1
|
McGilp L, Haas MW, Shao M, Millas R, Castell‐Miller C, Kern AJ, Shannon LM, Kimball JA. Towards Stewardship of Wild Species and Their Domesticated Counterparts: A Case Study in Northern Wild Rice ( Zizania palustris L.). Ecol Evol 2025; 15:e71033. [PMID: 40092897 PMCID: PMC11906255 DOI: 10.1002/ece3.71033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/23/2025] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
Northern Wild Rice (NWR; Zizania palustris L.) is an aquatic, annual grass with significant ecological, cultural, and economic importance to the Great Lakes region of North America. In this study, we assembled and genotyped a diverse collection of 839 NWR individuals using genotyping-by-sequencing (GBS) and obtained 5955 single-nucleotide polymorphisms (SNPs). This collection consisted of samples from 12 wild NWR populations collected across Minnesota and Western Wisconsin, some of which were collected over two time points; a representative collection of cultivated NWR varieties and breeding populations; and a Zizania aquatica outgroup. Using these data, we characterized the genetic diversity, relatedness, and population structure of this broad collection of NWR genotypes. We found that wild populations of NWR clustered primarily by their geographical location, with some clustering patterns likely influenced by historical ecosystem management. Cultivated populations were genetically distinct from wild populations, suggesting limited gene flow between the semi-domesticated crop and its wild counterparts. The first genome-wide scans of putative selection events in cultivated NWR suggest that the crop is undergoing heavy selection pressure for traits conducive to irrigated paddy conditions. Overall, this study presents a large set of SNP markers for use in NWR genetic studies and provides new insights into the gene flow, history, and complexity of wild and cultivated populations of NWR.
Collapse
Affiliation(s)
- Lillian McGilp
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Matthew W. Haas
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Mingqin Shao
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Reneth Millas
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulMinnesotaUSA
| | | | - Anthony J. Kern
- Department of Math, Science and TechnologyUniversity of MinnesotaCrookstonMinnesotaUSA
| | - Laura M. Shannon
- Department of Horticultural ScienceUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Jennifer A. Kimball
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulMinnesotaUSA
| |
Collapse
|
2
|
Lei X, Su X, Zhou C, Jiang S, Yuan X, Zhao Y, Jiang S. Genetic structure and designing a preliminary core collection of Zizania latifolia in China based on 12 microsatellites markers. PeerJ 2025; 13:e18909. [PMID: 39995990 PMCID: PMC11849519 DOI: 10.7717/peerj.18909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/06/2025] [Indexed: 02/26/2025] Open
Abstract
The genetic diversity and structure of wild crop relatives are crucial for their conservation and utilization in breeding programs. This study presents a comprehensive survey and collection of Zizania latifolia across its natural distribution range in China. Using 12 microsatellite markers, the genetic diversity of 357 wild Z. latifolia accessions from 25 populations was evaluated, revealing a high genetic diversity (H e = 0.439). The genetic structure analysis indicated significant genetic differentiation among populations, with evidence of isolation by distance. CoreHunter3 and PowerMarker software were employed to design a preliminary core collection, and the final core collection comprised 92 wild accessions. The core collection was found to be representative of the original germplasm, ensuring the effective conservation of Z. latifolia's genetic resources. This study would provide valuable insights for the development of conservation strategies and the utilization of Z. latifolia.
Collapse
Affiliation(s)
- Xiangliang Lei
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Fuzhou Institute of Agricultural Science, Fuzhou, Jiangxi, China
| | - Xiaona Su
- Nanchang Business College, Jiangxi Agricultural University, Jiujiang, Jiangxi, China
| | | | - Shaolin Jiang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xiaoquan Yuan
- Fuzhou Institute of Agricultural Science, Fuzhou, Jiangxi, China
| | - Yao Zhao
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Center for Watershed Ecology, School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Shaomei Jiang
- School of Statistics and Data Science, Jiangxi University of Finance and Economics, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Zhao Y, Liao LB, Zhu ZW, Zhang LD, Xiong ZD, Song ZP, Yan N, Zhong AW, Zhang J, Zhou CC, Rong J. De novo assembly of a near-complete genome of aquatic vegetable Zizania latifolia in the Yangtze River Basin. Sci Data 2024; 11:1341. [PMID: 39695195 PMCID: PMC11655518 DOI: 10.1038/s41597-024-04220-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
The cultivated Zizania latifolia, an aquatic vegetable prevalent in the Yangtze River Basin, represents a unique plant-fungus complex whose domestication is associated with host-parasite co-evolution. In this study, we present a high-quality, chromosome-scale genome assembly of cultivated Z. latifolia. We employed PacBio long-read sequencing and Hi-C technology to generate ~578.42 Mb genome assembly, which contains 47.59% repeat sequences with a contig N50 of ~33.75 Mb. The contigs were successfully clustered into 17 chromosomal-sized scaffolds with a GC content of 43.26%, showing 98.39% completeness in BUSCO analysis. In total, we predicted 39,934 protein-coding genes, 88.79% of which could be functionally annotated. This genome assembly provides a valuable resource for unraveling Z. latifolia's domestication process, and advances our understanding of the evolutionary history and agricultural potential of Z. latifolia.
Collapse
Affiliation(s)
- Yao Zhao
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Center for Watershed Ecology, School of Life Sciences, Nanchang University, Nanchang, 330031, Jiangxi, P. R. China
- Jiangxi Poyang Lake Wetland Conservation and Restoration National Permanent Scientific Research Base, National Ecosystem Research Station of Jiangxi Poyang Lake Wetland, Nanchang University, Nanchang, 330031, Jiangxi, P. R. China
- Jiangxi Province Key Laboratory of Wetland Plant Resources Conservation and Utilization, Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, 332900, P. R. China
| | - Li-Bing Liao
- Jiangxi Province Key Laboratory of Wetland Plant Resources Conservation and Utilization, Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, 332900, P. R. China
| | - Zi-Wei Zhu
- Jiangxi Poyang Lake Wetland Conservation and Restoration National Permanent Scientific Research Base, National Ecosystem Research Station of Jiangxi Poyang Lake Wetland, Nanchang University, Nanchang, 330031, Jiangxi, P. R. China
- Jiangxi Academy of Forestry, Nanchang, 330013, Jiangxi, P. R. China
| | - Li-Dong Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Center for Watershed Ecology, School of Life Sciences, Nanchang University, Nanchang, 330031, Jiangxi, P. R. China
| | - Zi-Dong Xiong
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Center for Watershed Ecology, School of Life Sciences, Nanchang University, Nanchang, 330031, Jiangxi, P. R. China
| | - Zhi-Ping Song
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai, 200438, P. R. China
| | - Ning Yan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, P. R. China
| | - Ai-Wen Zhong
- Jiangxi Province Key Laboratory of Wetland Plant Resources Conservation and Utilization, Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, 332900, P. R. China
| | - Jian Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Center for Watershed Ecology, School of Life Sciences, Nanchang University, Nanchang, 330031, Jiangxi, P. R. China
- Jiangxi Poyang Lake Wetland Conservation and Restoration National Permanent Scientific Research Base, National Ecosystem Research Station of Jiangxi Poyang Lake Wetland, Nanchang University, Nanchang, 330031, Jiangxi, P. R. China
| | - Cheng-Chuan Zhou
- Jiangxi Academy of Forestry, Nanchang, 330013, Jiangxi, P. R. China.
| | - Jun Rong
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Center for Watershed Ecology, School of Life Sciences, Nanchang University, Nanchang, 330031, Jiangxi, P. R. China.
- Jiangxi Poyang Lake Wetland Conservation and Restoration National Permanent Scientific Research Base, National Ecosystem Research Station of Jiangxi Poyang Lake Wetland, Nanchang University, Nanchang, 330031, Jiangxi, P. R. China.
