial rupture sites during mitophagy. These findings may provide insights to understand progressive neurodegeneration.
Collapse
Affiliation(s)
- Moumita Roy
- Department of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Biological Sciences, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sumangal Nandy
- Department of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Biological Sciences, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | | - Chayan Banerjee
- Department of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Biological Sciences, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rupsha Mondal
- Department of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Biological Sciences, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | | - Elena Ziviani
- Department of Biology, University of Padova, Padova, Italy
| | - Joy Chakraborty
- Department of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Biological Sciences, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Santana-Román ME, Ramírez-Carreto S, Maycotte P, Pando-Robles V. Alteration of mitochondrial function in arthropods during arboviruses infection: a review of the literature. Front Physiol 2025; 16:1507059. [PMID: 40017802 PMCID: PMC11865064 DOI: 10.3389/fphys.2025.1507059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/20/2025] [Indexed: 03/01/2025] Open
Abstract
Arthropods serve as vectors for numerous arboviruses responsible for diseases worldwide. Despite their medical, veterinary, and economic significance, the interaction between arboviruses and arthropods remains poorly understood. Mitochondria in arthropods play a crucial role by supplying energy for cell survival and viral replication. Some arboviruses can replicate within arthropod vectors without harming the host. Successful transmission depends on efficient viral replication in the vector's tissues, ultimately reaching the salivary glands for transmission to a vertebrate host, including humans, via blood-feeding. This review summarizes current knowledge of mitochondrial function in arthropods during arbovirus infection, highlighting gaps compared to studies in mammals and other pathogens relevant to arthropods. It emphasizes mitochondrial processes in insects that require further investigation to uncover the mechanisms underlying arthropod-borne transmission.
Collapse
Affiliation(s)
- María E. Santana-Román
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Santos Ramírez-Carreto
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Paola Maycotte
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Puebla, Mexico
| | - Victoria Pando-Robles
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| |
Collapse
|
4
|
Zhang M, Li W, Zhang X, Bi M, Wang X, Sun F, Lu J, Chi Y, Han Y, Li Q, Li T. Lamprey VDAC2: Suppressing hydrogen peroxide-induced 293T cell apoptosis by downregulating BAK expression. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109622. [PMID: 38740227 DOI: 10.1016/j.fsi.2024.109622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
The voltage-dependent anion channel 2 (VDAC2) is the abundant protein in the outer mitochondrial membrane. Opening VDAC2 pores leads to the induction of mitochondrial energy and material transport, facilitating interaction with various mitochondrial proteins implicated in essential processes such as cell apoptosis and proliferation. To investigate the VDAC2 in lower vertebrates, we identified Lr-VDAC2, a homologue of VDAC2 found in lamprey (Lethenteron reissneri), sharing a sequence identity of greater than 50 % with its counterparts. Phylogenetic analysis revealed that the position of Lr-VDAC2 aligns with the lamprey phylogeny, indicating its evolutionary relationship within the species. The Lr-VDAC2 protein was primarily located in the mitochondria of lamprey cells. The expression of the Lr-VDAC2 protein was elevated in high energy-demanding tissues, such as the gills, muscles, and myocardial tissue in normal lampreys. Lr-VDAC2 suppressed H2O2 (hydrogen peroxide)-induced 293 T cell apoptosis by reducing the expression levels of Caspase 3, Caspase 9, and Cyt C (cytochrome c). Further research into the mechanism indicated that the Lr-VDAC2 protein inhibited the pro-apoptotic activity of BAK (Bcl-2 antagonist/killer) protein by downregulating its expression at the protein translational level, thus exerting an anti-apoptotic function similar to the role of VDAC2 in humans.
Collapse
Affiliation(s)
- Mingjian Zhang
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China
| | - Wenwei Li
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China
| | - Xue Zhang
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China
| | - Mengfei Bi
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China
| | - Xinyu Wang
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China
| | - Feng Sun
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116023, China
| | - Jiali Lu
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116023, China
| | - Yan Chi
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116023, China
| | - Yinglun Han
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116023, China
| | - Qingwei Li
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116023, China
| | - Tiesong Li
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116023, China.
| |
Collapse
|
5
|
Zhang L, Li L, Huang L, Li X, Xu C, Hu W, Sun Y, Liu F, Li Y. Voltage-dependent anion channel 2 (VDAC2) facilitates the accumulation of rice stripe virus in the vector Laodelphax striatellus. Virus Res 2023; 324:199019. [PMID: 36496034 DOI: 10.1016/j.virusres.2022.199019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Rice stripe virus (RSV) causes enormous losses in rice production and is transmitted by the small brown planthopper, Laodelphax striatellus, in a persistent-propagative manner. RSV accumulation within the gut lumen of the vector is indispensable for the successful transmission to rice and insects. In this study, we obtained a 1464 bp full-length cDNA of a voltage-dependent anion channel 2 from L. striatellus (LsVDAC2), which encodes a 283 amino acid protein. RSV infection increased the expression of LsVDAC2 in the midguts and ovaries of L. striatellus by 260% and 228%, respectively. Silencing of LsVDAC2 resulted in a 88% reduction of RSV loads at 24 h after RNAi, indicating that LsVDAC2 facilitates RSV accumulation in the vector. Yeast two-hybrid and GST pulldown assays demonstrated that LsVDAC2 interacted with RSV RNA-dependent RNA polymerase, RdRp. Furthermore, experiments in vivo and in vitro showed that LsVDAC2 induced the apoptotic response in RSV-infected insects and tissues. Silencing of LsVDAC2 via RNAi significantly reduced the expression of genes for apoptosis-related caspases 1a and 1c by 62% and 78%, respectively, in RSV-infected vectors. Whether LsVDAC2-induced RSV accumulation is related to RSV RdRp and LsVDAC2-induced cell apoptosis deserves further investigation.
