1
|
Levent S, Elriş A, Avcı H, Uzunoğlu ÜE, Özcan S, Can NÖ. LC-MS/MS and LC-PDA Methods for Robust Determination of Glycerol Phenylbutyrate in Biological Fluids and High-Resolution Mass Spectrometric Identification of Forced Degradation Product and Its Whiteness. ACS OMEGA 2025; 10:17836-17846. [PMID: 40352529 PMCID: PMC12060053 DOI: 10.1021/acsomega.5c00569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/07/2025] [Accepted: 04/15/2025] [Indexed: 05/14/2025]
Abstract
In 2013, the FDA approved glycerol phenylbutyrate to treat urea cycle disorders in people who could not go through 2 months of protein restriction and/or amino acid supplementation. The paper suggested a simple, quick, and eco-friendly liquid chromatographic method to analyze glycerol phenylbutyrate in Ravicti, pharmaceutical formulation, bulk, human urine, and plasma. Also, a novel degradation product was characterized by applying severe degradation conditions, according to the ICH Q1A(R2) guideline. The liquid chromatography conditions were 0.5 mL/min flow rate and 1 mM ammonium acetate buffer:acetonitrile (25:75; v/v) (≈ pH 5.30). The system backpressure was 67 bar. A core-shell particle column (Ascentis Express F5 2.7 μm, 100 × 4.6 mm i.d.) from Supelco was used for separation. The method was fully validated according to the ICH Q2(R1) guideline. The method linearities for bulk and pharmaceutical analysis were 1.40-55.84 ng/mL for LC-PDA and 2.79-111.68 μg/mL for LC-MS/MS. Indeed, for the plasma sample, the lowest recovery was LC-PDA and LC-MS/MS achieving 94.27 and 98.20%, respectively. Moreover, in forced degradation experiments, the active substance was unstable in acid, alkali, and oxide conditions, and an elimination reaction forms the novel degradation product. Lastly, the method was evaluated to have excellent whiteness, efficiency, and practicality, making it suitable for application in all analytical method development laboratories.
Collapse
Affiliation(s)
- Serkan Levent
- Department of Analytical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey
- Central Analysis Laboratory (MERLAB), Faculty
of Pharmacy, Anadolu University, Eskisehir 26470, Turkey
| | - Abeer Elriş
- Department of Analytical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey
| | - Hazal Avcı
- Department of Analytical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey
- Central Analysis Laboratory (MERLAB), Faculty
of Pharmacy, Anadolu University, Eskisehir 26470, Turkey
| | - Ülfet Erdoğan Uzunoğlu
- Department of Chemistry and Biochemistry, Clarkson University, Potsdam, New York 13699-5810, United States
| | - Saniye Özcan
- Department of Analytical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey
- Central Analysis Laboratory (MERLAB), Faculty
of Pharmacy, Anadolu University, Eskisehir 26470, Turkey
| | - Nafiz Öncü Can
- Department of Analytical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey
- Central Analysis Laboratory (MERLAB), Faculty
of Pharmacy, Anadolu University, Eskisehir 26470, Turkey
| |
Collapse
|
2
|
杨 帆, 王 立, 李 辛, 胡 佳, 应 令, 冯 碧, 李 芸, 林 卡, 佘 佳, 李 浩, 常 国, 王 秀. [Treatment of ornithine transcarbamylase deficiency in a child with glyceryl phenylbutyrate]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:512-517. [PMID: 38802913 PMCID: PMC11135055 DOI: 10.7499/j.issn.1008-8830.2310050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/19/2024] [Indexed: 05/29/2024]
Abstract
Glyceryl phenylbutyrate (GPB) serves as a long-term management medication for Ornithine transcarbamylase deficiency (OTCD), effectively controlling hyperammonemia, but there is a lack of experience in using this medicine in China. This article retrospectively analyzes the case of a child diagnosed with OTCD at Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, including a review of related literature. After diagnosis, the patient was treated with GPB, followed by efficacy follow-up and pharmacological monitoring. The 6-year and 6-month-old male patient exhibited poor speech development, disobedience, temper tantrums, and aggressive behavior. Blood ammonia levels peaked at 327 μmol/L; urine organic acid analysis indicated elevated uracil levels; cranial MRI showed extensive abnormal signals in both cerebral hemispheres. Genetic testing revealed de novo mutation in the OTC gene (c.241T>C, p.S81P). Blood ammonia levels were approximately 43, 80, and 56 μmol/L at 1, 2, and 3 months after starting GPB treatment, respectively. During treatment, blood ammonia was well-controlled without drug-related adverse effects. The patient showed improvement in developmental delays, obedience, temperament, and absence of aggressive behavior.
Collapse
Affiliation(s)
| | - 立瑞 王
- 上海交通大学医学院附属上海儿童医学中心内分泌遗传代谢科上海200127
- 云南省德宏州陇川县人民医院儿科,云南德宏678700
| | - 辛 李
- 上海交通大学医学院附属上海儿童医学中心内分泌遗传代谢科上海200127
| | | | - 令雯 应
- 上海交通大学医学院附属上海儿童医学中心内分泌遗传代谢科上海200127
| | - 碧云 冯
- 上海交通大学医学院附属上海儿童医学中心内分泌遗传代谢科上海200127
| | | | | | | | | | - 国营 常
- 上海交通大学医学院附属上海儿童医学中心内分泌遗传代谢科上海200127
| | - 秀敏 王
- 上海交通大学医学院附属上海儿童医学中心内分泌遗传代谢科上海200127
| |
Collapse
|
3
|
Yeo M, Rehsi P, Dorman M, Grunewald S, Baruteau J, Chakrapani A, Footitt E, Prunty H, McSweeney M. Clinical experience with glycerol phenylbutyrate in 20 patients with urea cycle disorders at a UK paediatric centre. JIMD Rep 2023; 64:317-326. [PMID: 37701329 PMCID: PMC10494499 DOI: 10.1002/jmd2.12386] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/14/2023] [Accepted: 07/13/2023] [Indexed: 09/14/2023] Open
Abstract
In urea cycle disorders (UCDs) ammonia scavenger drugs, usually sodium-based, have been the mainstay of treatment. Increasingly, glycerol phenylbutyrate (GPB, Ravicti®) is being used but scant real-world data exist regarding clinical outcomes. A retrospective study of UCD patients initiated on or switched to GPB was performed at a UK centre. Data on population characteristics, treatment aspects, laboratory measurements, and clinical outcomes were collected before and after patients started GPB with a sub-group analysis undertaken for patients with ≥12 months of data before and after starting GPB. UCDs included arginosuccinate synthetase deficiency (n = 8), arginosuccinate lyase deficiency (n = 6), ornithine carbamoyltransferase deficiency (n = 3), and carbamoyl phosphate synthetase 1 deficiency (n = 3). In the sub-group analysis (n = 11), GPB resulted in lower plasma ammonia (31 vs. 41 μmol/L, p = 0.037), glutamine (670 vs. 838 μmol/L, p = 0.002), annualised hyperammonaemic episodes (0.2 vs. 1.9, p = 0.020), hospitalisations (0.5 vs. 2.2, p = 0.010), and hyperammonaemic episodes resulting in hospitalisation (0.2 vs. 1.6, p = 0.035) reflecting changes seen in the whole group. Overall, patients exposed to sodium and propylene glycol levels above UK daily limits reduced by 78% and 83% respectively. Mean levels of branched chain amino acids, haemoglobin, and white cell count were unchanged. Two adverse drug reactions (pancytopenia, fatigue/appetite loss) resolved without GPB discontinuation. Patients/families preferred GPB for its lower volume, greater palatability and easier administration. GPB appeared to improve biochemical measures and clinical outcomes. The causes are multi-factorial and are likely to include prolonged action of GPB and its good tolerability, even at higher doses, facilitating tighter control of ammonia.
Collapse
Affiliation(s)
- Mildrid Yeo
- Department of Paediatric Inherited Metabolic DiseaseGreat Ormond Street Hospital NHS Foundation Trust and Institute for Child HealthLondonUK
| | - Preeya Rehsi
- Department of Paediatric Inherited Metabolic DiseaseGreat Ormond Street Hospital NHS Foundation Trust and Institute for Child HealthLondonUK
| | - Megan Dorman
- Department of Paediatric Inherited Metabolic DiseaseGreat Ormond Street Hospital NHS Foundation Trust and Institute for Child HealthLondonUK
| | - Stephanie Grunewald
- Department of Paediatric Inherited Metabolic DiseaseGreat Ormond Street Hospital NHS Foundation Trust and Institute for Child HealthLondonUK
| | - Julien Baruteau
- Department of Paediatric Inherited Metabolic DiseaseGreat Ormond Street Hospital NHS Foundation Trust and Institute for Child HealthLondonUK
| | - Anupam Chakrapani
- Department of Paediatric Inherited Metabolic DiseaseGreat Ormond Street Hospital NHS Foundation Trust and Institute for Child HealthLondonUK
| | - Emma Footitt
- Department of Paediatric Inherited Metabolic DiseaseGreat Ormond Street Hospital NHS Foundation Trust and Institute for Child HealthLondonUK
| | - Helen Prunty
- Department of Paediatric Inherited Metabolic DiseaseGreat Ormond Street Hospital NHS Foundation Trust and Institute for Child HealthLondonUK
| | - Melanie McSweeney
- Department of Paediatric Inherited Metabolic DiseaseGreat Ormond Street Hospital NHS Foundation Trust and Institute for Child HealthLondonUK
| |
Collapse
|
4
|
Bell HN, Huber AK, Singhal R, Korimerla N, Rebernick RJ, Kumar R, El-Derany MO, Sajjakulnukit P, Das NK, Kerk SA, Solanki S, James JG, Kim D, Zhang L, Chen B, Mehra R, Frankel TL, Győrffy B, Fearon ER, Pasca di Magliano M, Gonzalez FJ, Banerjee R, Wahl DR, Lyssiotis CA, Green M, Shah YM. Microenvironmental ammonia enhances T cell exhaustion in colorectal cancer. Cell Metab 2023; 35:134-149.e6. [PMID: 36528023 PMCID: PMC9841369 DOI: 10.1016/j.cmet.2022.11.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/11/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022]
Abstract
Effective therapies are lacking for patients with advanced colorectal cancer (CRC). The CRC tumor microenvironment has elevated metabolic waste products due to altered metabolism and proximity to the microbiota. The role of metabolite waste in tumor development, progression, and treatment resistance is unclear. We generated an autochthonous metastatic mouse model of CRC and used unbiased multi-omic analyses to reveal a robust accumulation of tumoral ammonia. The high ammonia levels induce T cell metabolic reprogramming, increase exhaustion, and decrease proliferation. CRC patients have increased serum ammonia, and the ammonia-related gene signature correlates with altered T cell response, adverse patient outcomes, and lack of response to immune checkpoint blockade. We demonstrate that enhancing ammonia clearance reactivates T cells, decreases tumor growth, and extends survival. Moreover, decreasing tumor-associated ammonia enhances anti-PD-L1 efficacy. These findings indicate that enhancing ammonia detoxification can reactivate T cells, highlighting a new approach to enhance the efficacy of immunotherapies.
