1
|
Xu B, Kong L, Sun J, Zhang J, Zhang Y, Song H, Li Q, Uribe JE, Halanych KM, Cai C, Dong YW, Wang S, Li Y. Molluscan systematics: historical perspectives and the way ahead. Biol Rev Camb Philos Soc 2025; 100:672-697. [PMID: 39505387 DOI: 10.1111/brv.13157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024]
Abstract
Mollusca, the second-most diverse animal phylum, is estimated to have over 100,000 living species with great genetic and phenotypic diversity, a rich fossil record, and a considerable evolutionary significance. Early work on molluscan systematics was grounded in morphological and anatomical studies. With the transition from oligo gene Sanger sequencing to cutting-edge genomic sequencing technologies, molecular data has been increasingly utilised, providing abundant information for reconstructing the molluscan phylogenetic tree. However, relationships among and within most major lineages of Mollusca have long been contentious, often due to limited genetic markers, insufficient taxon sampling and phylogenetic conflict. Fortunately, remarkable progress in molluscan systematics has been made in recent years, which has shed light on how major molluscan groups have evolved. In this review of molluscan systematics, we first synthesise the current understanding of the molluscan Tree of Life at higher taxonomic levels. We then discuss how micromolluscs, which have adult individuals with a body size smaller than 5 mm, offer unique insights into Mollusca's vast diversity and deep phylogeny. Despite recent advancements, our knowledge of molluscan systematics and phylogeny still needs refinement. Further advancements in molluscan systematics will arise from integrating comprehensive data sets, including genome-scale data, exceptional fossils, and digital morphological data (including internal structures). Enhanced access to these data sets, combined with increased collaboration among morphologists, palaeontologists, evolutionary developmental biologists, and molecular phylogeneticists, will significantly advance this field.
Collapse
Affiliation(s)
- Biyang Xu
- Institute of Marine Science and Technology, Shandong University, 72 Binhai Road, Qingdao, 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, 168 Wenhai Middle Rd, Qingdao, 266237, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, 168 Wenhai Middle Rd, Qingdao, 266237, China
| | - Jin Sun
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institude of Evolution & Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Junlong Zhang
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Laoshan Laboratory, 168 Wenhai Middle Rd, Qingdao, 266237, China
- Marine Biological Museum, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- University of Chinese Academy of Sciences, 1 Yanqihu East Rd, Beijing, 100049, China
| | - Yang Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 1111 Haibin Road, Guangzhou, 510301, China
| | - Hao Song
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- University of Chinese Academy of Sciences, 1 Yanqihu East Rd, Beijing, 100049, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, 168 Wenhai Middle Rd, Qingdao, 266237, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, 168 Wenhai Middle Rd, Qingdao, 266237, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Yazhou Bay Science & Technology City, Sanya, 572000, China
| | - Juan E Uribe
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), 2 C. de José Gutiérrez Abascal, Madrid, 28006, Spain
- Department of Invertebrate Zoology, MRC 163, National Museum of Natural History, Smithsonian Institution, 1000 Madison Drive NW, Washington, 20013-7012, DC, USA
| | - Kenneth M Halanych
- Center for Marine Sciences, University of North Carolina Wilmington, 5600 Marvin K. Moss Lane, Wilmington, 28409, NC, USA
| | - Chenyang Cai
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing, 210008, China
| | - Yun-Wei Dong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Shi Wang
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, 168 Wenhai Middle Rd, Qingdao, 266237, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Yazhou Bay Science & Technology City, Sanya, 572000, China
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Road, Guangzhou, 511458, China
| | - Yuanning Li
- Institute of Marine Science and Technology, Shandong University, 72 Binhai Road, Qingdao, 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, 168 Wenhai Middle Rd, Qingdao, 266237, China
| |
Collapse
|
2
|
Fedosov AE, Zaharias P, Lemarcis T, Modica MV, Holford M, Oliverio M, Kantor YI, Puillandre N. Phylogenomics of Neogastropoda: The Backbone Hidden in the Bush. Syst Biol 2024; 73:521-531. [PMID: 38456663 PMCID: PMC11377187 DOI: 10.1093/sysbio/syae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/16/2024] [Accepted: 03/06/2024] [Indexed: 03/09/2024] Open
Abstract
The molluskan order Neogastropoda encompasses over 15,000 almost exclusively marine species playing important roles in benthic communities and in the economies of coastal countries. Neogastropoda underwent intensive cladogenesis in the early stages of diversification, generating a "bush" at the base of their evolutionary tree, which has been hard to resolve even with high throughput molecular data. In the present study to resolve the bush, we use a variety of phylogenetic inference methods and a comprehensive exon capture dataset of 1817 loci (79.6% data occupancy) comprising 112 taxa of 48 out of 60 Neogastropoda families. Our results show consistent topologies and high support in all analyses at (super)family level, supporting monophyly of Muricoidea, Mitroidea, Conoidea, and, with some reservations, Olivoidea and Buccinoidea. Volutoidea and Turbinelloidea as currently circumscribed are clearly paraphyletic. Despite our analyses consistently resolving most backbone nodes, 3 prove problematic: First, the uncertain placement of Cancellariidae, as the sister group to either a Ficoidea-Tonnoidea clade or to the rest of Neogastropoda, leaves monophyly of Neogastropoda unresolved. Second, relationships are contradictory at the base of the major "core Neogastropoda" grouping. Third, coalescence-based analyses reject monophyly of the Buccinoidea in relation to Vasidae. We analyzed phylogenetic signal of targeted loci in relation to potential biases, and we propose the most probable resolutions in the latter 2 recalcitrant nodes. The uncertain placement of Cancellariidae may be explained by orthology violations due to differential paralog loss shortly after the whole genome duplication, which should be resolved with a curated set of longer loci.
Collapse
Affiliation(s)
- Alexander E Fedosov
- Department of Zoology, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005 Paris, France
| | - Paul Zaharias
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005 Paris, France
| | - Thomas Lemarcis
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005 Paris, France
| | - Maria Vittoria Modica
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005 Paris, France
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Mandë Holford
- Department of Chemistry, Hunter College, Belfer Research Building, City University of New York, 413 E. 69th Street, BRB 424, New York, NY 10021, USA
- Department of Invertebrate Zoology, the American Museum of Natural History, New York, NY 10024, USA
- PhD Programs in Biology, Biochemistry, and Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Marco Oliverio
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005 Paris, France
- Department of Biology and Biotechnologies "Charles Darwin," Sapienza University of Rome, Viale dell'Università 32, I-00185 Rome, Italy
| | - Yuri I Kantor
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005 Paris, France
- Department of Ecology and Morphology of Marine Invertebrates, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky prospect, 33, 119071 Moscow, Russia
| | - Nicolas Puillandre
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005 Paris, France
| |
Collapse
|
3
|
Ma J, Dong X, Xu K, Zeng J, Wang Z, Li J. The Characterization of the Mitochondrial Genome of Fulgoraria rupestris and Phylogenetic Considerations within the Neogastropoda. Genes (Basel) 2024; 15:1076. [PMID: 39202435 PMCID: PMC11353978 DOI: 10.3390/genes15081076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Fulgoraria rupestris is a predatory marine gastropod belonging to Neogastropoda and possessing considerable taxonomic significance. However, research on this species remains limited. We acquired the complete mitochondrial genome of F. rupestris through second-generation sequencing and conducted an analysis of its genome structural features. The mitochondrial genome of F. rupestris spans a total length of 16,223 bp and encompasses 37 genes (13 protein-coding genes (PCGs), 22 transfer RNAs, and 2 ribosomal RNAs). Notably, most tRNAs exhibit the typical cloverleaf structure, but there is an absence of the Dihydrouridine (DHU) arm in the trnS1 and trnS2 genes. The A + T content is 68.67%, indicating a pronounced AT bias. Additionally, we conducted a selection pressure analysis on the mitochondrial genomes of four species within Volutidae, revealing that all PCGs are subjected to purifying selection. In comparison to other species within Neogastropoda, F. rupestris shares an identical gene arrangement. Additionally, based on mitochondrial genome sequences of the 13 PCGs from 50 species within Neogastropoda, we constructed a phylogenetic tree. The phylogenetic tree indicates F. rupestris forms a clade with species within the family Volutidae (Cymbium olla, Neptuneopsis gilchristi, and Melo melo). This study serves as a valuable reference for future research on F. rupestris, offering insights for the upcoming phylogenetic and taxonomic classification within Neogastropoda. Furthermore, the findings provide valuable information for the development of genetic resources in this context.
Collapse
Affiliation(s)
- Jiale Ma
- Marine and Fisheries Institute of Zhejiang Ocean University, Zhoushan 316022, China; (J.M.); (J.Z.); (Z.W.)
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China;
- Zhejiang Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources, Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, Ministry of Agriculture and Rural Affairs Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Xiangli Dong
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China;
| | - Kaida Xu
- Marine and Fisheries Institute of Zhejiang Ocean University, Zhoushan 316022, China; (J.M.); (J.Z.); (Z.W.)
- Zhejiang Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources, Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, Ministry of Agriculture and Rural Affairs Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Jiaying Zeng
- Marine and Fisheries Institute of Zhejiang Ocean University, Zhoushan 316022, China; (J.M.); (J.Z.); (Z.W.)
- Zhejiang Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources, Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, Ministry of Agriculture and Rural Affairs Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Zhongming Wang
- Marine and Fisheries Institute of Zhejiang Ocean University, Zhoushan 316022, China; (J.M.); (J.Z.); (Z.W.)
