1
|
Lee A, Weisenberg J, Toolan E, Shinawi M. Treatment and Improved Outcomes of Three Adult Patients With Guanidinoacetate Methyltransferase (GAMT) Deficiency. JIMD Rep 2025; 66:e70019. [PMID: 40330029 PMCID: PMC12053078 DOI: 10.1002/jmd2.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/31/2025] [Accepted: 04/17/2025] [Indexed: 05/08/2025] Open
Abstract
Guanidinoacetate methyltransferase (GAMT) deficiency is a creatine synthesis disorder caused by biallelic pathogenic variants in GAMT. Early diagnosis and treatment can lead to normal neurocognitive outcomes, which has prompted its recent addition to the Recommended Uniform Screening Panel. Treatment typically includes creatine and ornithine supplementation, with or without arginine restriction or sodium benzoate. Here, we present the clinical outcomes of 3 adult patients with GAMT deficiency who began creatine and ornithine supplementation at varying ages. One patient started on treatment at 14 months of age and has had near-normal neurocognitive outcomes, highlighting the positive clinical impact of early treatment. Our findings also emphasize the need to continue treatment throughout adulthood, but further research is required to understand the natural history and determine the optimal treatment of GAMT deficiency in adults.
Collapse
Affiliation(s)
- Angela Lee
- Department of Pediatrics, Division of GeneticsChildren's Mercy Kansas City, UMKC School of MedicineKansas CityMissouriUSA
| | - Judith Weisenberg
- Departments of Pediatrics and NeurologyWashington University School of MedicineSaint LouisMissouriUSA
| | - Elizabeth Toolan
- Department of Pediatrics, Division of Genetics and Genomic MedicineWashington University School of MedicineSaint LouisMissouriUSA
| | - Marwan Shinawi
- Department of Pediatrics, Division of Genetics and Genomic MedicineWashington University School of MedicineSaint LouisMissouriUSA
| |
Collapse
|
2
|
Hart K, Rohrwasser A, Wallis H, Golsan H, Shao J, Anderson T, Wang X, Szabo-Fresnais N, Morrissey M, Kay DM, Wojcik M, Galvin-Parton PA, Longo N, Caggana M, Pasquali M. Prospective identification by neonatal screening of patients with guanidinoacetate methyltransferase deficiency. Mol Genet Metab 2021; 134:60-64. [PMID: 34389248 DOI: 10.1016/j.ymgme.2021.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Guanidinoacetate methyltransferase (GAMT) deficiency is an inherited metabolic disorder that impairs the synthesis of creatine (CRE). Lack of CRE in the brain can cause intellectual disability, autistic-like behavior, seizures, and movement disorders. Identification at birth and immediate therapy can prevent intellectual disability and seizures. Here we report the first two cases of GAMT deficiency identified at birth by newborn screening (NBS) in Utah and New York. METHODS NBS dried blood spots were analyzed by tandem mass spectrometry (MS/MS) using either derivatized or non-derivatized assays to detect guanidinoacetate (GUAC) and CRE. For any positive samples, a second-tier test using a more selective method, ultra-performance liquid chromatography (UPLC) combined with MS/MS, was performed to separate GUAC from potential isobaric interferences. RESULTS NBS for GAMT deficiency began in Utah on June 1, 2015 using a derivatized method for the detection of GUAC and CRE. In May 2019, the laboratory and method transitioned to a non-derivatized method. GAMT screening was added to the New York State NBS panel on October 1, 2018 using a derivatized method. In New York, a total of 537,408 babies were screened, 23 infants were referred and one newborn was identified with GAMT deficiency. In Utah, a total of 273,902 infants were screened (195,425 with the derivatized method, 78,477 with the non-derivatized method), three infants referred and one was identified with GAMT deficiency. Mean levels of GUAC and CRE were similar between methods (Utah derivatized: GUAC = 1.20 ± 0.43 μmol/L, CRE = 238 ± 96 μmol/L; Utah non-derivatized: GUAC = 1.23 ± 0.61 μmol/L, CRE = 344 ± 150 μmol/L, New York derivatized: GUAC = 1.34 ± 0.57 μmol/L, CRE = 569 ± 155 μmol/L). With either Utah method, similar concentrations of GUAC are observed in first (collected around 1 day of age) and the second NBS specimens (routinely collected at 7-16 days of age), while CRE concentrations decreased in the second NBS specimens. Both infants identified with GAMT deficiency started therapy by 2 weeks of age and are growing and developing normally at 7 (Utah) and 4 (New York) months of age. CONCLUSIONS Newborn screening allows for the prospective identification of GAMT deficiency utilizing elevated GUAC concentration as a marker. First-tier screening may be incorporated into existing methods for amino acids and acylcarnitines without the need for new equipment or staff. Newborn screening performed by either derivatized or non-derivatized methods and coupled with second-tier testing, has a very low false positive rate and can prospectively identify affected children. SummaryCerebral creatine deficiency syndromes caused by defects in creatine synthesis can result in intellectual disability, and are preventable if therapy is initiated early in life. This manuscript reports the identification of two infants with GAMT deficiency (one of the cerebral creatine deficiency syndromes) by newborn screening and demonstrates NBS feasibility using a variety of methods.