Collapse
Affiliation(s)
- Hannah N Bell
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amanda K Huber
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Rashi Singhal
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Navyateja Korimerla
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA; University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Ryan J Rebernick
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Roshan Kumar
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Marwa O El-Derany
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Peter Sajjakulnukit
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nupur K Das
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Samuel A Kerk
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sumeet Solanki
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jadyn G James
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Donghwan Kim
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Li Zhang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brandon Chen
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rohit Mehra
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Timothy L Frankel
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Balázs Győrffy
- Department of Bioinformatics and 2(nd) Department of Pediatrics, Semmelweis University, Budapest, Hungary; TTK Cancer Biomarker Research Group, Institute of Enzymology, Budapest, Hungary
| | - Eric R Fearon
- University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Marina Pasca di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Frank J Gonzalez
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Daniel R Wahl
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA; University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Michael Green
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA; University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Veteran's Affairs Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Grünert SC, Schumann A, Spiekerkoetter U. Severe loss of appetite and refusal to eat as severe side effect of glycerol phenylbutyrate. JIMD Rep 2022; 63:521-523. [PMID: 36341170 PMCID: PMC9626662 DOI: 10.1002/jmd2.12286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 11/12/2022] Open
Abstract
Glycerol phenylbutyrate (GPB) is an ammonia scavenger drug commonly used in the therapy of patients with urea cycle defects. Reported side effects include body odor, abdominal pain, nausea, burning sensation in mouth, vomiting, and heartburn. We report on a 3-year-old late diagnosed female patient with ornithine transcarbamylase deficiency that experienced severe loss of appetite under treatment with GBP. Due to catabolism (calory intake about 400 kcal/day) and the associated risk of metabolic decompensation, GBP treatment was discontinued. Her appetite and eating behavior normalized within 1 day after discontinuation of GBP and switch to sodium benzoate. Our case demonstrates that GBP can cause severe loss of appetite that may put patients at risk of metabolic decompensation and require discontinuation of therapy.
Collapse
Affiliation(s)
- Sarah Catharina Grünert
- Department of General Pediatrics, Adolescent Medicine and NeonatologyMedical Center‐University of Freiburg, Faculty of MedicineFreiburgGermany
| | - Anke Schumann
- Department of General Pediatrics, Adolescent Medicine and NeonatologyMedical Center‐University of Freiburg, Faculty of MedicineFreiburgGermany
| | - Ute Spiekerkoetter
- Department of General Pediatrics, Adolescent Medicine and NeonatologyMedical Center‐University of Freiburg, Faculty of MedicineFreiburgGermany
| |
Collapse
|
6
|
Martín-Hernández E, Quijada-Fraile P, Correcher P, Meavilla S, Sánchez-Pintos P, de las Heras Montero J, Blasco-Alonso J, Dougherty L, Marquez A, Peña-Quintana L, Cañedo E, García-Jimenez MC, Moreno Lozano PJ, Murray Hurtado M, Camprodon Gómez M, Barrio-Carreras D, de los Santos M, del Toro M, Couce ML, Vitoria Miñana I, Morales Conejo M, Bellusci M. Switching to Glycerol Phenylbutyrate in 48 Patients with Urea Cycle Disorders: Clinical Experience in Spain. J Clin Med 2022; 11:jcm11175045. [PMID: 36078975 PMCID: PMC9457033 DOI: 10.3390/jcm11175045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
Background and objectives: Glycerol phenylbutyrate (GPB) has demonstrated safety and efficacy in patients with urea cycle disorders (UCDs) by means of its clinical trial program, but there are limited data in clinical practice. In order to analyze the efficacy and safety of GPB in clinical practice, here we present a national Spanish experience after direct switching from another nitrogen scavenger to GPB. Methods: This observational, retrospective, multicenter study was performed in 48 UCD patients (age 11.7 ± 8.2 years) switching to GPB in 13 centers from nine Spanish regions. Clinical, biochemical, and nutritional data were collected at three different times: prior to GPB introduction, at first follow-up assessment, and after one year of GPB treatment. Number of related adverse effects and hyperammonemic crisis 12 months before and after GPB introduction were recorded. Results: GPB was administered at a 247.8 ± 102.1 mg/kg/day dose, compared to 262.6 ± 126.1 mg/kg/day of previous scavenger (46/48 Na-phenylbutyrate). At first follow-up (79 ± 59 days), a statistically significant reduction in ammonia (from 40.2 ± 17.3 to 32.6 ± 13.9 μmol/L, p < 0.001) and glutamine levels (from 791.4 ± 289.8 to 648.6 ± 247.41 μmol/L, p < 0.001) was observed. After one year of GPB treatment (411 ± 92 days), we observed an improved metabolic control (maintenance of ammonia and glutamine reduction, with improved branched chain amino acids profile), and a reduction in hyperammonemic crisis rate (from 0.3 ± 0.7 to less than 0.1 ± 0.3 crisis/patients/year, p = 0.02) and related adverse effects (RAE, from 0.5 to less than 0.1 RAEs/patients/year p < 0.001). Conclusions: This study demonstrates the safety of direct switching from other nitrogen scavengers to GPB in clinical practice, which improves efficacy, metabolic control, and RAE compared to previous treatments.
Collapse
Affiliation(s)
- Elena Martín-Hernández
- Centro de Referencia Nacional (CSUR) y Europeo (MetabERN) en Enfermedades Metabólicas, Hospital Universitario 12 de Octubre, Instituto de Investigación i+12, CIBERER, 28041 Madrid, Spain
- Correspondence:
| | - Pilar Quijada-Fraile
- Centro de Referencia Nacional (CSUR) y Europeo (MetabERN) en Enfermedades Metabólicas, Hospital Universitario 12 de Octubre, Instituto de Investigación i+12, CIBERER, 28041 Madrid, Spain
| | - Patricia Correcher
- Centro de Referencia Nacional de Enfermedades Metabólicas (CSUR), Hospital La Fé de Valencia, 46026 Valencia, Spain
| | - Silvia Meavilla
- Centro de Referencia Nacional (CSUR) y Europeo (MetabERN) de Enfermedades Metabólicas, Hospital San Joan de Deu Barcelona, 08950 Esplugues de Llobregat, Spain
| | - Paula Sánchez-Pintos
- Centro de Referencia Nacional (CSUR) y Europeo (MetabERN) de Enfermedades Metabólicas, Hospital Clínico Universitario de Santiago de Compostela, IDIS, CIBERER, 15706 Santiago de Compostela, Spain
| | - Javier de las Heras Montero
- Division of Pediatric Metabolism, CIBERER, MetabERN, Cruces University Hospital, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Javier Blasco-Alonso
- Sección de Gastroenterología y Nutrición Infantil, Unidad de Enfermedades Metabólicas Hereditarias, Grupo IBIMA Multidisciplinar Pediátrico, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Lucy Dougherty
- Centro de Referencia Nacional (CSUR) y Europeo (MetabERN) de Enfermedades Metabólicas, Hospital Vall D’Hebrón, 08035 Barcelona, Spain
| | - Ana Marquez
- Unidad de Gastroenterología y Enfermedades Metabólicas, Hospital de Badajoz, 06002 Badajoz, Spain
| | - Luis Peña-Quintana
- Unidad de Gastroenterología y Nutrición Pediátrica, Complejo Hospitalario Universitario Insular Materno-Infantil de Las Palmas, CIBEROBN, ISCIII, ACIP, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| | - Elvira Cañedo
- Unidad de Gastroenterología y Nutrición, Hospital del Niño Jesús, 28009 Madrid, Spain
| | | | - Pedro Juan Moreno Lozano
- Unidad de Enfermedades Musculares y Metabólicas Hereditarias, Departamento de Medicina Interna, Hospital Clinic, 08036 Barcelona, Spain
| | - Mercedes Murray Hurtado
- Pediatría, Sección de Nutrición y Errores Innatos del Metabolismo, Complejo Hospitalario Universitario de Canarias, 38320 San Cristóbal de La Laguna, Spain
| | - María Camprodon Gómez
- Centro de Referencia Nacional (CSUR) y Europeo (MetabERN) de Enfermedades Metabólicas, Hospital Vall D’Hebrón, 08035 Barcelona, Spain
| | - Delia Barrio-Carreras
- Centro de Referencia Nacional (CSUR) y Europeo (MetabERN) en Enfermedades Metabólicas, Hospital Universitario 12 de Octubre, Instituto de Investigación i+12, CIBERER, 28041 Madrid, Spain
| | - Mariela de los Santos
- Centro de Referencia Nacional (CSUR) y Europeo (MetabERN) de Enfermedades Metabólicas, Hospital San Joan de Deu Barcelona, 08950 Esplugues de Llobregat, Spain
| | - Mireia del Toro
- Centro de Referencia Nacional (CSUR) y Europeo (MetabERN) de Enfermedades Metabólicas, Hospital Vall D’Hebrón, 08035 Barcelona, Spain
| | - María L. Couce
- Centro de Referencia Nacional (CSUR) y Europeo (MetabERN) de Enfermedades Metabólicas, Hospital Clínico Universitario de Santiago de Compostela, IDIS, CIBERER, 15706 Santiago de Compostela, Spain
| | - Isidro Vitoria Miñana
- Centro de Referencia Nacional de Enfermedades Metabólicas (CSUR), Hospital La Fé de Valencia, 46026 Valencia, Spain
| | - Montserrat Morales Conejo
- Centro de Referencia Nacional (CSUR) y Europeo (MetabERN) en Enfermedades Metabólicas, Hospital Universitario 12 de Octubre, Instituto de Investigación i+12, CIBERER, 28041 Madrid, Spain
| | - Marcello Bellusci
- Centro de Referencia Nacional (CSUR) y Europeo (MetabERN) en Enfermedades Metabólicas, Hospital Universitario 12 de Octubre, Instituto de Investigación i+12, CIBERER, 28041 Madrid, Spain
| |
Collapse
|
7
|
Yeo M, Rehsi P, Dorman M, Grunewald S, Baruteau J, Chakrapani A, Footitt E, Prunty H, McSweeney M. Direct replacement of oral sodium benzoate with glycerol phenylbutyrate in children with urea cycle disorders. JIMD Rep 2022; 63:137-145. [PMID: 35281661 PMCID: PMC8898712 DOI: 10.1002/jmd2.12274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/21/2021] [Accepted: 01/13/2022] [Indexed: 12/31/2022] Open
Abstract
Long-term management of urea cycle disorders (UCDs) often involves unlicensed oral sodium benzoate (NaBz) which has a high volume and unpleasant taste. A more palatable treatment is licenced and available (glycerol phenylbutyrate [GPB], Ravicti) but guidance on how to transition patients from NaBz is lacking. A retrospective analysis of clinical and biochemical data was performed for eight children who transitioned from treatment with a single ammonia scavenger, NaBz, to GPB at a single metabolic centre; UCDs included arginosuccinic aciduria (ASA) (n = 5), citrullinaemia type 1 (n = 2) and carbamoyl phosphate synthetase I deficiency (CPS1) (n = 1). Patients transitioned either by gradual transition over 1-2 weeks (n = 3) or direct replacement of NaBz with GPB (n = 5). Median initial dose of GPB was 8.5 mL/m2/day based on published product information; doses were revisited subsequently in clinic and titrated individually (range 4.5-11 mL/m2/day). Pre-transition and post-transition mean ammonia levels were 37 μmol/L (SD 28 μmol/L) and 29 μmol/L (SD 22 μmol/L), respectively (p = 0.09), and mean glutamine levels were 664 μmol/L (SD 225 μmol/L) and 598 μmol/L (SD 185 μmol/L), respectively (p = 0.24). There were no reductions in levels of branched chain amino acids. No related adverse drug reactions were reported. Patients preferred GPB because of its lower volume and greater palatability. Direct replacement of NaBz with GPB maintained metabolic control and was simple for the health service and patients to manage. A more cautious approach with additional monitoring would be warranted in brittle patients and patients whose ammonia levels are difficult to control.