- Zhejiang Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources, Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, Ministry of Agriculture and Rural Affairs Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Jiji Li
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China;
| |
Collapse
|
4
|
Baeza JA, González MT, Sigwart JD, Greve C, Pirro S. Insights into the genome of the 'Loco' Concholepas concholepas (Gastropoda: Muricidae) from low-coverage short-read sequencing: genome size, ploidy, transposable elements, nuclear RNA gene operon, mitochondrial genome, and phylogenetic placement in the family Muricidae. BMC Genomics 2024; 25:77. [PMID: 38243187 PMCID: PMC10797722 DOI: 10.1186/s12864-023-09953-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/28/2023] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND The Peruvian 'chanque' or Chilean 'loco' Concholepas concholepas is an economically, ecologically, and culturally important muricid gastropod heavily exploited by artisanal fisheries in the temperate southeastern Pacific Ocean. In this study, we have profited from a set of bioinformatics tools to recover important biological information of C. concholepas from low-coverage short-read NGS datasets. Specifically, we calculated the size of the nuclear genome, ploidy, and estimated transposable elements content using an in silico k-mer approach, we discovered, annotated, and quantified those transposable elements, we assembled and annotated the 45S rDNA RNA operon and mitochondrial genome, and we confirmed the phylogenetic position of C. concholepas within the muricid subfamily Rapaninae based on translated protein coding genes. RESULTS Using a k-mer approach, the haploid genome size estimated for the predicted diploid genome of C. concholepas varied between 1.83 Gbp (with kmer = 24) and 2.32 Gbp (with kmer = 36). Between half and two thirds of the nuclear genome of C. concholepas was composed of transposable elements. The most common transposable elements were classified as Long Interspersed Nuclear Elements and Short Interspersed Nuclear Elements, which were more abundant than DNA transposons, simple repeats, and Long Terminal Repeats. Less abundant repeat elements included Helitron mobile elements, 45S rRNA DNA, and Satellite DNA, among a few others.The 45S rRNA DNA operon of C. concholepas that encodes for the ssrRNA, 5.8S rRNA, and lsrRNA genes was assembled into a single contig 8,090 bp long. The assembled mitochondrial genome of C. concholepas is 15,449 bp long and encodes 13 protein coding genes, two ribosomal genes, and 22 transfer RNAs. CONCLUSION The information gained by this study will inform the assembly of a high quality nuclear genome for C. concholepas and will support bioprospecting and biomonitoring using environmental DNA to advance development of conservation and management plans in this overexploited marine snail.
Collapse
Affiliation(s)
- J Antonio Baeza
- Department of Biological Sciences, Clemson University, Clemson, SC, USA.
- Departamento de Biología Marina, Universidad Catolica del Norte, Coquimbo, Chile.
- Smithsonian Marine Station at Fort Pierce, Smithsonian Institution, Fort Pierce, FL, USA.
| | - M Teresa González
- Facultad de Ciencias del Mar y Recursos Biológicos, Instituto de Ciencias Naturales Alexander Von Humboldt, Universidad de Antofagasta, Angamos 601, Antofagasta, Chile
| | - Julia D Sigwart
- Marine Zoology Department, Senckenberg Research Institute and Museum, Frankfurt, Germany
- Institute of Ecology, Evolution & Diversity, Goethe University, Frankfurt, Germany
| | - Carola Greve
- LOEWE -Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, Frankfurt Am Main, Germany
- Senckenberg Forschungsinstitut und Naturmuseum, Frankfurt am Main, Germany
| | | |
Collapse
|
5
|
deMaintenon M, Strong EE. Molecular phylogeny of Columbellidae (Gastropoda: Neogastropoda). PeerJ 2022; 10:e13996. [PMID: 36345482 PMCID: PMC9636871 DOI: 10.7717/peerj.13996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/12/2022] [Indexed: 01/18/2023] Open
Abstract
The neogastropod family Columbellidae is a highly successful group of small, primarily epibenthic marine snails distributed worldwide and most abundant in the tropics. The great diversity of the group makes them attractive for studying evolutionary shifts in gastropod anatomy, morphology, ecology and diversity. The existing classification of the family has been based to a large degree on the morphology of the shell and radula. Indeed, membership in the family is traditionally confirmed using the unique morphology of the radula. To reconstruct columbellid phylogeny and assess monophyly of the group, we assembled a multilocus dataset including five mitochondrial and nuclear genes, for 70 species in 31 genera. Phylogenetic analyses using Bayesian inference and maximum likelihood are not well enough resolved to support a subfamilial classification, but do support the monophyly of the family and of several well-defined genera and supra-generic groupings. Two of the most diverse nominal genera, Mitrella and Anachis, are supported as highly polyphyletic. Overall, the resulting topologies indicate that the generic and subfamilial classification is in need of extensive revision but that phylogenomic data are needed to resolve columbellid relationships.
Collapse
Affiliation(s)
| | - Ellen E. Strong
- Department of Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, Washington, D.C., USA
| |
Collapse
|
6
|
Fassio G, Bouchet P, Oliverio M, Strong EE. Re-evaluating the case for poecilogony in the gastropod Planaxis sulcatus (Cerithioidea, Planaxidae). BMC Ecol Evol 2022; 22:13. [PMID: 35130841 PMCID: PMC8822645 DOI: 10.1186/s12862-022-01961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/05/2022] [Indexed: 11/30/2022] Open
Abstract
Background Planaxis sulcatus has been touted as a textbook example of poecilogony, with members of this wide-ranging Indo-Pacific marine gastropod said to produce free-swimming veligers as well as brooded juveniles. A recent paper by Wiggering et al. (BMC Evol Biol 20:76, 2020) assessed a mitochondrial gene phylogeny based on partial COI and 16S rRNA sequences for 31 individuals supplemented by observations from the brood pouch of 64 mostly unsequenced individuals. ABGD and bGYMC supported three reciprocally monophyletic clades, with two distributed in the Indo-Pacific, and one restricted to the northern Indian Ocean and Red Sea. Given an apparent lack of correlation between clade membership and morphological differentiation or mode of development, the reported 3.08% maximum K2P model-corrected genetic divergence in COI among all specimens was concluded to represent population structuring. Hence, the hypothesis that phylogenetic structure is evidence of cryptic species was rejected and P. sulcatus was concluded to represent a case of geographic poecilogony. Results Our goal was to reassess the case for poecilogony in Planaxis sulcatus with a larger molecular dataset and expanded geographic coverage. We sequenced an additional 55 individuals and included published and unpublished sequence data from other sources, including from Wiggering et al. Our dataset comprised 108 individuals (88 COI, 81 16S rRNA) and included nine countries unrepresented in the previous study. The expanded molecular dataset yielded a maximum K2P model-corrected genetic divergence among all sequenced specimens of 12.09%. The value of 3.08% erroneously reported by Wiggering et al. is the prior maximal distance value that yields a single-species partition in ABGD, and not the maximum K2P intraspecific divergence that can be calculated for the dataset. The bGMYC analysis recognized between two and six subdivisions, while the best-scoring ASAP partitions recognized two, four, or five subdivisions, not all of which were robustly supported in Bayesian and maximum likelihood phylogenetic analyses of the concatenated and single gene datasets. These hypotheses yielded maximum intra-clade genetic distances in COI of 2.56–6.19%, which are more consistent with hypothesized species-level thresholds for marine caenogastropods. Conclusions Based on our analyses of a more comprehensive dataset, we conclude that the evidence marshalled by Wiggering et al. in support of Planaxis sulcatus comprising a single widespread, highly variable species with geographic poecilogony is unconvincing and requires further investigation in an integrative taxonomic framework. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-01961-7.
Collapse
|
7
|
Kantor YI, Fedosov AE, Kosyan AR, Puillandre N, Sorokin PA, Kano Y, Clark R, Bouchet P. Molecular phylogeny and revised classification of the Buccinoidea (Neogastropoda). Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlab031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The superfamily Buccinoidea is distributed across the oceans of the world from the Arctic Ocean to the Antarctic and from intertidal to abyssal depths. It encompasses 3351 recent species in 337 genera. The latest taxonomic account recognized eight full families. For the first time, the monophyly of the superfamily and the relationships among the families are tested with molecular data supplemented by anatomical and radula data. Five genetic markers were used: fragments of mitochondrial COI, 16S rRNA, 12S rRNA and nuclear Histone 3 (H3) and 28S rRNA genes (for 225 species of 117 genera). Our analysis recovered Buccinoidea monophyletic in Bayesian analyses. The relationships between the formerly recognized families and subfamilies are drastically revised and a new classification of the superfamily is here proposed, now including 20 taxa of family rank and 23 subfamilies. Five new families (Chauvetiidae, Dolicholatiridae, Eosiphonidae, Prodotiidae and Retimohniidae) and one subfamily of Nassariidae (Tomliniinae) are described. Austrosiphonidae and Tudiclidae are resurrected from synonymy and employed in a new taxonomical extension. All but 40 recent genera are reclassified. Our results demonstrate that anatomy is rather uniform within the superfamily. With exceptions, the rather uniform radular morphology alone does not allow the allocation of genera to a particular family without additional molecular data.
Collapse
Affiliation(s)
- Yuri I Kantor
- A. N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninski prospect, Moscow, Russian Federation
- Correspondants du Muséum, Institut Systématique Evolution Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles. 57 rue Cuvier, CP 51, 75005 Paris, France
| | - Alexander E Fedosov
- A. N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninski prospect, Moscow, Russian Federation
- Correspondants du Muséum, Institut Systématique Evolution Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles. 57 rue Cuvier, CP 51, 75005 Paris, France
| | - Alisa R Kosyan
- A. N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninski prospect, Moscow, Russian Federation
| | - Nicolas Puillandre
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles. 57 rue Cuvier, CP 51, 75005 Paris, France
| | - Pavel A Sorokin
- A. N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninski prospect, Moscow, Russian Federation
| | - Yasunori Kano
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, Japan
| | - Roger Clark
- Santa Barbara Museum of Natural History, 2559 Puesta Del Sol, Santa Barbara, California, USA
| | - Philippe Bouchet
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles. 57 rue Cuvier, CP 51, 75005 Paris, France
| |
Collapse
|
8
|
Liu H, Yang M. The complete mitochondrial genome of Ternate False Fusus Brunneifusus ternatanus Gmelin, 1791 (Neogastropoda: Buccinoidea: Melongenidae) obtained using next-generation sequencing. Mitochondrial DNA B Resour 2021; 6:2058-2060. [PMID: 34212097 PMCID: PMC8218847 DOI: 10.1080/23802359.2021.1942270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In this paper, the complete mitochondrial genome of Ternate False Fusus Brunneifusus ternatanus Gmelin, 1791 was determined and characterized for the first time from the South China Sea. Our results showed that the length of the whole mitogenome of B. ternatanus was 16,254 bp and the mitogenome consisted of 22 tRNA genes, 13 protein-coding genes (PCGs), and 2 rRNA genes. Furthermore, the nucleotide composition of this mitogenome is significantly biased with G + C contents of 31.85% (the base content was 30.38% A, 16.17% G, 37.77% T, and 15.68% C). All PCGs shared ATG as the initiation codon, and stop codon of TAA or TAG, with the exception of COX2 which ended with a single T. The phylogenetic tree showed that B. ternatanus was first clustered with Hemifusus tuba, and from a single distinct cluster. The new complete mitochondrial genome provides new insight into the phylogenetic of Melongenidae and its evolution.