Collapse
Affiliation(s)
- Kim Hart
- Utah Department of Health, Salt Lake City, UT, USA.
| | | | - Heidi Wallis
- Utah Department of Health, Salt Lake City, UT, USA; Association for Creatine Deficiencies, Carlsbad, CA, USA
| | | | - Jianyin Shao
- Utah Department of Health, Salt Lake City, UT, USA
| | | | - Xiaoli Wang
- Utah Department of Health, Salt Lake City, UT, USA
| | | | - Mark Morrissey
- Newborn Screening Program, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Denise M Kay
- Newborn Screening Program, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Matthew Wojcik
- Newborn Screening Program, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | | | - Nicola Longo
- Department of Pathology, University of Utah, ARUP Laboratories, Salt Lake City, UT, USA; Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Michele Caggana
- Newborn Screening Program, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Marzia Pasquali
- Department of Pathology, University of Utah, ARUP Laboratories, Salt Lake City, UT, USA; Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
3
|
Intellectual Disability and Brain Creatine Deficit: Phenotyping of the Genetic Mouse Model for GAMT Deficiency. Genes (Basel) 2021; 12:genes12081201. [PMID: 34440375 PMCID: PMC8391262 DOI: 10.3390/genes12081201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 11/17/2022] Open
Abstract
Guanidinoacetate methyltransferase deficiency (GAMT-D) is one of three cerebral creatine (Cr) deficiency syndromes due to pathogenic variants in the GAMT gene (19p13.3). GAMT-D is characterized by the accumulation of guanidinoacetic acid (GAA) and the depletion of Cr, which result in severe global developmental delay (and intellectual disability), movement disorder, and epilepsy. The GAMT knockout (KO) mouse model presents biochemical alterations in bodily fluids, the brain, and muscles, including increased GAA and decreased Cr and creatinine (Crn) levels, which are similar to those observed in humans. At the behavioral level, only limited and mild alterations have been reported, with a large part of analyzed behaviors being unaffected in GAMT KO as compared with wild-type mice. At the cerebral level, decreased Cr and Crn and increased GAA and other guanidine compound levels have been observed. Nevertheless, the effects of Cr deficiency and GAA accumulation on many neurochemical, morphological, and molecular processes have not yet been explored. In this review, we summarize data regarding behavioral and cerebral GAMT KO phenotypes, and focus on uncharted behavioral alterations that are comparable with the clinical symptoms reported in GAMT-D patients, including intellectual disability, poor speech, and autistic-like behaviors, as well as unexplored Cr-induced cerebral alterations.
