1
|
Askarizadeh A, Kalantar SM, Mohiti-Ardakani J, Moradi A, Ordooei M. Molecular analysis of mucopolysaccharidosis type VI in Iranian patients; the influence of founder effect and consanguinity. Mol Biol Rep 2024; 52:11. [PMID: 39585463 DOI: 10.1007/s11033-024-10124-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND Mucopolysaccharidosis type VI (MPS VI), also known as Manteaux-Lamy syndrome, is an autosomal recessive lysosomal storage disorder caused by deficiency of the enzyme arylsulfatase B(ARSB). This syndrome is progressive and affects many tissues and organs, leading to inflammation and scarring. The classic clinical features of Maroteaux-Lamy syndrome are significant impairment of the osteoarticular system with dysostosis multiplex, short stature and motor dysfunction. The rate at which symptoms appear and worsen can vary between affected individuals. Mutations in the ARSB gene are responsible for MPS VI. We investigated the clinical presentation and molecular basis of patients with MPS VI for the first time in Yazd province, Iran. METHODS Of the 52 people who took part in this project, there were 13 probands. Whole exome sequencing (WES) was performed in 2 of them and the nominated mutation in the ARSB (c.430G > A) was verified by Sanger sequencing in the remaining patients. RESULTS All patients had parental consanguinity, except for one family in which the parents were unrelated. All patients were of Fars ethnicity and had characteristic phenotypes such as severe short stature, cardiac involvement, coarse facial features, and corneal opacities. Sequence analysis of the ARSB gene revealed a pathogenic homozygous missense mutation c.430G > A (p. Gly144Arg) in all patients. This type of mutation influenced the phenotypes of the severe patients. CONCLUSIONS These results expand the genetic databases of Iranian patients with MPS VI and would be very helpful for the high-risk families to accelerate the detection of carriers and to perform prenatal testing for the disorder in this population in a cost-effective manner. There is a possibility that other unknown mutations are responsible for the disease. The decision to screen for and detect carriers of this disease at a national level is awaited. The results of the present study could be an asset for married families in part of the city of Meybod. The results offer a way for early detection of patients and carriers of the disease.
Collapse
Affiliation(s)
- Athena Askarizadeh
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Seyed Mehdi Kalantar
- Genetic Research Center, Meybod, Yazd, Iran
- Reproductive and Genetic Unit, Recurrent Abortion Research Center, Yazd Reproductive Science Institute, Yazd University of Medical Science, Yazd, Iran
| | - Javad Mohiti-Ardakani
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Ali Moradi
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Mahtab Ordooei
- Children Growth Disorder Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
2
|
Madhana Priya N, Archana Pai P, Thirumal Kumar D, Gnanasambandan R, Magesh R. Elucidating the functional impact of G137V and G144R variants in Maroteaux Lamy's Syndrome by Molecular Dynamics Simulation. Mol Divers 2024; 28:2049-2063. [PMID: 37458922 DOI: 10.1007/s11030-023-10694-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/03/2023] [Indexed: 10/05/2024]
Abstract
Mucopolysaccharidoses VI (Maroteaux Lamy syndrome) is a metabolic disorder due to the loss of enzyme activity of N-acetyl galactosamine-4-sulphatase arising from mutations in the ARSB gene. The mutated ARSB is the origin for the accumulation of GAGs within the lysosome leading to severe growth deformities, causing lysosomal storage disease. The main focus of this study is to identify the deleterious variants by applying bioinformatics tools to predict the conservation, pathogenicity, stability, and effect of the ARSB variants. We examined 170 missense variants, of which G137V and G144R were the resultant variants predicted detrimental to the progression of the disease. The native along with G137V and G144R structures were fixed as the receptors and subjected to Molecular docking with the small molecule Odiparcil to analyze the binding efficiency and the varied interactions of the receptors towards the drug. The interaction resulted in similar docking scores of - 7.3 kcal/mol indicating effective binding and consistent interactions of the drug with residues CYS117, GLN118, THR182, and GLN517 for native, along with G137V and G144R structures. Molecular Dynamics were conducted to validate the stability and flexibility of the native and variant structures on ligand binding. The overall study indicates that the drug has similar therapeutic towards the native and variant based on the higher binding affinity and also the complexes show stability with an average of 0.2 nm RMS value. This can aid in the future development therapeutics for the Maroteaux Lamy syndrome.
