1
|
Padilla CJ, Alexander DM, Labor D, Albert OK, Robbins K, Berry-Kravis E, Porter FD. Cerebrospinal Fluid and Serum Neuron-Specific Enolase in Niemann-Pick Disease Type C1. Am J Med Genet A 2025; 197:e63970. [PMID: 39688135 PMCID: PMC11970998 DOI: 10.1002/ajmg.a.63970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/26/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
Niemann-Pick disease, type C1 (NPC1) is an ultra rare, autosomal recessive disorder characterized by impaired intracellular cholesterol trafficking. This study assessed neuron-specific enolase (NSE) as a biomarker for disease status and treatment response in individuals with NPC1. We also evaluated the concordance between serum and cerebrospinal fluid (CSF) NSE measurements. A total of 34 individuals with NPC1 were included in this analysis. Overall, 10 participants were used to compare concurrent samples of CSF and serum NSE. NSE levels were correlated with indexes of disease severity (Annual Severity Increment Score [ASIS] and age of neurological onset) and disease burden (NPC Neurological Severity Score [NSS]). NSE was elevated in CSF, but paired CSF/serum samples were not correlated (r s = -0.16, p = 0.64). Additionally, no significant correlations were observed between serum NSE levels and clinical measures of either disease burden or severity. CSF NSE values showed a significant positive association with the ASIS (r s = 0.37, p = 0.0291) but no association with age of neurological onset or NPC NSSs. Longitudinal analysis of nine participants showed a significant (p = 0.0317) decrease in CSF NSE levels after initiation of intrathecal 2-hydroxypropyl-β-cyclodextrin (IT HPβCD) therapy. This study suggests that CSF NSE may have some utility as a biomarker in NPC1 therapeutic trials.
Collapse
Affiliation(s)
- Cameron J. Padilla
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland, USA
| | - Derek M. Alexander
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland, USA
| | - Desiree Labor
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland, USA
| | - Orsolya K. Albert
- Department of Pediatrics, Rush University Medical Center, Chicago, Illinois
| | - Kendall Robbins
- Department of Pediatrics, Rush University Medical Center, Chicago, Illinois
| | - Elizabeth Berry-Kravis
- Department of Pediatrics, Neurological Sciences and Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois
| | - Forbes D. Porter
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Yang J, Chang Y, Qiao L, Dama G, Lou Y, Lin J. Npc1 gene mutation impairs multilineage differentiation potential of hepatic telocytes in murine models. Cell Biol Toxicol 2025; 41:71. [PMID: 40257496 PMCID: PMC12011650 DOI: 10.1007/s10565-025-10018-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 03/25/2025] [Indexed: 04/22/2025]
Abstract
OBJECTIVE To investigate the effect of the Npc1 gene on the biological activity of Telocytes (TCs) in the liver and to provide theoretical support for further research on the biological activity of TCs. METHODS Primary liver tissue cultures (TCs) from neonatal Npc1+/+ and Npc1-/- mice were extracted and cultured using an optimized type II collagenase-digestion protocol, and subsequently purified through a differential adhesion method. The growth state of TCs in both Npc1+/+ and Npc1-/- groups was regularly observed under an inverted microscope, and the morphology of TCs under normal growth conditions was documented. The TCs were identified using scanning electron microscopy and immunofluorescence staining. To investigate the impact of the Npc1 gene on the multilineage differentiation potential of TCs, liver TCs from Npc1+/+ and Npc1-/- groups were induced with adipogenic, osteogenic, and cardiomyoblastic differentiation solutions, respectively. RESULTS TCs cell surface markers such as co-expression of vimentin/CD34, vimentin/PDGF-α, and vimentin/c-Kit in Npc1+/+ and Npc1-/- groups. "Combined light and scanning electron microscopy revealed that the cellular structure of TCs from Npc1+/+ and Npc1-/- groups was mainly composed of cell bodies and Telopodes (Tps). TCs exhibited small somata with fusiform, stellate, or spindle-shaped nuclei, depending on the number of Tps. The surface of TCs cell membrane was uneven, and there was no difference in morphology between the two groups. TCs had multilineage differentiation potential, and the positive rate of TCs induced in Npc1-/- group was significantly lower than that in the Npc1+/+ group. CONCLUSION Our findings demonstrate that NPC1 deficiency markedly attenuates hepatic TCs' multipotency of liver TCs to differentiate into adipocytes, osteoblasts, and cardiocytes, suggesting that NPC1 protein might affect the pluripotency of TCs by regulating the lipid transport pathway. This finding provides novel insights into TC-mediated mechanisms in NPC pathology and lays a theoretical foundation for regenerative medicine strategies targeting TCs.