Collapse
|
4
|
Treatment outcome of twenty-two patients with guanidinoacetate methyltransferase deficiency: An international retrospective cohort study. Eur J Paediatr Neurol 2018; 22:369-379. [PMID: 29506905 DOI: 10.1016/j.ejpn.2018.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 01/23/2018] [Accepted: 02/12/2018] [Indexed: 11/23/2022]
Abstract
PURPOSE Guanidinoacetate methyltransferase (GAMT) deficiency is an autosomal recessive disorder caused by pathogenic variants in GAMT. Brain creatine depletion and guanidinoacetate accumulation cause developmental delay, seizures and movement disorder. Treatment consists of creatine, ornithine and arginine-restricted diet. We initiated an international treatment registry using Research Electronic Data Capture (REDCap) software to evaluate treatment outcome. METHODS Physicians completed an online REDCap questionnaire. Clinical severity score applied pre-treatment and on treatment. RESULTS There were 22 patients. All had developmental delay, 18 had seizures and 8 had movement disorder. Based on the clinical severity score, 5 patients had a severe, 14 patients had a moderate and 3 patients had a mild phenotype. All patients had pathogenic variants in GAMT. The phenotype ranged from mild to moderate in patients with the most common c.327G > A variant. The phenotype ranged from mild to severe in patients with truncating variants. All patients were on creatine, 18 patients were on ornithine and 15 patients were on arginine- or protein-restricted diet. Clinical severity score improved in 13 patients on treatment. Developmental delay improved in five patients. One patient achieved normal development. Eleven patients became seizure free. Movement disorder resolved in four patients. CONCLUSION In our small patient cohort, there seems to be no phenotype-genotype correlation. Creatine and ornithine and/or arginine- or protein-restricted diet were the most useful treatment to improve phenotype.
Collapse
|
5
|
Marques EP, Wyse ATS. Guanidinoacetate Methyltransferase Deficiency. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2016. [DOI: 10.1177/2326409816669371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Eduardo P. Marques
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Angela T. S. Wyse
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
6
|
Mercimek-Mahmutoglu S, Pop A, Kanhai W, Fernandez Ojeda M, Holwerda U, Smith D, Loeber JG, Schielen PCJI, Salomons GS. A pilot study to estimate incidence of guanidinoacetate methyltransferase deficiency in newborns by direct sequencing of the GAMT gene. Gene 2015; 575:127-31. [PMID: 26319512 DOI: 10.1016/j.gene.2015.08.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 08/21/2015] [Accepted: 08/23/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND GAMT deficiency is an autosomal recessive disorder of creatine biosynthesis causing developmental delays or intellectual disability in untreated patients as a result of irreversible brain damage occurring prior to diagnosis. Normal neurodevelopmental outcome has been reported in patients treated from neonatal period highlighting the importance of early treatment. METHODS Five hundred anonymized newborns from the National Newborn Screening Program of The Netherlands were included into this pilot study. Direct sequencing of the coding region of the GAMT gene was applied following DNA extraction. The disease causing nature of novel missense variants in the GAMT gene was studied by overexpression studies. GAA and creatine was measured in blood dot spots. RESULTS We detected two carriers, one with a known common (c.327G>A) and one with a novel mutation (c.297_309dup (p.Arg105Glyfs*) in the GAMT gene. The estimated incidence of GAMT deficiency was 1:250,000. We also detected five novel missense variants. Overexpression of these variants in GAMT deficient fibroblasts did restore GAMT activity and thus all were considered rare, but not disease causing variants including the c.131G>T (p.Arg44Leu) variant. Interestingly, this variant was predicted to be pathogenic by in silico analysis. The variants were included in the Leiden Open Variation Database (LOVD) database (www.LOVD.nl/GAMT). The average GAA level was 1.14μmol/L±0.45 standard deviations. The average creatine level was 408μmol/L±106. The average GAA/creatine ratio was 2.94±0.136. CONCLUSION The estimated incidence of GAMT deficiency is 1:250,000 newborns based on our pilot study. The newborn screening for GAMT deficiency should be implemented to identify patients at the asymptomatic stage to achieve normal neurodevelopmental outcome for this treatable neurometabolic disease. Biochemical investigations including GAA, creatine and GAMT enzyme activity measurements are essential to confirm the diagnosis of GAMT deficiency. According to availability, all missense variants can be assessed functionally, as in silico prediction analysis of missense variants is not sufficient to confirm the pathogenicity of missense variants.