Collapse
Affiliation(s)
- N Madhana Priya
- Department of Biotechnology, Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai, Tamil Nadu, 600116, India
| | - P Archana Pai
- Department of Biotechnology, Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai, Tamil Nadu, 600116, India
| | - D Thirumal Kumar
- Faculty of Allied Health Sciences, Meenakshi Academy of Higher Education, Chennai, India
| | - R Gnanasambandan
- Department of Biomedical Genetics, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Vellore, India
| | - R Magesh
- Department of Biotechnology, Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai, Tamil Nadu, 600116, India.
| |
Collapse
|
3
|
Sheth J, Nair A, Jee B. Lysosomal storage disorders: from biology to the clinic with reference to India. THE LANCET REGIONAL HEALTH. SOUTHEAST ASIA 2023; 9:100108. [PMID: 37383036 PMCID: PMC10305895 DOI: 10.1016/j.lansea.2022.100108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/20/2022] [Accepted: 10/27/2022] [Indexed: 06/30/2023]
Abstract
Lysosomal storage disorders (LSDs) are a group of seventy different metabolic storage diseases due to accumulation of substrate mainly in the form of carbohydrate, lipids, proteins, and cellular debris. They occur due to variant in different genes that regulate lysosomal enzymes synthesis, transport, and secretion. In recent years, due to an increased availability of various therapies to treat these disorders, and increased diagnostic tools, there has been an escalated awareness of LSDs. Due to heterogeneous population and various social reasons, India is likely to have a high frequency of LSDs. Therefore, to understand the burden of various LSDs, its molecular spectrum, and understanding the phenotype-genotype correlation, Indian Council of Medical Research (ICMR) and Department of Health Research (DHR), Government of India had set up a task force in the year 2015. It has resulted in identifying common LSDs, and founder variant for some of the storage disorders and molecular spectrum of various LSDs across the country. This review describes in detail the spectrum of LSDs, its molecular epidemiology and prevention in context to Indian population.
Collapse
Affiliation(s)
- Jayesh Sheth
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad 380015, India
| | - Aadhira Nair
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad 380015, India
| | - Babban Jee
- Department of Health Research, Ministry of Health and Family Welfare, Government of India, 2nd Floor, IRCS Building, Red Cross Road, New Delhi 110001, India
| |
Collapse
|
4
|
Hosoba K. Generation of a novel disease model mouse for mucopolysaccharidosis type VI via c. 252T>C human ARSB mutation knock-in. Biochem Biophys Rep 2022; 31:101321. [PMID: 36032399 PMCID: PMC9399948 DOI: 10.1016/j.bbrep.2022.101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 11/25/2022] Open
Abstract
Mucopolysaccharidosis type VI (MPS VI) is an autosomal recessive lysosomal disorder caused by a mutation in the ARSB gene, which encodes arylsulfatase B (ARSB), and is characterized by glycosaminoglycan accumulation. Some pathogenic mutations have been identified in or near the substrate-binding pocket of ARSB, whereas many missense mutations present far from the substrate-binding pocket. Each MPS VI patient shows different severity of clinical symptoms. To understand the relationship between mutation patterns and the severity of MPS VI clinical symptoms, mutations located far from the substrate-binding pocket must be investigated using mutation knock-in mice. Here, I generated a knock-in mouse model of human ARSB Y85H mutation identified in Japanese MPS VI patients using a CRISPR-Cas9-mediated approach. The generated mouse model exhibited phenotypes similar to those of MPS VI patients, including facial features, mucopolysaccharide accumulation, and smaller body size, suggesting that this mouse will be a valuable model for understanding MPS VI pathology. We generated a mouse model of the Y85H ARSB mutation in humans using CRISPR-Cas9. The knock-in mice exhibited phenotypes similar to those of MPS VI patients. The mice showed facial features, mucopolysaccharide build-up, and smaller bodies. The model could successfully show the correlation between genotype and phenotype. These mice could serve as a useful model for novel therapeutic approaches.