Collapse
Affiliation(s)
- Hongtao Liu
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources (Hainan Tropical Ocean University), Ministry of Education, Sanya, China
- Hainan Provincial Key Laboratory of Tropical Maricultural Technologies, Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
| | - Mingqiu Yang
- Hainan Provincial Key Laboratory of Tropical Maricultural Technologies, Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
| |
Collapse
|
9
|
The queen conch mitogenome: intra- and interspecific mitogenomic variability in Strombidae and phylogenetic considerations within the Hypsogastropoda. Sci Rep 2021; 11:11972. [PMID: 34099752 PMCID: PMC8184947 DOI: 10.1038/s41598-021-91224-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/24/2021] [Indexed: 02/05/2023] Open
Abstract
Aliger gigas is an economically important and vulnerable marine species. We present a new mitogenome of A. gigas from the Mexican Caribbean and use the eight publicly available Strombidae mitogenomes to analyze intra- and interspecific variation. We present the most complete phylogenomic understanding of Hypsogastropoda to date (17 superfamilies, 39 families, 85 genera, 109 species) to revisit the phylogenetic position of the Stromboidea and evaluate divergence times throughout the phylogeny. The A. gigas mitogenome comprises 15,460 bp including 13 PCGs, 22 tRNAs, and two rRNAs. Nucleotide diversity suggested divergence between the Mexican and Colombian lineages of A. gigas. Interspecific divergence showed high differentiation among Strombidae species and demonstrated a close relationship between A. gigas and Strombus pugilis, between Lambis lambis and Harpago chiragra, and among Tridentarius dentatus/Laevistrombus canarium/Ministrombus variabilis. At the intraspecific level, the gene showing the highest differentiation is ATP8 and the lowest is NAD4L, whereas at the interspecific level the NAD genes show the highest variation and the COX genes the lowest. Phylogenomic analyses confirm that Stromboidea belongs in the non-Latrogastropoda clade and includes Xenophoridea. The phylogenomic position of other superfamilies, including those of previously uncertain affiliation, is also discussed. Finally, our data indicated that Stromboidea diverged into two principal clades in the early Cretaceous while Strombidae diversified in the Paleocene, and lineage diversification within A. gigas took place in the Pleistocene.
Collapse
|
10
|
Wang Q, Liu H, Yue C, Xie X, Li D, Liang M, Li Q. Characterization of the complete mitochondrial genome of Ficus variegata (Littorinimorpha: Ficidae) and molecular phylogeny of Caenogastropoda. MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:1126-1128. [PMID: 33796763 PMCID: PMC7995913 DOI: 10.1080/23802359.2021.1901628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ficidae is a family of chiefly tropical marine gastropod mollusks with approximately 20 described species. Hitherto, there are no complete mitochondrial genome (mitogenome) of Ficidae available for the Ficoidea. Here, we determined the complete mitogenome of Ficus variegata Röding, 1798 representing the first species from the family Ficidae. The newly sequenced mitogenome consists of 13 protein-coding genes, two ribosomal RNA genes, and 22 transfer RNA genes. All of 13 PCGs use ATG as initiation codons and end with conventional stop codons TAA and TAG, and the genome organization is similar to those of other documented caenogastropod mitogenomes. Tonnoidea and Ficoidea were recovered as sister group in the Caenogastropoda tree.
Collapse
Affiliation(s)
- Qingzhi Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China.,Liaoning Ocean and Fisheries Science Research Institute, Dalian Key Laboratory of Genetic Resources for Marine Shellfish, Dalian, PR China
| | - Hongyue Liu
- Liaoning Ocean and Fisheries Science Research Institute, Dalian Key Laboratory of Genetic Resources for Marine Shellfish, Dalian, PR China
| | - Chao Yue
- Liaoning Ocean and Fisheries Science Research Institute, Dalian Key Laboratory of Genetic Resources for Marine Shellfish, Dalian, PR China
| | - Xi Xie
- Liaoning Ocean and Fisheries Science Research Institute, Dalian Key Laboratory of Genetic Resources for Marine Shellfish, Dalian, PR China
| | - Dacheng Li
- Liaoning Ocean and Fisheries Science Research Institute, Dalian Key Laboratory of Genetic Resources for Marine Shellfish, Dalian, PR China
| | - Miao Liang
- National Marine Environmental Monitoring Center, Dalian, PR China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China
| |
Collapse
|
11
|
Irwin AR, Strong EE, Kano Y, Harper EM, Williams ST. Eight new mitogenomes clarify the phylogenetic relationships of Stromboidea within the caenogastropod phylogenetic framework. Mol Phylogenet Evol 2021; 158:107081. [PMID: 33482382 DOI: 10.1016/j.ympev.2021.107081] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/18/2020] [Accepted: 01/12/2021] [Indexed: 01/24/2023]
Abstract
Members of the gastropod superfamily Stromboidea (Littorinimorpha) are characterised by their elaborate shell morphologies, distinctive mode of locomotion, and often large and colourful eyes. This iconic group comprises over 130 species, including many large and charismatic species. The family Strombidae is of particular interest, largely due to its commercial importance and wide distribution in tropical and subtropical waters. Although a few strombid mitochondrial genomes have been sequenced, data for the other four Recent families in Stromboidea are lacking. In this study we report seven new stromboid mitogenomes obtained from transcriptomic and genomic data, with taxonomic representation from each Recent stromboid family, including the first mitogenomes for Aporrhaidae, Rostellariidae, Seraphsidae and Struthiolariidae. We also report a new mitogenome for the family Xenophoridae. We use these data, along with published sequences, to investigate the relationships among these and other caenogastropod groups. All analyses undertaken in this study support monophyly of Stromboidea as redefined here to include Xenophoridae, a finding consistent with morphological and behavioural data. Consistent with previous morphological and molecular analyses, including those based on mitogenomes, monophyly of Hypsogastropoda is confirmed but monophyly of Littorinimorpha is again rejected.
Collapse
Affiliation(s)
- Alison R Irwin
- Department of Life Sciences, Natural History Museum, Cromwell Rd, London SW7 5BD, United Kingdom; School of Biological Sciences, University of Bristol, 24 Tyndall Ave, Bristol BS8 1TQ, United Kingdom.
| | - Ellen E Strong
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th St. & Constitution Ave. NW, Washington, D.C. 20560, United States.
| | - Yasunori Kano
- Department of Marine Ecosystems Dynamics, Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan.
| | - Elizabeth M Harper
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United Kingdom.
| | - Suzanne T Williams
- Department of Life Sciences, Natural History Museum, Cromwell Rd, London SW7 5BD, United Kingdom.
| |
Collapse
|
12
|
Harasewych MG, Uribe JE, Fedosov AE. Costapex baldwinae, a new species of bathyal costellariid (Mollusca: Gastropoda: Neogastropoda: Costellariidae) from the Caribbean Sea. P BIOL SOC WASH 2020. [DOI: 10.2988/20-00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- M. G. Harasewych
- (MGH) Department of Invertebrate Zoology, MRC-163, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, Washington, DC 20013-7012 USA, e-mail:
| | - Juan E. Uribe
- (JEU) Biodiversity and Evolutionary Biology Department (BEBD), Museo Nacional de Ciencias Naturales (MNCN-CSIC), c/ José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Alexander E. Fedosov
- (AEF) A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskiy Prospect 33, Moscow 119071 Russia
| |
Collapse
|
13
|
Wang Z, Xu Z, Wang B, Zheng F, Chen W, Zhou Q. Characterization of the complete mitochondrial genome of Euspira gilva with phylogenetic analysis. Mitochondrial DNA B Resour 2020. [DOI: 10.1080/23802359.2020.1742225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Zongxing Wang
- Ministry of Natural Resources, First Institute of Oceanography, Qingdao, China
| | - Zongjun Xu
- Ministry of Natural Resources, First Institute of Oceanography, Qingdao, China
| | - Bo Wang
- Ministry of Natural Resources, First Institute of Oceanography, Qingdao, China
| | - Fengrong Zheng
- Ministry of Natural Resources, First Institute of Oceanography, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wei Chen
- Shandong Marine Resource and Environment Research Institute, Yantai, China
| | - Quanli Zhou
- Shandong Marine Resource and Environment Research Institute, Yantai, China
| |
Collapse
|
14
|
Harasewych MG, Sei M, Uribe JE. The complete mitochondrial genome of Harpovoluta charcoti (Gastropoda: Neogastropoda: Volutidae). Mitochondrial DNA B Resour 2020. [DOI: 10.1080/23802359.2020.1756963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Myroslaw G. Harasewych
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Makiri Sei
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Juan E. Uribe
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| |
Collapse
|
15
|
Zhong S, Huang L, Liu Y, Huang G, Chen X. The complete mitochondrial genome of Chicoreus asianus (Neogastropoda: Muricidae) from Beibu Bay. MITOCHONDRIAL DNA PART B 2020. [DOI: 10.1080/23802359.2020.1751001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Shengping Zhong
- Institute of marine drugs, Guangxi University of Chinese Medicine, Nanning, China
- Key Laboratory of Marine Biotechnology, Guangxi Institute of Oceanology, Beihai, China
| | - Lianghua Huang
- Institute of marine drugs, Guangxi University of Chinese Medicine, Nanning, China
| | - Yonghong Liu
- Institute of marine drugs, Guangxi University of Chinese Medicine, Nanning, China
| | - Guoqiang Huang
- Institute of marine drugs, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiuli Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| |
Collapse
|
16
|
Abstract
Gastropod molluscs are among the most diverse and abundant animals in the oceans, and are successful colonizers of terrestrial and freshwater environments. Past phylogenetic efforts to resolve gastropod relationships resulted in a range of conflicting hypotheses. Here, we use phylogenomics to address deep relationships between the five major gastropod lineages—Caenogastropoda, Heterobranchia, Neritimorpha, Patellogastropoda and Vetigastropoda—and provide one congruent and well-supported topology. We substantially expand taxon sampling for outgroups and for previously underrepresented gastropod lineages, presenting new transcriptomes for neritimorphs and patellogastropods. We conduct analyses under maximum-likelihood, Bayesian inference and a coalescent-based approach, accounting for the most pervasive sources of systematic errors in large datasets: compositional heterogeneity, site heterogeneity, heterotachy, variation in evolutionary rates among genes, matrix completeness, outgroup choice and gene tree conflict. We find that vetigastropods and patellogastropods are sister taxa, and that neritimorphs are the sister group to caenogastropods and heterobranchs. We name these two major unranked clades Psilogastropoda and Angiogastropoda, respectively. We additionally provide the first genomic-scale data for internal relationships of neritimorphs and patellogastropods. Our results highlight the need for reinterpreting the evolution of morphological and developmental characters in gastropods, especially for inferring their ancestral states.