Collapse
Affiliation(s)
- Lu Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Linying Li
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Lijun Huang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xinyi Li
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Chengzhu Xu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Wenxing Hu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Yixuan Sun
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Fang Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| | - Yao Li
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
6
|
Kataoka T. Biological properties of the BCL-2 family protein BCL-RAMBO, which regulates apoptosis, mitochondrial fragmentation, and mitophagy. Front Cell Dev Biol 2022; 10:1065702. [PMID: 36589739 PMCID: PMC9800997 DOI: 10.3389/fcell.2022.1065702] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Mitochondria play an essential role in the regulation of cellular stress responses, including cell death. Damaged mitochondria are removed by fission and fusion cycles and mitophagy, which counteract cell death. BCL-2 family proteins possess one to four BCL-2 homology domains and regulate apoptosis signaling at mitochondria. BCL-RAMBO, also known as BCL2-like 13 (BCL2L13), was initially identified as one of the BCL-2 family proteins inducing apoptosis. Mitophagy receptors recruit the ATG8 family proteins MAP1LC3/GABARAP via the MAP1LC3-interacting region (LIR) motif to initiate mitophagy. In addition to apoptosis, BCL-RAMBO has recently been identified as a mitophagy receptor that possesses the LIR motif and regulates mitochondrial fragmentation and mitophagy. In the 20 years since its discovery, many important findings on BCL-RAMBO have been increasingly reported. The biological properties of BCL-RAMBO are reviewed herein.
Collapse
Affiliation(s)
- Takao Kataoka
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan,Biomedical Research Center, Kyoto Institute of Technology, Kyoto, Japan,*Correspondence: Takao Kataoka,
| |
Collapse
|
7
|
Karachitos A, Grabiński W, Baranek M, Kmita H. Redox-Sensitive VDAC: A Possible Function as an Environmental Stress Sensor Revealed by Bioinformatic Analysis. Front Physiol 2021; 12:750627. [PMID: 34966287 PMCID: PMC8710658 DOI: 10.3389/fphys.2021.750627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
Voltage-dependent anion-selective channel (VDAC) allows the exchange of small metabolites and inorganic ions across the mitochondrial outer membrane. It is involved in complex interactions that regulate mitochondrial and cellular functioning. Many organisms have several VDAC paralogs that play distinct but poorly understood roles in the life and death of cells. It is assumed that such a large diversity of VDAC-encoding genes might cause physiological plasticity to cope with abiotic and biotic stresses known to impact mitochondrial function. Moreover, cysteine residues in mammalian VDAC paralogs may contribute to the reduction-oxidation (redox) sensor function based on disulfide bond formation and elimination, resulting in redox-sensitive VDAC (rsVDAC). Therefore, we analyzed whether rsVDAC is possible when only one VDAC variant is present in mitochondria and whether all VDAC paralogs present in mitochondria could be rsVDAC, using representatives of currently available VDAC amino acid sequences. The obtained results indicate that rsVDAC can occur when only one VDAC variant is present in mitochondria; however, the possibility of all VDAC paralogs in mitochondria being rsVDAC is very low. Moreover, the presence of rsVDAC may correlate with habitat conditions as rsVDAC appears to be prevalent in parasites. Thus, the channel may mediate detection and adaptation to environmental conditions.
Collapse
Affiliation(s)
- Andonis Karachitos
- Department of Bioenergetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Wojciech Grabiński
- Department of Bioenergetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Martyna Baranek
- Department of Bioenergetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Hanna Kmita
- Department of Bioenergetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
8
|
Benz R. Historical Perspective of Pore-Forming Activity Studies of Voltage-Dependent Anion Channel (Eukaryotic or Mitochondrial Porin) Since Its Discovery in the 70th of the Last Century. Front Physiol 2021; 12:734226. [PMID: 35547863 PMCID: PMC9083909 DOI: 10.3389/fphys.2021.734226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/24/2021] [Indexed: 01/07/2023] Open
Abstract
Eukaryotic porin, also known as Voltage-Dependent Anion Channel (VDAC), is the most frequent protein in the outer membrane of mitochondria that are responsible for cellular respiration. Mitochondria are most likely descendants of strictly aerobic Gram-negative bacteria from the α-proteobacterial lineage. In accordance with the presumed ancestor, mitochondria are surrounded by two membranes. The mitochondrial outer membrane contains besides the eukaryotic porins responsible for its major permeability properties a variety of other not fully identified channels. It encloses also the TOM apparatus together with the sorting mechanism SAM, responsible for the uptake and assembly of many mitochondrial proteins that are encoded in the nucleus and synthesized in the cytoplasm at free ribosomes. The recognition and the study of electrophysiological properties of eukaryotic porin or VDAC started in the late seventies of the last century by a study of Schein et al., who reconstituted the pore from crude extracts of Paramecium mitochondria into planar lipid bilayer membranes. Whereas the literature about structure and function of eukaryotic porins was comparatively rare during the first 10years after the first study, the number of publications started to explode with the first sequencing of human Porin 31HL and the recognition of the important function of eukaryotic porins in mitochondrial metabolism. Many genomes contain more than one gene coding for homologs of eukaryotic porins. More than 100 sequences of eukaryotic porins are known to date. Although the sequence identity between them is relatively low, the polypeptide length and in particular, the electrophysiological characteristics are highly preserved. This means that all eukaryotic porins studied to date are anion selective in the open state. They are voltage-dependent and switch into cation-selective substates at voltages in the physiological relevant range. A major breakthrough was also the elucidation of the 3D structure of the eukaryotic pore, which is formed by 19 β-strands similar to those of bacterial porin channels. The function of the presumed gate an α-helical stretch of 20 amino acids allowed further studies with respect to voltage dependence and function, but its exact role in channel gating is still not fully understood.
Collapse
Affiliation(s)
- Roland Benz
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| |
Collapse
|
9
|
Datta S, Jaiswal M. Mitochondrial calcium at the synapse. Mitochondrion 2021; 59:135-153. [PMID: 33895346 DOI: 10.1016/j.mito.2021.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/28/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022]
Abstract
Mitochondria are dynamic organelles, which serve various purposes, including but not limited to the production of ATP and various metabolites, buffering ions, acting as a signaling hub, etc. In recent years, mitochondria are being seen as the central regulators of cellular growth, development, and death. Since neurons are highly specialized cells with a heavy metabolic demand, it is not surprising that neurons are one of the most mitochondria-rich cells in an animal. At synapses, mitochondrial function and dynamics is tightly regulated by synaptic calcium. Calcium influx during synaptic activity causes increased mitochondrial calcium influx leading to an increased ATP production as well as buffering of synaptic calcium. While increased ATP production is required during synaptic transmission, calcium buffering by mitochondria is crucial to prevent faulty neurotransmission and excitotoxicity. Interestingly, mitochondrial calcium also regulates the mobility of mitochondria within synapses causing mitochondria to halt at the synapse during synaptic transmission. In this review, we summarize the various roles of mitochondrial calcium at the synapse.