Collapse
|
5
|
Al Dhahouri N, Ali A, Hertecant J, Al-Jasmi F. Case Report: Reinterpretation and Reclassification of ARSB:p.Arg159Cys Variant Identified in an Emirati Patient With Hearing Loss Caused by a Pathogenic Variant in the CDH23 Gene. Front Pediatr 2022; 9:803732. [PMID: 35186827 PMCID: PMC8850695 DOI: 10.3389/fped.2021.803732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/16/2021] [Indexed: 01/30/2023] Open
Abstract
Arylsulfatase B is an enzyme present in the lysosomes that involves in the breakdown of large sugar molecules known as glycosaminoglycans (GAGs). Arylsulfatase B chemically modifies two GAGs, namely, dermatan sulfate and chondroitin sulfate, by removing the sulfate group. Mutations in the gene encoding the arylsulfataseB enzyme causes lysosomal storage disorder, mucopolysaccharidosis type VI (MPS VI), or Maroteaux-Lamy syndrome. In this study, we report a case of congenital hearing loss with mild pigmentary changes in the retina, indicative of Usher syndrome, and a missense variant reported as likely pathogenic for MPS VI. Sequencing results identified a pathogenic missense variant p.Arg1746Gln in the CDH23 gene. However, another missense variant ARSB:p.Arg159Cys was reported as likely pathogenic to the treating physician. Mutations in ARSB gene have been associated with MPS VI. Subsequently, ARSB enzyme activity was found low twice in dried blood spot (DBS), suggestive of MPS VI. The patient did not have the clinical features of MPS VI, but considering the wide clinical spectrum, progressive nature of MPS VI, and the fact that a treatment for MPS VI is available to prevent disease progression, further biochemical, enzymatic, and in silico studies were performed to confirm the pathogenicity of this variant. In silico tools predicted this variant to be pathogenic. However, the results of urine and serum GAGs and ARSB enzyme levels measured from patient's fibroblast were found normal. Based on clinical and biochemical findings, ARSB:p.Arg159Cys is likely benign and did not support the diagnosis of MPS VI. However, CDH23:p.Arg1746Gln, a pathogenic variant, supports the underlying cause of hearing loss. This study highlights the importance of a robust correlation between genetic results and clinical presentation, and biochemical and enzymatic studies, to achieve a differential diagnosis.