Collapse
Affiliation(s)
- Jichao Yang
- Department of Neurospine Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, China
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yuqiao Chang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, China
| | - Liang Qiao
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Ganesh Dama
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yongli Lou
- Department of Neurospine Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, China.
| | - Juntang Lin
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
3
|
Hay Mele B, Rossetti F, Cubellis MV, Monticelli M, Andreotti G. Drug Repurposing and Lysosomal Storage Disorders: A Trick to Treat. Genes (Basel) 2024; 15:290. [PMID: 38540351 PMCID: PMC10970111 DOI: 10.3390/genes15030290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 06/14/2024] Open
Abstract
Rare diseases, or orphan diseases, are defined as diseases affecting a small number of people compared to the general population. Among these, we find lysosomal storage disorders (LSDs), a cluster of rare metabolic diseases characterized by enzyme mutations causing abnormal glycolipid storage. Drug repositioning involves repurposing existing approved drugs for new therapeutic applications, offering advantages in cost, time savings, and a lower risk of failure. We present a comprehensive analysis of existing drugs, their repurposing potential, and their clinical implications in the context of LSDs, highlighting the necessity of mutation-specific approaches. Our review systematically explores the landscape of drug repositioning as a means to enhance LSDs therapies. The findings advocate for the strategic repositioning of drugs, accentuating its role in expediting the discovery of effective treatments. We conclude that drug repurposing represents a viable pathway for accelerating therapeutic discovery for LSDs, emphasizing the need for the careful evaluation of drug efficacy and toxicity in disease-specific contexts.
Collapse
Affiliation(s)
- Bruno Hay Mele
- Department of Biology, University of Napoli “Federico II”, Complesso Universitario Monte Sant’Angelo, Via Cinthia, 80126 Napoli, Italy; (B.H.M.); (F.R.); (M.V.C.)
| | - Federica Rossetti
- Department of Biology, University of Napoli “Federico II”, Complesso Universitario Monte Sant’Angelo, Via Cinthia, 80126 Napoli, Italy; (B.H.M.); (F.R.); (M.V.C.)
| | - Maria Vittoria Cubellis
- Department of Biology, University of Napoli “Federico II”, Complesso Universitario Monte Sant’Angelo, Via Cinthia, 80126 Napoli, Italy; (B.H.M.); (F.R.); (M.V.C.)
- Institute of Biomolecular Chemistry ICB, CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
- Stazione Zoologica “Anton Dohrn”, Villa Comunale, 80121 Naples, Italy
| | - Maria Monticelli
- Department of Biology, University of Napoli “Federico II”, Complesso Universitario Monte Sant’Angelo, Via Cinthia, 80126 Napoli, Italy; (B.H.M.); (F.R.); (M.V.C.)
- Institute of Biomolecular Chemistry ICB, CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| | - Giuseppina Andreotti
- Institute of Biomolecular Chemistry ICB, CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| |
Collapse
|
4
|
Nguyen TTA, Mohanty V, Yan Y, Francis KR, Cologna SM. Comparative Hippocampal Proteome and Phosphoproteome in a Niemann-Pick, Type C1 Mouse Model Reveal Insights into Disease Mechanisms. J Proteome Res 2024; 23:84-94. [PMID: 37999680 DOI: 10.1021/acs.jproteome.3c00375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Niemann-Pick disease, type C (NPC) is a neurodegenerative, lysosomal storage disorder in individuals carrying two mutated copies of either the NPC1 or NPC2 gene. Consequently, impaired cholesterol recycling and an array of downstream events occur. Interestingly, in NPC, the hippocampus displays lysosomal lipid storage but does not succumb to progressive neurodegeneration as significantly as other brain regions. Since defining the neurodegeneration mechanisms in this disease is still an active area of research, we use mass spectrometry to analyze the overall proteome and phosphorylation pattern changes in the hippocampal region of a murine model of NPC. Using 3 week old mice representing an early disease time point, we observed changes in the expression of 47 proteins, many of which are consistent with the previous literature. New to this study, changes in members of the SNARE complex, including STX7, VTI1B, and VAMP7, were identified. Furthermore, we identified that phosphorylation of T286 on CaMKIIα and S1303 on NR2B increased in mutant animals, even at the late stage of the disease. These phosphosites are crucial to learning and memory and can trigger neuronal death by altering protein-protein interactions.