Collapse
Affiliation(s)
- Sayantan Datta
- Tata Institute of Fundamental Research, Hyderabad, India
| | - Manish Jaiswal
- Tata Institute of Fundamental Research, Hyderabad, India.
| |
Collapse
|
10
|
Matsubara H, Tanaka R, Tateishi T, Yoshida H, Yamaguchi M, Kataoka T. The human Bcl-2 family member Bcl-rambo and voltage-dependent anion channels manifest a genetic interaction in Drosophila and cooperatively promote the activation of effector caspases in human cultured cells. Exp Cell Res 2019; 381:223-234. [PMID: 31102594 DOI: 10.1016/j.yexcr.2019.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 05/09/2019] [Accepted: 05/11/2019] [Indexed: 02/07/2023]
Abstract
We previously reported that the Bcl-2 family member human Bcl-rambo, also known as BCL2L13, induces apoptosis in human embryonic kidney 293T cells. Mouse Bcl-rambo has recently been reported to mediate mitochondrial fragmentation and mitophagy. In the present study, we showed that the transfection of human Bcl-rambo and its microtubule-associated protein light chain 3-interacting region motif mutant (W276A/I279A) caused mitochondrial fragmentation and the perinuclear accumulation of fragmented mitochondria in human lung adenocarcinoma A549 cells. In comprehensive screening using the Drosophila model in which human Bcl-rambo was ectopically expressed in eye imaginal discs, voltage-dependent anion channels (VDAC), also known as mitochondrial porin, were found to manifest a genetic interaction with human Bcl-rambo. In addition to human adenine nucleotide translocase (ANT) 1 and ANT2, the human Bcl-rambo protein bound to human VDAC1, albeit to a lesser extent than ANT2. Moreover, human VDAC1 and human VDAC2 in particular promoted the activation of effector caspases only when they were co-expressed with human Bcl-rambo in 293T cells. Bcl-rambo induced the perinuclear accumulation of fragmented mitochondria by the knockdown of VDAC1, VDAC2, and VDAC3 in A549 cells. Thus, the present study revealed that human Bcl-rambo and VDAC cooperatively promote the activation of effector caspases in human cultured cells.
Collapse
Affiliation(s)
- Hisanori Matsubara
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Reiji Tanaka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Tatsuya Tateishi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan; Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan; Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Takao Kataoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan; Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| |
Collapse
|
11
|
Steele LD, Coates BS, Seong KM, Valero MC, Mittapalli O, Sun W, Clark J, Pittendrigh BR. Variation in Mitochondria-Derived Transcript Levels Associated With DDT Resistance in the 91-R Strain of Drosophila melanogaster (Diptera: Drosophilidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2018; 18:5153340. [PMID: 30383265 PMCID: PMC6209762 DOI: 10.1093/jisesa/iey101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Indexed: 06/08/2023]
Abstract
The organochloride insecticide dichlorodiphenyltrichloroethane (DDT) and its metabolites can increase cellular levels of reactive oxygen species (ROS), cause mitochondrial dysfunction, and induce apoptosis. The highly DDT-resistant Drosophila melanogaster Meigen 1830 (Drosophila) strain, 91-R, and its susceptible control, 91-C, were used to investigate functional and structural changes among mitochondrial-derived pathways. Resequencing of mitochondrial genomes (mitogenomes) detected no structural differences between 91-R and 91-C, whereas RNA-seq suggested the differential expression of 221 mitochondrial-associated genes. Reverse transcriptase-quantitative PCR validation of 33 candidates confirmed that transcripts for six genes (Cyp12d1-p, Cyp12a4, cyt-c-d, COX5BL, COX7AL, CG17140) were significantly upregulated and two genes (Dif, Rel) were significantly downregulated in 91-R. Among the upregulated genes, four genes are duplicated within the reference genome (cyt-c-d, CG17140, COX5BL, and COX7AL). The predicted functions of the differentially expressed genes, or known functions of closely related genes, suggest that 91-R utilizes existing ROS regulation pathways of the mitochondria to combat increased ROS levels from exposure to DDT. This study represents, to our knowledge, the initial investigation of mitochondrial genome sequence variants and functional adaptations in responses to intense DDT selection and provides insights into potential adaptations of ROS management associated with DDT selection in Drosophila.
Collapse
Affiliation(s)
- Laura D Steele
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL
| | - Brad S Coates
- United States Department of Agriculture—Agricultural Research Service, Corn Insect and Crop Genetics Research Unit, Genetics Laboratory, Iowa State University Ames, IA
| | - Keon Mook Seong
- Department of Entomology, Michigan State University, East Lansing, MI
| | - M Carmen Valero
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL
| | | | - Weilin Sun
- Department of Entomology, Michigan State University, East Lansing, MI
| | - John Clark
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA
| | | |
Collapse
|
12
|
Mazure NM. VDAC in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:665-673. [PMID: 28283400 DOI: 10.1016/j.bbabio.2017.03.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/21/2017] [Accepted: 03/03/2017] [Indexed: 12/23/2022]
Abstract
The voltage-dependent anion channel (VDAC) is a pore located at the outer membrane of the mitochondrion. It allows the entry and exit of numerous ions and metabolites between the cytosol and the mitochondrion. Flux through the pore occurs in an active way: first, it depends on the open or closed state and second, on the negative or positive charges of the different ion species passing through the pore. The flux of essential metabolites, such as ATP, determines the functioning of the mitochondria to a noxious stimulus. Moreover, VDAC acts as a platform for many proteins and in so doing supports glycolysis and prevents apoptosis by interacting with hexokinase, or members of the Bcl-2 family, respectively. VDAC is thus involved in the choice the cells make to survive or die, which is particularly relevant to cancer cells. For these reasons, VDAC has become a potential therapeutic target to fight cancer but also other diseases in which mitochondrial metabolism is modified. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux.