Collapse
Affiliation(s)
- Tauana Junqueira Cunha
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University , 26 Oxford Street, Cambridge, MA 02138 , USA
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University , 26 Oxford Street, Cambridge, MA 02138 , USA
| |
Collapse
|
17
|
Jiang D, Zheng X, Zeng X, Kong L, Li Q. The complete mitochondrial genome of Harpago chiragra and Lambis lambis (Gastropoda: Stromboidea): implications on the Littorinimorpha phylogeny. Sci Rep 2019; 9:17683. [PMID: 31776396 PMCID: PMC6881320 DOI: 10.1038/s41598-019-54141-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 11/05/2019] [Indexed: 11/18/2022] Open
Abstract
The complete mitochondrial genomes of Harpago chiragra and Lambis lambis (Strombidae) were determined with the size of 15,460 bp and 15,481 bp, respectively, and both sequences contained 13 protein-coding genes, 22 tRNAs, and two rRNAs. H. chiragra and L. lambis have similar mitochondrial features, corresponding to typical gastropod mitochondrial genomes, such as the conserved gene order, a high A + T content (66.22% for H. chiragra and 66.10% for L. lambis), and preference for A + T-rich codons. The start or termination codon of same protein-coding gene in H. chiragra was consistent with that in L. lambis, except for the termination codon of cox1 gene (TAG for H. chiragra and TAA for L. lambis) and the start codon of nad4 (GTG for H. chiragra and ATG for L. lambis). Pairwise sequence alignments detected different degrees of variations in H. chiragra and L. lambis mitochondrial genomes; and the two species had lower levels of genetic distance (0.202 for nucleotide sequence) and closest relationships as compared to Strombus gigas and Oncomelania hupensis. The 13 partitioned nucleotide sequences of protein coding genes of H. chiragra and L. lambis were aligned with representatives of the main lineages of gastropods and their phylogenetic relationships were inferred. H. chiragra and L. lambis share the same gene order as Littorinimorpha species, except Vermetoidea, which demonstrate a gene rearrangement in species. The reconstructed phylogeny supports three major clades within Littorinimorpha: 1) Stromboidea, Tonnoidea, Littorinoidea, and Naticoidea, 2) Rissooidea and Truncatelloidea, and 3) Vermetoidea. In addition, a relaxed molecular clock calibrated with fossils dated the diversification of Strombidae near 112 (44–206) Mya and a possible radiation is detected to occur between 45–75 Mya, providing implications to understand the Cenozoic replacement event (65–135 Mya) of Aporrhaidae by Strombidae.
Collapse
Affiliation(s)
- Dianhang Jiang
- Institute of Evolution & Marine Biodiversity (IEMB), Ocean University of China, Qingdao, 266003, China.,Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Xiaodong Zheng
- Institute of Evolution & Marine Biodiversity (IEMB), Ocean University of China, Qingdao, 266003, China. .,Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
| | - Xiaoqi Zeng
- Institute of Evolution & Marine Biodiversity (IEMB), Ocean University of China, Qingdao, 266003, China.,Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
18
|
Zhong S, Huang G, Liu Y, Huang L. The complete mitochondrial genome of marine gastropod Melo melo (neogastropoda: volutoidea). Mitochondrial DNA B Resour 2019; 4:4161-4162. [PMID: 33366363 PMCID: PMC7707778 DOI: 10.1080/23802359.2019.1693293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 11/09/2019] [Indexed: 11/15/2022] Open
Abstract
Melo melo is an ecologically and economically important species of Neogastropoda, which is an ecologically diverse group of carnivorous marine gastropods. However, the taxonomic classification and phylogenetic studies have so far been limited. In this study, we report the second complete mitochondrial genome of Volutidae from M. melo. The mitogenome has 15,721 base pairs (68.3% A + T content) and made up of total of 37 genes (13 protein-coding, 22 transfer RNAs and 2 ribosomal RNAs), and a control region. This study was the second available complete mitogenomes of Volutidae and will provide useful genetic information for future phylogenetic and taxonomic classification of Neogastropoda.
Collapse
Affiliation(s)
- Shengping Zhong
- Institute of marine drugs, Guangxi University of Chinese Medicine, Nanning, China
- Key Laboratory of Marine Biotechnology, Guangxi Institute of Oceanology, Beihai, China
| | - Guoqiang Huang
- Institute of marine drugs, Guangxi University of Chinese Medicine, Nanning, China
| | - Yonghong Liu
- Institute of marine drugs, Guangxi University of Chinese Medicine, Nanning, China
| | - Lianghua Huang
- Institute of marine drugs, Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
19
|
Zhong S, Huang L, Huang G, Liu Y, Xu W. The first complete mitochondrial genome of Melongenidae from Hemifusus tuba (Neogastropoda: Buccinoidea). Mitochondrial DNA B Resour 2019; 4:3400-3401. [PMID: 33366012 PMCID: PMC7707346 DOI: 10.1080/23802359.2019.1674746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 11/05/2022] Open
Abstract
Hemifusus tuba is an ecologically and economically important species of Buccinoidea, which comprises an ecologically diverse group of carnivorous marine gastropods. However, the taxonomic classification and phylogenetic studies have so far been limited. In this study, we report the first complete mitochondrial genome of Melongenidae from H. tuba. The mitogenome has 15,483 bp (68.2% A + T content) and made up of total of 37 genes (13 protein-coding, 22 transfer RNAs, and 2 ribosomal RNAs), and a control region. This study was the first to provide complete mitogenome of Melongenidae and will provide useful genetic information for future phylogenetic and taxonomic classification of Buccinoidea.
Collapse
Affiliation(s)
- Shengping Zhong
- Institute of marine drugs, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Key Laboratory of Marine Biotechnology, Guangxi Institute of Oceanology, Beihai, Guangxi, China
| | - Lianghua Huang
- Institute of marine drugs, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Guoqiang Huang
- Institute of marine drugs, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yonghong Liu
- Institute of marine drugs, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Weiling Xu
- Institute of Economic Management, Beihai Vocational College, Beihai, Guangxi, China
| |
Collapse
|
20
|
Zhong S, Huang L, Huang G, Liu Y, Wang W. The first complete mitochondrial genome of Murex from Murex trapa (Neogastropoda: Muricidae). Mitochondrial DNA B Resour 2019; 4:3394-3395. [PMID: 33366009 PMCID: PMC7707311 DOI: 10.1080/23802359.2019.1674726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 09/25/2019] [Indexed: 11/21/2022] Open
Abstract
The rare-spined murex (Murex trapa) is an ecologically and economically important species of Muricidae, which comprises a highly diverse group of predatory marine snails. However, the taxonomic classification and phylogenetic studies have so far been limited. In this study, we report the first complete mitochondrial genome of Murex from M. trapa. The mitogenome has 15,408 bp (66.3% A + T content) and made up of total of 37 genes (13 protein-coding, 22 transfer RNAs, and 2 ribosomal RNAs), and a control region. This study provided the first complete mitogenome of Murex and will provide useful genetic information for future phylogenetic and taxonomic classification of Muricidae.
Collapse
Affiliation(s)
- Shengping Zhong
- Institute of marine drugs, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Key Laboratory of Marine Biotechnology, Guangxi Institute of Oceanology, Beihai, Guangxi, China
| | - Lianghua Huang
- Institute of marine drugs, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Guoqiang Huang
- Institute of marine drugs, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yonghong Liu
- Institute of marine drugs, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Weixing Wang
- School of Artificial Intelligence, The Open University of Guangdong, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Sang S, Friend DS, Allmon WD, Anderson BM. Protoconch enlargement in Western Atlantic turritelline gastropod species following the closure of the Central American Seaway. Ecol Evol 2019; 9:5309-5323. [PMID: 31110681 PMCID: PMC6509377 DOI: 10.1002/ece3.5120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/12/2019] [Accepted: 03/01/2019] [Indexed: 11/18/2022] Open
Abstract
The closure of the late Neogene interoceanic seaways between the Western Atlantic (WA) and Tropical Eastern Pacific (TEP)-commonly referred to as the Central American Seaway-significantly decreased nutrient supply in the WA compared to the TEP. In marine invertebrates, an increase in parental investment is expected to be selectively favored in nutrient-poor marine environments as prolonged feeding in the plankton becomes less reliable. Here, we examine turritelline gastropods, which were abundant and diverse across this region during the Neogene and serve as important paleoenvironmental proxies, and test whether species exhibit decreased planktotrophy in the WA postclosure as compared to preclosure fossils and extant TEP species. We also test for differences in degree of planktotrophy in extant sister species pairs. Degree of planktotrophy was inferred by measuring the size of protoconchs, the species' larval shell that represents egg size. Protoconch size was compared between extant postclosure WA and TEP species and preclosure fossil species. To compare extant sister species, we reconstructed the phylogeny of available WA and TEP species using one nuclear (H3) and three mitochondrial markers (12S, 16S, and COI). Compared to the preclosure fossils, protoconch size increased in WA species but remained the same in the TEP species. In the two extant sister species pairs recovered in the phylogenetic analysis, the WA species are inferred to be nonplanktotrophic while the TEP species are planktotrophic. This suggests that decreased nutrient availability and primary productivity in the WA may have driven this change in developmental mode, and was the primary selective force resulting in postclosure turritelline extinctions.