- Jiangxi Province Key Laboratory of Wetland Plant Resources Conservation and Utilization, Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, 332900, P. R. China.
| |
Collapse
|
4
|
Zhang Z, Shi W, Gu J, Song S, Xiao M, Yao J, Liu Y, Jiang J, Miao M. Short day promotes gall swelling by a CONSTANS-FLOWERING LOCUS T pathway in Zizania latifolia. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1014-1031. [PMID: 39292875 DOI: 10.1111/tpj.17033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/24/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
"Jiaobai" is a symbiont of Zizania latifolia and Ustilago esculenta, producing fleshy galls as a popular vegetable in South and East Asia. Current "Jiaobai" cultivars exhibit abundant variation in their gall formation date; however, the underlying mechanism is not clear. In this study, a strict short-day (SD) "Jiaobai" line "YD-3" was used. Plants were treated with two day-length regimes [14 h/10 h (day/night) (control) and 8 h/16 h (day/night) (SD)] from 100 to 130 days after planting. The gall swelling rate of the two treatments and another early SD treatment (from 60 to 90 days after planting), together with the contingent flowering plants in the experiment population, revealed that SD can improve both gall enlargement and flowering of "Jiaobai" plants. Comparison of RNA sequencing data among control, SD swelling, and SD flowering treatments of leaves and meristems indicated that SD promotion of "Jiaobai" swelling is conducted by the CONSTANS (CO)-FLOWERING LOCUS T (FT) pathway, similar but not identical to the SD-induced flowering pathway in Z latifolia and rice. "Virus-induced gene silencing", "Yeast one-hybrid assay" and "Dual-luciferase assay" showed that a FT gene, ZlGsd1, is critical in SD promotion of gall formation and is positively regulated by a CO gene, ZlCOL1. Our study elucidated how photoperiod affects the formation of a unique organ produced by plant-fungus symbiosis. The difference in SD response between "Jiaobai" and rice, as well as their potential applications in breeding of "Jiaobai" and rice, were also discussed.
Collapse
Affiliation(s)
- Zhiping Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Wangjie Shi
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Jiawen Gu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Sixiao Song
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Meng Xiao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Junchi Yao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Yancheng Liu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Jiezeng Jiang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Minmin Miao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| |
Collapse
|
5
|
Wu W, Han Y, Niu B, Yang B, Liu R, Fang X, Chen H, Xiao S, Farag MA, Zheng S, Xiao J, Chen H, Gao H. Recent advances in Zizania latifolia: A comprehensive review on phytochemical, health benefits and applications that maximize its value. Crit Rev Food Sci Nutr 2024; 64:7535-7549. [PMID: 36908217 DOI: 10.1080/10408398.2023.2186125] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Zizania latifolia is an aquatic and medicinal plant with a long history of development in China and the East Asian region. The smut fungus "Ustilago esculenta" parasitizes Z. latifolia and induces culm expansion to form a vegetable named Jiaobai, which has a unique taste and nutritional attributes. However, the postharvest quality of water bamboo shoots is still a big challenge for farmers and merchants. This paper traced the origin, development process, and morphological characteristics of Z. latifolia. Subsequently, the compilation of the primary nutrients and bioactive substances are presented in context to their effects on ecology a postharvest storage and preservation methods. Furthermore, the industrial, environmental, and material science applications of Z. latifolia in the fields of industry were discussed. Finally, the primary objective of the review proposes future directions for research to support the development of Z. latifolia industry and aid in maximizing its value. To sum up, Z. latifolia, aside from its potential as material it can be utilized to make different productions and improve the existing applications. This paper provides an emerging strategy for researchers undertaking Z. latifolia.
Collapse
Affiliation(s)
- Weijie Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of postharvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key laboratory of fruits and vegetables postharvest and processing technology research of Zhejiang province, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yanchao Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of postharvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key laboratory of fruits and vegetables postharvest and processing technology research of Zhejiang province, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ben Niu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of postharvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key laboratory of fruits and vegetables postharvest and processing technology research of Zhejiang province, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Baiqi Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of postharvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key laboratory of fruits and vegetables postharvest and processing technology research of Zhejiang province, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ruiling Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of postharvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key laboratory of fruits and vegetables postharvest and processing technology research of Zhejiang province, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiangjun Fang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of postharvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key laboratory of fruits and vegetables postharvest and processing technology research of Zhejiang province, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Huizhi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of postharvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key laboratory of fruits and vegetables postharvest and processing technology research of Zhejiang province, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shangyue Xiao
- Department of Analytical Chemistry and Food Science, University of Vigo, Vigo, Spain
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Shiqi Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of postharvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key laboratory of fruits and vegetables postharvest and processing technology research of Zhejiang province, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, University of Vigo, Vigo, Spain
| | - Hangjun Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of postharvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key laboratory of fruits and vegetables postharvest and processing technology research of Zhejiang province, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Haiyan Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of postharvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key laboratory of fruits and vegetables postharvest and processing technology research of Zhejiang province, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
6
|
Castell-Miller CV, Kono TJ, Ranjan A, Schlatter DC, Samac DA, Kimball JA. Interactive transcriptome analyses of Northern Wild Rice ( Zizania palustris L.) and Bipolaris oryzae show convoluted communications during the early stages of fungal brown spot development. FRONTIERS IN PLANT SCIENCE 2024; 15:1350281. [PMID: 38736448 PMCID: PMC11086184 DOI: 10.3389/fpls.2024.1350281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/02/2024] [Indexed: 05/14/2024]
Abstract
Fungal diseases, caused mainly by Bipolaris spp., are past and current threats to Northern Wild Rice (NWR) grain production and germplasm preservation in both natural and cultivated settings. Genetic resistance against the pathogen is scarce. Toward expanding our understanding of the global gene communications of NWR and Bipolaris oryzae interaction, we designed an RNA sequencing study encompassing the first 12 h and 48 h of their encounter. NWR activated numerous plant recognition receptors after pathogen infection, followed by active transcriptional reprogramming of signaling mechanisms driven by Ca2+ and its sensors, mitogen-activated protein kinase cascades, activation of an oxidative burst, and phytohormone signaling-bound mechanisms. Several transcription factors associated with plant defense were found to be expressed. Importantly, evidence of diterpenoid phytoalexins, especially phytocassane biosynthesis, among expression of other defense genes was found. In B. oryzae, predicted genes associated with pathogenicity including secreted effectors that could target plant defense mechanisms were expressed. This study uncovered the early molecular communication between the NWR-B. oryzae pathosystem, which could guide selection for allele-specific genes to boost NWR defenses, and overall aid in the development of more efficient selection methods in NWR breeding through the use of the most virulent fungal isolates.
Collapse
Affiliation(s)
| | - Thomas J.Y. Kono
- Minnesota Supercomputing Institute, University of Minnesota, Saint Paul, MN, United States
| | - Ashish Ranjan
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
| | - Daniel C. Schlatter
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
- United States Department of Agriculture, Agricultural Research Service, Plant Science Research Unit, Saint Paul, MN, United States
| | - Deborah A. Samac
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
- United States Department of Agriculture, Agricultural Research Service, Plant Science Research Unit, Saint Paul, MN, United States
| | - Jennifer A. Kimball
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
7
|
Xie YN, Qi QQ, Li WH, Li YL, Zhang Y, Wang HM, Zhang YF, Ye ZH, Guo DP, Qian Q, Zhang ZF, Yan N. Domestication, breeding, omics research, and important genes of Zizania latifolia and Zizania palustris. FRONTIERS IN PLANT SCIENCE 2023; 14:1183739. [PMID: 37324716 PMCID: PMC10266587 DOI: 10.3389/fpls.2023.1183739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Wild rice (Zizania spp.), an aquatic grass belonging to the subfamily Gramineae, has a high economic value. Zizania provides food (such as grains and vegetables), a habitat for wild animals, and paper-making pulps, possesses certain medicinal values, and helps control water eutrophication. Zizania is an ideal resource for expanding and enriching a rice breeding gene bank to naturally preserve valuable characteristics lost during domestication. With the Z. latifolia and Z. palustris genomes completely sequenced, fundamental achievements have been made toward understanding the origin and domestication, as well as the genetic basis of important agronomic traits of this genus, substantially accelerating the domestication of this wild plant. The present review summarizes the research results on the edible history, economic value, domestication, breeding, omics research, and important genes of Z. latifolia and Z. palustris over the past decades. These findings broaden the collective understanding of Zizania domestication and breeding, furthering human domestication, improvement, and long-term sustainability of wild plant cultivation.