Collapse
Affiliation(s)
- Mildrid Yeo
- Department of Paediatric Inherited Metabolic DiseaseGreat Ormond Street Hospital NHS Foundation Trust and Institute for Child HealthLondonUK
| | - Preeya Rehsi
- Department of Paediatric Inherited Metabolic DiseaseGreat Ormond Street Hospital NHS Foundation Trust and Institute for Child HealthLondonUK
| | - Megan Dorman
- Department of Paediatric Inherited Metabolic DiseaseGreat Ormond Street Hospital NHS Foundation Trust and Institute for Child HealthLondonUK
| | - Stephanie Grunewald
- Department of Paediatric Inherited Metabolic DiseaseGreat Ormond Street Hospital NHS Foundation Trust and Institute for Child HealthLondonUK
| | - Julien Baruteau
- Department of Paediatric Inherited Metabolic DiseaseGreat Ormond Street Hospital NHS Foundation Trust and Institute for Child HealthLondonUK
| | - Anupam Chakrapani
- Department of Paediatric Inherited Metabolic DiseaseGreat Ormond Street Hospital NHS Foundation Trust and Institute for Child HealthLondonUK
| | - Emma Footitt
- Department of Paediatric Inherited Metabolic DiseaseGreat Ormond Street Hospital NHS Foundation Trust and Institute for Child HealthLondonUK
| | - Helen Prunty
- Department of Paediatric Inherited Metabolic DiseaseGreat Ormond Street Hospital NHS Foundation Trust and Institute for Child HealthLondonUK
| | - Melanie McSweeney
- Department of Paediatric Inherited Metabolic DiseaseGreat Ormond Street Hospital NHS Foundation Trust and Institute for Child HealthLondonUK
| |
Collapse
|
8
|
Yeowell G, Burns DS, Fatoye F. The burden of pharmacological treatment on health-related quality of life in people with a urea cycle disorder: a qualitative study. J Patient Rep Outcomes 2021; 5:110. [PMID: 34694515 PMCID: PMC8546029 DOI: 10.1186/s41687-021-00387-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 10/11/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Urea cycle disorders (UCD) are inborn errors of metabolism, typically presenting neonatally. Excess ammonia builds rapidly within the body risking hyperammonemic episodes and potentially death. Long-term management of the condition includes restrictive protein consumption, pharmacological interventions and, in extreme cases, liver transplantation. Pharmacological treatments such as sodium benzoate and sodium phenylbutyrate have proven effective but not without a multitude of negative attributes including poor taste, higher dosage and associated gastrointestinal discomfort that impacts health-related quality of life. Glycerol phenylbutyrate (GPB) has recently become a widely available pharmacological treatment with early reports of improved qualities, including taste and administration method. The following study aims to explore the burden of pharmacological treatment and the effects of the transition to GPB on health-related quality of life in people with a UCD. RESULTS Nine carers of children living with a UCD (mean age = 12.44, SD = 10.26) were interviewed regarding their experiences of pharmacological treatment in relation to their, and their child's, health-related quality of life after transitioning to GPB. Three main themes were identified: psychological health, physical health and social participation. Carers struggled with anxiety surrounding their child's condition and the battle of administering medication. Medication administration was perceived to have improved since the transition to GPB, alleviating distress for both carer and child. Issues involving school were described, ranging from difficulties integrating their child into mainstream schooling and the impact of treatment on participation in school and extracurricular activities. Carers encountered issues sourcing syringes to administer GPB, which induced stress. It could be suggested that some burden had been relieved by the transition to GPB. However, it appeared that difficulties associated with the illness would persist despite treatment, owing to the continuing nature of the condition. CONCLUSIONS Adhering to a strict pharmacological regime caused immense stress for both carers and children, severely impacting on typical social activities such as eating at a restaurant or going on holiday. GPB was perceived to have alleviated some burden in terms of administration given improved characteristics concerning taste and dosage, important characteristics for both carers and children living with UCD. Practitioners should consider these findings when making clinical decisions for children with UCD and the effect of pharmacological treatment on carer's health-related quality of life. Outreach work to facilitate greater understanding of the condition should be conducted with key locations, such as children's schools. This would also help to alleviate carer burden.
Collapse
Affiliation(s)
- Gillian Yeowell
- Department of Health Professions, Manchester Metropolitan University, 53 Bonsall Street, Manchester, M15 6GX, UK.
| | - Danielle Stephanie Burns
- Department of Health Professions, Manchester Metropolitan University, 53 Bonsall Street, Manchester, M15 6GX, UK
| | - Francis Fatoye
- Department of Health Professions, Manchester Metropolitan University, 53 Bonsall Street, Manchester, M15 6GX, UK
| |
Collapse
|
9
|
Longo N, Diaz GA, Lichter-Konecki U, Schulze A, Inbar-Feigenberg M, Conway RL, Bannick AA, McCandless SE, Zori R, Hainline B, Ah Mew N, Canavan C, Vescio T, Kok T, Porter MH, Berry SA. Glycerol phenylbutyrate efficacy and safety from an open label study in pediatric patients under 2 months of age with urea cycle disorders. Mol Genet Metab 2021; 132:19-26. [PMID: 33388234 PMCID: PMC8655853 DOI: 10.1016/j.ymgme.2020.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 01/25/2023]
Abstract
BACKGROUND/AIMS Neonatal onset Urea cycle disorders (UCDs) can be life threatening with severe hyperammonemia and poor neurological outcomes. Glycerol phenylbutyrate (GPB) is safe and effective in reducing ammonia levels in patients with UCD above 2 months of age. This study assesses safety, ammonia control and pharmacokinetics (PK) of GPB in UCD patients below 2 months of age. METHODS This was an open-label study in UCD patients aged 0 - 2 months, consisting of an initiation/transition period (1 - 4 days) to GPB, followed by a safety extension period (6 months to 2 years). Patients presenting with a hyperammonemic crisis (HAC) did not initiate GPB until blood ammonia levels decreased to below 100 µmol/L while receiving sodium phenylacetate/sodium benzoate and/or hemodialysis. Ammonia levels, PK analytes and safety were evaluated during transition and monthly during the safety extension for 6 months and every 3 months thereafter. RESULTS All 16 patients with UCD (median age 0.48 months, range 0.1 to 2.0 months) successfully transitioned to GPB within 3 days. Average plasma ammonia level excluding HAC was 94.3 µmol/L at baseline and 50.4 µmol/L at the end of the transition period (p = 0.21). No patient had a HAC during the transition period. During the safety extension, the majority of patients had controlled ammonia levels, with mean plasma ammonia levels lower during GPB treatment than baseline. Mean glutamine levels remained within normal limits throughout the study. PK analyses indicate that UCD patients <2 months are able to hydrolyze GPB with subsequent absorption of phenylbutyric acid (PBA), metabolism to phenylacetic acid (PAA) and conjugation with glutamine. Plasma concentrations of PBA, PAA, and phenylacetylglutamine (PAGN) were stable during the safety extension phase and mean plasma phenylacetic acid: phenylacetylglutamine ratio remained below 2.5 suggesting no accumulation of GPB. All patients reported at least 1 treatment emergent adverse event with gastroesophageal reflux disease, vomiting, hyperammonemia, diaper dermatitis (37.5% each), diarrhea, upper respiratory tract infection and rash (31.3% each) being the most frequently reported. CONCLUSIONS This study supports safety and efficacy of GPB in UCD patients aged 0 -2 months who cannot be managed by dietary protein restriction and/or amino acid supplementation alone. GPB undergoes intestinal hydrolysis with no accumulation in this population.
Collapse
Affiliation(s)
| | - George A Diaz
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Andreas Schulze
- Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | - Shawn E McCandless
- University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO, USA
| | | | - Bryan Hainline
- Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | - Teresa Kok
- Horizon Therapeutics plc, Deerfield, IL, USA.
| | | | | |
Collapse
|
10
|
Häberle J, Burlina A, Chakrapani A, Dixon M, Karall D, Lindner M, Mandel H, Martinelli D, Pintos-Morell G, Santer R, Skouma A, Servais A, Tal G, Rubio V, Huemer M, Dionisi-Vici C. Suggested guidelines for the diagnosis and management of urea cycle disorders: First revision. J Inherit Metab Dis 2019; 42:1192-1230. [PMID: 30982989 DOI: 10.1002/jimd.12100] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 02/06/2023]
Abstract
In 2012, we published guidelines summarizing and evaluating late 2011 evidence for diagnosis and therapy of urea cycle disorders (UCDs). With 1:35 000 estimated incidence, UCDs cause hyperammonemia of neonatal (~50%) or late onset that can lead to intellectual disability or death, even while effective therapies do exist. In the 7 years that have elapsed since the first guideline was published, abundant novel information has accumulated, experience on newborn screening for some UCDs has widened, a novel hyperammonemia-causing genetic disorder has been reported, glycerol phenylbutyrate has been introduced as a treatment, and novel promising therapeutic avenues (including gene therapy) have been opened. Several factors including the impact of the first edition of these guidelines (frequently read and quoted) may have increased awareness among health professionals and patient families. However, under-recognition and delayed diagnosis of UCDs still appear widespread. It was therefore necessary to revise the original guidelines to ensure an up-to-date frame of reference for professionals and patients as well as for awareness campaigns. This was accomplished by keeping the original spirit of providing a trans-European consensus based on robust evidence (scored with GRADE methodology), involving professionals on UCDs from nine countries in preparing this consensus. We believe this revised guideline, which has been reviewed by several societies that are involved in the management of UCDs, will have a positive impact on the outcomes of patients by establishing common standards, and spreading and harmonizing good practices. It may also promote the identification of knowledge voids to be filled by future research.