Collapse
Affiliation(s)
- Nahid Al Dhahouri
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Amanat Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Jozef Hertecant
- Department of Pediatrics, Tawam Hospital, Al-Ain, United Arab Emirates
| | - Fatma Al-Jasmi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
- Department of Pediatrics, Tawam Hospital, Al-Ain, United Arab Emirates
| |
Collapse
|
6
|
Li M, Gong S, Han X, Zhang S, Ren Q, Cai X, Luo Y, Zhou L, Zhang R, Liu W, Zhu Y, Zhou X, Sun Y, Li Y, Ma Y, Ji L. Genetic variants of ABCC8 and phenotypic features in Chinese early onset diabetes. J Diabetes 2021; 13:542-553. [PMID: 33300273 DOI: 10.1111/1753-0407.13144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/21/2020] [Accepted: 12/06/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND ABCC8 variants cause neonatal diabetes, maturity onset diabetes of the young (MODY), and hyperinsulinemic hypoglycemia because of activating or inactivating variants. In this study we used targeted exon sequencing to investigate genetic variants of ABCC8 and phenotypic features in Chinese patients with early onset diabetes (EOD). METHODS A cross-sectional study of 543 Chinese patients with EOD was recruited and the exons of them were conducted targeted sequencing. The pathogenicity of ABCC8 variants was defined according to the American College of Medical Genetics and Genomics and the Association for Molecular Pathology guideline. The phenotypes of patients owing to ABCC8 variants (ABCC8-MODY) were characterized. RESULTS Among the 543 participants, eight (1.5%) patients with ABCC8-MODY were identified. They harbored eight missense ABCC8 variants (p.R306C, p.E1326K, and p.R1379H, previously reported; p.R298C, p.F1176C, p.R1221W, p.K1358R, and p.I1404V) classified as likely pathogenic. Two family members with ABCC8-MODY were also confirmed. The average diagnosed age of the 10 patients was 26.8 ± 12.9 years. The majority of them had unsatisfactory glucose control, 80% of them had diabetic kidney disease, and neurological features were not observed. CONCLUSION Using targeted exon sequencing followed by pathogenicity analysis, we could be able to make genetic diagnoses for eight (1.5%) patients with ABCC8-MODY. The phenotype was variable with higher risk of diabetic microvascular complications. Genetic diagnosis is conducive for facilitating the personalized treatment of ABCC8-MODY.
Collapse
Affiliation(s)
- Meng Li
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Siqian Gong
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Xueyao Han
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Simin Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Qian Ren
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Yingying Luo
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Lingli Zhou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Rui Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Wei Liu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Yu Zhu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Xianghai Zhou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Yanfang Sun
- Department of Internal Medicine, Hebei Province Sanhe Hospital, Langfang, China
| | - Yufeng Li
- Department of Endocrinology and Metabolism, Capital Medical University Pinggu Hospital, Beijing, China
| | - Yumin Ma
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| |
Collapse
|
7
|
Li M, Han X, Ji L. Clinical and Genetic Characteristics of ABCC8 Nonneonatal Diabetes Mellitus: A Systematic Review. J Diabetes Res 2021; 2021:9479268. [PMID: 34631896 PMCID: PMC8497126 DOI: 10.1155/2021/9479268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Diabetes mellitus (DM) is a major chronic metabolic disease in the world, and the prevalence has been increasing rapidly in recent years. The channel of KATP plays an important role in the regulation of insulin secretion. The variants in ABCC8 gene encoding the SUR1 subunit of KATP could cause a variety of phenotypes, including neonatal diabetes mellitus (ABCC8-NDM) and ABCC8-induced nonneonatal diabetes mellitus (ABCC8-NNDM). Since the features of ABCC8-NNDM have not been elucidated, this study is aimed at concluding the genetic features and clinical characteristics. METHODS We comprehensively reviewed the literature associated with ABCC8-NNDM in the following databases: MEDLINE, PubMed, and Web of Science to investigate the features of ABCC8-NNDM. RESULTS Based on a comprehensive literature search, we found that 87 probands with ABCC8-NNDM carried 71 ABCC8 genetic variant alleles, 24% of whom carried inactivating variants, 24% carried activating variants, and the remaining 52% carried activating or inactivating variants. Nine of these variants were confirmed to be activating or inactivating through functional studies, while four variants (p.R370S, p.E1506K, p.R1418H, and p.R1420H) were confirmed to be inactivating. The phenotypes of ABCC8-NNDM were variable and could also present with early hyperinsulinemia followed by reduced insulin secretion, progressing to diabetes later. They had a relatively high risk of microvascular complications and low prevalence of nervous disease, which is different from ABCC8-NDM. CONCLUSIONS Genetic testing is essential for proper diagnosis and appropriate treatment for patients with ABCC8-NNDM. And further studies are required to determine the complex mechanism of the variants of ABCC8-NNDM.