Collapse
Affiliation(s)
- Thu T A Nguyen
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Varshasnata Mohanty
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Ying Yan
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Kevin R Francis
- Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, South Dakota 57104, United States
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota 57105, United States
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- Laboratory of Integrated Neuroscience, University of Illinois Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
5
|
Li W, Pergande MR, Crutchfield CA, Searle BC, Backlund PS, Picache JA, Burkert K, Yanjanin-Farhat NM, Blank PS, Toth CL, Wassif CA, Porter FD, Cologna SM. A differential proteomics study of cerebrospinal fluid from individuals with Niemann-Pick disease, Type C1. Proteomics 2023; 23:e2200378. [PMID: 36638187 PMCID: PMC10918788 DOI: 10.1002/pmic.202200378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/18/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023]
Abstract
Niemann-Pick, type C1 (NPC1) is a fatal, neurodegenerative disease, which belongs to the family of lysosomal diseases. In NPC1, endo/lysosomal accumulation of unesterified cholesterol and sphingolipids arise from improper intracellular trafficking resulting in multi-organ dysfunction. With the proximity between the brain and cerebrospinal fluid (CSF), performing differential proteomics provides a means to shed light to changes occurring in the brain. In this study, CSF samples obtained from NPC1 individuals and unaffected controls were used for protein biomarker identification. A subset of these individuals with NPC1 are being treated with miglustat, a glycosphingolipid synthesis inhibitor. Of the 300 identified proteins, 71 proteins were altered in individuals with NPC1 compared to controls including cathepsin D, and members of the complement family. Included are a report of 10 potential markers for monitoring therapeutic treatment. We observed that pro-neuropeptide Y (NPY) was significantly increased in NPC1 individuals relative to healthy controls; however, individuals treated with miglustat displayed levels comparable to healthy controls. In further investigation, NPY levels in a NPC1 mouse model corroborated our findings. We posit that NPY could be a potential therapeutic target for NPC1 due to its multiple roles in the central nervous system such as attenuating neuroinflammation and reducing excitotoxicity.
Collapse
Affiliation(s)
- Wenping Li
- Department of Chemistry, University of Illinois Chicago
| | | | - Christopher A. Crutchfield
- Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health
| | - Brian C. Searle
- Department of Biomedical Informatics, The Ohio State University Medical Center
| | - Peter S. Backlund
- Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health
| | - Jaqueline A. Picache
- Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health
| | - Kathryn Burkert
- Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health
| | - Nicole M. Yanjanin-Farhat
- Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health
| | - Paul S. Blank
- Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health
| | - Cynthia L. Toth
- Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health
| | - Christopher A. Wassif
- Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health
| | - Forbes D. Porter
- Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health
| | | |
Collapse
|
6
|
Bremova-Ertl T, Schneider S. Current advancements in therapy for Niemann-Pick disease: progress and pitfalls. Expert Opin Pharmacother 2023; 24:1229-1247. [PMID: 37211769 DOI: 10.1080/14656566.2023.2215386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
INTRODUCTION Niemann-Pick disease type C (NPC) is a rare, autosomal recessive, lysosomal storage disorder. To combat the progressive neurodegeneration in NPC, disease-modifying treatment needs to be introduced early in the course of the disease. The only approved, disease-modifying treatment is a substrate-reduction treatment, miglustat. Given miglustat's limited efficacy, new compounds are under development, including gene therapy; however, many are still far from clinical use. Moreover, the phenotypic heterogeneity and variable course of the disease can impede the development and approval of new agents. AREAS COVERED Here, we offer an expert review of these therapeutic candidates, with a broad scope not only on the main pharmacotherapies, but also on experimental approaches, gene therapies, and symptomatic strategies. The National Institute of Health (NIH) database PubMed has been searched for the combination of the words 'Niemann-Pick type C'+ 'treatment' or 'therapy' or 'trial.' The website clinicaltrials.gov has also been consulted. EXPERT OPINION We conclude a combination of treatment strategies should be sought, with a holistic approach, to improve the quality of life of affected individuals and their families.