Collapse
Affiliation(s)
- Johannes Häberle
- University Children's Hospital Zurich and Children's Research Centre, Zurich, Switzerland
| | - Alberto Burlina
- Division of Inborn Metabolic Disease, Department of Pediatrics, University Hospital Padua, Padova, Italy
| | - Anupam Chakrapani
- Department of Metabolic Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Marjorie Dixon
- Dietetics, Great Ormond Street Hospital for Children, NHS Trust, London, UK
| | - Daniela Karall
- Clinic for Pediatrics, Division of Inherited Metabolic Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Lindner
- University Children's Hospital, Frankfurt am Main, Germany
| | - Hanna Mandel
- Institute of Human Genetics and metabolic disorders, Western Galilee Medical Center, Nahariya, Israel
| | - Diego Martinelli
- Division of Metabolism, Bambino Gesù Children's Hospital, Rome, Italy
| | - Guillem Pintos-Morell
- Centre for Rare Diseases, University Hospital Vall d'Hebron, Barcelona, Spain
- CIBERER_GCV08, Research Institute IGTP, Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
| | - René Santer
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anastasia Skouma
- Institute of Child Health, Agia Sofia Children's Hospital, Athens, Greece
| | - Aude Servais
- Service de Néphrologie et maladies métaboliques adulte Hôpital Necker 149, Paris, France
| | - Galit Tal
- The Ruth Rappaport Children's Hospital, Rambam Medical Center, Haifa, Israel
| | - Vicente Rubio
- Instituto de Biomedicina de Valencia (IBV-CSIC), Centro de Investigación Biomédica en Red para Enfermedades Raras (CIBERER), Valencia, Spain
| | - Martina Huemer
- University Children's Hospital Zurich and Children's Research Centre, Zurich, Switzerland
- Department of Paediatrics, Landeskrankenhaus Bregenz, Bregenz, Austria
| | | |
Collapse
|
11
|
Diaz GA, Schulze A, Longo N, Rhead W, Feigenbaum A, Wong D, Merritt JL, Berquist W, Gallagher RC, Bartholomew D, McCandless SE, Smith WE, Harding CO, Zori R, Lichter-Konecki U, Vockley J, Canavan C, Vescio T, Holt RJ, Berry SA. Long-term safety and efficacy of glycerol phenylbutyrate for the management of urea cycle disorder patients. Mol Genet Metab 2019; 127:336-345. [PMID: 31326288 DOI: 10.1016/j.ymgme.2019.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/20/2019] [Accepted: 07/09/2019] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Glycerol phenylbutyrate (GPB) is currently approved for use in the US and Europe for patients of all ages with urea cycle disorders (UCD) who cannot be managed with protein restriction and/or amino acid supplementation alone. Currently available data on GPB is limited to 12 months exposure. Here, we present long-term experience with GPB. METHODS This was an open-label, long-term safety study of GPB conducted in the US (17 sites) and Canada (1 site) monitoring the use of GPB in UCD patients who had previously completed 12 months of treatment in the previous safety extension studies. Ninety patients completed the previous studies with 88 of these continuing into the long-term evaluation. The duration of therapy was open ended until GPB was commercially available. The primary endpoint was the rate of adverse events (AEs). Secondary endpoints were venous ammonia levels, number and causes of hyperammonemic crises (HACs) and neuropsychological testing. RESULTS A total of 45 pediatric patients between the ages of 1 to 17 years (median 7 years) and 43 adult patients between the ages of 19 and 61 years (median 30 years) were enrolled. The treatment emergent adverse events (TEAE) reported in ≥10% of adult or pediatric patients were consistent with the TEAEs reported in the previous safety extension studies with no increase in the overall incidence of TEAEs and no new TEAEs that indicated a new safety signal. Mean ammonia levels remained stable and below the adult upper limit of normal (<35 µmol/L) through 24 months of treatment in both the pediatric and adult population. Over time, glutamine levels decreased in the overall population. The mean annualized rate of HACs (0.29) established in the previously reported 12-month follow-up study was maintained with continued GPB exposure. CONCLUSION Following the completion of 12-month follow-up studies with GPB treatment, UCD patients were followed for an additional median of 1.85 (range 0 to 5.86) years in the present study with continued maintenance of ammonia control, similar rates of adverse events, and no new adverse events identified.
Collapse
Affiliation(s)
- George A Diaz
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andreas Schulze
- University of Toronto and The Hospital for Sick Children, Toronto, ON, Canada
| | | | | | - Annette Feigenbaum
- University of Toronto and The Hospital for Sick Children, Toronto, ON, Canada
| | - Derek Wong
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | - William Berquist
- Stanford University Medical Center & Lucile Packard Children's Hospital, Stanford, CA, USA
| | | | - Dennis Bartholomew
- Ohio State University and Nationwide Children's Hospital, Columbus, OH, USA
| | - Shawn E McCandless
- Children's Hospital Colorado and University of Colorado Denver, Aurora, CO, USA
| | | | | | | | | | - Jerry Vockley
- Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | | | |
Collapse
|
12
|
Zacharias HD, Zacharias AP, Gluud LL, Morgan MY. Pharmacotherapies that specifically target ammonia for the prevention and treatment of hepatic encephalopathy in adults with cirrhosis. Cochrane Database Syst Rev 2019; 6:CD012334. [PMID: 31204790 PMCID: PMC6572872 DOI: 10.1002/14651858.cd012334.pub2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Hepatic encephalopathy is a common complication of cirrhosis, with high related morbidity and mortality. Its presence is associated with a wide spectrum of change ranging from clinically obvious neuropsychiatric features, known as 'overt' hepatic encephalopathy, to abnormalities manifest only on psychometric or electrophysiological testing, 'minimal' hepatic encephalopathy. The exact pathogenesis of the syndrome is unknown but ammonia plays a key role. Drugs that specifically target ammonia include sodium benzoate, glycerol phenylbutyrate, ornithine phenylacetate, AST-120 (spherical carbon adsorbent), and polyethylene glycol. OBJECTIVES To evaluate the beneficial and harmful effects of pharmacotherapies that specifically target ammonia versus placebo, no intervention, or other active interventions, for the prevention and treatment of hepatic encephalopathy in people with cirrhosis. SEARCH METHODS We searched the Cochrane Hepato-Biliary Controlled Trials Register, CENTRAL, MEDLINE, Embase, and three other databases to March 2019. We also searched online trials registries such as ClinicalTrials.gov, European Medicines Agency, WHO International Clinical Trial Registry Platform, and the Food and Drug Administration for ongoing or unpublished trials. In addition, we searched conference proceedings, checked bibliographies, and corresponded with investigators. SELECTION CRITERIA We included randomised clinical trials comparing sodium benzoate, glycerol phenylbutyrate, ornithine phenylacetate, AST-120, and polyethylene glycol versus placebo or non-absorbable disaccharides, irrespective of blinding, language, or publication status. We included participants with minimal or overt hepatic encephalopathy or participants who were at risk of developing hepatic encephalopathy. DATA COLLECTION AND ANALYSIS Two review authors independently extracted data from the included reports. The primary outcomes were mortality, hepatic encephalopathy, and serious adverse events. We undertook meta-analyses and presented results using risk ratios (RR) or mean differences (MD), both with 95% confidence intervals (CIs), and I2 statistic values as a marker of heterogeneity. We assessed bias control using the Cochrane Hepato-Biliary domains and the certainty of the evidence using GRADE. MAIN RESULTS We identified 11 randomised clinical trials that fulfilled our inclusion criteria. Two trials evaluated the prevention of hepatic encephalopathy while nine evaluated the treatment of hepatic encephalopathy. The trials assessed sodium benzoate (three trials), glycerol phenylbutyrate (one trial), ornithine phenylacetate (two trials), AST-120 (two trials), and polyethylene glycol (three trials). Overall, 499 participants received these pharmacotherapies while 444 participants received a placebo preparation or a non-absorbable disaccharide. We classified eight of the 11 trials as at 'high risk of bias' and downgraded the certainty of the evidence to very low for all outcomes.Eleven trials, involving 943 participants, reported mortality data, although there were no events in five trials. Our analyses found no beneficial or harmful effects of sodium benzoate versus non-absorbable disaccharides (RR 1.26, 95% CI 0.49 to 3.28; 101 participants; 2 trials; I2 = 0%), glycerol phenylbutyrate versus placebo (RR 0.65, 95% CI 0.11 to 3.81; 178 participants; 1 trial), ornithine phenylacetate versus placebo (RR 0.73, 95% CI 0.35 to 1.51; 269 participants; 2 trials; I2 = 0%), AST-120 versus lactulose (RR 1.05, 95% CI 0.59 to 1.85; 41 participants; 1 trial), or polyethylene glycol versus lactulose (RR 0.50, 95% CI 0.09 to 2.64; 190 participants; 3 trials; I2 = 0%).Seven trials involving 521 participants reported data on hepatic encephalopathy. Our analyses showed a beneficial effect of glycerol phenylbutyrate versus placebo (RR 0.57, 95% CI 0.36 to 0.90; 178 participants; 1 trial; number needed to treat for an additional beneficial outcome (NNTB) 6), and of polyethylene glycol versus lactulose (RR 0.19, 95% CI 0.08 to 0.44; 190 participants; 3 trials; NNTB 4). We did not observe beneficial effects in the remaining three trials with extractable data: sodium benzoate versus non-absorbable disaccharides (RR 1.22, 95% CI 0.51 to 2.93; 74 participants; 1 trial); ornithine phenylacetate versus placebo (RR 2.71, 95% CI 0.12 to 62.70; 38 participants; 1 trial); or AST-120 versus lactulose (RR 1.05, 95% CI 0.59 to 1.85; 41 participants; 1 trial).Ten trials, involving 790 participants, reported a total of 130 serious adverse events. Our analyses found no evidence of beneficial or harmful effects of sodium benzoate versus non-absorbable disaccharides (RR 1.08, 95% CI 0.44 to 2.68; 101 participants; 2 trials), glycerol phenylbutyrate versus placebo (RR 1.63, 95% CI 0.85 to 3.13; 178 participants; 1 trial), ornithine phenylacetate versus placebo (RR 0.92, 95% CI 0.62 to 1.36; 264 participants; 2 trials; I2 = 0%), or polyethylene glycol versus lactulose (RR 0.57, 95% CI 0.18 to 1.82; 190 participants; 3 trials; I2 = 0%). Likewise, eight trials, involving 782 participants, reported a total of 374 non-serious adverse events and again our analyses found no beneficial or harmful effects of the pharmacotherapies under review when compared to placebo or to lactulose/lactitol.Nine trials, involving 733 participants, reported data on blood ammonia. We observed significant reductions in blood ammonia in placebo-controlled trials evaluating sodium benzoate (MD -32.00, 95% CI -46.85 to -17.15; 16 participants; 1 trial), glycerol phenylbutyrate (MD -12.00, 95% CI -23.37 to -0.63; 178 participants; 1 trial), ornithine phenylacetate (MD -27.10, 95% CI -48.55 to -5.65; 231 participants; 1 trial), and AST-120 (MD -22.00, 95% CI -26.75 to -17.25; 98 participants; 1 trial). However, there were no significant differences in blood ammonia concentrations in comparison with lactulose/lactitol with sodium benzoate (MD 9.00, 95% CI -1.10 to 19.11; 85 participants; 2 trials; I2 = 0%), AST-120 (MD 5.20, 95% CI -2.75 to 13.15; 35 participants; 1 trial), and polyethylene glycol (MD -29.28, 95% CI -95.96 to 37.39; 90 participants; 2 trials; I2 = 88%). FUNDING Five trials received support from pharmaceutical companies while four did not; two did not provide this information. AUTHORS' CONCLUSIONS There is insufficient evidence to determine the effects of these pharmacotherapies on the prevention and treatment of hepatic encephalopathy in adults with cirrhosis. They have the potential to reduce blood ammonia concentrations when compared to placebo, but their overall effects on clinical outcomes of interest and the potential harms associated with their use remain uncertain. Further evidence is needed to evaluate the potential beneficial and harmful effects of these pharmacotherapies in this clinical setting.