Collapse
Affiliation(s)
- Meng Li
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China 100044
| | - Xueyao Han
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China 100044
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China 100044
| |
Collapse
|
8
|
Udhaya Kumar S, Thirumal Kumar D, Mandal PD, Sankar S, Haldar R, Kamaraj B, Walter CEJ, Siva R, George Priya Doss C, Zayed H. Comprehensive in silico screening and molecular dynamics studies of missense mutations in Sjogren-Larsson syndrome associated with the ALDH3A2 gene. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 120:349-377. [PMID: 32085885 DOI: 10.1016/bs.apcsb.2019.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sjögren-Larsson syndrome (SLS) is an autoimmune disorder inherited in an autosomal recessive pattern. To date, 80 missense mutations have been identified in association with the Aldehyde Dehydrogenase 3 Family Member A2 (ALDH3A2) gene causing SLS. Disruption of the function of ALDH3A2 leads to excessive accumulation of fat in the cells, which interferes with the normal function of protective membranes or materials that are necessary for the body to function normally. We retrieved 54 missense mutations in the ALDH3A2 from the OMIM, UniProt, dbSNP, and HGMD databases that are known to cause SLS. These mutations were examined with various in silico stability tools, which predicted that the mutations p.S308N and p.R423H that are located at the protein-protein interaction domains are the most destabilizing. Furthermore, to determine the atomistic-level differences within the protein-protein interactions owing to mutations, we performed macromolecular simulation (MMS) using GROMACS to validate the motion patterns and dynamic behavior of the biological system. We found that both mutations (p.S380N and p.R423H) had significant effects on the protein-protein interaction and disrupted the dimeric interactions. The computational pipeline provided in this study helps to elucidate the potential structural and functional differences between the ALDH3A2 native and mutant homodimeric proteins, and will pave the way for drug discovery against specific targets in the SLS patients.
Collapse
Affiliation(s)
- S Udhaya Kumar
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - D Thirumal Kumar
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Pinky D Mandal
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Srivarshini Sankar
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Rishin Haldar
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Balu Kamaraj
- Department of Neuroscience Technology, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Jubail, Saudi Arabia
| | - Charles Emmanuel Jebaraj Walter
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, India
| | - R Siva
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - C George Priya Doss
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
9
|
Identification of arylsulfatase B gene mutations and clinical presentations of Iranian patients with Mucopolysaccharidosis VI. Gene 2019; 706:1-5. [PMID: 31009684 DOI: 10.1016/j.gene.2019.04.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/11/2019] [Accepted: 04/18/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND Mucopolysaccharidosis (MPS) type VI, also known as Maroteaux-Lamy syndrome, is an autosomal recessive lysosomal storage disorder caused by a deficiency in arylsulfatase B (ARSB) enzyme. Our objectives were to investigate clinical phenotypes and performed molecular studies in Iranian patients with MPS VI, for the first time, in the southwestern Iran. METHODS We studied 14 cases from 10 unrelated kindreds with MPS VI that were enrolled during 8 years. The mutational analysis of coding and flanking regions of ARSB gene was performed for the patients and their families using genomic DNA from whole blood by direct sequencing. RESULTS All cases had parental consanguinity. Except one who had Fars ethnicity and presented with a very mild degree of coarse face, but normal otherwise, even near normal height, all were from Arab ethnicity with characteristic phenotypes including severe facial changes, cardiac involvement and dysostosis multiplex. Sequencing analysis of ARSB gene revealed four pathogenic homozygote mutations, including a novel nonsense mutation c.281C>A (p.Ser94X) in 9 patients, as well as, a known nonsense mutation c.753C>G (p.Try251X) in 3 cases, and two missense mutations c.904G>A (p.Gly302Arg) and c.454C>T (p.Arg152Trp) in two cases. The type of mutations affected the severity patient's phenotypes. CONCLUSIONS These findings increased the genetic databases of Iranian patients with MPS VI and would be so much helpful for the high-risk families to speed the detection of carriers with accuracy and perform the prenatal test of disorder with cost-effective in this population.