Collapse
Affiliation(s)
- Stephanie Sang
- Department of Earth and Atmospheric SciencesSnee Hall, Cornell UniversityIthacaNew York
- Paleontological Research InstitutionIthacaNew York
- Present address:
Department of Organismal Biology and AnatomyUniversity of ChicagoChicagoIllinois
| | - Dana Suzanne Friend
- Department of Earth and Atmospheric SciencesSnee Hall, Cornell UniversityIthacaNew York
- Paleontological Research InstitutionIthacaNew York
| | - Warren Douglas Allmon
- Department of Earth and Atmospheric SciencesSnee Hall, Cornell UniversityIthacaNew York
- Paleontological Research InstitutionIthacaNew York
| | - Brendan Matthew Anderson
- Department of Earth and Atmospheric SciencesSnee Hall, Cornell UniversityIthacaNew York
- Paleontological Research InstitutionIthacaNew York
- Present address:
Department of Geology and GeographyWest Virginia UniversityMorgantownWest Virginia
| |
Collapse
|
22
|
Harasewych MG. Tropidofusus ypotethys: a new genus and new species of Columbariidae (Mollusca: Gastropoda: Turbinelloidea). MOLLUSCAN RESEARCH 2018. [DOI: 10.1080/13235818.2018.1484265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- M. G. Harasewych
- Department of Invertebrate Zoology, MRC-163, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| |
Collapse
|
23
|
Bouchet P, Rocroi JP, Hausdorf B, Kaim A, Kano Y, Nützel A, Parkhaev P, Schrödl M, Strong EE. Revised Classification, Nomenclator and Typification of Gastropod and Monoplacophoran Families. MALACOLOGIA 2017. [DOI: 10.4002/040.061.0201] [Citation(s) in RCA: 303] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Philippe Bouchet
- Institut de Systématique, Evolution, Biodiversité ISYEB — UMR7205 — CNRS, MNHN, UPMC, EPHE Muséum National d'Histoire Naturelle Sorbonne Universités, 55 Rue Buffon, F-75231 Paris, France;
| | - Jean-Pierre Rocroi
- Institut de Systématique, Evolution, Biodiversité ISYEB — UMR7205 — CNRS, MNHN, UPMC, EPHE Muséum National d'Histoire Naturelle Sorbonne Universités, 55 Rue Buffon, F-75231 Paris, France;
| | - Bernhard Hausdorf
- Zoological Museum, Center of Natural History, Universität Hamburg, Germany
| | - Andrzej Kaim
- Institute of Paleobiology, Polish Academy of Sciences, Warszawa, Poland
| | - Yasunori Kano
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| | - Alexander Nützel
- Bavarian State Collection of Palaeontology and Geology, Faculty of Earth Sciences and GeoBio-Center LMU, München, Germany
| | - Pavel Parkhaev
- Borissiak Paleontological Institute, Russian Academy of Sciences, Moscow, Russia
| | - Michael Schrödl
- Bavarian State Collection of Zoology, Faculty of Biology and GeoBio-Center LMU, München, Germany
| | - Ellen E. Strong
- National Museum of Natural History, Smithsonian Institution, Washington D.C., U.S.A
| |
Collapse
|
24
|
|
25
|
A phylogeny of Southern Hemisphere whelks (Gastropoda: Buccinulidae) and concordance with the fossil record. Mol Phylogenet Evol 2017; 114:367-381. [PMID: 28669812 DOI: 10.1016/j.ympev.2017.06.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/31/2017] [Accepted: 06/26/2017] [Indexed: 11/24/2022]
Abstract
Under current marine snail taxonomy, the majority of whelks from the Southern Hemisphere (Buccinulidae) are hypothesised to represent a monophyletic clade that has evolved independently from Northern Hemisphere taxa (Buccinidae). Phylogenetic analysis of mitochondrial genomic and nuclear ribosomal DNA sequence data indicates that Southern Hemisphere taxa are not monophyletic, and results suggest that dispersal across the equator has occurred in both directions. New Zealand buccinulid whelks, noted for their high endemic diversity, are also found to not be monophyletic. Using independent fossil calibrations, estimated genetic divergence dates show remarkable concordance with the fossil record of the Penion and Kelletia. The divergence dates and the geographic distribution of the genera through time implies that some benthic marine snails are capable of dispersal over long distances, despite varied developmental strategies. Phylogenetic results also indicate that one species, P. benthicolus belongs in Antarctoneptunea.
Collapse
|
26
|
Kantor YI, Fedosov AE, Puillandre N, Bonillo C, Bouchet P. Returning to the roots: morphology, molecular phylogeny and classification of the Olivoidea (Gastropoda: Neogastropoda). Zool J Linn Soc 2017. [DOI: 10.1093/zoolinnean/zlw003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Jones C, Stankowich T, Pernet B. Allocation of cytoplasm to macromeres in embryos of annelids and molluscs is positively correlated with egg size. Evol Dev 2017; 18:156-70. [PMID: 27161947 DOI: 10.1111/ede.12189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Evolutionary transitions between feeding and nonfeeding larval development have occurred many times in marine invertebrates, but the developmental changes underlying these frequent and ecologically important transitions are poorly known, especially in spiralians. We use phylogenetic comparative methods to test the hypothesis that evolutionary changes in egg size and larval nutritional mode are associated with parallel changes in allocation of cytoplasm to macromere cell lineages in diverse annelids and molluscs. Our analyses show that embryos of species with large eggs and nonfeeding larvae tend to allocate relatively more embryonic cytoplasm to macromeres at 3rd cleavage than do embryos of species with small eggs and feeding larvae. The association between egg size and allocation to macromeres in these spiralians may be driven by constraints associated with mitotic spindle positioning and size, or may be a result of "adaptation in cleavage" to maintain rapid cell cycles in micromeres, position yolk in cell lineages where it can be most efficiently used, or adjust allocation to ectoderm to accommodate changes in embryonic surface area/volume ratio.
Collapse
Affiliation(s)
- Caleb Jones
- Department of Biological Sciences, California State University, Long Beach, Long Beach CA, 90840, USA
| | - Theodore Stankowich
- Department of Biological Sciences, California State University, Long Beach, Long Beach CA, 90840, USA
| | - Bruno Pernet
- Department of Biological Sciences, California State University, Long Beach, Long Beach CA, 90840, USA
| |
Collapse
|
28
|
Bieler R, Granados-Cifuentes C, Rawlings TA, Sierwald P, Collins TM. Non-native molluscan colonizers on deliberately placed shipwrecks in the Florida Keys, with description of a new species of potentially invasive worm-snail (Gastropoda: Vermetidae). PeerJ 2017; 5:e3158. [PMID: 28392984 PMCID: PMC5384567 DOI: 10.7717/peerj.3158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/07/2017] [Indexed: 11/20/2022] Open
Abstract
Artificial reefs created by deliberately sinking ships off the coast of the Florida Keys island chain are providing new habitat for marine invertebrates. This newly developing fouling community includes the previously reported invasive orange tube coral Tubastraea coccinea and the non-native giant foam oyster Hyotissa hyotis. New SCUBA-based surveys involving five shipwrecks spanning the upper, middle, and lower Florida Keys, show T. coccinea now also established in the lower Keys and H. hyotis likewise extending to new sites. Two additional mollusks found on the artificial reefs, the amathinid gastropod Cyclothyca pacei and gryphaeid oyster Hyotissa mcgintyi, the latter also common in the natural reef areas, are discussed as potentially non-native. A new species of sessile, suspension-feeding, worm-snail, Thylacodes vandyensis Bieler, Rawlings & Collins n. sp. (Vermetidae), is described from the wreck of the USNS Vandenberg off Key West and discussed as potentially invasive. This new species is compared morphologically and by DNA barcode markers to other known members of the genus, and may be a recent arrival from the Pacific Ocean. Thylacodes vandyensis is polychromatic, with individuals varying in both overall head-foot coloration and mantle margin color pattern. Females brood stalked egg capsules attached to their shell within the confines of their mantle cavity, and give rise to crawl-away juveniles. Such direct-developing species have the demonstrated capacity for colonizing habitats isolated far from their native ranges and establishing rapidly growing founder populations. Vermetid gastropods are common components of the marine fouling community in warm temperate and tropical waters and, as such, have been tagged as potentially invasive or with a high potential to be invasive in the Pacific Ocean. As vermetids can influence coral growth/composition in the Pacific and have been reported serving as intermediate hosts for blood flukes of loggerhead turtles, such new arrivals in the Florida Keys National Marine Sanctuary are of concern. Growing evidence indicates that artificial reefs can act as permanent way-stations for arriving non-natives, providing nurseries within which populations may grow in an environment with reduced competition compared to native habitats. Consequently, artificial reefs can act as sentinels for the appearance of new species. Ongoing monitoring of the developing molluscan fauna on the artificial reefs of the Florida Keys is necessary to recognize new invasions and identify potential eradication targets, thereby assuring the health of the nearby natural barrier reef.