Collapse
Affiliation(s)
- S Mercimek-Mahmutoglu
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, University of Toronto, Canada; Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Canada.
| | - A Pop
- Metabolic Unit, Department of Clinical Chemistry, VU Medical Center, Neurosciences Campus, Amsterdam, The Netherlands
| | - W Kanhai
- Metabolic Unit, Department of Clinical Chemistry, VU Medical Center, Neurosciences Campus, Amsterdam, The Netherlands
| | - M Fernandez Ojeda
- Metabolic Unit, Department of Clinical Chemistry, VU Medical Center, Neurosciences Campus, Amsterdam, The Netherlands
| | - U Holwerda
- Metabolic Unit, Department of Clinical Chemistry, VU Medical Center, Neurosciences Campus, Amsterdam, The Netherlands
| | - D Smith
- Metabolic Unit, Department of Clinical Chemistry, VU Medical Center, Neurosciences Campus, Amsterdam, The Netherlands
| | - J G Loeber
- National Institute for Public Health and the Environment, Centre for Infectious Diseases Research, and Screening, Bilthoven, The Netherlands
| | - P C J I Schielen
- National Institute for Public Health and the Environment, Centre for Infectious Diseases Research, and Screening, Bilthoven, The Netherlands
| | - G S Salomons
- Metabolic Unit, Department of Clinical Chemistry, VU Medical Center, Neurosciences Campus, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Clark JF, Cecil KM. Diagnostic methods and recommendations for the cerebral creatine deficiency syndromes. Pediatr Res 2015; 77:398-405. [PMID: 25521922 DOI: 10.1038/pr.2014.203] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/15/2014] [Indexed: 12/29/2022]
Abstract
Primary care pediatricians and a variety of specialist physicians strive to define an accurate diagnosis for children presenting with impairment of expressive speech and delay in achieving developmental milestones. Within the past two decades, a group of disorders featuring this presentation have been identified as cerebral creatine deficiency syndromes (CCDS). Patients with these disorders were initially discerned using proton magnetic resonance spectroscopy of the brain within a magnetic resonance imaging (MRI) examination. The objective of this review is to provide the clinician with an overview of the current information available on identifying and treating these conditions. We explain the salient features of creatine metabolism, synthesis, and transport required for normal development. We propose diagnostic approaches for confirming a CCDS diagnosis. Finally, we describe treatment approaches for managing patients with these conditions.
Collapse
Affiliation(s)
- Joseph F Clark
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Kim M Cecil
- 1] Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio [2] Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio [3] Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio [4] Department of Radiology and Medical Imaging, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
8
|
Mercimek-Mahmutoglu S, Ndika J, Kanhai W, de Villemeur TB, Cheillan D, Christensen E, Dorison N, Hannig V, Hendriks Y, Hofstede FC, Lion-Francois L, Lund AM, Mundy H, Pitelet G, Raspall-Chaure M, Scott-Schwoerer JA, Szakszon K, Valayannopoulos V, Williams M, Salomons GS. Thirteen new patients with guanidinoacetate methyltransferase deficiency and functional characterization of nineteen novel missense variants in the GAMT gene. Hum Mutat 2014; 35:462-9. [PMID: 24415674 DOI: 10.1002/humu.22511] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 01/06/2014] [Indexed: 11/08/2022]
Abstract
Guanidinoacetate methyltransferase deficiency (GAMT-D) is an autosomal recessively inherited disorder of creatine biosynthesis. Creatine deficiency on cranial proton magnetic resonance spectroscopy, and elevated guanidinoacetate levels in body fluids are the biomarkers of GAMT-D. In 74 patients, 50 different mutations in the GAMT gene have been identified with missense variants being the most common. Clinical and biochemical features of the patients with missense variants were obtained from their physicians using a questionnaire. In 20 patients, 17 missense variants, 25% had a severe, 55% a moderate, and 20% a mild phenotype. The effect of these variants on GAMT enzyme activity was overexpressed using primary GAMT-D fibroblasts: 17 variants retained no significant activity and are therefore considered pathogenic. Two additional variants, c.22C>A (p.Pro8Thr) and c.79T>C (p.Tyr27His) (the latter detected in control cohorts) are in fact not pathogenic as these alleles restored GAMT enzyme activity, although both were predicted to be possibly damaging by in silico analysis. We report 13 new patients with GAMT-D, six novel mutations and functional analysis of 19 missense variants, all being included in our public LOVD database. Our functional assay is important for the confirmation of the pathogenicity of identified missense variants in the GAMT gene.