Collapse
Affiliation(s)
- Yan-Ning Xie
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Qian-Qian Qi
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Wan-Hong Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Ya-Li Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yu Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Hui-Mei Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Ya-Fen Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Zi-Hong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - De-Ping Guo
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhong-Feng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Ning Yan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
8
|
Zhang H, Su J, Wang Q, Yuan M, Li C. Structure, gelatinization, and digestion characteristics of starch from Chinese wild rice. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2147943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Haifeng Zhang
- College of Tourism and Cuisine, Yangzhou University, Yangzhou, JP, P. R. China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, JP, P. R. China
| | - Jiamin Su
- College of Tourism and Cuisine, Yangzhou University, Yangzhou, JP, P. R. China
| | - Qiuyu Wang
- College of Tourism and Cuisine, Yangzhou University, Yangzhou, JP, P. R. China
| | - Meng Yuan
- College of Tourism and Cuisine, Yangzhou University, Yangzhou, JP, P. R. China
| | - Chunmei Li
- College of Tourism and Cuisine, Yangzhou University, Yangzhou, JP, P. R. China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, JP, P. R. China
| |
Collapse
|
9
|
Xiao Z, Deng J, Zhou X, Zhu L, He X, Zheng J, Guo D, Zhang J. Shoot rot of Zizania latifolia and the first record of its pathogen Pantoea ananatis in China. J Zhejiang Univ Sci B 2022; 23:328-338. [PMID: 35403387 DOI: 10.1631/jzus.b2100682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aquatic grass Zizania latifolia grows symbiotically with the fungus Ustilago esculenta producing swollen structures called Jiaobai, widely cultivated in China. A new disease of Z. latifolia was found in Zhejiang Province, China. Initial lesions appeared on the leaf sheaths or sometimes on the leaves near the leaf sheaths. The lesions extended along the axis of the leaf shoots and formed long brown to dark brown streaks from the leaf sheath to the leaf, causing sheath rot and death of entire leaves on young plants. The pathogen was isolated and identified as the bacterium Pantoea ananatis, based on 16S ribosomal RNA (rRNA) gene sequencing, multilocus sequence analysis (atpD (β-subunit of ATP synthase F1), gyrB (DNA gyrase subunit B), infB (translation initiation factor 2), and rpoB (β-subunit of RNA polymerase) genes), and pathogenicity tests. Ultrastructural observations using scanning electron microscopy revealed that the bacterial cells colonized the vascular tissues in leaf sheaths, forming biofilms on the inner surface of vessel walls, and extended between vessel elements via the perforated plates. To achieve efficient detection and diagnosis of P. ananatis, species-specific primer pairs were designed and validated by testing closely related and unrelated species and diseased tissues of Z. latifolia. This is the first report of bacterial sheath rot disease of Z. latifolia caused by P. ananatis in China.
Collapse
Affiliation(s)
- Zilan Xiao
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jianping Deng
- Plant Protection and Plant Inspection Station of Jinyun County, Jinyun 321401, China
| | - Xiaojun Zhou
- Jinhua Academy of Agricultural Sciences, Jinhua 321017, China
| | - Liyan Zhu
- Jinhua Academy of Agricultural Sciences, Jinhua 321017, China
| | - Xiaochan He
- Jinhua Academy of Agricultural Sciences, Jinhua 321017, China
| | - Jingwu Zheng
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Deping Guo
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China. ,
| | - Jingze Zhang
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
10
|
Yan N, Yang T, Yu XT, Shang LG, Guo DP, Zhang Y, Meng L, Qi QQ, Li YL, Du YM, Liu XM, Yuan XL, Qin P, Qiu J, Qian Q, Zhang ZF. Chromosome-level genome assembly of Zizania latifolia provides insights into its seed shattering and phytocassane biosynthesis. Commun Biol 2022; 5:36. [PMID: 35017643 PMCID: PMC8752815 DOI: 10.1038/s42003-021-02993-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 12/21/2021] [Indexed: 12/25/2022] Open
Abstract
Chinese wild rice (Zizania latifolia; family: Gramineae) is a valuable medicinal homologous grain in East and Southeast Asia. Here, using Nanopore sequencing and Hi-C scaffolding, we generated a 547.38 Mb chromosome-level genome assembly comprising 332 contigs and 164 scaffolds (contig N50 = 4.48 Mb; scaffold N50 = 32.79 Mb). The genome harbors 38,852 genes, with 52.89% of the genome comprising repetitive sequences. Phylogenetic analyses revealed close relation of Z. latifolia to Leersia perrieri and Oryza species, with a divergence time of 19.7-31.0 million years. Collinearity and transcriptome analyses revealed candidate genes related to seed shattering, providing basic information on abscission layer formation and degradation in Z. latifolia. Moreover, two genomic blocks in the Z. latifolia genome showed good synteny with the rice phytocassane biosynthetic gene cluster. The updated genome will support future studies on the genetic improvement of Chinese wild rice and comparative analyses between Z. latifolia and other plants.
Collapse
Affiliation(s)
- Ning Yan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Ting Yang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xiu-Ting Yu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lian-Guang Shang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - De-Ping Guo
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yu Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Lin Meng
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Qian-Qian Qi
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ya-Li Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yong-Mei Du
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xin-Min Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xiao-Long Yuan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Peng Qin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jie Qiu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China.
| | - Zhong-Feng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
11
|
Ma YM, Zhu JZ, Li XG, Wang LL, Zhong J. Identification and First Report of Fusarium andiyazi Causing Sheath Rot of Zizania latifolia in China. PLANTS 2021; 10:plants10091844. [PMID: 34579377 PMCID: PMC8468070 DOI: 10.3390/plants10091844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022]
Abstract
Zizania latifolia is a perennial plant native to East Asia. The swollen culm of Z. latifolia is a popular vegetable and traditional herbal medicine consumed in China and some other Asian countries. From 2019 to 2021, a sheath rot disease was found in Zhejiang Province of China. Symptoms mainly occurred in the leaf sheath showing as brown necrotic lesions surrounded by yellow halos. The pathogen fungal isolates were isolated from the affected sheaths. Ten representative isolates were selected for morphological and molecular identification by phylogenetic analyses of the translation elongation factor 1-α (TEF1) and the RNA polymerase II subunit beta (RPB2) gene regions. Based on the combined datasets, the fungal isolates were identified as Fusarium andiyazi. Koch’s postulates were confirmed by pathogenicity test, re-isolation and re-identification of the fungal isolates. To the best of our knowledge, this is the first report of sheath rot caused by F. andiyazi in Z. latifolia in China.
Collapse
Affiliation(s)
- Ya-Min Ma
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha 410128, China; (Y.-M.M.); (J.-Z.Z.)