Collapse
Affiliation(s)
- Rüdiger Bieler
- Integrative Research Center, Field Museum of Natural History, Chicago, IL, United States; Mote's Tropical Research Laboratory, Summerland Key, FL, United States
| | | | - Timothy A Rawlings
- Department of Biology, Cape Breton University , Sydney , Nova Scotia , Canada
| | - Petra Sierwald
- Integrative Research Center, Field Museum of Natural History , Chicago , IL , United States
| | - Timothy M Collins
- Department of Biological Sciences, Florida International University , Miami , FL , United States
| |
Collapse
|
29
|
Webster NB, Vermeij GJ. The varix: evolution, distribution, and phylogenetic clumping of a repeated gastropod innovation. Zool J Linn Soc 2017. [DOI: 10.1093/zoolinnean/zlw015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Mu X, Yang Y, Liu Y, Luo D, Xu M, Wei H, Gu D, Song H, Hu Y. The complete mitochondrial genomes of two freshwater snails provide new protein-coding gene rearrangement models and phylogenetic implications. Parasit Vectors 2017; 10:11. [PMID: 28061879 PMCID: PMC5219674 DOI: 10.1186/s13071-016-1956-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/23/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mitochondrial (mt) genome sequences are widely used for species identification and to study the phylogenetic relationships among Gastropoda. However, to date, limited data are available as taxon sampling is narrow. In this study we sequenced the complete mt genomes of the freshwater gastropods Radix swinhoei (Lymnaeidae) and Planorbarius corneus (Planorbidae). Based on these sequences, we investigated the gene rearrangement in these two species and the relationships with respect to the ancestral gene order and assessed their phylogenetic relationships. METHODS The complete mt genomes of R. swinhoei and P. corneus were sequenced using Illumina-based paired-end sequencing and annotated by comparing the sequence information with that of related gastropod species. Putative models of mitochondrial gene rearrangements were predicted for both R. swinhoei and P. corneus, using Reishia clavigera mtDNA structure as the ancestral gene order. The phylogenetic relationships were inferred using thirteen protein sequences based on Maximum likelihood and Bayesian inference analyses. RESULTS The complete circular mt genome sequences of R. swinhoei and P. corneus were 14,241 bp and 13,687 bp in length, respectively. Comparison of the gene order demonstrated complex rearrangement events in Gastropoda, both for tRNA genes and protein-coding genes. The phylogenetic analyses showed that the family Lymnaeidae was more closely related to the family Planorbidae, consistent with previous classification. Nevertheless, due to the position recovered for R. swinhoei, the family Lymnaeidae was not monophyletic. CONCLUSION This study provides the complete mt genomes of two freshwater snails, which will aid the development of useful molecular markers for epidemiological, ecological and phylogenetic studies. Additionally, the predicted models for mt gene rearrangement might provide novel insights into mt genome evolution in gastropods.
Collapse
Affiliation(s)
- Xidong Mu
- Key Laboratory of Tropical&Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Xingyu Road1, Guangzhou, 510380 China
| | - Yexin Yang
- Key Laboratory of Tropical&Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Xingyu Road1, Guangzhou, 510380 China
| | - Yi Liu
- Key Laboratory of Tropical&Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Xingyu Road1, Guangzhou, 510380 China
| | - Du Luo
- Key Laboratory of Tropical&Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Xingyu Road1, Guangzhou, 510380 China
| | - Meng Xu
- Key Laboratory of Tropical&Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Xingyu Road1, Guangzhou, 510380 China
| | - Hui Wei
- Key Laboratory of Tropical&Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Xingyu Road1, Guangzhou, 510380 China
| | - Dangen Gu
- Key Laboratory of Tropical&Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Xingyu Road1, Guangzhou, 510380 China
| | - Hongmei Song
- Key Laboratory of Tropical&Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Xingyu Road1, Guangzhou, 510380 China
| | - Yinchang Hu
- Key Laboratory of Tropical&Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Xingyu Road1, Guangzhou, 510380 China
| |
Collapse
|
31
|
Huston DC, Cutmore SC, Cribb TH. The life-cycle of Gorgocephalus yaaji Bray & Cribb, 2005 (Digenea: Gorgocephalidae) with a review of the first intermediate hosts for the superfamily Lepocreadioidea Odhner, 1905. Syst Parasitol 2016; 93:653-65. [DOI: 10.1007/s11230-016-9655-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/19/2016] [Indexed: 11/28/2022]
|
32
|
A multilocus molecular phylogeny of Fasciolariidae (Neogastropoda: Buccinoidea). Mol Phylogenet Evol 2016; 99:309-322. [DOI: 10.1016/j.ympev.2016.03.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 11/24/2022]
|
33
|
Verdes A, Anand P, Gorson J, Jannetti S, Kelly P, Leffler A, Simpson D, Ramrattan G, Holford M. From Mollusks to Medicine: A Venomics Approach for the Discovery and Characterization of Therapeutics from Terebridae Peptide Toxins. Toxins (Basel) 2016; 8:117. [PMID: 27104567 PMCID: PMC4848642 DOI: 10.3390/toxins8040117] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 12/21/2022] Open
Abstract
Animal venoms comprise a diversity of peptide toxins that manipulate molecular targets such as ion channels and receptors, making venom peptides attractive candidates for the development of therapeutics to benefit human health. However, identifying bioactive venom peptides remains a significant challenge. In this review we describe our particular venomics strategy for the discovery, characterization, and optimization of Terebridae venom peptides, teretoxins. Our strategy reflects the scientific path from mollusks to medicine in an integrative sequential approach with the following steps: (1) delimitation of venomous Terebridae lineages through taxonomic and phylogenetic analyses; (2) identification and classification of putative teretoxins through omics methodologies, including genomics, transcriptomics, and proteomics; (3) chemical and recombinant synthesis of promising peptide toxins; (4) structural characterization through experimental and computational methods; (5) determination of teretoxin bioactivity and molecular function through biological assays and computational modeling; (6) optimization of peptide toxin affinity and selectivity to molecular target; and (7) development of strategies for effective delivery of venom peptide therapeutics. While our research focuses on terebrids, the venomics approach outlined here can be applied to the discovery and characterization of peptide toxins from any venomous taxa.
Collapse
Affiliation(s)
- Aida Verdes
- Hunter College, The City University of New York, Belfer Research Building, 413 E. 69th Street, New York, NY 10021, USA.
- The Graduate Center, City University of New York, 365 5th Ave, New York, NY 10016, USA.
- Sackler Institute for Comparative Genomics, Invertebrate Zoology, American Museum of Natural History, Central Park West & 79th St, New York, NY 10024, USA.
| | - Prachi Anand
- Hunter College, The City University of New York, Belfer Research Building, 413 E. 69th Street, New York, NY 10021, USA.
| | - Juliette Gorson
- Hunter College, The City University of New York, Belfer Research Building, 413 E. 69th Street, New York, NY 10021, USA.
- The Graduate Center, City University of New York, 365 5th Ave, New York, NY 10016, USA.
- Sackler Institute for Comparative Genomics, Invertebrate Zoology, American Museum of Natural History, Central Park West & 79th St, New York, NY 10024, USA.
| | - Stephen Jannetti
- Hunter College, The City University of New York, Belfer Research Building, 413 E. 69th Street, New York, NY 10021, USA.
- The Graduate Center, City University of New York, 365 5th Ave, New York, NY 10016, USA.
| | - Patrick Kelly
- Hunter College, The City University of New York, Belfer Research Building, 413 E. 69th Street, New York, NY 10021, USA.
- The Graduate Center, City University of New York, 365 5th Ave, New York, NY 10016, USA.
| | - Abba Leffler
- Hunter College, The City University of New York, Belfer Research Building, 413 E. 69th Street, New York, NY 10021, USA.
- Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine 550 1st Avenue, New York, NY 10016, USA.
| | - Danny Simpson
- Hunter College, The City University of New York, Belfer Research Building, 413 E. 69th Street, New York, NY 10021, USA.
- Tandon School of Engineering, New York University 6 MetroTech Center, Brooklyn, NY 11201, USA.
| | - Girish Ramrattan
- Hunter College, The City University of New York, Belfer Research Building, 413 E. 69th Street, New York, NY 10021, USA.
| | - Mandë Holford
- Hunter College, The City University of New York, Belfer Research Building, 413 E. 69th Street, New York, NY 10021, USA.
- The Graduate Center, City University of New York, 365 5th Ave, New York, NY 10016, USA.
- Sackler Institute for Comparative Genomics, Invertebrate Zoology, American Museum of Natural History, Central Park West & 79th St, New York, NY 10024, USA.
| |
Collapse
|
34
|
Galindo LA, Puillandre N, Utge J, Lozouet P, Bouchet P. The phylogeny and systematics of the Nassariidae revisited (Gastropoda, Buccinoidea). Mol Phylogenet Evol 2016; 99:337-353. [PMID: 27012605 DOI: 10.1016/j.ympev.2016.03.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 02/23/2016] [Accepted: 03/15/2016] [Indexed: 01/30/2023]
Abstract
Nassariidae are a group of scavenging, predominantly marine, snails that are diversified on soft bottoms as well as on rocky shores, and are the subject of numerous research papers in ecology, ecotoxicology or paleontology. A weak and/or apparently continuous variation in shell characters has resulted in an intimidating taxonomy, with complex synonymy lists. Over 1320 extant nominal species have been described, of which 442 are currently regarded as valid. Above species level, the state of the art is equally hazy, with four subfamilies and twelve genera currently accepted, and many other names in the graveyard of synonymy. A molecular analysis based on three mitochondrial (COI, 16S, 12S) and two nuclear (28S, H3) markers was conducted. Our dataset includes 218 putative nassariid species, comprising 9 of the 12 valid genera, and 25 nominal genera represented by their type species. The monophyly of the Nassariidae as classically construed is not confirmed. Species of Antillophos, Engoniophos, Phos, Nassaria, Tomlinia and Anentome (formerly considered Buccinidae) are included inside the Nassariidae clade. Within the Nassariinae, the tree unexpectedly demonstrates that species from the Atlantic and the Indo-Pacific form different clades which represent several independent diversification events. Through an integrative approach, the reconstruction of ancestral states was addressed for eight characters supposedly informative for taxonomy. Using numerous fossil calibration points, Nassariidae appear to have originated 120 MYA ago in Atlantic temperate waters during the Lower Cretaceous. Our results have a profound impact on nassariid taxonomy, especially with regard to the validity of subfamily- and genus-level names.