Collapse
Affiliation(s)
- Saadet Mercimek-Mahmutoglu
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada; Metabolic Laboratory, Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Pitt JJ, Tzanakos N, Nguyen T. Newborn screening for guanidinoacetate methyl transferase deficiency. Mol Genet Metab 2014; 111:303-304. [PMID: 24477282 DOI: 10.1016/j.ymgme.2014.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 01/06/2014] [Accepted: 01/06/2014] [Indexed: 11/28/2022]
Affiliation(s)
- James J Pitt
- Victorian Clinical Genetics Services, Murdoch Childrens Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia.
| | - Nicholas Tzanakos
- Victorian Clinical Genetics Services, Murdoch Childrens Research Institute, Melbourne, Australia
| | - Thanh Nguyen
- Victorian Clinical Genetics Services, Murdoch Childrens Research Institute, Melbourne, Australia
| |
Collapse
|
10
|
van Vliet D, Derks TGJ, van Rijn M, de Groot MJ, MacDonald A, Heiner-Fokkema MR, van Spronsen FJ. Single amino acid supplementation in aminoacidopathies: a systematic review. Orphanet J Rare Dis 2014; 9:7. [PMID: 24422943 PMCID: PMC3895659 DOI: 10.1186/1750-1172-9-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 12/27/2013] [Indexed: 12/15/2022] Open
Abstract
Aminoacidopathies are a group of rare and diverse disorders, caused by the deficiency of an enzyme or transporter involved in amino acid metabolism. For most aminoacidopathies, dietary management is the mainstay of treatment. Such treatment includes severe natural protein restriction, combined with protein substitution with all amino acids except the amino acids prior to the metabolic block and enriched with the amino acid that has become essential by the enzymatic defect. For some aminoacidopathies, supplementation of one or two amino acids, that have not become essential by the enzymatic defect, has been suggested. This so-called single amino acid supplementation can serve different treatment objectives, but evidence is limited. The aim of the present article is to provide a systematic review on the reasons for applications of single amino acid supplementation in aminoacidopathies treated with natural protein restriction and synthetic amino acid mixtures.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Francjan J van Spronsen
- Department of Metabolic Diseases, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
11
|
Stockler-Ipsiroglu S, van Karnebeek C, Longo N, Korenke GC, Mercimek-Mahmutoglu S, Marquart I, Barshop B, Grolik C, Schlune A, Angle B, Araújo HC, Coskun T, Diogo L, Geraghty M, Haliloglu G, Konstantopoulou V, Leuzzi V, Levtova A, Mackenzie J, Maranda B, Mhanni AA, Mitchell G, Morris A, Newlove T, Renaud D, Scaglia F, Valayannopoulos V, van Spronsen FJ, Verbruggen KT, Yuskiv N, Nyhan W, Schulze A. Guanidinoacetate methyltransferase (GAMT) deficiency: outcomes in 48 individuals and recommendations for diagnosis, treatment and monitoring. Mol Genet Metab 2014; 111:16-25. [PMID: 24268530 DOI: 10.1016/j.ymgme.2013.10.018] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/29/2013] [Accepted: 10/29/2013] [Indexed: 11/25/2022]
Abstract
We collected data on 48 patients from 38 families with guanidinoacetate methyltransferase (GAMT) deficiency. Global developmental delay/intellectual disability (DD/ID) with speech/language delay and behavioral problems as the most affected domains was present in 44 participants, with additional epilepsy present in 35 and movement disorder in 13. Treatment regimens included various combinations/dosages of creatine-monohydrate, l-ornithine, sodium benzoate and protein/arginine restricted diets. The median age at treatment initiation was 25.5 and 39 months in patients with mild and moderate DD/ID, respectively, and 11 years in patients with severe DD/ID. Increase of cerebral creatine and decrease of plasma/CSF guanidinoacetate levels were achieved by supplementation with creatine-monohydrate combined with high dosages of l-ornithine and/or an arginine-restricted diet (250 mg/kg/d l-arginine). Therapy was associated with improvement or stabilization of symptoms in all of the symptomatic cases. The 4 patients treated younger than 9 months had normal or almost normal developmental outcomes. One with inconsistent compliance had a borderline IQ at age 8.6 years. An observational GAMT database will be essential to identify the best treatment to reduce plasma guanidinoacetate levels and improve long-term outcomes.