Collapse
Affiliation(s)
- Tatiana Bremova-Ertl
- Department of Neurology, University Hospital Bern (Inselspital) and University of Bern, Bern, Switzerland
- Center for Rare Diseases, University Hospital Bern (Inselspital) and University of Bern, Bern, Switzerland
| | - Susanne Schneider
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
7
|
Quelle-Regaldie A, Gandoy-Fieiras N, Rodríguez-Villamayor P, Maceiras S, Losada AP, Folgueira M, Cabezas-Sáinz P, Barreiro-Iglesias A, Villar-López M, Quiroga-Berdeal MI, Sánchez L, Sobrido MJ. Severe neurometabolic phenotype in npc1−/− zebrafish with a C-terminal mutation. Front Mol Neurosci 2023; 16:1078634. [PMID: 37008782 PMCID: PMC10063808 DOI: 10.3389/fnmol.2023.1078634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/24/2023] [Indexed: 03/19/2023] Open
Abstract
Niemann Pick disease type C (NPC) is an autosomal recessive neurodegenerative lysosomal disorder characterized by an accumulation of lipids in different organs. Clinical manifestations can start at any age and include hepatosplenomegaly, intellectual impairment, and cerebellar ataxia. NPC1 is the most common causal gene, with over 460 different mutations with heterogeneous pathological consequences. We generated a zebrafish NPC1 model by CRISPR/Cas9 carrying a homozygous mutation in exon 22, which encodes the end of the cysteine-rich luminal loop of the protein. This is the first zebrafish model with a mutation in this gene region, which is frequently involved in the human disease. We observed a high lethality in npc1 mutants, with all larvae dying before reaching the adult stage. Npc1 mutant larvae were smaller than wild type (wt) and their motor function was impaired. We observed vacuolar aggregations positive to cholesterol and sphingomyelin staining in the liver, intestine, renal tubules and cerebral gray matter of mutant larvae. RNAseq comparison between npc1 mutants and controls showed 284 differentially expressed genes, including genes with functions in neurodevelopment, lipid exchange and metabolism, muscle contraction, cytoskeleton, angiogenesis, and hematopoiesis. Lipidomic analysis revealed significant reduction of cholesteryl esters and increase of sphingomyelin in the mutants. Compared to previously available zebrafish models, our model seems to recapitulate better the early onset forms of the NPC disease. Thus, this new model of NPC will allow future research in the cellular and molecular causes/consequences of the disease and on the search for new treatments.
Collapse
Affiliation(s)
- Ana Quelle-Regaldie
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Lugo, Spain
| | - Nerea Gandoy-Fieiras
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Universidade de Santiago de Compostela, Lugo, Spain
| | - Paula Rodríguez-Villamayor
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Lugo, Spain
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Universidade de Santiago de Compostela, Lugo, Spain
| | - Sandra Maceiras
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Universidade de Santiago de Compostela, Lugo, Spain
| | - Ana Paula Losada
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Universidade de Santiago de Compostela, Lugo, Spain
| | | | - Pablo Cabezas-Sáinz
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Lugo, Spain
| | - Antón Barreiro-Iglesias
- Department of Functional Biology, Faculty of Biology, CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - María Villar-López
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Lugo, Spain
| | - María Isabel Quiroga-Berdeal
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Universidade de Santiago de Compostela, Lugo, Spain
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Lugo, Spain
- *Correspondence: Laura Sánchez,
| | - María Jesús Sobrido
- Hospital Teresa Herrera, Instituto de Investigación Biomédica de A Coruña, A Coruña, Spain
- María Jesús Sobrido,
| |
Collapse
|
8
|
Hammerschmidt TG, Encarnação M, Lamberty Faverzani J, de Fátima Lopes F, Poswar de Oliveira F, Fischinger Moura de Sousa C, Ribeiro I, Alves S, Giugliani R, Regla Vargas C. Molecular profile and peripheral markers of neurodegeneration in patients with Niemann-Pick type C: Decrease in Plasminogen Activator Inhibitor type 1 and Platelet-Derived Growth Factor type AA. Arch Biochem Biophys 2023; 735:109510. [PMID: 36608914 DOI: 10.1016/j.abb.2023.109510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/19/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
Niemann-Pick type C1 (NPC1) is a fatal inherited disease, caused by pathogenic variants in NPC1 gene, which leads to intracellular accumulation of non-esterified cholesterol and glycosphingolipids. This accumulation leads to a wide range of clinical manifestations, including neurological and cognitive impairment as well as psychiatric disorders. The pathophysiology of cerebral damage involves loss of Purkinje cells, synaptic disturbance, and demyelination. Miglustat, a reversible inhibitor of glucosylceramide synthase, is an approved treatment for NPC1 and can slow neurological damage. The aim of this study was to assess the levels of peripheric neurodegeneration biomarkers of NPC1 patients, namely brain-derived neurotrophic factor (BDNF), platelet-derived growth factors (PDGF-AA and PDGF-AB/BB), neural cell adhesion molecule (NCAM), PAI-1 Total and Cathepsin-D, as well as the levels of cholestane-3β,5α,6β-triol (3β,5α,6β-triol), a biomarker for NPC1. Molecular analysis of the NPC1 patients under study was performed by next generation sequencing (NGS) in cultured fibroblasts. We observed that NPC1 patients treated with miglustat have a significant decrease in PAI-1 total and PDGF-AA concentrations, and no alteration in BDNF, NCAM, PDGF-AB/BB and Cathepsin D. We also found that NPC1 patients treated with miglustat have normalized levels of 3β,5α,6β-triol. The molecular analysis showed four described mutations, and for two patients was not possible to identify the second mutated allele. Our results indicate that the decrease of PAI-1 and PDGF-AA in NPC1 patients could be involved in the pathophysiology of this disease. This is the first work to analyze those plasmatic markers of neurodegenerative processes in NPC1 patients.