Collapse
Affiliation(s)
- Harry D Zacharias
- Division of Medicine, Royal Free Campus, University College LondonUCL Institute for Liver & Digestive HealthLondonUKNW3 2PF
| | - Antony P Zacharias
- Division of Medicine, Royal Free Campus, University College LondonUCL Institute for Liver & Digestive HealthLondonUKNW3 2PF
| | - Lise Lotte Gluud
- Copenhagen University Hospital HvidovreGastrounit, Medical DivisionKettegaards Alle 30HvidovreDenmark2650
| | - Marsha Y Morgan
- Division of Medicine, Royal Free Campus, University College LondonUCL Institute for Liver & Digestive HealthLondonUKNW3 2PF
| |
Collapse
|
13
|
Berry SA, Vockley J, Vinks AA, Dong M, Diaz GA, McCandless SE, Smith WE, Harding CO, Zori R, Ficicioglu C, Lichter-Konecki U, Perdok R, Robinson B, Holt RJ, Longo N. Pharmacokinetics of glycerol phenylbutyrate in pediatric patients 2 months to 2 years of age with urea cycle disorders. Mol Genet Metab 2018; 125:251-257. [PMID: 30217721 DOI: 10.1016/j.ymgme.2018.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/27/2018] [Accepted: 09/02/2018] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Glycerol phenylbutyrate (GPB) is approved in the US and EU for the chronic management of patients ≥2 months of age with urea cycle disorders (UCDs) who cannot be managed by dietary protein restriction and/or amino acid supplementation alone. GPB is a pre-prodrug, hydrolyzed by lipases to phenylbutyric acid (PBA) that upon absorption is beta-oxidized to the active nitrogen scavenger phenylacetic acid (PAA), which is conjugated to glutamine (PAGN) and excreted as urinary PAGN (UPAGN). Pharmacokinetics (PK) of GPB were examined to see if hydrolysis is impaired in very young patients who may lack lipase activity. METHODS Patients 2 months to <2 years of age with UCDs from two open label studies (n = 17, median age 10 months) predominantly on stable doses of nitrogen scavengers (n = 14) were switched to GPB. Primary assessments included traditional plasma PK analyses of PBA, PAA, and PAGN, using noncompartmental methods with WinNonlin™. UPAGN was collected periodically throughout the study up to 12 months. RESULTS PBA, PAA and PAGN rapidly appeared in plasma after GPB dosing, demonstrating evidence of GPB cleavage with subsequent PBA absorption. Median concentrations of PBA, PAA and PAGN did not increase over time and were similar to or lower than the values observed in older UCD patients. The median PAA/PAGN ratio was well below one over time, demonstrating that conjugation of PAA with glutamine to form PAGN did not reach saturation. Covariate analyses indicated that age did not influence the PK parameters, with body surface area (BSA) being the most significant covariate, reinforcing current BSA based dosing recommendations as seen in older patients. CONCLUSION These observations demonstrate that UCD patients aged 2 months to <2 years have sufficient lipase activity to adequately convert the pre-prodrug GPB to PBA. PBA is then converted to its active moiety (PAA) providing successful nitrogen scavenging even in very young children.
Collapse
Affiliation(s)
- Susan A Berry
- University of Minnesota Department of Pediatrics, Minneapolis, MN, USA
| | - Jerry Vockley
- University of Pittsburgh School of Medicine and the Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Alexander A Vinks
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Min Dong
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - George A Diaz
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shawn E McCandless
- University of Colorado Denver School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | | | | | | | - Can Ficicioglu
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | | | - Robert J Holt
- Horizon Pharma USA, Inc, Lake Forest, IL, USA; University of Illinois-Chicago, Chicago, IL, USA.
| | | |
Collapse
|
14
|
Abstract
Inborn errors of metabolism comprise a wide array of diseases and complications in the pediatric patient. The rarity of these disorders limits the ability to conduct and review robust literature regarding the disease states, mechanisms of dysfunction, treatments, and outcomes. Often, treatment plans will be based on the pathophysiology associated with the disorder and theoretical agents that may be involved in the metabolic process. Medication therapies usually consist of natural or herbal products. Established efficacious pediatric doses for these products are difficult to find in tertiary resources, and adverse effects are routinely limited to single case reports. This review article attempts to summarize some of the more common inborn errors of metabolism in a manner that is applicable to pharmacists who will provide care for these patients.
Collapse
|
15
|
Hediger N, Landolt MA, Diez-Fernandez C, Huemer M, Häberle J. The impact of ammonia levels and dialysis on outcome in 202 patients with neonatal onset urea cycle disorders. J Inherit Metab Dis 2018. [PMID: 29520739 DOI: 10.1007/s10545-018-0157-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neonatal onset hyperammonemia in patients with urea cycle disorders (UCDs) is still associated with high morbidity and mortality. Current protocols consistently recommend emergency medical and dietary management. In case of increasing or persistent hyperammonemia, with continuous or progressive neurological signs, dialysis is performed, mostly as ultima ratio. It is presently unknown whether the currently defined ammonia threshold (e.g., at 500 μmol/L) to start dialysis is useful to improve clinical outcome. A systematic review of clinical and biochemical data from published neonatal onset UCD patients was performed to identify factors determining clinical outcome and to investigate in which clinical and biochemical setting dialysis was most effective. A total of 202 patients (118 proximal and 84 distal UCDs) described in 90 case reports or case series were included according to predefined inclusion/exclusion criteria. Median age at onset was three days and mean ammonia that triggered start of dialysis was 1199 μmol/L. Seventy-one percent of all patients received any form of dialysis. Total mortality was 25% and only 20% of all patients had a "normal" outcome. In general, patients with higher ammonia levels were more likely to receive dialysis, but this had for most patients no influence on outcome. In conclusion, in severe neonatal onset hyperammonemia, the current practice of dialysis, which effectively clears ammonia, had no impact on outcome. It may be essential for improving outcome to initiate all available treatment options, including dialysis, as early as possible.
Collapse
Affiliation(s)
- Nina Hediger
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, 8032, Zurich, Switzerland
| | - Markus A Landolt
- Department of Psychosomatics and Psychiatry, University Children's Hospital Zurich, 8032, Zurich, Switzerland
- Division of Child and Adolescent Health Psychology, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Carmen Diez-Fernandez
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, 8032, Zurich, Switzerland
| | - Martina Huemer
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, 8032, Zurich, Switzerland
- Department of Paediatrics, Landeskrankenhaus Bregenz, Bregenz, Austria
| | - Johannes Häberle
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, 8032, Zurich, Switzerland.
| |
Collapse
|
16
|
Gambello MJ, Li H. Current strategies for the treatment of inborn errors of metabolism. J Genet Genomics 2018; 45:61-70. [PMID: 29500085 DOI: 10.1016/j.jgg.2018.02.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/14/2017] [Accepted: 02/11/2018] [Indexed: 12/23/2022]
Abstract
Inborn errors of metabolism (IEMs) are a large group of inherited disorders characterized by disruption of metabolic pathways due to deficient enzymes, cofactors, or transporters. The rapid advances in the understanding of the molecular pathophysiology of many IEMs, have led to significant progress in the development of many new treatments. The institution and continued expansion of newborn screening provide the opportunity for early treatment, leading to reduced morbidity and mortality. This review provides an overview of the diverse therapeutic approaches and recent advances in the treatment of IEMs that focus on the basic principles of reducing substrate accumulation, replacing or enhancing absent or reduced enzyme or cofactor, and supplementing product deficiency. In addition, the challenges and obstacles of current treatment modalities and future treatment perspectives are reviewed and discussed.
Collapse
Affiliation(s)
- Michael J Gambello
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hong Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
17
|
Longo N, Holt RJ. Glycerol phenylbutyrate for the maintenance treatment of patients with deficiencies in enzymes of the urea cycle. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1405807] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Nicola Longo
- Division of Medical Genetics, University of Utah, Salt Lake City, UT, USA
| | - Robert J. Holt
- Medical Affairs, Horizon Pharma, Lake Forest, IL, USA
- Department of Pharmacy Practice, University of Illinois, Chicago, IL, USA
| |
Collapse
|
18
|
Berry SA, Longo N, Diaz GA, McCandless SE, Smith WE, Harding CO, Zori R, Ficicioglu C, Lichter-Konecki U, Robinson B, Vockley J. Safety and efficacy of glycerol phenylbutyrate for management of urea cycle disorders in patients aged 2months to 2years. Mol Genet Metab 2017; 122:46-53. [PMID: 28916119 DOI: 10.1016/j.ymgme.2017.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/01/2017] [Accepted: 09/01/2017] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Glycerol phenylbutyrate (GPB) is approved in the US for the management of patients 2months of age and older with urea cycle disorders (UCDs) that cannot be managed with protein restriction and/or amino acid supplementation alone. Limited data exist on the use of nitrogen conjugation agents in very young patients. METHODS Seventeen patients (15 previously on other nitrogen scavengers) with all types of UCDs aged 2months to 2years were switched to, or started, GPB. Retrospective data up to 12months pre-switch and prospective data during initiation of therapy were used as baseline measures. The primary efficacy endpoint of the integrated analysis was the successful transition to GPB with controlled ammonia (<100μmol/L and no clinical symptoms). Secondary endpoints included glutamine and levels of other amino acids. Safety endpoints included adverse events, hyperammonemic crises (HACs), and growth and development. RESULTS 82% and 53% of patients completed 3 and 6months of therapy, respectively (mean 8.85months, range 6days-18.4months). Patients transitioned to GPB maintained excellent control of ammonia and glutamine levels. There were 36 HACs in 11 patients before GPB and 11 in 7 patients while on GPB, with a reduction from 2.98 to 0.88 episodes per year. Adverse events occurring in at least 10% of patients while on GPB were neutropenia, vomiting, diarrhea, pyrexia, hypophagia, cough, nasal congestion, rhinorrhea, rash/papule. CONCLUSION GPB was safe and effective in UCD patients aged 2months to 2years. GPB use was associated with good short- and long-term control of ammonia and glutamine levels, and the annualized frequency of hyperammonemic crises was lower during the study than before the study. There was no evidence for any previously unknown toxicity of GPB.