Collapse
Affiliation(s)
| | - Clara van Karnebeek
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada; Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Nicola Longo
- Division of Medical Genetics, University of Utah, Salt Lake City, UT, USA
| | | | | | - Iris Marquart
- Department of Pediatric Neurology, Children's Hospital Oldenburg, Germany
| | - Bruce Barshop
- Department of Pediatrics, University of California, San Diego, CA, USA
| | - Christiane Grolik
- Department of Pediatric Neurology, Children's Hospital Cologne, Germany
| | - Andrea Schlune
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Brad Angle
- Division of Birth Defects and Metabolism, Children's Memorial Hospital, Chicago, IL, USA
| | | | - Turgay Coskun
- Department of Pediatrics, Hacettepe University, Ankara, Turkey
| | - Luisa Diogo
- Pediatric Hospital CHUC-EPE, Coimbra, Portugal
| | - Michael Geraghty
- Department of Pediatrics, CHEO, University of Ottawa, Ottawa, ON, Canada
| | | | | | - Vincenzo Leuzzi
- Department of Pediatrics, Child Neurology and Psychiatry, La Sapienza University of Rome, Rome, Italy
| | - Alina Levtova
- Department of Pediatrics, Sainte Justine University Hospital Centre, Montreal, QC, Canada
| | | | - Bruno Maranda
- Division of Genetics, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Aizeddin A Mhanni
- Department of Pediatrics and Child Health, University of Mannitoba, Winnipeg, MB, Canada
| | - Grant Mitchell
- Department of Pediatrics, Sainte Justine University Hospital Centre, Montreal, QC, Canada; Sainte Justine University Research Center, Montreal, QC, Canada
| | - Andrew Morris
- Department of Genetic Medicine, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Theresa Newlove
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Deborah Renaud
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Vassili Valayannopoulos
- Reference Center for Inborn Errors of Metabolism, Hopital Necker Enfants Malades, Paris, France
| | - Francjan J van Spronsen
- Beatrix Children's Hospital, University Medical Center of Groningen, University of Groningen, The Netherlands
| | - Krijn T Verbruggen
- Beatrix Children's Hospital, University Medical Center of Groningen, University of Groningen, The Netherlands
| | - Nataliya Yuskiv
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - William Nyhan
- Department of Pediatrics, University of California, San Diego, CA, USA
| | - Andreas Schulze
- Department of Pediatrics, The Hospital for Sick Children, University of Toronto, ON, Canada; Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
12
|
Viau KS, Ernst SL, Pasquali M, Botto LD, Hedlund G, Longo N. Evidence-based treatment of guanidinoacetate methyltransferase (GAMT) deficiency. Mol Genet Metab 2013; 110:255-62. [PMID: 24071436 DOI: 10.1016/j.ymgme.2013.08.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 08/30/2013] [Accepted: 08/31/2013] [Indexed: 11/17/2022]
Abstract
BACKGROUND Guanidinoacetate methyltransferase (GAMT) deficiency causes cerebral creatine deficiency. Patients can have autistic behavior, seizures, intellectual disability, and severe speech delay. The goal of therapy is to increase creatine while reducing potentially neurotoxic guanidinoacetate concentrations. Here we evaluate how different therapies affect plasma guanidinoacetate levels in patients with GAMT deficiency. METHODS Retrospective analysis of data from five new patients with GAMT deficiency (four with delays and seizures, one diagnosed at birth). RESULTS The four symptomatic patients had decreased brain creatine by magnetic resonance spectroscopy and three also had abnormal globi pallidi by MRI. GAMT sequencing identified four previously reported mutations and one novel missense mutation (c.233T>A/p.V78E). Treatment with creatine (250-1000 mg/kg/day), ornithine (100-800 mg/kg/day), and sodium benzoate (50-135 mg/kg/day) supplements along with dietary protein restriction (0.8-1.5 g/kg/day) improved seizures and development with all patients becoming verbal. The patient treated at birth remains developmentally normal. Reduction in glycine and increase in ornithine levels significantly decreased plasma guanidinoacetate, with glycine levels being the best predictor of guanidinoacetate levels. In contrast, arginine levels were not significantly correlated with plasma guanidinoacetate. CONCLUSIONS Our results show that supplements of creatine, sodium benzoate (to reduce glycine) and ornithine reduce guanidinoacetate levels in patients with GAMT deficiency (dietary therapy was not evaluated in our study). Normal development with early therapy renders GAMT deficiency an ideal candidate for inclusion in newborn screening panels.
