1
|
Puppala S, Spradling-Reeves KD, Chan J, Birnbaum S, Newman DE, Comuzzie AG, Mahaney MC, VandeBerg JL, Olivier M, Cox LA. Hepatic transcript signatures predict atherosclerotic lesion burden prior to a 2-year high cholesterol, high fat diet challenge. PLoS One 2022; 17:e0271514. [PMID: 35925965 PMCID: PMC9352111 DOI: 10.1371/journal.pone.0271514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 07/04/2022] [Indexed: 11/19/2022] Open
Abstract
The purpose of this study was to identify molecular mechanisms by which the liver influences total lesion burden in a nonhuman primate model (NHP) of cardiovascular disease with acute and chronic feeding of a high cholesterol, high fat (HCHF) diet. Baboons (47 females, 64 males) were fed a HCHF diet for 2 years (y); liver biopsies were collected at baseline, 7 weeks (w) and 2y, and lesions were quantified in aortic arch, descending aorta, and common iliac at 2y. Unbiased weighted gene co-expression network analysis (WGCNA) revealed several modules of hepatic genes correlated with lesions at different time points of dietary challenge. Pathway and network analyses were performed to study the roles of hepatic module genes. More significant pathways were observed in males than females. In males, we found modules enriched for genes in oxidative phosphorylation at baseline, opioid signaling at 7w, and EIF2 signaling and HNF1A and HNF4A networks at baseline and 2y. One module enriched for fatty acid β oxidation pathway genes was found in males and females at 2y. To our knowledge, this is the first study of a large NHP cohort to identify hepatic genes that correlate with lesion burden. Correlations of baseline and 7w module genes with lesions at 2y were observed in males but not in females. Pathway analyses of baseline and 7w module genes indicate EIF2 signaling, oxidative phosphorylation, and μ-opioid signaling are possible mechanisms that predict lesion formation induced by HCHF diet consumption in males. Our findings of coordinated hepatic transcriptional response in male baboons but not female baboons indicate underlying molecular mechanisms differ between female and male primate atherosclerosis.
Collapse
Affiliation(s)
- Sobha Puppala
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Kimberly D. Spradling-Reeves
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Jeannie Chan
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Shifra Birnbaum
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Deborah E. Newman
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | | | - Michael C. Mahaney
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, The University of Texas Rio Grande Valley School of Medicine, Brownsville, Texas, United States of America
| | - John L. VandeBerg
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, The University of Texas Rio Grande Valley School of Medicine, Brownsville, Texas, United States of America
| | - Michael Olivier
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Laura A. Cox
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| |
Collapse
|
2
|
Abstract
BACKGROUND The endogenous opioid system affects metabolism, including weight regulation. Evidence from preclinical and clinical studies provides a rationale for targeting this system to mitigate weight-related side effects of antipsychotics. This review describes the role of the opioid system in regulating weight and metabolism, examines the effects of opioid receptor antagonism on those functions, and explores the use of opioid antagonists to mitigate antipsychotic-associated weight gain and/or metabolic effects. METHODS A PubMed literature search was conducted to identify representative opioid antagonists and associated preclinical and clinical studies examining their potential for the regulation of weight and metabolism. RESULTS The mu opioid receptor (MOR), delta opioid receptor (DOR), and kappa opioid receptor (KOR) types have overlapping but distinct patterns of central and peripheral expression, and each contributes to the regulation of body weight and metabolism. Three representative opioid antagonists (eg, naltrexone, samidorphan, and LY255582) were identified for illustration. These opioid antagonists differed in their receptor binding and pharmacokinetic profiles, including oral bioavailability, systemic clearance, and half-life, and were associated with varying effects on food intake, energy utilization, and metabolic dysregulation. CONCLUSIONS Preclinical and clinical data suggest that antagonism of the endogenous opioid system is a mechanism to address antipsychotic-associated weight gain and metabolic dysregulation. However, evidence suggests that the differing roles of MOR, DOR, and KOR in metabolism, together with the differences in receptor binding, pharmacokinetic, and functional activity profiles of the opioid receptor antagonists discussed in this review, likely contribute to their differential pharmacodynamic effects and clinical outcomes observed regarding antipsychotic-associated weight gain.