Collapse
Affiliation(s)
- N M Mazure
- Institute for Research on Cancer and Aging, Nice (IRCAN), CNRS UMR7284, INSERM U1081, University of Nice, France; CNRS GDR 3697 Micronit, France.
| |
Collapse
|
13
|
The N-terminus of VDAC: Structure, mutational analysis, and a potential role in regulating barrel shape. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1350-61. [PMID: 26997586 DOI: 10.1016/j.bbamem.2016.03.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/12/2016] [Accepted: 03/17/2016] [Indexed: 01/24/2023]
Abstract
A novel feature of the voltage-dependent anion channel (VDAC, mitochondrial porin), is the barrel, comprising an odd number of β-strands and closed by parallel strands. Recent research has focused on the N-terminal segment, which in the available structures, resides in the lumen and is not part of the barrel. In this review, the structural data obtained from vertebrate VDAC are integrated with those from VDAC in artificial bilayers, emphasizing the array of native and tagged versions of VDAC used. The data are discussed with respect to a recent gating model (Zachariae et al. (2012) Structure 20:1-10), in which the N-terminus acts not as a gate on a stable barrel, but rather stabilizes the barrel, preventing its shift into a partially collapsed, low-conductance, closed state. Additionally, the role of the N-terminus in VDAC oligomerization, apoptosis through interactions with hexokinase and its interaction with ATP are discussed briefly.
Collapse
|
14
|
Kamal AHM, Komatsu S. Jasmonic acid induced protein response to biophoton emissions and flooding stress in soybean. J Proteomics 2016; 133:33-47. [PMID: 26655678 DOI: 10.1016/j.jprot.2015.12.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/21/2015] [Accepted: 12/03/2015] [Indexed: 01/02/2023]
Abstract
Biophoton emissions were elevated by the exogenous plant hormone application such as jasmonic (JA) and salicylic acid (SA). To reveal the molecular mechanisms underlying flooding stress responses in soybean treated with JA and SA, biophoton emissions from plants were quantified in combination with proteomic analyses. Furthermore, treatment with exogenous JA inhibited lateral root growth and markedly reduced root weight. Out of 649 proteins identified in the JA- and JA/SA-treated plants, 44 were unique to JA-treated plants, 403 were unique to JA/SA-treated plants, and 202 were shared between the groups. These proteins were involved in stress, signaling, degradation, glycolysis, fermentation, and hormone metabolism. The abundances of glutathione-S-transferase, alanine aminotransferase, and malate dehydrogenase were decreased; however, the activities of these enzymes were increased. In contrast, the abundance and activity of monodehydroascorbate reductase increased in the roots of plants treated with JA and SA under flooding stress. This suggests that the quantity of lateral roots, total root mass, and free radicals generated during oxidation and reduction reactions and reactive oxygen species scavenging largely contribute to biophoton emission. Furthermore, monodehydroascorbate reductase, which is involved in detoxification and controlling hydrogen peroxide levels, may protect plant cells against oxidative damage during flooding. BIOLOGICAL SIGNIFICANCE To understand the source of biophoton emission and molecular mechanism by the application of jasmonic and salicylic acid under flooding conditions in soybean plants, the label-free quantitative techniques were performed in roots. Root lengths and weights were significantly reduced by the effect of jasmonic and salicylic acid while it inhibited growth of the lateral roots in normal conditions using the jasmonic acid. Finally, identified proteins were functionally annotated by MAPMAN software application; that were assigned to different functional categories, such as stress, signaling, protein, glycolysis, metabolism, cell wall, and cell organization. Consequently, this study offers to learn the photon emission in plants and to know the molecular mechanism under flooding stress in soybean.
Collapse
Affiliation(s)
- Abu Hena Mostafa Kamal
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| |
Collapse
|
15
|
Li Y, Zhang L, Qu T, Li L, Zhang G. Characterization of Oyster Voltage-Dependent Anion Channel 2 (VDAC2) Suggests Its Involvement in Apoptosis and Host Defense. PLoS One 2016; 11:e0146049. [PMID: 26727366 PMCID: PMC4700975 DOI: 10.1371/journal.pone.0146049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 12/11/2015] [Indexed: 01/03/2023] Open
Abstract
Genomic and transcriptomic studies have revealed a sophisticated and powerful apoptosis regulation network in oyster, highlighting its adaptation to sessile life in a highly stressful intertidal environment. However, the functional molecular basis of apoptosis remains largely unexplored in oysters. In this study, we focused on a representative apoptotic gene encoding voltage-dependent anion channel 2 (VDAC2), a porin that abounds at the mitochondrial outer membrane. This is the first report on the identification and characterization of a VDAC gene in the Pacific oyster, Crassostrea gigas (CgVDAC2). The full length of CgVDAC2 was 1,738 bp with an open reading frame of 843 bp that encoded a protein of 281 amino acids. A four-element eukaryotic porin signature motif, a conserved ATP binding motif, and a VKAKV-like sequence were identified in the predicted CgVDAC2. Expression pattern analysis in different tissues and developmental stages as well as upon infection by ostreid herpesvirus 1 revealed the energy supply-related and immunity-related expression of CgVDAC2. CgVDAC2 was co-localized with mitochondria when it was transiently transfected into HeLa cells. Overexpression of CgVDAC2 in HEK293T cells suppressed the UV irradiation-induced apoptosis by inhibiting the pro-apoptotic function of CgBak. RNA interference induced reduction in CgVDAC2 expression showed a promoted apoptosis level upon UV light irradiation in hemocytes. The yeast two-hybrid system and co-immunoprecipitation assay indicated a direct interaction between CgVDAC2 and the pro-apoptotic protein CgBak. This study revealed the function of VDAC2 in oyster and provided new insights into its involvement in apoptosis modulation and host defense in mollusks.