Collapse
|
10
|
Kadali S, Naushad SM, Radha Rama Devi A, Bodiga VL. Biochemical, machine learning and molecular approaches for the differential diagnosis of Mucopolysaccharidoses. Mol Cell Biochem 2019; 458:27-37. [PMID: 30903511 DOI: 10.1007/s11010-019-03527-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/15/2019] [Indexed: 10/27/2022]
Abstract
This study was aimed to construct classification and regression tree (CART) model of glycosaminoglycans (GAGs) for the differential diagnosis of Mucopolysaccharidoses (MPS). Two-dimensional electrophoresis and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used for the qualitative and quantitative analysis of GAGs. Specific enzyme assays and targeted gene sequencing were performed to confirm the diagnosis. Machine learning tools were used to develop CART model based on GAG profile. Qualitative and quantitative CART models showed 96.3% and 98.3% accuracy, respectively, in the differential diagnosis of MPS. The thresholds of different GAGs diagnostic of specific MPS types were established. In 60 MPS positive cases, 46 different mutations were identified in six specific genes. Among 31 different mutations identified in IDUA, nine were nonsense mutations and two were gross deletions while the remaining were missense mutations. In IDS gene, four missense, two frameshift, and one deletion were identified. In NAGLU gene, c.1693C > T and c.1914_1914insT were the most common mutations. Two ARSB, one case each of SGSH and GALNS mutations were observed. LC-MS/MS-based GAG pattern showed higher accuracy in the differential diagnosis of MPS. The mutation spectrum of MPS, specifically in IDUA and IDS genes, is highly heterogeneous among the cases studied.
Collapse
Affiliation(s)
- Srilatha Kadali
- Department of Biochemistry and Molecular Biology, Institute of Genetics & Hospital for Genetics Diseases, Osmania University, Begumpet, Hyderabad, Telangana, India.,Department of Biochemical Genetics, Sandor Lifesciences Pvt. Ltd, Banjara Hills, Hyderabad, Telangana, India
| | - Shaik Mohammad Naushad
- Department of Biochemical Genetics, Sandor Lifesciences Pvt. Ltd, Banjara Hills, Hyderabad, Telangana, India
| | | | - Vijaya Lakshmi Bodiga
- Department of Biochemistry and Molecular Biology, Institute of Genetics & Hospital for Genetics Diseases, Osmania University, Begumpet, Hyderabad, Telangana, India.
| |
Collapse
|
11
|
Malekpour N, Vakili R, Hamzehloie T. Mutational analysis of ARSB gene in mucopolysaccharidosis type VI: identification of three novel mutations in Iranian patients. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2018; 21:950-956. [PMID: 30524696 PMCID: PMC6272068 DOI: 10.22038/ijbms.2018.27742.6760] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Objective(s): Mucopolysaccharidosis VI (MPS VI) or Maroteaux-Lamy syndrome is a rare metabolic disorder, resulting from the deficient activity of the lysosomal enzyme arylsulfatase B (ARSB). The enzymatic defect of ARSB leads to progressive lysosomal storage disorder and accumulation of glycosaminoglycan (GAG) dermatan sulfate (DS), which causes harmful effects on various organs and tissues and short stature. To date, more than 160 different mutations have been reported in the ARSB gene. Materials and Methods: Here, we analyzed 4 Iranian and 2 Afghan patients, with dysmorphism indicating MPS VI from North-east Iran. To validate the patients’ type of MPS VI, urine mucopolysaccharide and leukocyte ARSB activity were determined. Meanwhile, genomic DNA was amplified for all 8 exons and flanking intron sequences of the ARSB gene to analyze the spectrum of mutations responsible for the disorder in all patients. Results: Abnormal excretion of DS and low leukocyte ARSB activity were observed in the urine samples of all 6 studied patients. In direct DNA sequencing, we detected four different homozygous mutations in different exons, three of which seem not to have been reported previously: p.H178N, p.H242R, and p.*534W. All three novel substitutions were found in patients with Iranian breed. We further detected the IVS5+2T>C mutation in Afghan siblings and four different homozygous polymorphisms, which have all been observed in other populations. Conclusion: results indicated that missense mutations were the most common mutations in the ARSB gene, most of them being distributed throughout the ARSB gene and restricted to individual families, reflecting consanguineous marriages.