Collapse
|
3
|
Tan LA, Gajipara N, Sun L, Bacolod M, Zhou Y, Namchuk M, Cunningham JI. In vivo Characterization of the Opioid Receptor-Binding Profiles of Samidorphan and Naltrexone in Rats: Comparisons at Clinically Relevant Concentrations. Neuropsychiatr Dis Treat 2022; 18:2497-2506. [PMID: 36345421 PMCID: PMC9636859 DOI: 10.2147/ndt.s373195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/07/2022] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION The atypical antipsychotic olanzapine is approved for the treatment of schizophrenia and bipolar I disorder; however, weight gain and metabolic dysregulation associated with olanzapine therapy have limited its clinical utility. In clinical studies, treatment with the combination of olanzapine and the opioid receptor antagonist samidorphan (OLZ/SAM) mitigated olanzapine-associated weight gain while providing antipsychotic efficacy similar to that of olanzapine. Although samidorphan is structurally similar to the opioid receptor antagonist naltrexone, the two differ in their pharmacokinetics and in vitro binding affinities to mu, delta, and kappa opioid receptors (MOR, DOR, and KOR, respectively). The objective of this series of nonclinical studies was to compare the in vivo binding profiles of samidorphan and naltrexone and their receptor occupancies at MOR, DOR, and KOR in rat brains. METHODS Male rats were injected with samidorphan or naltrexone to obtain total and unbound plasma and brain concentrations representing levels observed in humans at clinically relevant oral doses. Subsequently, samidorphan and naltrexone brain receptor occupancy at MOR, DOR, and KOR was measured using ultra-performance liquid chromatography and high-resolution accurate-mass mass spectrometry. RESULTS A dose-dependent increase in samidorphan occupancy was observed at MOR, DOR, and KOR (EC50: 5.1, 54.7, and 42.9 nM, respectively). Occupancy of naltrexone at MOR (EC50: 15.5 nM) and KOR was dose dependent; minimal DOR occupancy was detected. At the clinically relevant unbound brain concentration of 23.1 nM, samidorphan bound to MOR, DOR, and KOR with 93.2%, 36.1%, and 41.9% occupancy, respectively. At 33.5 nM, naltrexone bound to MOR and KOR with 79.4% and 9.4% occupancy, respectively, with no binding at DOR. DISCUSSION At clinically relevant concentrations, samidorphan occupied MOR, DOR, and KOR, whereas naltrexone occupied only MOR and KOR. The binding profile of samidorphan differs from that of naltrexone, with potential clinical implications.
Collapse
Affiliation(s)
| | | | - Lei Sun
- Alkermes, Inc, Waltham, MA, USA
| | | | | | | | | |
Collapse
|
4
|
Citrome L, Graham C, Simmons A, Jiang Y, Todtenkopf MS, Silverman B, DiPetrillo L, Cummings H, Sun L, McDonnell D. An Evidence-Based Review of OLZ/SAM for Treatment of Adults with Schizophrenia or Bipolar I Disorder. Neuropsychiatr Dis Treat 2021; 17:2885-2904. [PMID: 34526769 PMCID: PMC8437420 DOI: 10.2147/ndt.s313840] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/14/2021] [Indexed: 12/19/2022] Open
Abstract
Olanzapine effectively treats schizophrenia and bipolar I disorder (BD-I); however, its use is limited by the risk of significant weight gain and metabolic effects. OLZ/SAM, a combination of olanzapine and samidorphan, was recently approved in the United States for the treatment of adults with schizophrenia or BD-I. OLZ/SAM provides the efficacy of olanzapine while mitigating olanzapine-associated weight gain through opioid-receptor blockade. Here, we summarize OLZ/SAM clinical data characterizing pharmacokinetics, antipsychotic efficacy, weight mitigation efficacy, safety, and long-term treatment effects. In an acute exacerbation of schizophrenia, OLZ/SAM and olanzapine provided similar symptom improvements versus placebo at week 4. In stable outpatients with schizophrenia, OLZ/SAM treatment resulted in significantly less weight gain, reducing the risk for clinically significant weight gain and waist circumference increases of ≥5 cm by half, compared with olanzapine at week 24. Based on open-label extension studies, OLZ/SAM is safe and well tolerated for up to 3.5 years of treatment, while maintaining schizophrenia symptom control and stabilizing weight. The olanzapine component of OLZ/SAM was bioequivalent to branded olanzapine (Zyprexa); adjunctive OLZ/SAM had no clinically significant effects on lithium or valproate pharmacokinetics. Additionally, OLZ/SAM had no clinically relevant effect on electrocardiogram parameters in a dedicated thorough QT study. Overall, safety and tolerability findings from clinical studies with OLZ/SAM indicate a similar safety profile to that of olanzapine, with the exception of less weight gain. As OLZ/SAM contains the opioid antagonist samidorphan, it is contraindicated in patients using opioids and in those undergoing acute opioid withdrawal. Clinical trial results from more than 1600 subjects support the use of OLZ/SAM as a new treatment option for patients with schizophrenia or BD-I.
Collapse
Affiliation(s)
- Leslie Citrome
- Department of Psychiatry and Behavioral Sciences, New York Medical College, Valhalla, NY, USA
| | | | | | | | | | | | | | | | - Lei Sun
- Alkermes, Inc., Waltham, MA, USA
| | | |
Collapse
|
5
|
Sun L, Mills R, Sadler BM, Rege B. Population Pharmacokinetics of Olanzapine and Samidorphan When Administered in Combination in Healthy Subjects and Patients With Schizophrenia. J Clin Pharmacol 2021; 61:1430-1441. [PMID: 34018607 PMCID: PMC8596792 DOI: 10.1002/jcph.1911] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/14/2021] [Indexed: 01/25/2023]
Abstract
A combination of olanzapine and samidorphan was recently approved by the US Food and Drug Administration for the treatment of patients with schizophrenia or bipolar I disorder. Population pharmacokinetic models for olanzapine and samidorphan were developed using data from 11 clinical studies in healthy subjects or patients with schizophrenia. A 2‐compartment disposition model with first‐order absorption and elimination and a lag time for absorption adequately described concentration‐time profiles of both olanzapine and samidorphan. Age, sex, race, smoking status, and body weight were identified as covariates that impacted the pharmacokinetics of olanzapine. A moderate effect of body weight on samidorphan pharmacokinetics was identified by the model but was not considered clinically meaningful. The effects of food, hepatic or renal impairment, and coadministration with rifampin on the pharmacokinetics of olanzapine and samidorphan, as estimated by the population pharmacokinetic analysis, were consistent with findings from dedicated clinical studies designed to evaluate these specific covariates of interest. Food intake did not have a clinically relevant effect on the pharmacokinetics of olanzapine or samidorphan. Consistent with the known metabolic pathways for olanzapine (primarily via uridine 5′‐diphospho‐glucuronosyltransferase–mediated direct glucuronidation and cytochrome P450 [CYP]‐mediated oxidation) and for samidorphan (predominantly mediated by CYP3A4), coadministration of olanzapine and samidorphan with rifampin, a strong inducer of CYP3A4 and an inducer of uridine 5′‐diphospho‐glucuronosyltransferase enzymes, significantly decreased the systemic exposure of both olanzapine and samidorphan. Severe renal impairment or moderate hepatic impairment resulted in a modest increase in olanzapine and samidorphan exposure.