- Jinyun Plant Protective Station, Daqiao North Road 290, Lishui 321400, China
| | - Jun-Zi Zhu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha 410128, China; (Y.-M.M.); (J.-Z.Z.)
| | - Xiao-Gang Li
- Hunan Engineering Research Center of Agricultural Pest Early Warning and Control, Hunan Agricultural University, Nongda Road 1, Changsha 410128, China
- Correspondence: (X.-G.L.); (L.-L.W.); (J.Z.)
| | - Lai-Liang Wang
- Lishui Institute of Agricultural and Forestry Sciences, Liyang Stress 827, Lishui 323000, China
- Correspondence: (X.-G.L.); (L.-L.W.); (J.Z.)
| | - Jie Zhong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha 410128, China; (Y.-M.M.); (J.-Z.Z.)
- Correspondence: (X.-G.L.); (L.-L.W.); (J.Z.)
| |
Collapse
|
12
|
Haas M, Kono T, Macchietto M, Millas R, McGilp L, Shao M, Duquette J, Qiu Y, Hirsch CN, Kimball J. Whole-genome assembly and annotation of northern wild rice, Zizania palustris L., supports a whole-genome duplication in the Zizania genus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1802-1818. [PMID: 34310794 DOI: 10.1111/tpj.15419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/16/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Zizania palustris L. (northern wild rice, NWR) is an aquatic grass native to North America that is notable for its nutritious grain. This is an important species with ecological, cultural and agricultural significance, specifically in the Great Lakes region of the USA. Using flow cytometry, we first estimated the NWR genome size to be 1.8 Gb. Using long- and short-range sequencing, Hi-C scaffolding and RNA-seq data from eight tissues, we generated an annotated whole-genome de novo assembly of NWR. The assembly was 1.29 Gb in length, highly repetitive (approx. 76.0%) and contained 46 421 putative protein-coding genes. The expansion of retrotransposons within the genome and a whole-genome duplication (WGD) after the Zizania-Oryza speciation event have both led to an increase in the genome size of NWR in comparison with Oryza sativa L. and Zizania latifolia. Both events depict a genome rapidly undergoing change over a short evolutionary time. Comparative analyses revealed the conservation of large syntenic blocks between NWR and O. sativa, which were used to identify putative seed-shattering genes. Estimates of divergence times revealed that the Zizania genus diverged from Oryza approximately 26-30 million years ago (26-30 MYA), whereas NWR and Z. latifolia diverged from one another approximately 6-8 MYA. Comparative genomics confirmed evidence of a WGD in the Zizania genus and provided support that the event occurred prior to the NWR-Z. latifolia speciation event. This genome assembly and annotation provides a valuable resource for comparative genomics in the Oryzeae tribe and provides an important resource for future conservation and breeding efforts of NWR.
Collapse
Affiliation(s)
- Matthew Haas
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Thomas Kono
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Marissa Macchietto
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Reneth Millas
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Lillian McGilp
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Mingqin Shao
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Jacques Duquette
- North Central Research and Outreach Center, University of Minnesota, Grand Rapids, MN, 55744, USA
| | - Yinjie Qiu
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Candice N Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Jennifer Kimball
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| |
Collapse
|
13
|
Yu X, Chu M, Chu C, Du Y, Shi J, Liu X, Liu Y, Zhang H, Zhang Z, Yan N. Wild rice (Zizania spp.): A review of its nutritional constituents, phytochemicals, antioxidant activities, and health-promoting effects. Food Chem 2020; 331:127293. [DOI: 10.1016/j.foodchem.2020.127293] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/01/2020] [Accepted: 06/08/2020] [Indexed: 02/08/2023]
|
14
|
Identification of single nucleotide polymorphism markers for population genetic studies in Zizania palustris L. CONSERV GENET RESOUR 2019. [DOI: 10.1007/s12686-019-01116-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
15
|
Zhao Y, Song Z, Zhong L, Li Q, Chen J, Rong J. Inferring the Origin of Cultivated Zizania latifolia, an Aquatic Vegetable of a Plant-Fungus Complex in the Yangtze River Basin. FRONTIERS IN PLANT SCIENCE 2019; 10:1406. [PMID: 31787995 PMCID: PMC6856052 DOI: 10.3389/fpls.2019.01406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/10/2019] [Indexed: 05/10/2023]
Abstract
Crop domestication is one of the essential topics in evolutionary biology. Cultivated Zizania latifolia, domesticated as the special form of a plant-fungus (the host Zizania latifolia and the endophyte Ustilago esculenta) complex, is a popular aquatic vegetable endemic in East Asia. The rapid domestication of cultivated Z. latifolia can be traced in the historical literature but still need more evidence. This study focused on deciphering the genetic relationship between wild and cultivated Z. latifolia, as well as the corresponding parasitic U. esculenta. Twelve microsatellites markers were used to study the genetic variations of 32 wild populations and 135 landraces of Z. latifolia. Model simulations based on approximate Bayesian computation (ABC) were then performed to hierarchically infer the population history. We also analyzed the ITS sequences of the smut fungus U. esculenta to reveal its genetic structure. Our results indicated a significant genetic divergence between cultivated Z. latifolia and its wild ancestors. The wild Z. latifolia populations showed significant hierarchical genetic subdivisions, which may be attributed to the joint effect of isolation by distance and hydrological unconnectedness between watersheds. Cultivated Z. latifolia was supposedly domesticated once in the low reaches of the Yangtze River. The genetic structure of U. esculenta also indicated a single domestication event, and the genetic variations in this fungus might be associated with the diversification of cultivars. These findings provided molecular evidence in accordance with the historical literature that addressed the domestication of cultivated Z. latifolia involved adaptive evolution driven by artificial selection in both the plant and fungus.
Collapse
Affiliation(s)
- Yao Zhao
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, China
- The Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, China
| | - Zhiping Song
- The Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, China
| | - Lan Zhong
- Institute of Vegetable, Wuhan Academy of Agriculture Science and Technology, Wuhan, China
| | - Qin Li
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, China
- The Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, China
| | - Jiakuan Chen
- The Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, China
| | - Jun Rong
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, China
- *Correspondence: Jun Rong,
| |
Collapse
|
16
|
Huang J, Yang LQ, Yu Y, Liu YM, Xie DF, Li J, He XJ, Zhou SD. Molecular phylogenetics and historical biogeography of the tribe Lilieae (Liliaceae): bi-directional dispersal between biodiversity hotspots in Eurasia. ANNALS OF BOTANY 2018; 122:1245-1262. [PMID: 30084909 PMCID: PMC6324749 DOI: 10.1093/aob/mcy138] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/22/2018] [Indexed: 05/25/2023]
Abstract
Background and Aims The role played by the Qinghai-Tibet Plateau (QTP) in the organismal diversification and biogeography of plants in the Northern Hemisphere has attracted much attention from evolutionary biologists. Here we use tribe Lilieae (Liliaceae), including primarily temperate and alpine lineages with disjunct distributions in the North Temperate Zone, as a case study to shed light upon these processes. Methods Using 191 taxa (five outgroup taxa) comprising more than 60 % of extant Lilieae species across the entire geographical range, we analyse phylogenetic relationships based on three plastid markers (matK, rbcL, rpl16) and nuclear ITS. Divergence time estimation and ancestral range reconstruction were further inferred. Key Results The results support a monophyletic Lilieae divided into four clades. Lilium is nested within Fritillaria, which is paraphyletic and partitioned into two clades, New World and Old World, in the chloroplast DNA (cpDNA) analysis. Incongruences between the ITS and cpDNA trees may be explained by divergent ITS paralogues and hybridization. Lilieae originated around 40-49 (28-67) Mya and probably diversified in the QTP region with four major clades that were established during the Oligocene and the Early Miocene. Uplift of the QTP and climatic changes probably drove early diversification of Lilieae in the QTP region. A rapid radiation occurred during the Late Miocene and the Pleistocene, coinciding temporally with recent orogenic process in the QTP region and climatic oscillations. Several lineages dispersed out of the QTP. Conclusions Lineage persistence and explosive radiation were important processes for establishing high species diversity of Lilieae in the QTP region. Both long-distance dispersal and migration across Beringia probably contributed to the modern distribution range of Lilieae. Our study shows that biotic interchanges between the QTP region and Irano-Turanian region and the Mediterranean Basin were bi-directional, suggesting the latter was a secondary centre of diversity.