Collapse
Affiliation(s)
- Krista S Viau
- Department of Pediatrics, Division of Medical Genetics, University of Utah, 50 North Mario Capecchi Drive, 2C412 SOM, Salt Lake City, UT 84132, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Comeaux MS, Wang J, Wang G, Kleppe S, Zhang VW, Schmitt ES, Craigen WJ, Renaud D, Sun Q, Wong LJ. Biochemical, molecular, and clinical diagnoses of patients with cerebral creatine deficiency syndromes. Mol Genet Metab 2013; 109:260-8. [PMID: 23660394 DOI: 10.1016/j.ymgme.2013.04.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 01/09/2023]
Abstract
Cerebral creatine deficiency syndromes (CCDS) are a group of inborn errors of creatine metabolism that involve AGAT and GAMT for creatine biosynthesis disorders and SLC6A8 for creatine transporter (CT1) deficiency. Deficiencies in the three enzymes can be distinguished by intermediate metabolite levels, and a definitive diagnosis relies on the presence of deleterious mutations in the causative genes. Mutations and unclassified variants were identified in 41 unrelated patients, and 22 of these mutations were novel. Correlation of sequencing and biochemical data reveals that using plasma guanidinoacetate (GAA) as a biomarker has 100% specificity for both AGAT and GAMT deficiencies, but AGAT deficiency has decreased sensitivity in this assay. Furthermore, the urine creatine:creatinine ratio is an effective screening test with 100% specificity in males suspected of having creatine transporter deficiency. This test has a high false-positive rate due to dietary factors or dilute urine samples and lacks sensitivity in females. We conclude that biochemical screening for plasma GAA and measuring of the urine creatine:creatinine ratio should be performed for suspected CCDS patients prior to sequencing. Also, based on the results of this study, we feel that sequencing should only be considered if a patient has abnormal biochemical results on repeat testing.
Collapse
MESH Headings
- Amidinotransferases/blood
- Amidinotransferases/chemistry
- Amidinotransferases/deficiency
- Amidinotransferases/genetics
- Amidinotransferases/metabolism
- Amino Acid Metabolism, Inborn Errors/diagnosis
- Amino Acid Metabolism, Inborn Errors/genetics
- Amino Acid Metabolism, Inborn Errors/metabolism
- Brain Diseases, Metabolic, Inborn/diagnosis
- Brain Diseases, Metabolic, Inborn/genetics
- Brain Diseases, Metabolic, Inborn/metabolism
- Creatine/deficiency
- Creatine/genetics
- Creatine/metabolism
- Creatinine/urine
- Developmental Disabilities/diagnosis
- Developmental Disabilities/genetics
- Developmental Disabilities/metabolism
- Female
- Guanidinoacetate N-Methyltransferase/blood
- Guanidinoacetate N-Methyltransferase/deficiency
- Guanidinoacetate N-Methyltransferase/genetics
- Guanidinoacetate N-Methyltransferase/metabolism
- Humans
- Intellectual Disability/diagnosis
- Intellectual Disability/genetics
- Intellectual Disability/metabolism
- Language Development Disorders/diagnosis
- Language Development Disorders/genetics
- Language Development Disorders/metabolism
- Male
- Membrane Transport Proteins/genetics
- Mental Retardation, X-Linked/diagnosis
- Mental Retardation, X-Linked/genetics
- Mental Retardation, X-Linked/metabolism
- Models, Molecular
- Movement Disorders/congenital
- Movement Disorders/diagnosis
- Movement Disorders/genetics
- Movement Disorders/metabolism
- Mutation
- Phenotype
- Plasma Membrane Neurotransmitter Transport Proteins/deficiency
- Plasma Membrane Neurotransmitter Transport Proteins/genetics
- Plasma Membrane Neurotransmitter Transport Proteins/metabolism
- Protein Conformation
- Speech Disorders/diagnosis
- Speech Disorders/genetics
- Speech Disorders/metabolism
- Syndrome
Collapse
Affiliation(s)
- Matthew S Comeaux
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Seizures may be the first and the major presenting feature of an inborn error of metabolism (IEM), for example in a neonate with pyridoxine-dependent epilepsy. In other IEMs, seizures may be preceded by other major symptoms: by a reduced level of consciousness in a child with an organic acidaemia or urea cycle defect; or by loss of skills, progressive weakness, ataxia, and upper motor signs in a child with a lysosomal storage disorder or peroxisomal leukodystrophy. This review concentrates on those IEMs for which specific treatment is available. The common metabolic causes of seizures vary according to the age at presentation. Features from the history, examination, imaging, and first line biochemical investigations can all provide clues to an inborn error. This review attempts to delineate these and to provide a guide to the specific tests that can be used to make the diagnosis of disorders with specific treatment.