Collapse
Affiliation(s)
- Lei Sun
- Alkermes, Inc., Waltham, Massachusetts, USA
| | | | | | | |
Collapse
|
6
|
Correll CU, Newcomer JW, Silverman B, DiPetrillo L, Graham C, Jiang Y, Du Y, Simmons A, Hopkinson C, McDonnell D, Kahn RS. Effects of Olanzapine Combined With Samidorphan on Weight Gain in Schizophrenia: A 24-Week Phase 3 Study. Am J Psychiatry 2020; 177:1168-1178. [PMID: 32791894 DOI: 10.1176/appi.ajp.2020.19121279] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE A combination of olanzapine and the opioid receptor antagonist samidorphan is under development for the treatment of schizophrenia and bipolar I disorder. The single-tablet combination treatment is intended to provide the efficacy of olanzapine while mitigating olanzapine-associated weight gain. In this phase 3 double-blind trial, the authors evaluated the weight profile of combined olanzapine/samidorphan compared with olanzapine in patients with schizophrenia. METHODS Adults (ages 18‒55 years) with schizophrenia were randomly assigned to receive either combination treatment with olanzapine and samidorphan or olanzapine treatment for 24 weeks. Primary endpoints were percent change from baseline in body weight and proportion of patients with ≥10% weight gain at week 24. The key secondary endpoint was the proportion of patients with ≥7% weight gain. Waist circumference and fasting metabolic laboratory parameters were also measured. RESULTS Of 561 patients who underwent randomization (olanzapine/samidorphan combination, N=280; olanzapine, N=281), 538 had at least one postbaseline weight assessment. At week 24, the least squares mean percent weight change from baseline was 4.21% (SE=0.68) in the olanzapine/samidorphan group and 6.59% (SE=0.67) in the olanzapine group (the difference of -2.38% [SE=0.76] was significant). Significantly fewer patients in the olanzapine/samidorphan combination group compared with the olanzapine group had weight gain ≥10% (17.8% and 29.8%, respectively; number needed to treat [NNT]=7.29; odds ratio=0.50) and weight gain ≥7% (27.5% and 42.7%, respectively; NNT=6.29; odds ratio=0.50). Increases in waist circumference were smaller in the olanzapine/samidorphan combination group compared with the olanzapine group. Schizophrenia symptom improvement was similar between treatment groups. Adverse events (in ≥10% of the groups) in the olanzapine/samidorphan and olanzapine groups included weight gain (24.8% and 36.2%), somnolence (21.2% and 18.1%), dry mouth (12.8% and 8.0%), and increased appetite (10.9% and 12.3%). Metabolic changes were small and similar between treatments. CONCLUSIONS Olanzapine/samidorphan combination treatment was associated with significantly less weight gain and smaller increases in waist circumference than olanzapine and was well tolerated. The antipsychotic efficacy of the combination treatment was similar to that of olanzapine monotherapy.