Collapse
Affiliation(s)
- Yingxiang Li
- University of Chinese Academy of Sciences, Beijing, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Linlin Zhang
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Tao Qu
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Li Li
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- * E-mail: (LL); (GZ)
| | - Guofan Zhang
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- * E-mail: (LL); (GZ)
| |
Collapse
|
16
|
Lü A, Hu X, Li L, Pei C, Zhang C, Cao X, Kong X, Nie G, Li X, Sun J. Tissue distribution of olive flounder VDAC2 and its expression in fish cell lines. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:899-907. [PMID: 25893906 DOI: 10.1007/s10695-015-0056-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 04/08/2015] [Indexed: 06/04/2023]
Abstract
Voltage-dependent anion channel (VDAC) is located in the mitochondrial outer membrane, which plays a crucial role in regulating cell life and death. In this study, the tissue distribution of olive flounder Paralichthys olivaceus VDAC2 (PoVDAC2) was detected by quantitative real-time PCR and Western blot analysis. The qRT-PCR results showed that the expression level of PoVDAC2 was abundant in heart, muscle and gill tissues. Western blot analysis revealed a protein of 32 kDa detected in all six tissues. Furthermore, a recombinant eukaryotic expression plasmid pEGFP-N3-PoVDAC2 was successfully constructed and transiently expressed the fusion protein in fish cell lines. Subcellular localization indicated that PoVDAC2-GFP was distributed in a punctate mitochondria-like pattern throughout the cytoplasm in flounder embryonic cells (FEC). The distribution of native VDAC2 in untransfected fish cells was also investigated by immunofluorescence microscopy. The punctate VDAC2 fluorescence signals of both FEC and EPC cells were identically observed in the cytoplasm but not in the nucleus. These results laid a foundation for investigating the functional relevance of VDAC response to pathogens in flounder.
Collapse
Affiliation(s)
- Aijun Lü
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Affiliation(s)
- Marco Colombini
- Department of Biology,
University of Maryland, College
Park, Maryland 20742, United States
| |
Collapse
|
18
|
Robert N, d'Erfurth I, Marmagne A, Erhardt M, Allot M, Boivin K, Gissot L, Monachello D, Michaud M, Duchêne AM, Barbier-Brygoo H, Maréchal-Drouard L, Ephritikhine G, Filleur S. Voltage-dependent-anion-channels (VDACs) in Arabidopsis have a dual localization in the cell but show a distinct role in mitochondria. PLANT MOLECULAR BIOLOGY 2012; 78:431-46. [PMID: 22294207 DOI: 10.1007/s11103-012-9874-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 12/26/2011] [Indexed: 05/22/2023]
Abstract
In mammals, the Voltage-dependent anion channels (VDACs) are predominant proteins of the outer mitochondrial membrane (OMM) where they contribute to the exchange of small metabolites essential for respiration. They were shown to be as well associated with the plasma membrane (PM) and act as redox enzyme or are involved in ATP release for example. In Arabidopsis, we show that four out of six genomic sequences encode AtVDAC proteins. All four AtVDACs are ubiquitously expressed in the plant but each of them displays a specific expression pattern in root cell types. Using two complementary approaches, we demonstrate conclusively that the four expressed AtVDACs are targeted to both mitochondria and plasma membrane but in differential abundance, AtVDAC3 being the most abundant in PM, and conversely, AtVDAC4 almost exclusively associated with mitochondria. These are the first plant proteins to be shown to reside in both these two membranes. To investigate a putative function of AtVDACs, we analyzed T-DNA insertion lines in each of the corresponding genes. Knock-out mutants for AtVDAC1, AtVDAC2 and AtVDAC4 present slow growth, reduced fertility and yellow spots in leaves when atvdac3 does not show any visible difference compared to wildtype plants. Analyses of atvdac1 and atvdac4 reveal that yellow areas correspond to necrosis and the mitochondria are swollen in these two mutants. All these results suggest that, in spite of a localization in plasma membrane for three of them, AtVDAC1, AtVDAC2 and AtVDAC4 have a main function in mitochondria.
Collapse
Affiliation(s)
- Nadia Robert
- Institut des Sciences du Végétal, CNRS-UPR 2355, Bât. 22, 91198 Gif sur Yvette Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Voltage-dependant anion channels: novel insights into isoform function through genetic models. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1477-85. [PMID: 22051019 DOI: 10.1016/j.bbamem.2011.10.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/12/2011] [Accepted: 10/18/2011] [Indexed: 11/24/2022]
Abstract
Voltage-dependant Anion Channels, also known as mitochondrial porins, are pore-forming proteins located in the mitochondrial outer membrane (MOM) that, in addition to forming complexes with other proteins that localize to the MOM, also function as the main conduit for transporting metabolites between the cytoplasm and mitochondria. VDACs are encoded by a multi-member gene family, and the number of isoforms and specific functions of VDACs varies between species. Translating the well-described in vitro characteristics of the VDAC isoforms into in vivo functions has been a challenge, with the generation of animal models of VDAC deficiency providing much of the available information about isoform-specific roles in biology. Here, we review the approaches used to create these insect and mammalian animal models, and the conclusions reached by studying the consequences of loss of function mutations on the genetic, physiologic, and biochemical properties of the resulting models. This article is part of a Special Issue entitled: VDAC structure, function, and regulation of mitochondrial metabolism.
Collapse
|
20
|
Rea SL, Graham BH, Nakamaru-Ogiso E, Kar A, Falk MJ. Bacteria, yeast, worms, and flies: exploiting simple model organisms to investigate human mitochondrial diseases. ACTA ACUST UNITED AC 2011; 16:200-18. [PMID: 20818735 DOI: 10.1002/ddrr.114] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The extensive conservation of mitochondrial structure, composition, and function across evolution offers a unique opportunity to expand our understanding of human mitochondrial biology and disease. By investigating the biology of much simpler model organisms, it is often possible to answer questions that are unreachable at the clinical level. Here, we review the relative utility of four different model organisms, namely the bacterium Escherichia coli, the yeast Saccharomyces cerevisiae, the nematode Caenorhabditis elegans, and the fruit fly Drosophila melanogaster, in studying the role of mitochondrial proteins relevant to human disease. E. coli are single cell, prokaryotic bacteria that have proven to be a useful model system in which to investigate mitochondrial respiratory chain protein structure and function. S. cerevisiae is a single-celled eukaryote that can grow equally well by mitochondrial-dependent respiration or by ethanol fermentation, a property that has proven to be a veritable boon for investigating mitochondrial functionality. C. elegans is a multicellular, microscopic worm that is organized into five major tissues and has proven to be a robust model animal for in vitro and in vivo studies of primary respiratory chain dysfunction and its potential therapies in humans. Studied for over a century, D. melanogaster is a classic metazoan model system offering an abundance of genetic tools and reagents that facilitates investigations of mitochondrial biology using both forward and reverse genetics. The respective strengths and limitations of each species relative to mitochondrial studies are explored. In addition, an overview is provided of major discoveries made in mitochondrial biology in each of these four model systems.