Collapse
Affiliation(s)
- Shamima Rahman
- Clinical and Molecular Genetics and Neurosciences Units, University College London Institute of Child Health, London and Metabolic and Neurosciences Units, Great Ormond Street Hospital for Children NHS Trust, London, UK.
| | | | | | | |
Collapse
|
15
|
Leuzzi V, Mastrangelo M, Battini R, Cioni G. Inborn errors of creatine metabolism and epilepsy. Epilepsia 2012; 54:217-27. [DOI: 10.1111/epi.12020] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
16
|
Mercimek-Mahmutoglu S, Sinclair G, van Dooren SJM, Kanhai W, Ashcraft P, Michel OJ, Nelson J, Betsalel OT, Sweetman L, Jakobs C, Salomons GS. Guanidinoacetate methyltransferase deficiency: first steps to newborn screening for a treatable neurometabolic disease. Mol Genet Metab 2012; 107:433-7. [PMID: 23031365 DOI: 10.1016/j.ymgme.2012.07.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 07/27/2012] [Indexed: 01/10/2023]
Abstract
BACKGROUND GAMT deficiency is an autosomal recessive disorder of creatine biosynthesis resulting in severe neurological complications in untreated patients. Currently available treatment is only successful to stop disease progression, but is not sufficient to reverse neurological complications occurring prior to diagnosis. Normal neurodevelopmental outcome in a patient, treated in the newborn period, highlights the importance of early diagnosis. METHODS Targeted mutation analysis (c.59G>C and c.327G>A) in the GAMT gene by the QIAxcel system and GAA measurement by a novel two-tier method were performed in 3000 anonymized newborn blood dot spot cards. RESULTS None of the targeted mutations were detected in any newborn. Two novel heterozygous variants (c.283_285dupGTC; p.Val95dup and c.278_283delinsCTCGATGCAC; p.Asp93AlafsX35) were identified by coincidence. Carrier frequency for these insertion/deletion types of GAMT mutations was 1/1475 in this small cohort of newborns. GAA levels were at or above the 99th percentile (3.12 μmol/l) in 4 newborns. Second-tier testing showed normal results for 4 newborns revealing 0.1% false positive rate. No GAMT mutations were identified in 4 of the newborns with elevated GAA levels in the first tier testing. CONCLUSION This is the first two-tier study to investigate carrier frequency of GAMT deficiency in the small cohort of newborn population to establish evidence base for the first steps toward newborn screening for this treatable neurometabolic disorder.
Collapse
Affiliation(s)
- S Mercimek-Mahmutoglu
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, University of Toronto, Toronto, ON, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Mercimek-Mahmutoglu S, Al-Thihli K, Roland E. Is low serum creatine kinase a nonspecific screening marker for creatine deficiency syndromes? Mol Genet Metab 2012; 106:251-2. [PMID: 22551696 DOI: 10.1016/j.ymgme.2012.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 04/09/2012] [Indexed: 10/28/2022]
MESH Headings
- Biomarkers/blood
- Brain Diseases, Metabolic, Inborn/diagnosis
- Brain Diseases, Metabolic, Inborn/genetics
- Brain Diseases, Metabolic, Inborn/metabolism
- Child, Preschool
- Creatine/deficiency
- Creatine/genetics
- Creatine/metabolism
- Creatine Kinase/blood
- Guanidinoacetate N-Methyltransferase/metabolism
- Humans
- Infant
- Male
- Membrane Transport Proteins/genetics
- Mental Retardation, X-Linked/diagnosis
- Mental Retardation, X-Linked/genetics
- Mental Retardation, X-Linked/metabolism
- Mutation
- Plasma Membrane Neurotransmitter Transport Proteins/deficiency
- Plasma Membrane Neurotransmitter Transport Proteins/genetics
- Plasma Membrane Neurotransmitter Transport Proteins/metabolism
Collapse
|