Collapse
Affiliation(s)
- Jiao Huang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, Sichuan, China
- College of Life Science, Leshan Normal University, Leshan, Sichuan, China
| | - Li-Qin Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, Sichuan, China
| | - Yan Yu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, Sichuan, China
| | - Yan-Mei Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, Sichuan, China
| | - Deng-Feng Xie
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, Sichuan, China
| | - Juan Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, Sichuan, China
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, Sichuan, China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
17
|
Zhao Y, Zhong L, Zhou K, Song Z, Chen J, Rong J. Seed characteristic variations and genetic structure of wild Zizania latifolia along a latitudinal gradient in China: implications for neo-domestication as a grain crop. AOB PLANTS 2018; 10:ply072. [PMID: 30595833 PMCID: PMC6304442 DOI: 10.1093/aobpla/ply072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
Crop wild relatives are not only important genetic resources for crop improvement, but also domestication candidates for selecting new crops. As a close relative of American wild rice Zizania palustris, Z. latifolia is a perennial aquatic grass widely distributed in China. Although Z. latifolia has been domesticated and cultivated as an aquatic vegetable for >1000 years, a neo-domestication for grain production needs to be soundly evaluated. In this study, we investigated the seed characteristic variations and genetic structure of 15 Z. latifolia wild populations along a latitudinal gradient in China. Our results showed that Z. latifolia tended to produce relatively larger seeds with lower moisture content and lower investments in seed pericarp at lower latitudes. The width, size, shape, seed-pericarp ratio and relative water content of seeds were significantly associated with climatic variables. The seeds of Z. latifolia showed a relatively low germination percentage and strong dormancy, which might hinder the neo-domestication. In addition, high genetic differentiation had been found among Z. latifolia populations, which could be attributed to isolation by distance. This study offered preliminary information for the utilization and conservation of wild Z. latifolia. It suggested that the wild populations in the middle and lower reaches of the Yangtze River could be good candidates for grain crop domestication due to appropriate seed traits and high genetic diversity. The neo-domestication of wild Z. latifolia requires further researches on the genetic mechanism of the Domestication Syndrome and more works on artificial breeding.
Collapse
Affiliation(s)
- Yao Zhao
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, China
- The Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, China
| | - Lan Zhong
- Institute of Vegetable, Wuhan Academy of Agriculture Science and Technology, Wuhan, Hubei Province, China
| | - Kai Zhou
- Institute of Vegetable, Wuhan Academy of Agriculture Science and Technology, Wuhan, Hubei Province, China
| | - Zhiping Song
- The Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, China
| | - Jiakuan Chen
- The Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, China
| | - Jun Rong
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, China
| |
Collapse
|
18
|
Yu Y, Wang S, Zhang Q, Yang Y, Chen Y, Liu X, Feng C, Hu D, Lu P. Dissipation, residues, and risk assessment of imidacloprid in Zizania latifolia and purple sweet potato under field conditions using LC-MS/MS. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2018; 54:89-97. [PMID: 30460878 DOI: 10.1080/03601234.2018.1531661] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/28/2018] [Indexed: 06/09/2023]
Abstract
A shortened version of Quick, Easy, Cheap, Effective, Rugged, and Safe method (QuEChERS) for determining the dissipation and residue of imidacloprid present in Zizania latifolia and purple sweet potato was established by using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The average recoveries of imidacloprid in the two crops ranged from 82.12 to 113.79%, with relative standard deviation (RSD) of <7.32%. The dissipation dynamics of imidacloprid in Z. latifolia plants and purple sweet potato plants followed first-order kinetics, with half-lives of 3.2-5.5 days in each of sampling locations. The terminal imidacloprid residues in Z. latifolia and purple sweet potato at each of location were <0.005-0.120 mg kg-1. According to the risk assessment results, both the acute dietary risk quotient and chronic dietary risk quotient values were <1, indicating that imidacloprid is unlikely to pose health risks to humans with normal recommended use. The present study may serve as a valuable reference for the safe and reasonable use of imidacloprid in Z. latifolia and purple sweet potato fields.
Collapse
Affiliation(s)
- Yurong Yu
- a Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Guiyang , People's Republic of China
- b Center for Research and Development of Fine Chemicals , Guizhou University , Guiyang , People's Republic of China
| | - Shouyi Wang
- a Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Guiyang , People's Republic of China
- b Center for Research and Development of Fine Chemicals , Guizhou University , Guiyang , People's Republic of China
| | - Qingtao Zhang
- a Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Guiyang , People's Republic of China
- b Center for Research and Development of Fine Chemicals , Guizhou University , Guiyang , People's Republic of China
| | - Ya Yang
- b Center for Research and Development of Fine Chemicals , Guizhou University , Guiyang , People's Republic of China
| | - Ya Chen
- b Center for Research and Development of Fine Chemicals , Guizhou University , Guiyang , People's Republic of China
| | - Xiangwu Liu
- b Center for Research and Development of Fine Chemicals , Guizhou University , Guiyang , People's Republic of China
| | - Caiwei Feng
- c Beijing Kwinbon Biotechnology Co., Ltd , Beijing , People's Republic of China
| | - Deyu Hu
- a Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Guiyang , People's Republic of China
- b Center for Research and Development of Fine Chemicals , Guizhou University , Guiyang , People's Republic of China
| | - Ping Lu
- a Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Guiyang , People's Republic of China
- b Center for Research and Development of Fine Chemicals , Guizhou University , Guiyang , People's Republic of China
| |
Collapse
|
19
|
Jose RC, Bengyella L, Handique PJ, Talukdar NC. Cellular and proteomic events associated with the localized formation of smut-gall during Zizania latifolia-Ustilago esculenta interaction. Microb Pathog 2018; 126:79-84. [PMID: 30367966 DOI: 10.1016/j.micpath.2018.10.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 09/05/2018] [Accepted: 10/22/2018] [Indexed: 10/28/2022]
Abstract
The perennial wild rice Zizania latifolia is confined in the swampy habitat and wetland of the Indo-Burma biodiversity hotspot of India and infection by the biotrophic fungus Ustilago esculenta is hallmarked by swellings that develop to form localized smut-gall at the topmost internodal region. The cellular and proteomic events involved in the non-systemic colonization of Z. latifolia by U. esculenta leading to smut-gall formation is poorly understood. Proteins were extracted from the smut-gall region at the topmost internodal region below the apical meristematic tissue from the infected and uninfected parts of Z. latifolia. By combining transmission electron microscopy (TEM) and fluorescent microscopy (FM), we showed that U. esculenta hyphal morphological transitions and movement occurred both intercellularly and intracellularly while sporulation occurred intracellularly in selective cells. Following proteome profiling using two dimensional SDS-PAGE at different phenological phases of smut-gall development and U. esculenta infection, differentially expressed proteins bands and their relative abundance were detected and subjected to liquid chromatography-tandem mass spectrometric (LC-MS/MS) analysis. Importantly, the fungus explores at least 7 metabolic pathways and 5 major biological processes to subdue the host defense and thrive successfully on Z. latifolia. The fungus U. esculenta produces proteases and energy acquisition proteins those enhance it's defensive and survival mode in the host. The identified differentially regulated proteins shed-light into why inflorescence is being replaced by bulbous smut-gall at late stages of the disease, as well as the development of resistance in some Z. latifolia plants against U. esculenta infection.