Collapse
Affiliation(s)
- Shane L Rea
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA.
| | | | | | | | | |
Collapse
|
21
|
Park J, Kim Y, Choi S, Koh H, Lee SH, Kim JM, Chung J. Drosophila Porin/VDAC affects mitochondrial morphology. PLoS One 2010; 5:e13151. [PMID: 20949033 PMCID: PMC2951900 DOI: 10.1371/journal.pone.0013151] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 09/08/2010] [Indexed: 11/18/2022] Open
Abstract
Voltage-dependent anion channel (VDAC) has been suggested to be a mediator of mitochondrial-dependent cell death induced by Ca(2+) overload, oxidative stress and Bax-Bid activation. To confirm this hypothesis in vivo, we generated and characterized Drosophila VDAC (porin) mutants and found that Porin is not required for mitochondrial apoptosis, which is consistent with the previous mouse studies. We also reported a novel physiological role of Porin. Loss of porin resulted in locomotive defects and male sterility. Intriguingly, porin mutants exhibited elongated mitochondria in indirect flight muscle, whereas Porin overexpression produced fragmented mitochondria. Through genetic analysis with the components of mitochondrial fission and fusion, we found that the elongated mitochondria phenotype in porin mutants were suppressed by increased mitochondrial fission, but enhanced by increased mitochondrial fusion. Furthermore, increased mitochondrial fission by Drp1 expression suppressed the flight defects in the porin mutants. Collectively, our study showed that loss of Drosophila Porin results in mitochondrial morphological defects and suggested that the defective mitochondrial function by Porin deficiency affects the mitochondrial remodeling process.
Collapse
Affiliation(s)
- Jeehye Park
- National Creative Research Initiatives Center for Energy Homeostasis Regulation, Seoul National University, Seoul, Korea
| | - Yongsung Kim
- National Creative Research Initiatives Center for Energy Homeostasis Regulation, Seoul National University, Seoul, Korea
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Sekyu Choi
- National Creative Research Initiatives Center for Energy Homeostasis Regulation, Seoul National University, Seoul, Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Hyongjong Koh
- Department of Pharmacology, Dong-A University College of Medicine, Busan, Korea
| | - Sang-Hee Lee
- Department of Pathology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Jin-Man Kim
- Department of Pathology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Jongkyeong Chung
- National Creative Research Initiatives Center for Energy Homeostasis Regulation, Seoul National University, Seoul, Korea
- School of Biological Sciences, Seoul National University, Seoul, Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
- * E-mail:
| |
Collapse
|
22
|
Wang KCHC, Kondo H, Hirono I, Aoki T. The Marsupenaeus japonicus voltage-dependent anion channel (MjVDAC) protein is involved in white spot syndrome virus (WSSV) pathogenesis. FISH & SHELLFISH IMMUNOLOGY 2010; 29:94-103. [PMID: 20202479 DOI: 10.1016/j.fsi.2010.02.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 02/19/2010] [Accepted: 02/22/2010] [Indexed: 05/28/2023]
Abstract
Voltage-dependent anion channel (VDAC) proteins abound in the outer membrane of mitochondria. They play an important role in mitochondrial membrane permeabilization (MMP), which can lead to stress-induced cellular apoptosis and necrosis. Several pathogens regulate this MMP in their host cells to benefit their replication cycle, while in other cases, the host can use the same mechanism to combat pathogenesis. In this study, the first shrimp VDAC gene was identified and characterized from Marsupenaeus japonicus (MjVDAC). Its open reading frame (ORF) contained 849 bp encoding 282 amino acids. The deduced MjVDAC protein includes the 4-element eukaryotic porin signature motif, the conserved ATP binding motif (the GLK motif) and a VKAKV-like sequence known in other organisms to be involved in the protein's incorporation in the mitochondrial outer membrane. Tissue tropism analysis indicated that MjVDAC is abundant in the heart, muscle, stomach and pleopod. MjVDAC proteins colocalized with mitochondria in transiently transfected Sf9 cells and in shrimp hemocytes. dsRNA silencing of shrimp VDAC delayed white spot syndrome virus (WSSV) infection by 1 day in different shrimp organs. Taken together, these findings suggest that MjVDAC is likely to be involved in WSSV pathogenesis.
Collapse
Affiliation(s)
- K C Han-Ching Wang
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | | | | | | |
Collapse
|
23
|
VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol Aspects Med 2010; 31:227-85. [PMID: 20346371 DOI: 10.1016/j.mam.2010.03.002] [Citation(s) in RCA: 585] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 03/17/2010] [Indexed: 01/22/2023]
Abstract
Research over the past decade has extended the prevailing view of the mitochondrion to include functions well beyond the generation of cellular energy. It is now recognized that mitochondria play a crucial role in cell signaling events, inter-organellar communication, aging, cell proliferation, diseases and cell death. Thus, mitochondria play a central role in the regulation of apoptosis (programmed cell death) and serve as the venue for cellular decisions leading to cell life or death. One of the mitochondrial proteins controlling cell life and death is the voltage-dependent anion channel (VDAC), also known as mitochondrial porin. VDAC, located in the mitochondrial outer membrane, functions as gatekeeper for the entry and exit of mitochondrial metabolites, thereby controlling cross-talk between mitochondria and the rest of the cell. VDAC is also a key player in mitochondria-mediated apoptosis. Thus, in addition to regulating the metabolic and energetic functions of mitochondria, VDAC appears to be a convergence point for a variety of cell survival and cell death signals mediated by its association with various ligands and proteins. In this article, we review what is known about the VDAC channel in terms of its structure, relevance to ATP rationing, Ca(2+) homeostasis, protection against oxidative stress, regulation of apoptosis, involvement in several diseases and its role in the action of different drugs. In light of our recent findings and the recently solved NMR- and crystallography-based 3D structures of VDAC1, the focus of this review will be on the central role of VDAC in cell life and death, addressing VDAC function in the regulation of mitochondria-mediated apoptosis with an emphasis on structure-function relations. Understanding structure-function relationships of VDAC is critical for deciphering how this channel can perform such a variety of functions, all important for cell life and death. This review also provides insight into the potential of VDAC1 as a rational target for new therapeutics.