Collapse
Affiliation(s)
| | | | - George A Diaz
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shawn E McCandless
- Center for Human Genetics, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH, USA
| | | | | | | | - Can Ficicioglu
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | - Jerry Vockley
- Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
19
|
Wiersma M, Meijering RAM, Qi XY, Zhang D, Liu T, Hoogstra-Berends F, Sibon OCM, Henning RH, Nattel S, Brundel BJJM. Endoplasmic Reticulum Stress Is Associated With Autophagy and Cardiomyocyte Remodeling in Experimental and Human Atrial Fibrillation. J Am Heart Assoc 2017; 6:e006458. [PMID: 29066441 PMCID: PMC5721854 DOI: 10.1161/jaha.117.006458] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/28/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND Derailment of proteostasis, the homeostasis of production, function, and breakdown of proteins, contributes importantly to the self-perpetuating nature of atrial fibrillation (AF), the most common heart rhythm disorder in humans. Autophagy plays an important role in proteostasis by degrading aberrant proteins and organelles. Herein, we investigated the role of autophagy and its activation pathway in experimental and clinical AF. METHODS AND RESULTS Tachypacing of HL-1 atrial cardiomyocytes causes a gradual and significant activation of autophagy, as evidenced by enhanced LC3B-II expression, autophagic flux and autophagosome formation, and degradation of p62, resulting in reduction of Ca2+ amplitude. Autophagy is activated downstream of endoplasmic reticulum (ER) stress: blocking ER stress by the chemical chaperone 4-phenyl butyrate, overexpression of the ER chaperone-protein heat shock protein A5, or overexpression of a phosphorylation-blocked mutant of eukaryotic initiation factor 2α (eIF2α) prevents autophagy activation and Ca2+-transient loss in tachypaced HL-1 cardiomyocytes. Moreover, pharmacological inhibition of ER stress in tachypaced Drosophila confirms its role in derailing cardiomyocyte function. In vivo treatment with sodium salt of phenyl butyrate protected atrial-tachypaced dog cardiomyocytes from electrical remodeling (action potential duration shortening, L-type Ca2+-current reduction), cellular Ca2+-handling/contractile dysfunction, and ER stress and autophagy; it also attenuated AF progression. Finally, atrial tissue from patients with persistent AF reveals activation of autophagy and induction of ER stress, which correlates with markers of cardiomyocyte damage. CONCLUSIONS These results identify ER stress-associated autophagy as an important pathway in AF progression and demonstrate the potential therapeutic action of the ER-stress inhibitor 4-phenyl butyrate.
Collapse
Affiliation(s)
- Marit Wiersma
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Roelien A M Meijering
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Xiao-Yan Qi
- Department of Medicine, Montreal Heart Institute and Université de Montréal, the Department of Pharmacology and Therapeutics, McGill University, Montreal, Québec, Canada
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University of Duisburg-Essen, Duisburg, Germany
| | - Deli Zhang
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tao Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Femke Hoogstra-Berends
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ody C M Sibon
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Robert H Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stanley Nattel
- Department of Medicine, Montreal Heart Institute and Université de Montréal, the Department of Pharmacology and Therapeutics, McGill University, Montreal, Québec, Canada
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University of Duisburg-Essen, Duisburg, Germany
| | - Bianca J J M Brundel
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
20
|
Abstract
The incidence and prevalence of cardiac diseases, which are the main cause of death worldwide, are likely to increase because of population ageing. Prevailing theories about the mechanisms of ageing feature the gradual derailment of cellular protein homeostasis (proteostasis) and loss of protein quality control as central factors. In the heart, loss of protein patency, owing to flaws in genetically-determined design or because of environmentally-induced 'wear and tear', can overwhelm protein quality control, thereby triggering derailment of proteostasis and contributing to cardiac ageing. Failure of protein quality control involves impairment of chaperones, ubiquitin-proteosomal systems, autophagy, and loss of sarcomeric and cytoskeletal proteins, all of which relate to induction of cardiomyocyte senescence. Targeting protein quality control to maintain cardiac proteostasis offers a novel therapeutic strategy to promote cardiac health and combat cardiac disease. Currently marketed drugs are available to explore this concept in the clinical setting.
Collapse
Affiliation(s)
- Robert H Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Bianca J J M Brundel
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, De Boelelaan 1117, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
21
|
Donaldson T, Iozzino L, Deacon LJ, Billones H, Ausili A, D'Auria S, Dattelbaum JD. Engineering a switch-based biosensor for arginine using a Thermotoga maritima periplasmic binding protein. Anal Biochem 2017; 525:60-66. [PMID: 28259516 DOI: 10.1016/j.ab.2017.02.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/26/2017] [Accepted: 02/28/2017] [Indexed: 11/26/2022]
Abstract
The Thermotoga maritima arginine-binding protein (TmArgBP) has been modified to create a reagentless fluorescent protein biosensor. Two design methods for biosensor construction are compared: 1) solvent accessibility of environmentally-sensitive probes and 2) fluorescence deactivation due to photo-induced electron transfer (PET). Nine single cysteine TmArgBP mutants were created and labeled with three different environmentally sensitive fluorescent probes. These mutants demonstrated limited changes in fluorescence emission upon the addition of arginine. In contrast, the PET-based biosensor provides significant enhancements over the traditional approach and provides a fluorescence quenching mechanism that was capable of providing quantitative detection of arginine. Site-directed mutagenesis of TmArgBP was used to create attachment points for the fluorescent probe (K145C) and for an internal aromatic residue (D18X) to serve as the PET quencher. Both tyrosine and tryptophan, but not phenylalanine, were able to quench the emission of the fluorescent probe by more than 80% upon the addition of arginine. The dissociation constant for arginine ranged from 0.87 to 1.5 μM across the different sensors. This PET-based strategy provides a simple and broadly applicable approach for the analytical detection of small molecules that may be applied to any protein that exhibits conformational switching in a ligand dependent manner.
Collapse
Affiliation(s)
- Teraya Donaldson
- Department of Chemistry, University of Richmond, Richmond, VA, 23173, USA
| | - Luisa Iozzino
- Department of Chemistry, University of Richmond, Richmond, VA, 23173, USA; Laboratory for Molecular Sensing, ISA-CNR, Via Roma 64, 83100 Avellino, Italy
| | - Lindsay J Deacon
- Department of Chemistry, University of Richmond, Richmond, VA, 23173, USA
| | - Hilbert Billones
- Department of Chemistry, University of Richmond, Richmond, VA, 23173, USA
| | - Alessio Ausili
- Laboratory for Molecular Sensing, ISA-CNR, Via Roma 64, 83100 Avellino, Italy
| | - Sabato D'Auria
- Laboratory for Molecular Sensing, ISA-CNR, Via Roma 64, 83100 Avellino, Italy
| | | |
Collapse
|
22
|
Diez-Fernandez C, Häberle J. Targeting CPS1 in the treatment of Carbamoyl phosphate synthetase 1 (CPS1) deficiency, a urea cycle disorder. Expert Opin Ther Targets 2017; 21:391-399. [PMID: 28281899 DOI: 10.1080/14728222.2017.1294685] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Carbamoyl phosphate synthetase 1 (CPS1) deficiency (CPS1D) is a rare autosomal recessive urea cycle disorder (UCD), which can lead to life-threatening hyperammonemia. Unless promptly treated, it can result in encephalopathy, coma and death, or intellectual disability in surviving patients. Over recent decades, therapies for CPS1D have barely improved leaving the management of these patients largely unchanged. Additionally, in many cases, current management (protein-restriction and supplementation with citrulline and/or arginine and ammonia scavengers) is insufficient for achieving metabolic stability, highlighting the importance of developing alternative therapeutic approaches. Areas covered: After describing UCDs and CPS1D, we give an overview of the structure- function of CPS1. We then describe current management and potential novel treatments including N-carbamoyl-L-glutamate (NCG), pharmacological chaperones, and gene therapy to treat hyperammonemia. Expert opinion: Probably, the first novel CPS1D therapies to reach the clinics will be the already commercial substance NCG, which is the standard treatment for N-acetylglutamate synthase deficiency and has been proven to rescue specific CPS1D mutations. Pharmacological chaperones and gene therapy are under development too, but these two technologies still have key challenges to be overcome. In addition, current experimental therapies will hopefully add further treatment options.
Collapse
Affiliation(s)
- Carmen Diez-Fernandez
- a Division of Metabolism , University Children's Hospital Zurich and Children's Research Center , Zurich , Switzerland
| | - Johannes Häberle
- a Division of Metabolism , University Children's Hospital Zurich and Children's Research Center , Zurich , Switzerland
| |
Collapse
|
23
|
Posset R, Garcia-Cazorla A, Valayannopoulos V, Teles EL, Dionisi-Vici C, Brassier A, Burlina AB, Burgard P, Cortès-Saladelafont E, Dobbelaere D, Couce ML, Sykut-Cegielska J, Häberle J, Lund AM, Chakrapani A, Schiff M, Walter JH, Zeman J, Vara R, Kölker S. Age at disease onset and peak ammonium level rather than interventional variables predict the neurological outcome in urea cycle disorders. J Inherit Metab Dis 2016; 39:661-672. [PMID: 27106216 DOI: 10.1007/s10545-016-9938-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Patients with urea cycle disorders (UCDs) have an increased risk of neurological disease manifestation. AIMS Determining the effect of diagnostic and therapeutic interventions on the neurological outcome. METHODS Evaluation of baseline, regular follow-up and emergency visits of 456 UCD patients prospectively followed between 2011 and 2015 by the E-IMD patient registry. RESULTS About two-thirds of UCD patients remained asymptomatic until age 12 days [i.e. the median age at diagnosis of patients identified by newborn screening (NBS)] suggesting a potential benefit of NBS. In fact, NBS lowered the age at diagnosis in patients with late onset of symptoms (>28 days), and a trend towards improved long-term neurological outcome was found for patients with argininosuccinate synthetase and lyase deficiency as well as argininemia identified by NBS. Three to 17 different drug combinations were used for maintenance therapy, but superiority of any single drug or specific drug combination above other combinations was not demonstrated. Importantly, non-interventional variables of disease severity, such as age at disease onset and peak ammonium level of the initial hyperammonemic crisis (cut-off level: 500 μmol/L) best predicted the neurological outcome. CONCLUSIONS Promising results of NBS for late onset UCD patients are reported and should be re-evaluated in a larger and more advanced age group. However, non-interventional variables affect the neurological outcome of UCD patients. Available evidence-based guideline recommendations are currently heterogeneously implemented into practice, leading to a high variability of drug combinations that hamper our understanding of optimised long-term and emergency treatment.