Collapse
Affiliation(s)
- Robinson C Jose
- Institute of Bioresources and Sustainable Development (IBSD), Takyelpat, Imphal, 795001, Manipur, India; Department of Biotechnology, Guwahati University, Guwahati, 781014, Assam, India; Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, 781035, Assam, India.
| | - Louis Bengyella
- Tree Fruit Research and Extension Center (TFREC), College of Agricultural, Human and Natural Resource Sciences (CAHNRS), Washington State University, USA; Department of Biological Control, Advanced Biotech Cooperative, Cameroon
| | - Pratap J Handique
- Department of Biotechnology, Guwahati University, Guwahati, 781014, Assam, India
| | - Narayan C Talukdar
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, 781035, Assam, India.
| |
Collapse
|
20
|
Ye Z, Pan Y, Zhang Y, Cui H, Jin G, McHardy AC, Fan L, Yu X. Comparative whole-genome analysis reveals artificial selection effects on Ustilago esculenta genome. DNA Res 2018; 24:635-648. [PMID: 28992048 PMCID: PMC5726479 DOI: 10.1093/dnares/dsx031] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 07/06/2017] [Indexed: 12/31/2022] Open
Abstract
Ustilago esculenta, infects Zizania latifolia, and induced host stem swollen to be a popular vegetable called Jiaobai in China. It is the long-standing artificial selection that maximizes the occurrence of favourable Jiaobai, and thus maintaining the plant-fungi interaction and modulating the fungus evolving from plant pathogen to entophyte. In this study, whole genome of U. esculenta was sequenced and transcriptomes of the fungi and its host were analysed. The 20.2 Mb U. esculenta draft genome of 6,654 predicted genes including mating, primary metabolism, secreted proteins, shared a high similarity to related Smut fungi. But U. esculenta prefers RNA silencing not repeat-induced point in defence and has more introns per gene, indicating relatively slow evolution rate. The fungus also lacks some genes in amino acid biosynthesis pathway which were filled by up-regulated host genes and developed distinct amino acid response mechanism to balance the infection-resistance interaction. Besides, U. esculenta lost some surface sensors, important virulence factors and host range-related effectors to maintain the economic endophytic life. The elucidation of the U. esculenta genomic information as well as expression profiles can not only contribute to more comprehensive insights into the molecular mechanism underlying artificial selection but also into smut fungi-host interactions.
Collapse
Affiliation(s)
- Zihong Ye
- Department of Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou, China
| | - Yao Pan
- Department of Algorithmic Bioinformatics, Heinrich Heine University, Düsseldorf, Germany.,Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Yafen Zhang
- Department of Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou, China
| | - Haifeng Cui
- Department of Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou, China
| | - Gulei Jin
- Department of Agronomy & Zhejiang Key Laboratory of Crop Germplasm Resources, Zhejiang University, Hangzhou, China
| | - Alice C McHardy
- Department of Algorithmic Bioinformatics, Heinrich Heine University, Düsseldorf, Germany.,Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Longjiang Fan
- Department of Agronomy & Zhejiang Key Laboratory of Crop Germplasm Resources, Zhejiang University, Hangzhou, China
| | - Xiaoping Yu
- Department of Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou, China
| |
Collapse
|
21
|
Yan N, Du Y, Liu X, Chu C, Shi J, Zhang H, Liu Y, Zhang Z. Morphological Characteristics, Nutrients, and Bioactive Compounds of Zizania latifolia, and Health Benefits of Its Seeds. Molecules 2018; 23:E1561. [PMID: 29958396 PMCID: PMC6100627 DOI: 10.3390/molecules23071561] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/23/2018] [Accepted: 06/26/2018] [Indexed: 11/16/2022] Open
Abstract
Zizania latifolia (tribe Oryzeae Dum., subfamily Oryzoideae Care, family Gramineae) is native to East Asian countries. The seeds of Z. latifolia (Chinese wild rice) have been consumed as a cereal in China for >3000 years. Z. latifolia forms swollen culms when infected with Ustilago esculenta, which is the second most-cultivated aquatic vegetable in China. The current review summarizes the nutrients and bioactive compounds of Z. latifolia, and health benefits of its seeds. The seeds of Z. latifolia contain proteins, minerals, vitamins, and bioactive compounds, the activities of which—for example, antioxidant activity—have been characterized. Various health benefits are associated with their consumption, such as alleviation of insulin resistance and lipotoxicity, and protection against cardiovascular disease. Chinese wild rice may be used to prevent and treat metabolic disease, such as diabetes, obesity, and cardiovascular diseases. Various compounds were isolated from the swollen culm, and aerial parts of Z. latifolia. The former suppresses osteoclast formation, inhibits growth of rat glioma cells, and may act as antioxidants and immunomodulators in drugs or foods. The latter exerts anti-fatigue, anti-inflammatory, and anti-allergic effects. Thus, Z. latifolia may be used to produce nutraceuticals and functional foods.
Collapse
Affiliation(s)
- Ning Yan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Yongmei Du
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Xinmin Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Cheng Chu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - John Shi
- Guelph Food Research Center, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada.
| | - Hongbo Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Yanhua Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Zhongfeng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
22
|
Jose RC, Goyari S, Louis B, Waikhom SD, Handique PJ, Talukdar NC. Investigation on the biotrophic interaction of Ustilago esculenta on Zizania latifolia found in the Indo-Burma biodiversity hotspot. Microb Pathog 2016; 98:6-15. [DOI: 10.1016/j.micpath.2016.06.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/31/2016] [Accepted: 06/17/2016] [Indexed: 11/29/2022]
|
23
|
Castell-Miller CV, Gutierrez-Gonzalez JJ, Tu ZJ, Bushley KE, Hainaut M, Henrissat B, Samac DA. Genome Assembly of the Fungus Cochliobolus miyabeanus, and Transcriptome Analysis during Early Stages of Infection on American Wildrice (Zizania palustris L.). PLoS One 2016; 11:e0154122. [PMID: 27253872 PMCID: PMC4890743 DOI: 10.1371/journal.pone.0154122] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/08/2016] [Indexed: 12/11/2022] Open
Abstract
The fungus Cochliobolus miyabeanus causes severe leaf spot disease on rice (Oryza sativa) and two North American specialty crops, American wildrice (Zizania palustris) and switchgrass (Panicum virgatum). Despite the importance of C. miyabeanus as a disease-causing agent in wildrice, little is known about either the mechanisms of pathogenicity or host defense responses. To start bridging these gaps, the genome of C. miyabeanus strain TG12bL2 was shotgun sequenced using Illumina technology. The genome assembly consists of 31.79 Mbp in 2,378 scaffolds with an N50 = 74,921. It contains 11,000 predicted genes of which 94.5% were annotated. Approximately 10% of total gene number is expected to be secreted. The C. miyabeanus genome is rich in carbohydrate active enzymes, and harbors 187 small secreted peptides (SSPs) and some fungal effector homologs. Detoxification systems were represented by a variety of enzymes that could offer protection against plant defense compounds. The non-ribosomal peptide synthetases and polyketide synthases (PKS) present were common to other Cochliobolus species. Additionally, the fungal transcriptome was analyzed at 48 hours after inoculation in planta. A total of 10,674 genes were found to be expressed, some of which are known to be involved in pathogenicity or response to host defenses including hydrophobins, cutinase, cell wall degrading enzymes, enzymes related to reactive oxygen species scavenging, PKS, detoxification systems, SSPs, and a known fungal effector. This work will facilitate future research on C. miyabeanus pathogen-associated molecular patterns and effectors, and in the identification of their corresponding wildrice defense mechanisms.