Collapse
Affiliation(s)
- Christoph U Correll
- Department of Psychiatry, Zucker Hillside Hospital, Northwell Health, Glen Oaks, N.Y. (Correll); Department of Psychiatry and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, N.Y. (Correll); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin (Correll); Thriving Mind South Florida, Miami (Newcomer); Department of Psychiatry, Washington University School of Medicine, St. Louis (Newcomer); Alkermes, Inc., Waltham, Mass. (Silverman, DiPetrillo, Graham, Jiang, Du, Simmons, Hopkinson); Alkermes Pharma Ireland, Dublin (McDonnell); and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Kahn)
| | - John W Newcomer
- Department of Psychiatry, Zucker Hillside Hospital, Northwell Health, Glen Oaks, N.Y. (Correll); Department of Psychiatry and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, N.Y. (Correll); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin (Correll); Thriving Mind South Florida, Miami (Newcomer); Department of Psychiatry, Washington University School of Medicine, St. Louis (Newcomer); Alkermes, Inc., Waltham, Mass. (Silverman, DiPetrillo, Graham, Jiang, Du, Simmons, Hopkinson); Alkermes Pharma Ireland, Dublin (McDonnell); and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Kahn)
| | - Bernard Silverman
- Department of Psychiatry, Zucker Hillside Hospital, Northwell Health, Glen Oaks, N.Y. (Correll); Department of Psychiatry and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, N.Y. (Correll); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin (Correll); Thriving Mind South Florida, Miami (Newcomer); Department of Psychiatry, Washington University School of Medicine, St. Louis (Newcomer); Alkermes, Inc., Waltham, Mass. (Silverman, DiPetrillo, Graham, Jiang, Du, Simmons, Hopkinson); Alkermes Pharma Ireland, Dublin (McDonnell); and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Kahn)
| | - Lauren DiPetrillo
- Department of Psychiatry, Zucker Hillside Hospital, Northwell Health, Glen Oaks, N.Y. (Correll); Department of Psychiatry and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, N.Y. (Correll); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin (Correll); Thriving Mind South Florida, Miami (Newcomer); Department of Psychiatry, Washington University School of Medicine, St. Louis (Newcomer); Alkermes, Inc., Waltham, Mass. (Silverman, DiPetrillo, Graham, Jiang, Du, Simmons, Hopkinson); Alkermes Pharma Ireland, Dublin (McDonnell); and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Kahn)
| | - Christine Graham
- Department of Psychiatry, Zucker Hillside Hospital, Northwell Health, Glen Oaks, N.Y. (Correll); Department of Psychiatry and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, N.Y. (Correll); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin (Correll); Thriving Mind South Florida, Miami (Newcomer); Department of Psychiatry, Washington University School of Medicine, St. Louis (Newcomer); Alkermes, Inc., Waltham, Mass. (Silverman, DiPetrillo, Graham, Jiang, Du, Simmons, Hopkinson); Alkermes Pharma Ireland, Dublin (McDonnell); and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Kahn)
| | - Ying Jiang
- Department of Psychiatry, Zucker Hillside Hospital, Northwell Health, Glen Oaks, N.Y. (Correll); Department of Psychiatry and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, N.Y. (Correll); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin (Correll); Thriving Mind South Florida, Miami (Newcomer); Department of Psychiatry, Washington University School of Medicine, St. Louis (Newcomer); Alkermes, Inc., Waltham, Mass. (Silverman, DiPetrillo, Graham, Jiang, Du, Simmons, Hopkinson); Alkermes Pharma Ireland, Dublin (McDonnell); and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Kahn)
| | - Yangchun Du
- Department of Psychiatry, Zucker Hillside Hospital, Northwell Health, Glen Oaks, N.Y. (Correll); Department of Psychiatry and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, N.Y. (Correll); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin (Correll); Thriving Mind South Florida, Miami (Newcomer); Department of Psychiatry, Washington University School of Medicine, St. Louis (Newcomer); Alkermes, Inc., Waltham, Mass. (Silverman, DiPetrillo, Graham, Jiang, Du, Simmons, Hopkinson); Alkermes Pharma Ireland, Dublin (McDonnell); and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Kahn)
| | - Adam Simmons
- Department of Psychiatry, Zucker Hillside Hospital, Northwell Health, Glen Oaks, N.Y. (Correll); Department of Psychiatry and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, N.Y. (Correll); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin (Correll); Thriving Mind South Florida, Miami (Newcomer); Department of Psychiatry, Washington University School of Medicine, St. Louis (Newcomer); Alkermes, Inc., Waltham, Mass. (Silverman, DiPetrillo, Graham, Jiang, Du, Simmons, Hopkinson); Alkermes Pharma Ireland, Dublin (McDonnell); and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Kahn)
| | - Craig Hopkinson
- Department of Psychiatry, Zucker Hillside Hospital, Northwell Health, Glen Oaks, N.Y. (Correll); Department of Psychiatry and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, N.Y. (Correll); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin (Correll); Thriving Mind South Florida, Miami (Newcomer); Department of Psychiatry, Washington University School of Medicine, St. Louis (Newcomer); Alkermes, Inc., Waltham, Mass. (Silverman, DiPetrillo, Graham, Jiang, Du, Simmons, Hopkinson); Alkermes Pharma Ireland, Dublin (McDonnell); and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Kahn)
| | - David McDonnell
- Department of Psychiatry, Zucker Hillside Hospital, Northwell Health, Glen Oaks, N.Y. (Correll); Department of Psychiatry and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, N.Y. (Correll); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin (Correll); Thriving Mind South Florida, Miami (Newcomer); Department of Psychiatry, Washington University School of Medicine, St. Louis (Newcomer); Alkermes, Inc., Waltham, Mass. (Silverman, DiPetrillo, Graham, Jiang, Du, Simmons, Hopkinson); Alkermes Pharma Ireland, Dublin (McDonnell); and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Kahn)
| | - René S Kahn