Collapse
Affiliation(s)
- Lee Ann Galindo
- Institut de Systématique, Evolution, Biodiversité ISYEB - UMR7205 - CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle, Sorbonne Universités, 43 Rue Cuvier, F-75231 Paris, France.
| | - Nicolas Puillandre
- Institut de Systématique, Evolution, Biodiversité ISYEB - UMR7205 - CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle, Sorbonne Universités, 43 Rue Cuvier, F-75231 Paris, France.
| | - José Utge
- UMS 2700, Museum National d'Histoire Naturelle, Département Systématique et Evolution, 43, Rue Cuvier, 75231 Paris, France; Musée de l'Homme, HNS - UMR 7206, EcoAnthropologie et Ethnobiologie, CNRS/MNHN/Université Paris Diderot, 17 place Trocadéro, 75016 Paris, France.
| | - Pierre Lozouet
- Muséum National d'Histoire Naturelle, Direction des Collections, 55, rue de Buffon, 75005 Paris, France.
| | - Philippe Bouchet
- Institut de Systématique, Evolution, Biodiversité ISYEB - UMR7205 - CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle, Sorbonne Universités, 55 Rue Buffon, F-75231 Paris, France.
| |
Collapse
|
35
|
Matetovici I, Sajgo S, Ianc B, Ochis C, Bulzu P, Popescu O, Damert A. Mobile Element Evolution Playing Jigsaw - SINEs in Gastropod and Bivalve Mollusks. Genome Biol Evol 2016; 8:253-70. [PMID: 26739168 PMCID: PMC4758252 DOI: 10.1093/gbe/evv257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
SINEs (Short INterspersed Elements) are widely distributed among eukaryotes. Some SINE families are organized in superfamilies characterized by a shared central domain. These central domains are conserved across species, classes, and even phyla. Here we report the identification of two novel such superfamilies in the genomes of gastropod and bivalve mollusks. The central conserved domain of the first superfamily is present in SINEs in Caenogastropoda and Vetigastropoda as well as in all four subclasses of Bivalvia. We designated the domain MESC (Romanian for MElc-snail and SCoica-mussel) because it appears to be restricted to snails and mussels. The second superfamily is restricted to Caenogastropoda. Its central conserved domain-Snail-is related to the Nin-DC domain. Furthermore, we provide evidence that a 40-bp subdomain of the SINE V-domain is conserved in SINEs in mollusks and arthropods. It is predicted to form a stable stem-loop structure that is preserved in the context of the overall SINE RNA secondary structure in invertebrates. Our analysis also recovered short retrotransposons with a Long INterspersed Element (LINE)-derived 5' end. These share the body and/or the tail with transfer RNA (tRNA)-derived SINEs within and across species. Finally, we identified CORE SINEs in gastropods and bivalves-extending the distribution range of this superfamily.
Collapse
Affiliation(s)
- Irina Matetovici
- Institute for Interdisciplinary Research in Bio-Nano-Sciences, Molecular Biology Center, Babes-Bolyai-University, Cluj-Napoca, Romania Present address: Institute of Tropical Medicine, Unit of Veterinary Protozoology, Antwerpen, Belgium
| | - Szilard Sajgo
- Institute for Interdisciplinary Research in Bio-Nano-Sciences, Molecular Biology Center, Babes-Bolyai-University, Cluj-Napoca, Romania Present address: Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, DANDRITE, Aarhus University, Aarhus, Denmark
| | - Bianca Ianc
- Institute for Interdisciplinary Research in Bio-Nano-Sciences, Molecular Biology Center, Babes-Bolyai-University, Cluj-Napoca, Romania
| | - Cornelia Ochis
- Institute for Interdisciplinary Research in Bio-Nano-Sciences, Molecular Biology Center, Babes-Bolyai-University, Cluj-Napoca, Romania
| | - Paul Bulzu
- Institute for Interdisciplinary Research in Bio-Nano-Sciences, Molecular Biology Center, Babes-Bolyai-University, Cluj-Napoca, Romania
| | | | - Annette Damert
- Institute for Interdisciplinary Research in Bio-Nano-Sciences, Molecular Biology Center, Babes-Bolyai-University, Cluj-Napoca, Romania
| |
Collapse
|
36
|
|
37
|
Zapata F, Wilson NG, Howison M, Andrade SCS, Jörger KM, Schrödl M, Goetz FE, Giribet G, Dunn CW. Phylogenomic analyses of deep gastropod relationships reject Orthogastropoda. Proc Biol Sci 2015; 281:20141739. [PMID: 25232139 DOI: 10.1098/rspb.2014.1739] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Gastropods are a highly diverse clade of molluscs that includes many familiar animals, such as limpets, snails, slugs and sea slugs. It is one of the most abundant groups of animals in the sea and the only molluscan lineage that has successfully colonized land. Yet the relationships among and within its constituent clades have remained in flux for over a century of morphological, anatomical and molecular study. Here, we re-evaluate gastropod phylogenetic relationships by collecting new transcriptome data for 40 species and analysing them in combination with publicly available genomes and transcriptomes. Our datasets include all five main gastropod clades: Patellogastropoda, Vetigastropoda, Neritimorpha, Caenogastropoda and Heterobranchia. We use two different methods to assign orthology, subsample each of these matrices into three increasingly dense subsets, and analyse all six of these supermatrices with two different models of molecular evolution. All 12 analyses yield the same unrooted network connecting the five major gastropod lineages. This reduces deep gastropod phylogeny to three alternative rooting hypotheses. These results reject the prevalent hypothesis of gastropod phylogeny, Orthogastropoda. Our dated tree is congruent with a possible end-Permian recovery of some gastropod clades, namely Caenogastropoda and some Heterobranchia subclades.
Collapse
Affiliation(s)
- Felipe Zapata
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02906, USA
| | | | - Mark Howison
- Center for Computation and Visualization, Brown University, Providence, RI 02906, USA
| | - Sónia C S Andrade
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Katharina M Jörger
- SNSB-Bavarian State Collection of Zoology, Munich 81247, Germany Department Biology II, BioZentrum, Ludwig-Maximilians-Universität, Planegg-Martinsried 82152, Germany
| | - Michael Schrödl
- SNSB-Bavarian State Collection of Zoology, Munich 81247, Germany Department Biology II, BioZentrum, Ludwig-Maximilians-Universität, Planegg-Martinsried 82152, Germany
| | - Freya E Goetz
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02906, USA
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Casey W Dunn
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02906, USA
| |
Collapse
|
38
|
Modica MV, Lombardo F, Franchini P, Oliverio M. The venomous cocktail of the vampire snail Colubraria reticulata (Mollusca, Gastropoda). BMC Genomics 2015; 16:441. [PMID: 26054852 PMCID: PMC4460706 DOI: 10.1186/s12864-015-1648-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/20/2015] [Indexed: 01/13/2023] Open
Abstract
Background Hematophagy arose independently multiple times during metazoan evolution, with several lineages of vampire animals particularly diversified in invertebrates. However, the biochemistry of hematophagy has been studied in a few species of direct medical interest and is still underdeveloped in most invertebrates, as in general is the study of venom toxins. In cone snails, leeches, arthropods and snakes, the strong target specificity of venom toxins uniquely aligns them to industrial and academic pursuits (pharmacological applications, pest control etc.) and provides a biochemical tool for studying biological activities including cell signalling and immunological response. Neogastropod snails (cones, oyster drills etc.) are carnivorous and include active predators, scavengers, grazers on sessile invertebrates and hematophagous parasites; most of them use venoms to efficiently feed. It has been hypothesized that trophic innovations were the main drivers of rapid radiation of Neogastropoda in the late Cretaceous. We present here the first molecular characterization of the alimentary secretion of a non-conoidean neogastropod, Colubraria reticulata. Colubrariids successfully feed on the blood of fishes, throughout the secretion into the host of a complex mixture of anaesthetics and anticoagulants. We used a NGS RNA-Seq approach, integrated with differential expression analyses and custom searches for putative secreted feeding-related proteins, to describe in detail the salivary and mid-oesophageal transcriptomes of this Mediterranean vampire snail, with functional and evolutionary insights on major families of bioactive molecules. Results A remarkably low level of overlap was observed between the gene expression in the two target tissues, which also contained a high percentage of putatively secreted proteins when compared to the whole body. At least 12 families of feeding-related proteins were identified, including: 1) anaesthetics, such as ShK Toxin-containing proteins and turripeptides (ion-channel blockers), Cysteine-rich secretory proteins (CRISPs), Adenosine Deaminase (ADA); 2) inhibitors of primary haemostasis, such as novel vWFA domain-containing proteins, the Ectonucleotide pyrophosphatase/phosphodiesterase family member 5 (ENPP5) and the wasp Antigen-5; 3) anticoagulants, such as TFPI-like multiple Kunitz-type protease inhibitors, Peptidases S1 (PS1), CAP/ShKT domain-containing proteins, Astacin metalloproteases and Astacin/ShKT domain-containing proteins; 4) additional proteins, such the Angiotensin-Converting Enzyme (ACE: vasopressive) and the cytolytic Porins. Conclusions Colubraria feeding physiology seems to involve inhibitors of both primary and secondary haemostasis, anaesthetics, a vasoconstrictive enzyme to reduce feeding time and tissue-degrading proteins such as Porins and Astacins. The complexity of Colubraria venomous cocktail and the divergence from the arsenal of the few neogastropods studied to date (mostly conoideans) suggest that biochemical diversification of neogastropods might be largely underestimated and worth of extensive investigation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1648-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria Vittoria Modica
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University, I-00185, Rome, Italy.
| | - Fabrizio Lombardo
- Department of Public Health and Infectious Diseases, Sapienza University, I-00185, Rome, Italy.
| | - Paolo Franchini
- Department of Biology, University of Konstanz, D-78745, Konstanz, Germany.
| | - Marco Oliverio
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University, I-00185, Rome, Italy.