Collapse
Affiliation(s)
- Nasrin Malekpour
- Department of Human Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rahim Vakili
- Division of Endocrinology and Metabolism, Department of Pediatrics, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tayebeh Hamzehloie
- Department of Human Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Tomanin R, Karageorgos L, Zanetti A, Al-Sayed M, Bailey M, Miller N, Sakuraba H, Hopwood JJ. Mucopolysaccharidosis type VI (MPS VI) and molecular analysis: Review and classification of published variants in the ARSB gene. Hum Mutat 2018; 39:1788-1802. [PMID: 30118150 PMCID: PMC6282714 DOI: 10.1002/humu.23613] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 01/26/2023]
Abstract
Maroteaux–Lamy syndrome (MPS VI) is an autosomal recessive lysosomal storage disorder caused by pathogenic ARSB gene variants, commonly diagnosed through clinical findings and deficiency of the arylsulfatase B (ASB) enzyme. Detection of ARSB pathogenic variants can independently confirm diagnosis and render genetic counseling possible. In this review, we collect and summarize 908 alleles (201 distinct variants, including 3 polymorphisms previously considered as disease‐causing variants) from 478 individuals diagnosed with MPS VI, identified from literature and public databases. Each variant is further analyzed for clinical classification according to American College of Medical Genetics and Genomics (ACMG) guidelines. Results highlight the heterogeneity of ARSB alleles, with most unique variants (59.5%) identified as missense and 31.7% of unique alleles appearing once. Only 18% of distinct variants were previously recorded in public databases with supporting evidence and clinical significance. ACMG recommends publishing clinical and biochemical data that accurately characterize pathogenicity of new variants in association with reporting specific alleles. Variants analyzed were sent to ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/), and MPS VI locus‐specific database (http://mps6-database.org) where they will be available. High clinical suspicion coupled with diagnostic testing for deficient ASB activity and timely submission and classification of ARSB variants with biochemical and clinical data in public databases is essential for timely diagnosis of MPS VI.
Collapse
Affiliation(s)
- Rosella Tomanin
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women's and Children's Health, University of Padova and "Fondazione Istituto di Ricerca Pediatrica Città della Speranza", Padova, Italy
| | - Litsa Karageorgos
- Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Alessandra Zanetti
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women's and Children's Health, University of Padova and "Fondazione Istituto di Ricerca Pediatrica Città della Speranza", Padova, Italy
| | | | - Mitch Bailey
- BioMarin Pharmaceutical Inc., Novato, CA, United States
| | - Nicole Miller
- BioMarin Pharmaceutical Inc., Novato, CA, United States
| | - Hitoshi Sakuraba
- Department of Clinical Genetics, Meiji Pharmaceutical University, Tokyo, Japan
| | - John J Hopwood
- Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute, Adelaide, Australia
| |
Collapse
|
13
|
Kılıç M, Dursun A, Coşkun T, Tokatlı A, Özgül RK, Yücel-Yılmaz D, Karaca M, Doğru D, Alehan D, Kadayıfçılar S, Genç A, Turan-Dizdar H, Gönüldaş B, Savcı S, Sağlam M, Aksoy C, Arslan U, Sivri HS. Genotypic-phenotypic features and enzyme replacement therapy outcome in patients with mucopolysaccharidosis VI from Turkey. Am J Med Genet A 2017; 173:2954-2967. [PMID: 28884960 DOI: 10.1002/ajmg.a.38459] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 06/07/2017] [Accepted: 08/02/2017] [Indexed: 01/14/2023]
Abstract
Mucopolysaccharidosis type VI (MPS VI) is a lysosomal storage disorder (LSD) characterized by a chronic, progressive course with multiorgan involvement. In our study, clinical, biochemical, molecular findings, and response to enzyme replacement therapy (ERT) for at least 6 months were evaluated in 20 patients with MPS VI. Treatment effects on clinical findings such as liver and spleen sizes, cardiac and respiratory parameters, visual and auditory changes, joints' range of motions, endurance tests and changes in urinary glycosaminoglycan excretions, before and after ERT were analyzed. ERT caused increased physical endurance and decreased urinary dermatan sulfate/chondroitin sulfate ratios. Changes in growth parameters, cardiac, respiratory, visual, auditory findings, and joint mobility were not significant. All patients and parents reported out an increased quality of life, which were not correlated with clinical results. The most prevalent mutation was p.L321P, accounting for 58.8% of the mutant alleles and two novel mutations (p.G79E and p.E390 K) were found. ERT was a safe but expensive treatment for MPS VI, with mild benefits in severely affected patients. Early treatment with ERT is mandatory before many organs and systems are involved.