- Department of Psychiatry, Zucker Hillside Hospital, Northwell Health, Glen Oaks, N.Y. (Correll); Department of Psychiatry and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, N.Y. (Correll); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin (Correll); Thriving Mind South Florida, Miami (Newcomer); Department of Psychiatry, Washington University School of Medicine, St. Louis (Newcomer); Alkermes, Inc., Waltham, Mass. (Silverman, DiPetrillo, Graham, Jiang, Du, Simmons, Hopkinson); Alkermes Pharma Ireland, Dublin (McDonnell); and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Kahn)
| |
Collapse
|
7
|
Cunningham JI, Eyerman DJ, Todtenkopf MS, Dean RL, Deaver DR, Sanchez C, Namchuk M. Samidorphan mitigates olanzapine-induced weight gain and metabolic dysfunction in rats and non-human primates. J Psychopharmacol 2019; 33:1303-1316. [PMID: 31294646 PMCID: PMC6764014 DOI: 10.1177/0269881119856850] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Olanzapine, regarded as one of the most efficacious antipsychotic medications for the treatment of schizophrenia, is associated with a high risk of weight gain and metabolic dysfunction. ALKS 3831, a clinical candidate for treatment of schizophrenia, is a combination of olanzapine and samidorphan, an opioid receptor antagonist. The addition of samidorphan is intended to mitigate weight gain and the metabolic dysregulation associated with the use of olanzapine. METHODS Non-clinical studies were conducted to assess the metabolic effects of olanzapine and samidorphan alone and in combination at clinically relevant exposure levels. RESULTS Chronic olanzapine administration in male and female rats shifted body composition by increasing adipose mass, which was accompanied by an increase in the rate of weight gain in female rats. Co-administration of samidorphan normalized body composition in both sexes and attenuated weight gain in female rats. In hyperinsulinemic euglycemic clamp experiments conducted prior to measurable changes in weight and/or body composition, olanzapine decreased hepatic insulin sensitivity and glucose uptake in muscle while increasing uptake in adipose tissue. Samidorphan appeared to normalize glucose utilization in both tissues, but did not restore hepatic insulin sensitivity. In subsequent studies, samidorphan normalized olanzapine-induced decreases in whole-body glucose clearance following bolus insulin administration. Results from experiments in female monkeys paralleled the effects in rats. CONCLUSIONS Olanzapine administration increased weight gain and adiposity, both of which were attenuated by samidorphan. Furthermore, the combination of olanzapine and samidorphan prevented olanzapine-induced insulin insensitivity. Collectively, these data indicate that samidorphan mitigates several metabolic abnormalities associated with olanzapine in both the presence and the absence of weight gain.
Collapse
|
8
|
Abstract
Few Type 2 diabetes loci are considered confirmed and replicated across multiple populations. Some genes that have become accepted as contributors to diabetes risk include: calpain 10, peroxisome proliferator-activated receptor-gamma, ATP-sensitive inwardly rectifying potassium channel subunit Kir6.2, hepatocyte nuclear factor 4alpha and hepatic transcription factor 1. While numerous reports of new diabetes loci enter the literature on a regular basis, this review focuses on selected novel associations reported within the last 12 months. In particular, we highlight recent reports of associations between Type 2 diabetes and the transcription factor 7-like 2 gene, associations with micro-opioid receptor and supressor of cytokine signaling 2 genes, and expression and functional analyses of adipokines vaspin and retinol binding protein 4. These new results provide insights into possible mechanisms influencing disease susceptibility and thus new diagnostic and therapeutic opportunities for Type 2 diabetes.
Collapse
Affiliation(s)
- Michèle M Sale
- Internal Medicine, Wake Forest University School of Medicine, Center for Human Genomics, Medical Center Blvd, Winston-Salem, NC 27157, USA.
| | | |
Collapse
|
9
|
Crandall M, Sharp D, Brasel K, Carnethon M, Haider A, Esposito T. Lower extremity vascular injuries: increased mortality for minorities and the uninsured? Surgery 2011; 150:656-64. [PMID: 22000177 DOI: 10.1016/j.surg.2011.07.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 07/11/2011] [Indexed: 11/28/2022]
Abstract
BACKGROUND There is increasing evidence to suggest that racial disparities exist in outcomes for trauma. Minorities and the uninsured have been found to have higher mortality rates for blunt and penetrating trauma. However, mechanisms for these disparities are incompletely understood. Limiting the inquiry to a homogenous group, those with lower extremity vascular injuries (LEVIs), may clarify these disparities. METHODS The National Trauma Data Bank (NTDB; version 7.0, American College of Surgeons) was used for this study. LEVIs were identified using codes from the International Classification of Diseases, 9th revision. Univariate and multivariate analyses were performed using Stata software (version 11; StataCorp, LP, College Station, TX). RESULTS Records were reviewed for 4,928 LEVI patients. The mechanism of injury was blunt in 2,452 (49.8%), penetrating in 2,452 (49.8%), and unknown in 24 cases (0.5%). Mortality was similar by mechanism (7.6% overall). Regression analysis using mechanism as a covariate revealed a significantly worse mortality for people of color (POC; odds ratio [OR], 1.45; 95% confidence interval [CI], 1.03-2.02; P = .03) and the uninsured (UN; OR, 1.62; 95% CI, 1.15-2.23; P = .006). However, when separate analyses were performed stratifying by mechanism, no significant mortality disparities were found for blunt trauma (POC OR, 1.28; 95% CI, 0.85-1.96; P = .23; UN OR, 1.33; 95% CI, 0.78-2.22; P = .29), but disparities remained for penetrating trauma (POC OR, 1.81; 95% CI, 0.93-3.57; P = .08; UN OR, 1.85; 95% CI, 1.18-2.94; P = .009). CONCLUSION For patients with LEVI, mortality disparities based on race or insurance status were only observed for penetrating trauma. It is possible that injury heterogeneity or patient cohort differences may partly explain mortality disparities that have been observed between racial and socioeconomic groups.