Collapse
Affiliation(s)
| | - Marisa Encarnação
- Research & Development Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, Porto, Portugal
| | - Jéssica Lamberty Faverzani
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Franciele de Fátima Lopes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Serviço de Genética Médica, HCPA, Porto Alegre, Brazil
| | | | | | - Isaura Ribeiro
- Unidade de Bioquímica Genética, Centro de Genética Médica, Centro Hospitalar Universitário do Porto, Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine, ICBAS-UP, Porto, Portugal; Espero Centro Referência Doenças Hereditárias do Metabolismo, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Sandra Alves
- Research & Development Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, Porto, Portugal
| | | | - Carmen Regla Vargas
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Serviço de Genética Médica, HCPA, Porto Alegre, Brazil.
| |
Collapse
|
9
|
McGrath T, Baskerville R, Rogero M, Castell L. Emerging Evidence for the Widespread Role of Glutamatergic Dysfunction in Neuropsychiatric Diseases. Nutrients 2022; 14:nu14050917. [PMID: 35267893 PMCID: PMC8912368 DOI: 10.3390/nu14050917] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/06/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
The monoamine model of depression has long formed the basis of drug development but fails to explain treatment resistance or associations with stress or inflammation. Recent animal research, clinical trials of ketamine (a glutamate receptor antagonist), neuroimaging research, and microbiome studies provide increasing evidence of glutamatergic dysfunction in depression and other disorders. Glutamatergic involvement across diverse neuropathologies including psychoses, neurodevelopmental, neurodegenerative conditions, and brain injury forms the rationale for this review. Glutamate is the brain's principal excitatory neurotransmitter (NT), a metabolic and synthesis substrate, and an immune mediator. These overlapping roles and multiple glutamate NT receptor types complicate research into glutamate neurotransmission. The glutamate microcircuit comprises excitatory glutamatergic neurons, astrocytes controlling synaptic space levels, through glutamate reuptake, and inhibitory GABA interneurons. Astroglia generate and respond to inflammatory mediators. Glutamatergic microcircuits also act at the brain/body interface via the microbiome, kynurenine pathway, and hypothalamus-pituitary-adrenal axis. Disruption of excitatory/inhibitory homeostasis causing neuro-excitotoxicity, with neuronal impairment, causes depression and cognition symptoms via limbic and prefrontal regions, respectively. Persistent dysfunction reduces neuronal plasticity and growth causing neuronal death and tissue atrophy in neurodegenerative diseases. A conceptual overview of brain glutamatergic activity and peripheral interfacing is presented, including the common mechanisms that diverse diseases share when glutamate homeostasis is disrupted.
Collapse
Affiliation(s)
- Thomas McGrath
- Green Templeton College, University of Oxford, Oxford OX2 6HG, UK; (T.M.); (L.C.)
| | - Richard Baskerville
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Correspondence:
| | - Marcelo Rogero
- School of Public Health, University of Sao Paulo, Sao Paulo 01246-904, Brazil;
| | - Linda Castell
- Green Templeton College, University of Oxford, Oxford OX2 6HG, UK; (T.M.); (L.C.)
| |
Collapse
|