Collapse
Affiliation(s)
- Claudia V. Castell-Miller
- Department of Plant Pathology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Juan J. Gutierrez-Gonzalez
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, Minnesota, United States of America
- USDA-ARS-Plant Science Research Unit, Saint Paul, Minnesota, United States of America
| | - Zheng Jin Tu
- Mayo Clinic, Division of Biomedical Statistics and Informatics, Rochester, Minnesota, United States of America
| | - Kathryn E. Bushley
- Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Matthieu Hainaut
- CNRS UMR 7257, Aix-Marseille University, Marseille, France
- INRA, USC 1408 AFMB, Marseille, France
| | - Bernard Henrissat
- CNRS UMR 7257, Aix-Marseille University, Marseille, France
- INRA, USC 1408 AFMB, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Deborah A. Samac
- Department of Plant Pathology, University of Minnesota, Saint Paul, Minnesota, United States of America
- USDA-ARS-Plant Science Research Unit, Saint Paul, Minnesota, United States of America
| |
Collapse
|
24
|
Fan XR, Ren XR, Liu YL, Chen YY. Genetic structure of wild rice Zizania latifolia and the implications for its management in the Sanjiang Plain, Northeast China. BIOCHEM SYST ECOL 2016. [DOI: 10.1016/j.bse.2015.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Guo L, Qiu J, Han Z, Ye Z, Chen C, Liu C, Xin X, Ye CY, Wang YY, Xie H, Wang Y, Bao J, Tang S, Xu J, Gui Y, Fu F, Wang W, Zhang X, Zhu Q, Guang X, Wang C, Cui H, Cai D, Ge S, Tuskan GA, Yang X, Qian Q, He SY, Wang J, Zhou XP, Fan L. A host plant genome (Zizania latifolia) after a century-long endophyte infection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:600-609. [PMID: 26072920 DOI: 10.1111/tpj.12912] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 05/26/2015] [Accepted: 06/08/2015] [Indexed: 06/04/2023]
Abstract
Despite the importance of host-microbe interactions in natural ecosystems, agriculture and medicine, the impact of long-term (especially decades or longer) microbial colonization on the dynamics of host genomes is not well understood. The vegetable crop 'Jiaobai' with enlarged edible stems was domesticated from wild Zizania latifolia (Oryzeae) approximately 2000 years ago as a result of persistent infection by a fungal endophyte, Ustilago esculenta. Asexual propagation via infected rhizomes is the only means of Jiaobai production, and the Z. latifolia-endophyte complex has been maintained continuously for two centuries. Here, genomic analysis revealed that cultivated Z. latifolia has a significantly smaller repertoire of immune receptors compared with wild Z. latifolia. There are widespread gene losses/mutations and expression changes in the plant-pathogen interaction pathway in Jiaobai. These results show that continuous long-standing endophyte association can have a major effect on the evolution of the structural and transcriptomic components of the host genome.
Collapse
Affiliation(s)
- Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Jie Qiu
- Department of Agronomy & Zhejiang Key Laboratory of Crop Germplasm Resources, Zhejiang University, Hangzhou, 310058, China
| | | | - Zihong Ye
- College of Life Science, China Jiliang University, Hangzhou, 310018, China
| | - Chao Chen
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Xiufang Xin
- Howard Hughes Medical Institute, Department of Energy Plant Research Laboratory, and Department of Plant Biology, Michigan State University, East Lansing, MI, 48864, USA
| | - Chu-Yu Ye
- Department of Agronomy & Zhejiang Key Laboratory of Crop Germplasm Resources, Zhejiang University, Hangzhou, 310058, China
| | - Ying-Ying Wang
- Department of Agronomy & Zhejiang Key Laboratory of Crop Germplasm Resources, Zhejiang University, Hangzhou, 310058, China
| | | | - Yu Wang
- Department of Agronomy & Zhejiang Key Laboratory of Crop Germplasm Resources, Zhejiang University, Hangzhou, 310058, China
| | - Jiandong Bao
- Department of Agronomy & Zhejiang Key Laboratory of Crop Germplasm Resources, Zhejiang University, Hangzhou, 310058, China
| | - She Tang
- Department of Agronomy & Zhejiang Key Laboratory of Crop Germplasm Resources, Zhejiang University, Hangzhou, 310058, China
| | - Jie Xu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Yijie Gui
- Department of Agronomy & Zhejiang Key Laboratory of Crop Germplasm Resources, Zhejiang University, Hangzhou, 310058, China
| | - Fei Fu
- Department of Agronomy & Zhejiang Key Laboratory of Crop Germplasm Resources, Zhejiang University, Hangzhou, 310058, China
| | - Weidi Wang
- Department of Agronomy & Zhejiang Key Laboratory of Crop Germplasm Resources, Zhejiang University, Hangzhou, 310058, China
| | - Xingchen Zhang
- Department of Agronomy & Zhejiang Key Laboratory of Crop Germplasm Resources, Zhejiang University, Hangzhou, 310058, China
| | | | | | | | - Haifeng Cui
- College of Life Science, China Jiliang University, Hangzhou, 310018, China
| | - Daguang Cai
- Department of Molecular Phytopathology, Christian-Albrechts-University of Kiel, D-24118, Kiel, Germany
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Sheng Yang He
- Howard Hughes Medical Institute, Department of Energy Plant Research Laboratory, and Department of Plant Biology, Michigan State University, East Lansing, MI, 48864, USA
| | - Jun Wang
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Xue-Ping Zhou
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, 310058, China
| | - Longjiang Fan
- Department of Agronomy & Zhejiang Key Laboratory of Crop Germplasm Resources, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
26
|
Zhu J, Yu D, Xu X. The phylogeographic structure of Hydrilla verticillata (Hydrocharitaceae) in China and its implications for the biogeographic history of this worldwide-distributed submerged macrophyte. BMC Evol Biol 2015; 15:95. [PMID: 26054334 PMCID: PMC4460629 DOI: 10.1186/s12862-015-0381-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 05/15/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aquatic vascular plants are a distinctive group, differing from terrestrial plants in their growth forms and habitats. Among the various aquatic plant life forms, the evolutionary processes of freshwater submerged species are most likely distinct due to their exclusive occurrence in the discrete and patchy aquatic habitats. Using the chloroplast trnL-F region sequence data, we investigated the phylogeographic structure of a submerged macrophyte, Hydrilla verticillata, the single species in the genus Hydrilla, throughout China, in addition to combined sample data from other countries to reveal the colonisation and diversification processes of this species throughout the world. RESULTS We sequenced 681 individuals from 123 sampling locations throughout China and identified a significant phylogeographic structure (NST > GST, p < 0.01), in which four distinct lineages occurred in different areas. A high level of genetic differentiation among populations (global FST = 0.820) was detected. The divergence of Hydrilla was estimated to have occurred in the late Miocene, and the diversification of various clades was dated to the Pleistocene epoch. Biogeographic analyses suggested an East Asian origin of Hydrilla and its subsequent dispersal throughout the world. CONCLUSIONS The presence of all four clades in China indicates that China is most likely the centre of Hydrilla genetic diversity. The worldwide distribution of Hydrilla is due to recent vicariance and dispersal events that occurred in different clades during the Pleistocene. Our findings also provide useful information for the management of invasive Hydrilla in North America.