Collapse
Affiliation(s)
- Marie Crandall
- Department of Surgery at Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
The µ-opioid receptor is a primary target for clinically important opioid analgesics, including morphine, fentanyl and methadone. Many genetic variations have been identified in the human µ-opioid receptor MOP gene (OPRM1), and their implications have been reported in the effects of opioid drugs and susceptibility to drug dependence. Interestingly, agonistic and antagonistic opioid effects are inversely associated with the A118G polymorphism genotype. The A118G polymorphism may also be associated with substance dependence and susceptibility to other disorders, including epilepsy and schizophrenia. The IVS1+A21573G, IVS1-T17286C, and TAA+A5359G polymorphisms in the OPRM1 gene may be associated with alcohol, opioid and tobacco dependence, respectively. However, some studies have failed to confirm the correlations between the polymorphisms and opioid effects and substance dependence. Further studies are needed to elucidate the molecular mechanisms underlying the effects of OPRM1 polymorphisms.
Collapse
Affiliation(s)
| | - Kazutaka Ikeda
- Research Project for Addictive Substances, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| |
Collapse
|
11
|
Anderson-Pompa K, Foster A, Parker L, Wilks L, Cheek DJ. Genetics and Susceptibility to Malignant Hyperthermia. Crit Care Nurse 2008. [DOI: 10.4037/ccn2008.28.6.32] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Kathryn Anderson-Pompa
- When this article was written, Kathryn Anderson-Pompa, April Foster, Lee Parker, and Lance Wilks were all graduate students in the nurse anesthesia program in the Harris College of Nursing and Health Sciences at Texas Christian University in Fort Worth, Texas. Dennis J. Cheek is the Abell-Hanger Professor of Gerontological Nursing in the School of Nurse Anesthesia and Harris College of Nursing and Health Sciences at Texas Christian University
| | - April Foster
- When this article was written, Kathryn Anderson-Pompa, April Foster, Lee Parker, and Lance Wilks were all graduate students in the nurse anesthesia program in the Harris College of Nursing and Health Sciences at Texas Christian University in Fort Worth, Texas. Dennis J. Cheek is the Abell-Hanger Professor of Gerontological Nursing in the School of Nurse Anesthesia and Harris College of Nursing and Health Sciences at Texas Christian University
| | - Lee Parker
- When this article was written, Kathryn Anderson-Pompa, April Foster, Lee Parker, and Lance Wilks were all graduate students in the nurse anesthesia program in the Harris College of Nursing and Health Sciences at Texas Christian University in Fort Worth, Texas. Dennis J. Cheek is the Abell-Hanger Professor of Gerontological Nursing in the School of Nurse Anesthesia and Harris College of Nursing and Health Sciences at Texas Christian University
| | - Lance Wilks
- When this article was written, Kathryn Anderson-Pompa, April Foster, Lee Parker, and Lance Wilks were all graduate students in the nurse anesthesia program in the Harris College of Nursing and Health Sciences at Texas Christian University in Fort Worth, Texas. Dennis J. Cheek is the Abell-Hanger Professor of Gerontological Nursing in the School of Nurse Anesthesia and Harris College of Nursing and Health Sciences at Texas Christian University
| | - Dennis J. Cheek
- When this article was written, Kathryn Anderson-Pompa, April Foster, Lee Parker, and Lance Wilks were all graduate students in the nurse anesthesia program in the Harris College of Nursing and Health Sciences at Texas Christian University in Fort Worth, Texas. Dennis J. Cheek is the Abell-Hanger Professor of Gerontological Nursing in the School of Nurse Anesthesia and Harris College of Nursing and Health Sciences at Texas Christian University
| |
Collapse
|
12
|
Ruchat SM, Girard M, Weisnagel SJ, Bouchard C, Vohl MC, Pérusse L. ASSOCIATION BETWEEN µ-OPIOID RECEPTOR-1 102T>C POLYMORPHISM AND INTERMEDIATE TYPE 2 DIABETES PHENOTYPES: RESULTS FROM THE QUEBEC FAMILY STUDY (QFS). Clin Exp Pharmacol Physiol 2008; 35:1018-22. [DOI: 10.1111/j.1440-1681.2008.04972.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Leak TS, Mychaleckyj JC, Smith SG, Keene KL, Gordon CJ, Hicks PJ, Freedman BI, Bowden DW, Sale MM. Evaluation of a SNP map of 6q24-27 confirms diabetic nephropathy loci and identifies novel associations in type 2 diabetes patients with nephropathy from an African-American population. Hum Genet 2008; 124:63-71. [PMID: 18560894 PMCID: PMC2728933 DOI: 10.1007/s00439-008-0523-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 05/27/2008] [Indexed: 01/29/2023]
Abstract
Previously, we performed a genome scan for type 2 diabetes (T2DM) using 638 African-American (AA) affected sibling pairs from 247 families; non-parametric linkage analysis suggested evidence of linkage at 6q24-27 (LOD 2.26). To comprehensively evaluate this region, we performed a two-stage association study by first constructing a SNP map of 754 SNPs selected from HapMap on the basis of linkage disequilibrium (LD) in 300 AAT2DM end-stage renal disease (ESRD) subjects, 311 AA controls, 43 European American controls and 45 Yoruba Nigerian samples (Set 1). Replication analyses were conducted in an independent population of 283 AA T2DM-ESRD subjects and 282 AA controls (Set 2). In addition, we adjusted for the impact of admixture on association results by using ancestry informative markers (AIMs). In Stage 1, 137 (18.2%) SNPs showed nominal evidence of association (P < 0.05) in one or more of tests of association: allelic (n = 33), dominant (n = 36), additive (n = 29), or recessive (n = 34) genotypic models, and 2- (n = 47) and 3-SNP (n = 43) haplotypic analyses. These SNPs were selected for follow-up genotyping. Stage 2 analyses confirmed association with a predicted 2-SNP "risk" haplotype in the PARK2 gene. Also, two intergenic SNPs showed consistent genotypic association with T2DM-ESRD: rs12197043 and rs4897081. Combined analysis of all subjects from both stages revealed nominal associations with 17 SNPs within genes, including suggestive associations in ESR1 and PARK2. This study confirms known diabetic nephropathy loci and identifies potentially novel susceptibility variants located within 6q24-27 in AA.