Collapse
|
24
|
Graham BH, Li Z, Alesii EP, Versteken P, Lee C, Wang J, Craigen WJ. Neurologic dysfunction and male infertility in Drosophila porin mutants: a new model for mitochondrial dysfunction and disease. J Biol Chem 2010; 285:11143-53. [PMID: 20110367 DOI: 10.1074/jbc.m109.080317] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Voltage-dependent anion channels (VDACs) are a family of small pore-forming proteins of the mitochondrial outer membrane found in all eukaryotes. VDACs play an important role in the regulated flux of metabolites between the cytosolic and mitochondrial compartments, and three distinct mammalian isoforms have been identified. Animal and cell culture experiments suggest that the various isoforms act in disparate roles such as apoptosis, synaptic plasticity, learning, muscle bioenergetics, and reproduction. In Drosophila melanogaster, porin is the ubiquitously expressed VDAC isoform. Through imprecise excision of a P element insertion in the porin locus, a series of hypomorphic alleles have been isolated, and analyses of flies homozygous for these mutant alleles reveal phenotypes remarkably reminiscent of mouse VDAC mutants. These include partial lethality, defects of mitochondrial respiration, abnormal muscle mitochondrial morphology, synaptic dysfunction, and male infertility, which are features often observed in human mitochondrial disorders. Furthermore, the observed synaptic dysfunction at the neuromuscular junction in porin mutants is associated with a paucity of mitochondria in presynaptic termini. The similarity of VDAC mutant phenotypes in the fly and mouse clearly indicate a fundamental conservation of VDAC function. The establishment and validation of a new in vivo model for VDAC function in Drosophila should provide a valuable tool for further genetic dissection of VDAC role(s) in mitochondrial biology and disease, and as a model of mitochondrial disorders potentially amenable to the development of treatment strategies.
Collapse
Affiliation(s)
- Brett H Graham
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Craigen WJ, Graham BH. Genetic strategies for dissecting mammalian and Drosophila voltage-dependent anion channel functions. J Bioenerg Biomembr 2009; 40:207-12. [PMID: 18622693 DOI: 10.1007/s10863-008-9146-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Voltage-dependent anion channels (VDACs), also known as mitochondrial porins, are a family of small pore-forming proteins of the mitochondrial outer membrane that are found in all eukaryotes. VDACs are thought to play important roles in the regulated flux of metabolites between the cytosolic and mitochondrial compartments, in overall energy metabolism via interactions with cytosolic kinases, and a debated role in programmed cell death (apoptosis). The mammalian genome contains three VDAC loci termed Vdac1, Vdac2, and Vdac3, raising the question as to what function each isoform may be performing. Based upon expression studies of the mouse VDACs in yeast, biophysical differences can be identified but the physiologic significance of these differences remains unclear. Creation of "knockout" cell lines and mice that lack one or more VDAC isoforms has led to the characterization of distinct phenotypes that provide a different set of insights into function which must be interpreted in the context of complex physiologic systems. Functions in male reproduction, the central nervous system and glucose homeostasis have been identified and require a deeper and more mechanistic examination. Annotation of the genome sequence of Drosophila melanogaster has recently revealed three additional genes (CG17137, CG17139, CG17140) with homology to porin, the previously described gene that encodes the VDAC of D. melanogaster. Molecular analysis of these novel VDACs has revealed a complex pattern of gene organization and expression. Sequence comparisons with other insect VDAC homologs suggest that this gene family evolved through a mechanism of duplication and divergence from an ancestral VDAC gene during the radiation of the genus Drosophila. Striking similarities to mouse VDAC mutants can be found that emphasize the conservation of function over a long evolutionary time frame.
Collapse
Affiliation(s)
- William J Craigen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
26
|
Porin isoform 2 has a different localization in Drosophila melanogaster ovaries than porin 1. J Bioenerg Biomembr 2008; 40:219-26. [DOI: 10.1007/s10863-008-9149-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 05/22/2008] [Indexed: 11/25/2022]
|
27
|
Lee S, Leung HT, Kim E, Jang J, Lee E, Baek K, Pak WL, Yoon J. Effects of a mutation in the Drosophila porin gene encoding mitochondrial voltage-dependent anion channel protein on phototransduction. Dev Neurobiol 2007; 67:1533-45. [PMID: 17525991 DOI: 10.1002/dneu.20526] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mitochondrial porins, also know as VDACs (voltage-dependent anion channels), play an important role in regulating energy metabolism, apoptosis, and the transport of metabolites across the mitochondrial outer membrane. So far three distinct isoforms of VDAC (VDAC1-3) have been reported in vertebrates, but their functions remain unknown. The annotation database of the Drosophila melanogaster genome sequence has identified four genes (porin, CG17137, CG17139, and CG17140) encoding different isoforms of VDACs. We identified post-translational modifications of PORIN that are specific to D. melanogaster eyes. We also identified the P-element insertion in the porin gene, porin(G2294), that is homozygous viable whereas all the porin mutants previously reported are homozygous lethal at the pupal stage. The mutant does not show any defects in fly morphology, survival, and photoreceptor structure. The mutant, however, produces <10% of the normal level of wild-type (WT) porin transcripts and 16.5% of WT level of the PORIN protein. The P-element insertion affects only the expression of Class I transcript but not Class II transcript of the porin gene. Unlike in WT, the mutant displays an ERG (electroretinogram) that is not maintained during a prolonged light stimulus. The revertant obtained from remobilization of the P-element in the mutant produces the WT level of porin transcripts and PORIN protein, and shows a normal ERG response. Our data suggest that the PORIN protein is important in maintaining a photoreceptor response during prolonged stimulation.