Collapse
Affiliation(s)
- Jinning Zhu
- National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Sciences, Wuhan University, Wuhan, PR China.
| | - Dan Yu
- National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Sciences, Wuhan University, Wuhan, PR China.
| | - Xinwei Xu
- National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Sciences, Wuhan University, Wuhan, PR China.
| |
Collapse
|
27
|
Tang L, Zou XH, Zhang LB, Ge S. Multilocus species tree analyses resolve the ancient radiation of the subtribe Zizaniinae (Poaceae). Mol Phylogenet Evol 2015; 84:232-9. [DOI: 10.1016/j.ympev.2015.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 01/06/2015] [Accepted: 01/24/2015] [Indexed: 10/24/2022]
|
28
|
Deng T, Nie ZL, Drew BT, Volis S, Kim C, Xiang CL, Zhang JW, Wang YH, Sun H. Does the Arcto-Tertiary biogeographic hypothesis explain the disjunct distribution of Northern Hemisphere herbaceous plants? The case of Meehania (Lamiaceae). PLoS One 2015; 10:e0117171. [PMID: 25658699 PMCID: PMC4319762 DOI: 10.1371/journal.pone.0117171] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 12/18/2014] [Indexed: 01/13/2023] Open
Abstract
Despite considerable progress, many details regarding the evolution of the Arcto-Tertiary flora, including the timing, direction, and relative importance of migration routes in the evolution of woody and herbaceous taxa of the Northern Hemisphere, remain poorly understood. Meehania (Lamiaceae) comprises seven species and five subspecies of annual or perennial herbs, and is one of the few Lamiaceae genera known to have an exclusively disjunct distribution between eastern Asia and eastern North America. We analyzed the phylogeny and biogeographical history of Meehania to explore how the Arcto-Tertiary biogeographic hypothesis and two possible migration routes explain the disjunct distribution of Northern Hemisphere herbaceous plants. Parsimony and Bayesian inference were used for phylogenetic analyses based on five plastid sequences (rbcL, rps16, rpl32-trnH, psbA-trnH, and trnL-F) and two nuclear (ITS and ETS) gene regions. Divergence times and biogeographic inferences were performed using Bayesian methods as implemented in BEAST and S-DIVA, respectively. Analyses including 11 of the 12 known Meehania taxa revealed incongruence between the chloroplast and nuclear trees, particularly in the positions of Glechoma and Meehania cordata, possibly indicating allopolyploidy with chloroplast capture in the late Miocene. Based on nrDNA, Meehania is monophyletic, and the North American species M. cordata is sister to a clade containing the eastern Asian species. The divergence time between the North American M. cordata and the eastern Asian species occurred about 9.81 Mya according to the Bayesian relaxed clock methods applied to the combined nuclear data. Biogeographic analyses suggest a primary role of the Arcto-Tertiary flora in the study taxa distribution, with a northeast Asian origin of Meehania. Our results suggest an Arcto-Tertiary origin of Meehania, with its present distribution most probably being a result of vicariance and southward migrations of populations during climatic oscillations in the middle Miocene with subsequent migration into eastern North America via the Bering land bridge in the late Miocene.
Collapse
Affiliation(s)
- Tao Deng
- School of Life Science, Yunnan University, Kunming, Yunnan, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ze-Long Nie
- Key Laboratory of Plant Resources Conservation and Utilization, College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, China
| | - Bryan T. Drew
- Department of Biology, University of Nebraska at Kearney, Kearney, Nebraska, United States of America
| | - Sergei Volis
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Changkyun Kim
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chun-Lei Xiang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jian-Wen Zhang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yue-Hua Wang
- School of Life Science, Yunnan University, Kunming, Yunnan, China
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
29
|
Xu XW, Wu JW, Qi MX, Lu QX, Lee PF, Lutz S, Ge S, Wen J. Comparative phylogeography of the wild-rice genus Zizania (Poaceae) in eastern Asia and North America. AMERICAN JOURNAL OF BOTANY 2015; 102:239-47. [PMID: 25667077 DOI: 10.3732/ajb.1400323] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
PREMISE OF THE STUDY Comparative phylogeography of intercontinental disjunct taxa allowed us not only to elucidate their diversification and evolution following geographic isolation, but also to understand the effect of climatic and geological histories on the evolutionary processes of closely related species. A phylogeographic analysis was conducted on the eastern Asian-North American disjunct genus Zizania to compare intracontinental phylogeographic patterns between different continents. METHODS Surveys were conducted of 514 individuals using three chloroplast DNA fragments and three nuclear microsatellite loci. These individuals included 246 from 45 populations of Zizania latifolia in eastern Asia, and the following from North America: 154 individuals from 26 populations of Z. aquatica, 84 individuals from 14 populations of Z. palustris, and 30 individuals from one population of Z. texana. KEY RESULTS The genetic diversity of North American Zizania was significantly higher than that of eastern Asian Zizania. High levels of genetic differentiation among populations and no signal of population expansion were detected in three widespread species. No phylogeographic structure was observed in Z. latifolia, and discordant patterns of cpDNA and microsatellite markers were observed in North American Zizania. CONCLUSIONS Reduced variation in Zizania latifolia likely reflects its perennial life history, the North American origin of Zizania, and the relative homogeneity of aquatic environments. High levels of genetic differentiation suggest limited dispersal among populations in all Zizania species. The more complex patterns of diversification and evolution in North American Zizania may be driven by the greater impact of glaciation in North America relative to eastern Asia.
Collapse
Affiliation(s)
- Xin-Wei Xu
- National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Jin-Wei Wu
- National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Mei-Xia Qi
- National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Qi-Xiang Lu
- National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Peter F Lee
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Sue Lutz
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, District of Columbia 20013-7012 USA
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, District of Columbia 20013-7012 USA
| |
Collapse
|
30
|
Surendiran G, Alsaif M, Kapourchali FR, Moghadasian MH. Nutritional constituents and health benefits of wild rice (Zizaniaspp.). Nutr Rev 2014; 72:227-36. [DOI: 10.1111/nure.12101] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Gangadaran Surendiran
- Department of Human Nutritional Sciences and Canadian Centre for Agri-food Research in Health and Medicine; University of Manitoba; Winnipeg MB Canada
| | - Maha Alsaif
- Department of Human Nutritional Sciences and Canadian Centre for Agri-food Research in Health and Medicine; University of Manitoba; Winnipeg MB Canada
| | | | - Mohammed H Moghadasian
- Department of Human Nutritional Sciences and Canadian Centre for Agri-food Research in Health and Medicine; University of Manitoba; Winnipeg MB Canada
- International Nutrition Research Inc.; Winnipeg MB Canada
| |
Collapse
|
31
|
Fischer A, Prüfer K, Good JM, Halbwax M, Wiebe V, André C, Atencia R, Mugisha L, Ptak SE, Pääbo S. Bonobos fall within the genomic variation of chimpanzees. PLoS One 2011; 6:e21605. [PMID: 21747915 PMCID: PMC3126833 DOI: 10.1371/journal.pone.0021605] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 06/06/2011] [Indexed: 11/19/2022] Open
Abstract
To gain insight into the patterns of genetic variation and evolutionary relationships within and between bonobos and chimpanzees, we sequenced 150,000 base pairs of nuclear DNA divided among 15 autosomal regions as well as the complete mitochondrial genomes from 20 bonobos and 58 chimpanzees. Except for western chimpanzees, we found poor genetic separation of chimpanzees based on sample locality. In contrast, bonobos consistently cluster together but fall as a group within the variation of chimpanzees for many of the regions. Thus, while chimpanzees retain genomic variation that predates bonobo-chimpanzee speciation, extensive lineage sorting has occurred within bonobos such that much of their genome traces its ancestry back to a single common ancestor that postdates their origin as a group separate from chimpanzees.
Collapse
Affiliation(s)
- Anne Fischer
- Max Plank Institute for Evolutionary Anthropology, Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Xie L, Yi TS, Li R, Li DZ, Wen J. Evolution and biogeographic diversification of the witch-hazel genus (Hamamelis L., Hamamelidaceae) in the Northern Hemisphere. Mol Phylogenet Evol 2010; 56:675-89. [DOI: 10.1016/j.ympev.2010.02.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 02/03/2010] [Accepted: 02/13/2010] [Indexed: 10/19/2022]
|