Collapse
Affiliation(s)
- Tennille S. Leak
- Center for Human Genomics, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Josyf C. Mychaleckyj
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA
| | - Shelly G. Smith
- Center for Human Genomics, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Keith L. Keene
- Center for Human Genomics, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Candace J. Gordon
- Center for Human Genomics, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Pamela J. Hicks
- Center for Human Genomics, Wake Forest University School of Medicine, Winston-Salem, NC
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Barry I. Freedman
- Center for Human Genomics, Wake Forest University School of Medicine, Winston-Salem, NC
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Donald W. Bowden
- Center for Human Genomics, Wake Forest University School of Medicine, Winston-Salem, NC
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Michèle M. Sale
- Center for Human Genomics, Wake Forest University School of Medicine, Winston-Salem, NC
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
- Department of Medicine, University of Virginia, Charlottesville, VA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA
| |
Collapse
|
14
|
Zuberi AR, Townsend L, Patterson L, Zheng H, Berthoud HR. Increased adiposity on normal diet, but decreased susceptibility to diet-induced obesity in mu-opioid receptor-deficient mice. Eur J Pharmacol 2008; 585:14-23. [PMID: 18396272 PMCID: PMC2430069 DOI: 10.1016/j.ejphar.2008.01.047] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 01/14/2008] [Accepted: 01/21/2008] [Indexed: 01/22/2023]
Abstract
The mu-opioid receptor encoded by the Oprm1 gene plays a crucial role in the mediation of food reward and drug-induced positive reinforcement, but its genetic deletion has been shown to provide food intake-independent, partial protection from diet-induced obesity. We hypothesized that mu-opioid receptor-deficient mice would show an even greater, intake-dependent, resistance to high-fat diet-induced obesity if the diet comprises a sweet component. We generated an F2 population by crossing the heterozygous offspring of homozygous female Oprm1(-/-) mice (on a mixed C57BL/6 and BALB/c genetic background) with male inbred C57BL/6 mice. Groups of genotyped wild-type (WT) and homozygous mutant (KO) males and females were fed either control chow or a high caloric palatable diet consisting of sweet, liquid chocolate-flavored Ensure together with a solid high-fat diet. Food intake, body weight, and body composition was measured over a period of 16 weeks. Unexpectedly, male, and to a lesser extent female, KO mice fed chow for the entire period showed progressively increased body weight and adiposity while eating significantly more chow. In contrast, when exposed to the sweet plus high-fat diet, male, and to a lesser extent female, KO mice gained significantly less body weight and fat mass compared to WT mice when using chow fed counterparts for reference values. Male KO mice consumed 33% less of the sweet liquid diet but increased intake of high-fat pellets, so that total calorie intake was not different from WT animals. These results demonstrate a dissociation of the role of mu-opioid receptors in the control of adiposity for different diets and sex. On a bland diet, normal receptor function appears to confer a slightly catabolic predisposition, but on a highly palatable diet, it confers an anabolic metabolic profile, favoring fat accretion. Because of the complexity of mu-opioid gene regulation and tissue distribution, more selective and targeted approaches will be necessary to fully understand the underlying mechanisms.