| |
Collapse
|
39
|
Fedosov A, Puillandre N, Kantor Y, Bouchet P. Phylogeny and systematics of mitriform gastropods (Mollusca: Gastropoda: Neogastropoda). Zool J Linn Soc 2015. [DOI: 10.1111/zoj.12278] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alexander Fedosov
- A.N. Severtsov Institute of Ecology and Evolution; Russian Academy of Sciences; Leninsky Prospect 33 Moscow 119071 Russia
- Institut de Systématique, Évolution, Biodiversité ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle; Sorbonne Universités; 55 rue Buffon, CP26 F-75005 Paris France
| | - Nicolas Puillandre
- Institut de Systématique, Évolution, Biodiversité ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle; Sorbonne Universités; 43 rue Cuvier, CP26 F-75005 Paris France
| | - Yuri Kantor
- A.N. Severtsov Institute of Ecology and Evolution; Russian Academy of Sciences; Leninsky Prospect 33 Moscow 119071 Russia
- Institut de Systématique, Évolution, Biodiversité ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle; Sorbonne Universités; 55 rue Buffon, CP26 F-75005 Paris France
| | - Philippe Bouchet
- Institut de Systématique, Évolution, Biodiversité ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle; Sorbonne Universités; 55 rue Buffon, CP26 F-75005 Paris France
| |
Collapse
|
40
|
Takano T, Kano Y. Molecular phylogenetic investigations of the relationships of the echinoderm-parasite family Eulimidae within Hypsogastropoda (Mollusca). Mol Phylogenet Evol 2014; 79:258-69. [DOI: 10.1016/j.ympev.2014.06.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 06/16/2014] [Accepted: 06/21/2014] [Indexed: 10/25/2022]
|
41
|
Pappalardo P, Rodríguez-Serrano E, Fernández M. Correlated evolution between mode of larval development and habitat in muricid gastropods. PLoS One 2014; 9:e94104. [PMID: 24714732 PMCID: PMC3979742 DOI: 10.1371/journal.pone.0094104] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 03/11/2014] [Indexed: 11/19/2022] Open
Abstract
Larval modes of development affect evolutionary processes and influence the distribution of marine invertebrates in the ocean. The decrease in pelagic development toward higher latitudes is one of the patterns of distribution most frequently discussed in marine organisms (Thorson's rule), which has been related to increased larval mortality associated with long pelagic durations in colder waters. However, the type of substrate occupied by adults has been suggested to influence the generality of the latitudinal patterns in larval development. To help understand how the environment affects the evolution of larval types we evaluated the association between larval development and habitat using gastropods of the Muricidae family as a model group. To achieve this goal, we collected information on latitudinal distribution, sea water temperature, larval development and type of substrate occupied by adults. We constructed a molecular phylogeny for 45 species of muricids to estimate the ancestral character states and to assess the relationship between traits using comparative methods in a Bayesian framework. Our results showed high probability for a common ancestor of the muricids with nonpelagic (and nonfeeding) development, that lived in hard bottoms and cold temperatures. From this ancestor, a pelagic feeding larva evolved three times, and some species shifted to warmer temperatures or sand bottoms. The evolution of larval development was not independent of habitat; the most probable evolutionary route reconstructed in the analysis of correlated evolution showed that type of larval development may change in soft bottoms but in hard bottoms this change is highly unlikely. Lower sea water temperatures were associated with nonpelagic modes of development, supporting Thorson's rule. We show how environmental pressures can favor a particular mode of larval development or transitions between larval modes and discuss the reacquisition of feeding larva in muricids gastropods.
Collapse
Affiliation(s)
- Paula Pappalardo
- Odum School of Ecology, University of Georgia, Athens, Georgia, United States of America
- Centro de Conservación Marina, Departamento de Ecología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Enrique Rodríguez-Serrano
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Miriam Fernández
- Centro de Conservación Marina, Departamento de Ecología, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
42
|
Camacho-García YE, Ornelas-Gatdula E, Gosliner TM, Valdés Á. Phylogeny of the family Aglajidae (Pilsbry, 1895) (Heterobranchia: Cephalaspidea) inferred from mtDNA and nDNA. Mol Phylogenet Evol 2013; 71:113-26. [PMID: 24291658 DOI: 10.1016/j.ympev.2013.11.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 11/12/2013] [Accepted: 11/18/2013] [Indexed: 10/26/2022]
Abstract
The family Aglajidae includes several species of benthic, carnivorous cephalaspidean sea slugs, which generally lack a radula, have an internal shell, a posterior shield with short to moderate caudal lobes, and sensory cilia present on the head. The present study reports a phylogenetic analysis of the Aglajidae based on the mitochondrial genes 16S and CO1 and the nuclear gene H3, including 160 specimens of 54 species, that confirms the monophyly of Aglajidae as well as most taxonomically established genera, with some exceptions. Although support values are low for some clades, the analysis recovered the following clades within the Aglajidae: Odontoglaja, Nakamigawaia, and Melanochlamys. Chelidonura appears to be paraphyletic and the monophyly of a Chelidonura-Navanax-Aglaja clade is strongly supported in the Bayesian analysis, plus three of the four individual gene trees (COI, COI without 3rd codon positions, 16S and H3). However, the relatively low levels of support in the maximum likelihood analyses prevent us from proposing the synonymization of Navanax and Aglaja with Chelidonura. Melanochlamys is the sister clade of Chelidonura+Aglaja+Navanax. Odontoglaja is basal to the rest of the Aglajidae, confirming previous hypotheses on the loss of the radula in Aglajidae. Nakamigawaia and Melanochlamys are monophyletic, and should be maintained as valid. The monophyly of Philinopsis is strongly supported in the Bayesian analysis and in three of the four individual gene trees. Further research on this group is necessary to further affirm the monophyly of Chelidonura+Aglaja+Navanax and Philinopsis. Based on the results of this phylogenetic analysis, a reclassification of the taxonomy of Aglajidae is probably necessary. Additional genes should provide more information and probably fully resolve this situation. The present molecular study (including ABGD species delineation analyses) suggests the existence of previously undetected species complexes that require additional study to determine the extent of undocumented biodiversity.
Collapse
Affiliation(s)
- Yolanda E Camacho-García
- Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Universidad de Costa Rica, 11501-2060 San Pedro, San José, Costa Rica; Museo de Zoología, Escuela de Biología, Universidad de Costa Rica, 11501-2060 San Pedro, San José, Costa Rica
| | - Elysse Ornelas-Gatdula
- Department of Biological Sciences, California State Polytechnic University, 3801 W. Temple Ave., Pomona, CA 91768, USA
| | - Terrence M Gosliner
- California Academy of Sciences, Department of Invertebrate Zoology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA
| | - Ángel Valdés
- Department of Biological Sciences, California State Polytechnic University, 3801 W. Temple Ave., Pomona, CA 91768, USA.
| |
Collapse
|
43
|
The complete mitochondrial genome of a turbinid vetigastropod from MiSeq Illumina sequencing of genomic DNA and steps towards a resolved gastropod phylogeny. Gene 2013; 533:38-47. [PMID: 24120625 DOI: 10.1016/j.gene.2013.10.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/26/2013] [Accepted: 10/02/2013] [Indexed: 01/21/2023]
Abstract
A need to increase sampling of mitochondrial genomes for Vetigastropoda has been identified as an important step towards resolving relationships within the Gastropoda. We used shotgun sequencing of genomic DNA, using an Illumina MiSeq, to obtain the first mitochondrial genome for the vetigastropod family Turbinidae, doubling the number of genomes for the species-rich superfamily Trochoidea. This method avoids the necessity of finding suitable primers for long PCRs or primer-walking amplicons, resulting in a timely and cost-effective method for obtaining whole mitochondrial genomes from ethanol-preserved tissue samples. Bayesian analysis of amino acid variation for all available gastropod genomes including the new turbinid mtgenome produced a well resolved tree with high nodal support for most nodes. Major clades within Gastropoda were recovered with strong support, with the exception of Littorinimorpha, which was polyphyletic. We confirm here that mitogenomics is a useful tool for molluscan phylogenetics, especially when using powerful new models of amino acid evolution, but recognise that increased taxon sampling is still required to resolve existing differences between nuclear and mitochondrial gene trees.
Collapse
|
44
|
Claremont M, Vermeij GJ, Williams ST, Reid DG. Global phylogeny and new classification of the Rapaninae (Gastropoda: Muricidae), dominant molluscan predators on tropical rocky seashores. Mol Phylogenet Evol 2012; 66:91-102. [PMID: 23026810 DOI: 10.1016/j.ympev.2012.09.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 08/29/2012] [Accepted: 09/14/2012] [Indexed: 11/25/2022]
Abstract
The monophyly of the muricid subfamily Rapaninae has recently been confirmed with molecular techniques, but its composition and the relationships among its constituent genera remain unclear. We use four genes (28S rRNA, 12S rRNA, 16S rRNA and cytochrome c oxidase subunit I, COI) to construct a Bayesian phylogeny of 80 rapanine species (73% of the approximately 109 currently accepted), representing 27 of the 31 nominal genera. This is the most complete phylogeny of this taxonomically confusing subfamily yet produced. We propose a revised phylogenetic classification of the Rapaninae, assigning the recognized species to 28 genera. Most of the morphologically-defined rapanine genera are considered valid, including Purpura, Drupa, Thais and Nassa, but many of them are here restricted or redefined so that they are monophyletic. In particular the familiar genus Thais is narrowly restricted to a single species. Many groups previously accepted as subgenera, including Mancinella, Vasula, Thalessa and Thaisella, are here accorded full generic rank. We describe one new genus, Indothais. While we do not formally alter species-level taxonomy, we show molecular evidence for two cryptic species and several instances of probable species synonymy. We estimate the age of diversification of the Rapaninae as Late Cretaceous (75.9 Ma) and of many of its genera as Miocene.
Collapse
Affiliation(s)
- Martine Claremont
- Department of Zoology, Natural History Museum, Cromwell Road, London SW7 5BD, UK.
| | | | | | | |
Collapse
|