Collapse
Affiliation(s)
- Roland Posset
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany.
| | | | - Vassili Valayannopoulos
- Assistance Publique-Hôpitaux de Paris, Service de Maladies Metaboliques, Hôpital Necker-Enfants Malades, Paris, France
| | - Elisa Leão Teles
- Hospital de S. João, EPE, Unidade de Doenças Metabólicas, Serviço de Pediatria, Porto, Portugal
| | - Carlo Dionisi-Vici
- Ospedale Pediatrico Bambino Gésu, U.O.C. Patologia Metabolica, Rome, Italy
| | - Anaïs Brassier
- Assistance Publique-Hôpitaux de Paris, Service de Maladies Metaboliques, Hôpital Necker-Enfants Malades, Paris, France
| | - Alberto B Burlina
- Azienda Ospedaliera di Padova, U.O.C. Malattie Metaboliche Ereditarie, Padova, Italy
| | - Peter Burgard
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | | | - Dries Dobbelaere
- Centre de Référence Maladies Héréditaires du Métabolisme de l'Enfant et de l'Adulte, Jeanne de Flandre Hospital, CHRU Lille, and RADEME EA 7364, Faculty of Medicine, University Lille 2, Lille, 59037, France
| | - Maria L Couce
- Metabolic Unit, Department of Pediatrics, Hospital Clinico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Johannes Häberle
- Division of Metabolism and Children's Research Centre, University Children's Hospital Zurich, Steinwiesstraße 75, CH-8032, Zurich, Switzerland
| | - Allan M Lund
- Centre for Inherited Metabolic Diseases, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Anupam Chakrapani
- Birmingham Children's Hospital NHS Foundation Trust, Steelhouse Lane, Birmingham, B4 6NH, UK
- Metabolic Unit Great Ormond Street Hospital and Institute for Child Health, University College London, London, UK
| | - Manuel Schiff
- Hôpital Robert Debré, Reference Centre for Inborn Errors of Metabolism, APHP and Université Paris-Diderot, Paris, France
| | - John H Walter
- Manchester Academic Health Science Centre, Willink Biochemical Genetics Unit, Genetic Medicine, University of Manchester, Manchester, UK
| | - Jiri Zeman
- First Faculty of Medicine, Charles University and General University of Prague, Prague, Czech Republic
| | - Roshni Vara
- Evelina Children's Hospital, St Thomas' Hospital, London, UK
| | - Stefan Kölker
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| |
Collapse
|
24
|
Zacharias HD, Zacharias AP, Oliveira Ferreira A, Morgan MY, Gluud LL. Ammonia scavenging agents for people with cirrhosis and hepatic encephalopathy. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2016. [DOI: 10.1002/14651858.cd012334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Harry D Zacharias
- Division of Medicine, Royal Free Campus, University College London; UCL Institute for Liver & Digestive Health; London UK NW3 2PF
| | - Antony P Zacharias
- Division of Medicine, Royal Free Campus, University College London; UCL Institute for Liver & Digestive Health; London UK NW3 2PF
| | - Alexandre Oliveira Ferreira
- Hospital Santa Maria; Department of Gastroenterology and Hepatology; Av Prof Egas Moniz Lisboa Portugal 1649
| | - Marsha Y Morgan
- Division of Medicine, Royal Free Campus, University College London; UCL Institute for Liver & Digestive Health; London UK NW3 2PF
| | - Lise Lotte Gluud
- Copenhagen University Hospital Hvidovre; Gastrounit, Medical Division; Kettegaards Alle Hvidovre Denmark 2650
| |
Collapse
|
25
|
Switch from Sodium Phenylbutyrate to Glycerol Phenylbutyrate Improved Metabolic Stability in an Adolescent with Ornithine Transcarbamylase Deficiency. JIMD Rep 2016; 31:11-14. [PMID: 27000017 DOI: 10.1007/8904_2016_551] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/25/2016] [Accepted: 02/29/2016] [Indexed: 12/30/2022] Open
Abstract
A male patient, born in 1999, was diagnosed with ornithine transcarbamylase deficiency as neonate and was managed with a strict low-protein diet supplemented with essential amino acids, L-citrulline, and L-arginine as well as sodium benzoate. He had an extensive history of hospitalizations for hyperammonemic crises throughout childhood and early adolescence, which continued after the addition of sodium phenylbutyrate in 2009. In December 2013 he was switched to glycerol phenylbutyrate, and his metabolic stability was greatly improved over the following 7 months prior to liver transplant.
Collapse
|
26
|
Wiersma M, Henning RH, Brundel BJJM. Derailed Proteostasis as a Determinant of Cardiac Aging. Can J Cardiol 2016; 32:1166.e11-20. [PMID: 27345610 DOI: 10.1016/j.cjca.2016.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/21/2016] [Accepted: 03/07/2016] [Indexed: 01/12/2023] Open
Abstract
Age comprises the single most important risk factor for cardiac disease development. The incidence and prevalence of cardiac diseases, which represents the main cause of death worldwide, will increase even more because of the aging population. A hallmark of aging is that it is accompanied by a gradual derailment of proteostasis (eg, the homeostasis of protein synthesis, folding, assembly, trafficking, function, and degradation). Loss of proteostasis is highly relevant to cardiomyocytes, because they are postmitotic cells and therefore not constantly replenished by proliferation. The derailment of proteostasis during aging is thus an important factor that preconditions for the development of age-related cardiac diseases, such as atrial fibrillation. In turn, frailty of proteostasis in aging cardiomyocytes is exemplified by its accelerated derailment in multiple cardiac diseases. Here, we review 2 major components of the proteostasis network, the stress-responsive and protein degradation pathways, in healthy and aged cardiomyocytes. Furthermore, we discuss the relation between derailment of proteostasis and age-related cardiac diseases, including atrial fibrillation. Finally, we introduce novel therapeutic targets that might possibly attenuate cardiac aging and thus limit cardiac disease progression.
Collapse
Affiliation(s)
- Marit Wiersma
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Robert H Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bianca J J M Brundel
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
27
|
Stuy M, Chen GF, Masonek JM, Scharschmidt BF. Refeeding syndrome in a young woman with argininosuccinate lyase deficiency. Mol Genet Metab Rep 2016; 4:6-8. [PMID: 26937403 PMCID: PMC4750572 DOI: 10.1016/j.ymgmr.2015.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A severely chronically protein and calorie restricted young woman with argininosuccinate lyase deficiency developed transient refeeding syndrome (RFS) and hyperammonemia after modest diet liberalization following initiation of glycerol phenylbutyrate (GPB). The patient required IV supportive care and supplementation with potassium, magnesium and calcium. She is now doing well on GPB and an appropriate maintenance diet. Susceptibility to RFS should be considered in chronically nutritionally restricted patients with metabolic disorders after liberalization of diet.
Collapse
Affiliation(s)
- M Stuy
- Department of Medical and Molecular Genetics, Division of Clinical and Biochemical Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - G-F Chen
- Hyperion Therapeutics, Inc., Brisbane, CA, United States
| | - J M Masonek
- Hyperion Therapeutics, Inc., Brisbane, CA, United States
| | | |
Collapse
|
28
|
Abstract
In vitro studies have suggested that 4-phenylbutyrate (PBA) may rescue missense mutated proteins that underlie some forms of progressive familial intrahepatic cholestasis. Encouraging preliminary responses to 4-PBA have been reported in liver disease secondary to mutations in ABCB11 and ATP8B1. A 4-year-old boy with Byler disease was treated with 4-PBA in the forms of sodium PBA (5 months) and then glycerol PBA (7 months) as part of expanded access single patient protocols. During this therapy serum total bilirubin fell and his general well-being was reported to be improved, although total serum bile acids were not reduced. Discontinuation of rifampin therapy, which had been used to treat pruritus, resulted in reversible severe acute liver injury that was potentially the result of phenylacetate toxicity. Interactions between 4-PBA and cytochrome P450 enzymes should be considered in the use of this agent with special attention to potential phenylacetate toxicity.
Collapse
|
29
|
Hook D, Diaz GA, Lee B, Bartley J, Longo N, Berquist W, Le Mons C, Rudolph-Angelich I, Porter M, Scharschmidt BF, Mokhtarani M. Protein and calorie intakes in adult and pediatric subjects with urea cycle disorders participating in clinical trials of glycerol phenylbutyrate. Mol Genet Metab Rep 2016; 6:34-40. [PMID: 27014577 PMCID: PMC4789342 DOI: 10.1016/j.ymgmr.2015.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 12/30/2022] Open
Abstract
Background Little prospectively collected data are available comparing the dietary intake of urea cycle disorder (UCD) patients to UCD treatment guidelines or to healthy individuals. Objective To examine the protein and calorie intakes of UCD subjects who participated in clinical trials of glycerol phenylbutyrate (GPB) and compare these data to published UCD dietary guidelines and nutritional surveys. Design Dietary data were recorded for 45 adult and 49 pediatric UCD subjects in metabolic control during participation in clinical trials of GPB. Protein and calorie intakes were compared to UCD treatment guidelines, average nutrient intakes of a healthy US population based on the National Health and Nutrition Examination Survey (NHANES) and Recommended Daily Allowances (RDA). Results In adults, mean protein intake was higher than UCD recommendations but lower than RDA and NHANES values, while calorie intake was lower than UCD recommendations, RDA and NHANES. In pediatric subjects, prescribed protein intake was higher than UCD guidelines, similar to RDA, and lower than NHANES data for all age groups, while calorie intake was at the lower end of the recommended UCD range and close to RDA and NHANES data. In pediatric subjects height, weight, and body mass index (BMI) Z-scores were within normal range (− 2 to 2). Conclusions Pediatric patients treated with phenylbutyrate derivatives exhibited normal height and weight. Protein and calorie intakes in adult and pediatric UCD subjects differed from UCD dietary guidelines, suggesting that these guidelines may need to be reconsidered.
Collapse
Affiliation(s)
- Debra Hook
- Miller Children's Hospital/Long Beach Medical Center, United States
| | - George A Diaz
- Mount Sinai School of Medicine, Department of Genetics and Genomic Sciences, Department of Pediatrics, United States
| | | | - James Bartley
- Miller Children's Hospital/Long Beach Medical Center, United States
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Lee B, Diaz GA, Rhead W, Lichter-Konecki U, Feigenbaum A, Berry SA, Le Mons C, Bartley J, Longo N, Nagamani SC, Berquist W, Gallagher RC, Harding CO, McCandless SE, Smith W, Schulze A, Marino M, Rowell R, Coakley DF, Mokhtarani M, Scharschmidt BF. Glutamine and hyperammonemic crises in patients with urea cycle disorders. Mol Genet Metab 2016; 117:27-32. [PMID: 26586473 PMCID: PMC4915945 DOI: 10.1016/j.ymgme.2015.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/10/2015] [Accepted: 11/10/2015] [Indexed: 12/30/2022]
Abstract
UNLABELLED Blood ammonia and glutamine levels are used as biomarkers of control in patients with urea cycle disorders (UCDs). This study was undertaken to evaluate glutamine variability and utility as a predictor of hyperammonemic crises (HACs) in UCD patients. METHODS The relationships between glutamine and ammonia levels and the incidence and timing of HACs were evaluated in over 100 adult and pediatric UCD patients who participated in clinical trials of glycerol phenylbutyrate. RESULTS The median (range) intra-subject 24-hour coefficient of variation for glutamine was 15% (8-29%) as compared with 56% (28%-154%) for ammonia, and the correlation coefficient between glutamine and concurrent ammonia levels varied from 0.17 to 0.29. Patients with baseline (fasting) glutamine values >900 μmol/L had higher baseline ammonia levels (mean [SD]: 39.6 [26.2]μmol/L) than patients with baseline glutamine ≤ 900 μmol/L (26.6 [18.0]μmol/L). Glutamine values >900 μmol/L during the study were associated with an approximately 2-fold higher HAC risk (odds ratio [OR]=1.98; p=0.173). However, glutamine lost predictive significance (OR=1.47; p=0.439) when concomitant ammonia was taken into account, whereas the predictive value of baseline ammonia ≥ 1.0 upper limit of normal (ULN) was highly statistically significant (OR=4.96; p=0.013). There was no significant effect of glutamine >900 μmol/L on time to first HAC crisis (hazard ratio [HR]=1.14; p=0.813), but there was a significant effect of baseline ammonia ≥ 1.0 ULN (HR=4.62; p=0.0011). CONCLUSIONS The findings in this UCD population suggest that glutamine is a weaker predictor of HACs than ammonia and that the utility of the predictive value of glutamine will need to take into account concurrent ammonia levels.