Collapse
Affiliation(s)
- Aamir R Zuberi
- Functional Genomics, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | | | | | | | | |
Collapse
|
15
|
Kapur S, Sharad S, Singh RA, Gupta AK. A118g polymorphism in mu opioid receptor gene (oprm1): association with opiate addiction in subjects of Indian origin. J Integr Neurosci 2008; 6:511-22. [PMID: 18181266 DOI: 10.1142/s0219635207001635] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 10/12/2007] [Indexed: 11/18/2022] Open
Abstract
The opioidergic hypothesis suggests an association between genetic variations at the opioid receptor mu 1 (OPRM1) gene locus and opiate addiction. The OPRM1 gene, which encodes for mu opioid receptor, contains several single nucleotide polymorphisms (SNPs) in exon I. Two of these, C17T and A118G, have been reported to be associated with substance abuse. The present study aims to delineate the frequency of these variants in the subjects of Indian origin and study their association with the phenotype of opioid dependence. A118G (rs 1799971) and C17T (rs 1799972) were genotyped using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. For 118G allele, the control subjects (n = 156) showed a frequency of 0.12 while the opioid dependents (n = 126) had an approximately 2.5-fold higher frequency of 0.31 (Odds Ratio 3.501; CI(95%) 2.212-5.555; p < 0.0001). For C17T polymorphism, the controls (n = 57) showed a frequency of 0.89 for C allele versus 0.83 seen in dependents (n = 123; odds ratio of 0.555; CI(95%) 0.264-1.147; p = 0.121). A significant association was observed between the 118G allele and no association was seen with C17T polymorphism and opioid dependence.
Collapse
Affiliation(s)
- Suman Kapur
- Center for Biotechnology, Biological Sciences Group, Birla Institute of Technology and Science, Pilani, Rajasthan-333031, India.
| | | | | | | |
Collapse
|
16
|
Leak TS, Keene KL, Langefeld CD, Gallagher CJ, Mychaleckyj JC, Freedman BI, Bowden DW, Rich SS, Sale MM. Association of the proprotein convertase subtilisin/kexin-type 2 (PCSK2) gene with type 2 diabetes in an African American population. Mol Genet Metab 2007; 92:145-50. [PMID: 17618154 PMCID: PMC2752824 DOI: 10.1016/j.ymgme.2007.05.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Accepted: 05/18/2007] [Indexed: 10/23/2022]
Abstract
In a genome-wide scan for type 2 diabetes (T2DM) in African American (AA) families, ordered subsets analysis (OSA) provided evidence for linkage to chromosome 20p in a subset with later age at diagnosis (max LOD 2.57, P=0.008). The proprotein convertase subtilisin/kexin-type 2 (PCSK2) gene is within the LOD-1 interval of this linkage peak. Twenty-nine single nucleotide polymorphisms (SNPs) were genotyped across this gene in 380 unrelated AA individuals with T2DM and end-stage renal disease (T2DM-ESRD), 278 AA controls, 96 European Americans (EA) and 120 Yoruba Nigerian (YRI) controls. In addition, 22 ancestry-informative markers (AIMs) were genotyped in all AA subjects, 120 YRI, and 282 EA controls. ADMIXMAP was used to model the distributions of admixture and generate score tests of allelic and haplotypic association. Association with T2DM was observed among 4 SNPs: rs2021785 (admixture-adjusted Pa=0.00014), rs1609659 (Pa=0.028), rs4814597 (Pa=0.039) and rs2269023 (Pa=0.043). None of the PCSK2 SNPs were associated with age at T2DM diagnosis. A variant in the PCKS2 gene, rs2021785, appears to play a role in susceptibility to T2DM in this AA population.
Collapse
Affiliation(s)
- Tennille S. Leak
- Center for Human Genomics, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Keith L. Keene
- Center for Human Genomics, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Carl D. Langefeld
- Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Carla J. Gallagher
- Center for Human Genomics, Wake Forest University School of Medicine, Winston-Salem, NC
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC
- Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, PA
| | - Josyf C. Mychaleckyj
- Center for Human Genomics, Wake Forest University School of Medicine, Winston-Salem, NC
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA
| | - Barry I. Freedman
- Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, PA
| | - Donald W. Bowden
- Center for Human Genomics, Wake Forest University School of Medicine, Winston-Salem, NC
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA
- Department of Medicine, University of Virginia, Charlottesville, VA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA
| | - Michèle M. Sale
- Center for Human Genomics, Wake Forest University School of Medicine, Winston-Salem, NC
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
- Department of Medicine, University of Virginia, Charlottesville, VA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA
| |
Collapse
|
17
|
Elbein SC. Evaluation of polymorphisms known to contribute to risk for diabetes in African and African-American populations. Curr Opin Clin Nutr Metab Care 2007; 10:415-9. [PMID: 17563458 DOI: 10.1097/mco.0b013e3281e2c99a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Populations of direct African ancestry have much greater genetic diversity than do other populations. African-American populations exhibit twice the prevalence of type 2 diabetes as compared with their Caucasian counterparts. African-American populations are likely to have unique genetic susceptibility to type 2 diabetes. This review addresses current knowledge of susceptibility genes that are shared with other groups and those that are unique to populations of African descent. RECENT FINDINGS When compared with the plethora of Caucasian studies, relatively few studies have been conducted in African or African-American populations. The most exciting findings have been family-based linkage studies, which point to multiple regions that may harbor susceptibility genes. Recent work suggests that the major Caucasian locus, TCF7L2, plays a role in some African-based populations, whereas unique factors remain to be confirmed. SUMMARY Although progress has been made in finding the genetic cause of type 2 diabetes in African and African-American populations, at this time no variant can be considered unequivocally confirmed as a diabetes susceptibility locus.
Collapse
Affiliation(s)
- Steven C Elbein
- Medicine and Research Services, Central Arkansas Veterans Affairs Healthcare System, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|