Collapse
Affiliation(s)
- Mustafa Kılıç
- Sami Ulus Children Hospital, Division of Metabolism, Ankara, Turkey
| | - Ali Dursun
- Hacettepe University Children Hospital, Division of Metabolism, Ankara, Turkey
| | - Turgay Coşkun
- Hacettepe University Children Hospital, Division of Metabolism, Ankara, Turkey
| | - Ayşegül Tokatlı
- Hacettepe University Children Hospital, Division of Metabolism, Ankara, Turkey
| | - Rıza K Özgül
- Hacettepe University Children Hospital, Division of Metabolism, Ankara, Turkey
| | - Didem Yücel-Yılmaz
- Hacettepe University Children Hospital, Division of Metabolism, Ankara, Turkey
| | - Mehmet Karaca
- Faculty of Science and Arts, Department of Biology, Aksaray University, Aksaray, Turkey
| | - Deniz Doğru
- Hacettepe University Children Hospital, Division of Pediatric Pulmonology, Ankara, Turkey
| | - Dursun Alehan
- Hacettepe University Children Hospital, Division of Pediatric Cardiology, Ankara, Turkey
| | - Sibel Kadayıfçılar
- Faculty of Medicine, Department of Ophthalmology, Hacettepe University, Ankara, Turkey
| | - Aydan Genç
- Faculty of Medicine, Department of Ear Nose Throat, Division of Audiology, Hacettepe University, Ankara, Turkey
| | - Handan Turan-Dizdar
- Faculty of Medicine, Department of Ear Nose Throat, Division of Audiology, Hacettepe University, Ankara, Turkey
| | - Burhanettin Gönüldaş
- Faculty of Medicine, Department of Ear Nose Throat, Hacettepe University, Ankara, Turkey
| | - Sema Savcı
- Faculty of Health Sciences, Department of Physiotheraphy and Rehabilitation, Hacettepe University, Ankara, Turkey
| | - Melda Sağlam
- Faculty of Health Sciences, Department of Physiotheraphy and Rehabilitation, Hacettepe University, Ankara, Turkey
| | - Cemalettin Aksoy
- Faculty of Medicine, Department of Orthopaedics and Traumatology, Hacettepe University, Ankara, Turkey
| | - Umut Arslan
- Faculty of Medicine, Department of Biostatistics, Hacettepe University, Ankara, Turkey
| | - Hatice-Serap Sivri
- Hacettepe University Children Hospital, Division of Metabolism, Ankara, Turkey
| |
Collapse
|
14
|
Uttarilli A, Pasumarthi D, Ranganath P, Dalal AB. Functional characterization of arylsulfatase B mutations in Indian patients with Maroteaux-Lamy syndrome (mucopolysaccharidosis type VI). Gene 2017; 599:19-27. [DOI: 10.1016/j.gene.2016.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/02/2016] [Accepted: 11/04/2016] [Indexed: 11/27/2022]
|