Collapse
Affiliation(s)
- Sunji Lee
- Graduate School of Biotechnology, KyungHee University, Yongin-si, Gyeonggi-do, Korea
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Lü AJ, Dong CW, Du CS, Zhang QY. Characterization and expression analysis of Paralichthys olivaceus voltage-dependent anion channel (VDAC) gene in response to virus infection. FISH & SHELLFISH IMMUNOLOGY 2007; 23:601-13. [PMID: 17467295 DOI: 10.1016/j.fsi.2007.01.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Revised: 12/16/2006] [Accepted: 01/09/2007] [Indexed: 05/15/2023]
Abstract
Voltage-dependent anion channel (VDAC, also known as mitochondrial porin) is acknowledged to play an important role in stress-induced mammalian apoptosis. In this study, Paralichthys olivaceus VDAC (PoVDAC) gene was identified as a virally induced gene from Scophthalmus Maximus Rhabdovirus (SMRV)-infected flounder embryonic cells (FEC). The full length of PoVDAC cDNA is 1380 bp with an open reading frame of 852 bp encoding a 283 amino acid protein. The deduced PoVDAC contains one alpha-helix, 13 transmembrane beta-strands and one eukaryotic mitochondrial porin signature motif. Constitutive expression of PoVDAC was confirmed in all tested tissues by real-time PCR. Further expression analysis revealed PoVDAC mRNA was upregulated by viral infection. We prepared fish antiserum against recombinant VDAC proteins and detected the PoVDAC in heart lysates from flounder as a 32 kDa band on western blot. Overexpression of PoVDAC in fish cells induced apoptosis. Immunofluoresence localization indicated that the significant distribution changes of PoVDAC have occurred in virus-induced apoptotic cells. This is the first report on the inductive expression of VDAC by viral infection, suggesting that PoVDAC might be mediated flounder antiviral immune response through induction of apoptosis.
Collapse
Affiliation(s)
- Ai-Jun Lü
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China
| | | | | | | |
Collapse
|
29
|
Abstract
BACKGROUND Mitochondrial porins, or voltage-dependent anion-selective channels (VDAC) allow the passage of small molecules across the mitochondrial outer membrane, and are involved in complex interactions regulating organellar and cellular metabolism. Numerous organisms possess multiple porin isoforms, and initial studies indicated an intriguing evolutionary history for these proteins and the genes that encode them. RESULTS In this work, the wealth of recent sequence information was used to perform a comprehensive analysis of the evolutionary history of mitochondrial porins. Fungal porin sequences were well represented, and newly-released sequences from stramenopiles, alveolates, and seed and flowering plants were analyzed. A combination of Neighbour-Joining and Bayesian methods was used to determine phylogenetic relationships among the proteins. The aligned sequences were also used to reassess the validity of previously described eukaryotic porin motifs and to search for signature sequences characteristic of VDACs from plants, animals and fungi. Secondary structure predictions were performed on the aligned VDAC primary sequences and were used to evaluate the sites of intron insertion in a representative set of the corresponding VDAC genes. CONCLUSION Our phylogenetic analysis clearly shows that paralogs have appeared several times during the evolution of VDACs from the plants, metazoans, and even the fungi, suggesting that there are no "ancient" paralogs within the gene family. Sequence motifs characteristic of the members of the crown groups of organisms were identified. Secondary structure predictions suggest a common 16 beta-strand framework for the transmembrane arrangement of all porin isoforms. The GLK (and homologous or analogous motifs) and the eukaryotic porin motifs in the four representative Chordates tend to be in exons that appear to have changed little during the evolution of these metazoans. In fact there is phase correlation among the introns in these genes. Finally, our preliminary data support the notion that introns usually do not interrupt structural protein motifs, namely the predicted beta-strands. These observations concur with the concept of exon shuffling, wherein exons encode structural modules of proteins and the loss and gain of introns and the shuffling of exons via recombination events contribute to the complexity of modern day proteomes.
Collapse
|
30
|
Veenman L, Gavish M. The peripheral-type benzodiazepine receptor and the cardiovascular system. Implications for drug development. Pharmacol Ther 2006; 110:503-24. [PMID: 16337685 DOI: 10.1016/j.pharmthera.2005.09.007] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Accepted: 09/27/2005] [Indexed: 11/16/2022]
Abstract
Peripheral-type benzodiazepine receptors (PBRs) are abundant in the cardiovascular system. In the cardiovascular lumen, PBRs are present in platelets, erythrocytes, lymphocytes, and mononuclear cells. In the walls of the cardiovascular system, PBR can be found in the endothelium, the striated cardiac muscle, the vascular smooth muscles, and the mast cells. The subcellular location of PBR is primarily in mitochondria. The PBR complex includes the isoquinoline binding protein (IBP), voltage-dependent anion channel (VDAC), and adenine nucleotide transporter (ANT). Putative endogenous ligands for PBR include protoporphyrin IX, diazepam binding inhibitor (DBI), triakontatetraneuropeptide (TTN), and phospholipase A2 (PLA2). Classical synthetic ligands for PBR are the isoquinoline 1-(2-chlorophenyl)-N-methyl-N-(1-methyl-propyl)-3-isoquinolinecarboxamide (PK 11195) and the benzodiazepine 7-chloro-5-(4-chlorophenyl)-1,3-dihydro-1-methyl-2H-1,4-benzodiazepin-2-one (Ro5 4864). Novel PBR ligands include N,N-di-n-hexyl 2-(4-fluorophenyl)indole-3-acetamide (FGIN-1-27) and 7-chloro-N,N,5-trimethyl-4-oxo-3-phenyl-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide (SSR180575), both possessing steroidogenic properties, but while FGIN-1-27 is pro-apoptotic, SSR180575 is anti-apoptotic. Putative PBR functions include regulation of steroidogenesis, apoptosis, cell proliferation, the mitochondrial membrane potential, the mitochondrial respiratory chain, voltage-dependent calcium channels, responses to stress, and microglial activation. PBRs in blood vessel walls appear to take part in responses to trauma such as ischemia. The irreversible PBR antagonist, SSR180575, was found to reduce damage correlated with ischemia. Stress, anxiety disorders, and neurological disorders, as well as their treatment, can affect PBR levels in blood cells. PBRs in blood cells appear to play roles in several aspects of the immune response, such as phagocytosis and the secretion of interleukin-2, interleukin-3, and immunoglobulin A (IgA). Thus, alterations in PBR density in blood cells may have immunological consequences in the affected person. In conclusion, PBR in the cardiovascular system may represent a new target for drug development.
Collapse
Affiliation(s)
- Leo Veenman
- Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, Department of Pharmacology, Ephron Street, P.O. Box 9649, Bat-Galim, Haifa 31096, Israel
| | | |
Collapse
|