Collapse
Affiliation(s)
- B Lee
- Baylor College of Medicine, Houston, TX, USA.
| | - G A Diaz
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - W Rhead
- The Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | - S A Berry
- Univ. of Minnesota, Minneapolis, MN, USA
| | - C Le Mons
- National Urea Cycle Disorders Foundation, Pasadena, CA, USA
| | - J Bartley
- Miller Children's Hospital, Long Beach, CA, USA
| | - N Longo
- Univ. of UT, Salt Lake City, UT, USA
| | | | | | | | | | - S E McCandless
- Case Western Reserve Univ. Medical Center, Cleveland, OH, USA
| | - W Smith
- Maine Medical Ctr., Portland, ME, USA
| | - A Schulze
- The Hospital for Sick Children, Univ. of Toronto, Canada
| | - M Marino
- Oregon Health Sciences, Portland, OR, USA
| | - R Rowell
- MED Technical Consulting, Inc., Union City, CA, USA
| | | | | | | |
Collapse
|
31
|
Nagamani SCS, Diaz GA, Rhead W, Berry SA, Le Mons C, Lichter-Konecki U, Bartley J, Feigenbaum A, Schulze A, Longo N, Berquist W, Gallagher R, Bartholomew D, Harding CO, Korson MS, McCandless SE, Smith W, Vockley J, Kronn D, Zori R, Cederbaum S, Merritt JL, Wong D, Coakley DF, Scharschmidt BF, Dickinson K, Marino M, Lee BH, Mokhtarani M. Self-reported treatment-associated symptoms among patients with urea cycle disorders participating in glycerol phenylbutyrate clinical trials. Mol Genet Metab 2015; 116:29-34. [PMID: 26296711 PMCID: PMC4804346 DOI: 10.1016/j.ymgme.2015.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 08/03/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Health care outcomes have been increasingly assessed through health-related quality of life (HRQoL) measures. While the introduction of nitrogen-scavenging medications has improved survival in patients with urea cycle disorders (UCDs), they are often associated with side effects that may affect patient compliance and outcomes. METHODS Symptoms commonly associated with nitrogen-scavenging medications were evaluated in 100 adult and pediatric participants using a non-validated UCD-specific questionnaire. Patients or their caregivers responded to a pre-defined list of symptoms known to be associated with the use of these medications. Responses were collected at baseline (while patients were receiving sodium phenylbutyrate [NaPBA]) and during treatment with glycerol phenylbutyrate (GPB). RESULTS After 3 months of GPB dosing, there were significant reductions in the proportion of patients with treatment-associated symptoms (69% vs. 46%; p<0.0001), the number of symptoms per patient (2.5 vs. 1.1; p<0.0001), and frequency of the more commonly reported individual symptoms such as body odor, abdominal pain, nausea, burning sensation in mouth, vomiting, and heartburn (p<0.05). The reduction in symptoms was observed in both pediatric and adult patients. The presence or absence of symptoms or change in severity did not correlate with plasma ammonia levels or NaPBA dose. CONCLUSIONS The reduction in symptoms following 3 months of open-label GPB dosing was similar in pediatric and adult patients and may be related to chemical structure and intrinsic characteristics of the product rather than its effect on ammonia control.
Collapse
Affiliation(s)
- Sandesh C S Nagamani
- Baylor College of Medicine, One Baylor Plaza, Room R814, Houston, TX 77030, USA.
| | - George A Diaz
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, Department of Pediatrics, 1428 Madison Avenue, New York, NY 10029, USA
| | - William Rhead
- The Medical College of Wisconsin, MS 716, 9000 W. Wisconsin Avenue, Milwaukee, WI 53226, USA
| | - Susan A Berry
- University of Minnesota, 420 Delaware St. SE, MMC 75, Minneapolis, MN 55455, USA
| | - Cynthia Le Mons
- National Urea Cycle Disorders Foundation, 75 S. Grand Ave, Pasadena, CA 91105, USA
| | | | - James Bartley
- Long Beach Memorial Hospital, 2801 Atlantic Avenue, Long Beach, CA 90806, USA
| | | | - Andreas Schulze
- The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G1X8, Canada
| | - Nicola Longo
- The University of Utah, Division of Medical Genetics, 2C412 SOM, 50 North Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| | - William Berquist
- Stanford University, 750 Welch Road, #116, Palo Alto, CA 94305, USA
| | - Renata Gallagher
- UCSF School of Medicine, 550 16th Street, San Francisco, CA 94158, USA
| | - Dennis Bartholomew
- Nationwide Children's Hospital, 545 South 18th Street, TH485, Columbus, OH 43205, USA
| | - Cary O Harding
- Oregon Health & Science University, 3181 SW Sam Jackson Park Road, A036/B198, Mail code L103, Portland, OR 97239, USA
| | - Mark S Korson
- Tufts Medical Center, Floating Building, 3rd Floor, 800 Washington Street, Boston, MA 02111, USA
| | - Shawn E McCandless
- Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH 44106, USA
| | - Wendy Smith
- Maine Medical Center, 1577 Congress Street, 2nd Floor, Portland, ME 04102, USA
| | - Jerry Vockley
- Children's Hospital of Pittsburgh, One Children's Hospital Drive, 4401 Penn Avenue, Rangos Floor 5, Pittsburgh, PA 15224, USA
| | - David Kronn
- Westchester Medical Center, 503 Grasslands Road, Valhalla, NY 10595, USA
| | - Robert Zori
- University of Florida, UFHSC Box 100296, Gainesville, FL 32610, USA
| | - Stephen Cederbaum
- University of California, Los Angeles, 10833 Le Conte Avenue CHS 32-225, Los Angeles, CA 90095, USA
| | - J Lawrence Merritt
- Seattle Children's Hospital, 4800 Sand Point Way NE M/S W-65945, Seattle, WA 98105, USA
| | - Derek Wong
- University of California, Los Angeles, 10833 Le Conte Avenue CHS 32-225, Los Angeles, CA 90095, USA
| | - Dion F Coakley
- Horizon Therapeutics Inc., 2000 Sierra Point Parkway Suite 400, Brisbane, CA 94005, USA
| | - Bruce F Scharschmidt
- Horizon Therapeutics Inc., 2000 Sierra Point Parkway Suite 400, Brisbane, CA 94005, USA
| | - Klara Dickinson
- Anthera Pharmaceuticals, 25801 Industrial Blvd. Suite B, Hayward, CA 94545, USA
| | - Miguel Marino
- Oregon Health & Science University, 3181 SW Sam Jackson Park Road, A036/B198, Mail code L103, Portland, OR 97239, USA
| | - Brendan H Lee
- Baylor College of Medicine, One Baylor Plaza, Room R814, Houston, TX 77030, USA
| | - Masoud Mokhtarani
- Horizon Therapeutics Inc., 2000 Sierra Point Parkway Suite 400, Brisbane, CA 94005, USA
| |
Collapse
|
32
|
Lee B, Diaz GA, Rhead W, Lichter-Konecki U, Feigenbaum A, Berry SA, Le Mons C, Bartley JA, Longo N, Nagamani SC, Berquist W, Gallagher R, Bartholomew D, Harding CO, Korson MS, McCandless SE, Smith W, Cederbaum S, Wong D, Merritt JL, Schulze A, Vockley J, Vockley G, Kronn D, Zori R, Summar M, Milikien DA, Marino M, Coakley DF, Mokhtarani M, Scharschmidt BF. Blood ammonia and glutamine as predictors of hyperammonemic crises in patients with urea cycle disorder. Genet Med 2015; 17:561-8. [PMID: 25503497 PMCID: PMC4465427 DOI: 10.1038/gim.2014.148] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 09/17/2014] [Indexed: 11/18/2022] Open
Abstract
PURPOSE The aim of this study was to examine predictors of ammonia exposure and hyperammonemic crises in patients with urea cycle disorders. METHODS The relationships between fasting ammonia, daily ammonia exposure, and hyperammonemic crises were analyzed in >100 patients with urea cycle disorders. RESULTS Fasting ammonia correlated strongly with daily ammonia exposure (r = 0.764; P < 0.001). For patients with fasting ammonia concentrations <0.5 upper limit of normal (ULN), 0.5 to <1.0 ULN, and ≥1.0 ULN, the probability of a normal average daily ammonia value was 87, 60, and 39%, respectively, and 10.3, 14.1, and 37.0% of these patients, respectively, experienced ≥1 hyperammonemic crisis over 12 months. Time to first hyperammonemic crisis was shorter (P = 0.008) and relative risk (4.5×; P = 0.011) and rate (~5×, P = 0.006) of hyperammonemic crises were higher in patients with fasting ammonia ≥1.0 ULN vs. <0.5ULN; relative risk was even greater (20×; P = 0.009) in patients ≥6 years old. A 10- or 25-µmol/l increase in ammonia exposure increased the relative risk of a hyperammonemic crisis by 50 and >200% (P < 0.0001), respectively. The relationship between ammonia and hyperammonemic crisis risk seemed to be independent of treatment, age, urea cycle disorder subtype, dietary protein intake, or blood urea nitrogen. Fasting glutamine correlated weakly with daily ammonia exposure assessed as 24-hour area under the curve and was not a significant predictor of hyperammonemic crisis. CONCLUSION Fasting ammonia correlates strongly and positively with daily ammonia exposure and with the risk and rate of hyperammonemic crises, suggesting that patients with urea cycle disorder may benefit from tight ammonia control.
Collapse
Affiliation(s)
- Brendan Lee
- 1] Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA [2] Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - George A Diaz
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - William Rhead
- The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | - Annette Feigenbaum
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Susan A Berry
- University of Minnesota, Minneapolis, Minnesota, USA
| | - Cindy Le Mons
- National Urea Cycle Disorders Foundation, Pasadena, California, USA
| | | | | | - Sandesh C Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | - Cary O Harding
- Oregon Health & Science University, Portland, Oregon, USA
| | | | - Shawn E McCandless
- University Hospitals Case Medical Center and Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | - Derek Wong
- University of California, Los Angeles, Los Angeles, California, USA
| | | | - Andreas Schulze
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | | | | - David Kronn
- Westchester Medical Center, Westchester, New York, USA
| | - Roberto Zori
- University of Florida, Gainesville, Florida, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Glycerol phenylbutyrate (GPB) is a new generation ammonia scavenger drug that was recently approved by the US FDA for chronic management in patients with urea cycle defect disorders after multicenter clinical trials. GPB is composed of three molecules of phenylbutyrate (PB) that are esterified to a glycerol backbone. The active agent, phenylacetate, is generated through multiple metabolic steps including hydrolysis in the small intestine by pancreatic triglyceride lipases. Its pharmacokinetic pattern is characterized by a slower release of the active metabolite than unconjugated PB, which contributes to superior ammonia control and fewer episodes of hyperammonemia. GPB is well tolerated with fewer gastrointestinal complications compared with sodium benzoate or PB. These unique features suggest that it may enhance adherence and, potentially, in improved outcomes in urea cycle disorder patients. GPB may have therapeutic potential in additional conditions such as chronic hepatic encephalopathy or other inherited metabolic disorders.
Collapse
Affiliation(s)
- Kimihiko Oishi
- a Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1497, New York, NY 10029, USA
- b Department of Pediatrics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1497, New York, NY 10029, USA
| | - George A Diaz
- a Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1497, New York, NY 10029, USA
- b Department of Pediatrics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1497, New York, NY 10029, USA
| |
Collapse
|