1
|
Castro-Rodriguez B, Franco-Sotomayor G, Orlando SA, Garcia-Bereguiain MÁ. Molecular epidemiology of Mycobacterium tuberculosis in Ecuador: Recent advances and future challenges. J Clin Tuberc Other Mycobact Dis 2024; 37:100465. [PMID: 39184342 PMCID: PMC11342892 DOI: 10.1016/j.jctube.2024.100465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024] Open
Abstract
Tuberculosis (TB) is one of the three leading causes of death from a single infectious agent, Mycobacterium tuberculosis (MTB), together with COVID-19 and HIV/AIDS. This disease places a heavy burden on countries with low socio-economic development and aggravates existing inequalities. For the year 2021, estimations for Ecuador were 8500 TB cases, of which 370 were associated to multiple drug resistance (TB-MDR), and 1160 deaths. In the same year, Ecuador notified 5973 total cases, 401 of them were TB-MDR, pointing out an under diagnosis problem. The few molecular epidemiology studies available conclude that L4 is the most prevalent MTB lineage in Ecuador (with LAM as the main L4 sublineage), but L2-Beijing family is also present at low prevalence. Nevertheless, with less than 1 % MTB isolates genetically characterized by either MIRU-VNTR, spolygotyping or WGS to date, molecular epidemiology research must me improved to assist the TB surveillance and control program in Ecuador.
Collapse
Affiliation(s)
| | - Greta Franco-Sotomayor
- Instituto Nacional de Investigación y Salud Pública, Guayaquil, Ecuador
- Universidad Católica Santiago de Guayaquil, Guayaquil, Ecuador
| | - Solón Alberto Orlando
- Instituto Nacional de Investigación y Salud Pública, Guayaquil, Ecuador
- Universidad Espíritu Santo, Guayaquil, Ecuador
| | | |
Collapse
|
2
|
Castro-Rodriguez B, Franco-Sotomayor G, Benitez-Medina JM, Cardenas-Franco G, Jiménez-Pizarro N, Cardenas-Franco C, Aguirre-Martinez JL, Orlando SA, Hermoso de Mendoza J, Garcia-Bereguiain MA. Prevalence, drug resistance, and genotypic diversity of the RD Rio subfamily of Mycobacterium tuberculosis in Ecuador: a retrospective analysis for years 2012-2016. Front Public Health 2024; 12:1337357. [PMID: 38689770 PMCID: PMC11060180 DOI: 10.3389/fpubh.2024.1337357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/15/2024] [Indexed: 05/02/2024] Open
Abstract
Introduction A major sublineage within the Mycobacterium tuberculosis (MTB) LAM family characterized by a new in-frame fusion gene Rv3346c/55c was discovered in Rio de Janeiro (Brazil) in 2007, called RDRio, associated to drug resistance. The few studies about prevalence of MTB RDRio strains in Latin America reported values ranging from 3% in Chile to 69.8% in Venezuela, although no information is available for countries like Ecuador. Methods A total of 814 MTB isolates from years 2012 to 2016 were screened by multiplex PCR for RDRio identification, followed by 24-loci MIRU-VNTR and spoligotyping. Results A total number of 17 MTB RDRio strains were identified, representing an overall prevalence of 2.09% among MTB strains in Ecuador. While 10.9% of the MTB isolates included in the study were multidrug resistance (MDR), 29.4% (5/17) of the RDRio strains were MDR. Discussion This is the first report of the prevalence of MTB RDRio in Ecuador, where a strong association with MDR was found, but also a very low prevalence compared to other countries in Latin America. It is important to improve molecular epidemiology tools as a part of MTB surveillance programs in Latin America to track the transmission of potentially dangerous MTB stains associated to MDR TB like MTB RDRio.
Collapse
Affiliation(s)
| | - Greta Franco-Sotomayor
- Instituto Nacional de Investigación en Salud Pública “Leopoldo Izquieta Pérez”, Guayaquil, Ecuador
- Universidad Católica Santiago de Guayaquil, Guayaquil, Ecuador
| | | | | | - Natalia Jiménez-Pizarro
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | | | | | - Solon Alberto Orlando
- Instituto Nacional de Investigación en Salud Pública “Leopoldo Izquieta Pérez”, Guayaquil, Ecuador
- Universidad Espiritu Santo, Guayaquil, Ecuador
| | | | | |
Collapse
|
3
|
Kharlamova N, Ogarkov O, Berdnikov I, Berdnikova N, Galeev R, Mokrousov I. Bioarchaeological and molecular evidence of tuberculosis in human skeletal remains from 18th-19th century orthodox cemeteries in Irkutsk, Eastern Siberia. Tuberculosis (Edinb) 2023; 143S:102368. [PMID: 38012918 DOI: 10.1016/j.tube.2023.102368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 11/29/2023]
Abstract
In this study, we tested the skeletal human remains from the 18th - early 19th century Orthodox cemeteries in Irkutsk, Eastern Siberia, for tuberculosis-associated morphological alterations and Mycobacterium tuberculosis DNA. The morphologically studied bone collection included 591 individuals of mainly Caucasian origin. The molecular methods (IS6110-PCR and spoligotyping) suggested that at least four individuals (out of 15 TB-suspected, DNA-tested) were positive for the presence of M. tuberculosis DNA. All of them were males (3 maturus, 1 maturus senilis). Two of them date back to the second and third quarters of the 18th century, another to the last quarter of the 18th century, and the last one to the second half of the 19th century. The combined molecular analysis cautiously suggested presence of different strains and at least some of them represented not the currently predominant in Siberia Beijing genotype (M. tuberculosis East-Asian lineage) but strains of European origin. In conclusion, this study presented bioarchaeological and molecular evidence of tuberculosis in human skeletal remains from 18th-19th century Orthodox cemeteries in Irkutsk, Eastern Siberia. The samples are not M. bovis and represent human M. tuberculosis sensu stricto. Their precise phylogenetic identity is elusive but evokes the European/Russian origin of at least some isolates.
Collapse
Affiliation(s)
- Natalia Kharlamova
- Center for Physical Anthropology, N.N. Mikloukho-Maklay Institute of Ethnology and Anthropology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Oleg Ogarkov
- Department of Epidemiology and Microbiology, Scientific Centre of the Family Health and Human Reproduction Problems, Irkutsk, 664003, Russia
| | - Ivan Berdnikov
- Scientific Research Center "Baikal Region", Irkutsk State University, Irkutsk, 664003, Russia
| | - Natalia Berdnikova
- Scientific Research Center "Baikal Region", Irkutsk State University, Irkutsk, 664003, Russia
| | - Ravil Galeev
- Laboratory of Facial Reconstruction, N.N. Mikloukho-Maklay Institute of Ethnology and Anthropology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Igor Mokrousov
- Laboratory of Molecular Epidemiology and Evolutionary Genetics, St. Petersburg Pasteur Institute, St. Petersburg, 197101, Russia.
| |
Collapse
|
4
|
Mokrousov I, Vinogradova T, Dogonadze M, Zabolotnykh N, Vyazovaya A, Vitovskaya M, Solovieva N, Ariel B. A multifaceted interplay between virulence, drug resistance, and the phylogeographic landscape of Mycobacterium tuberculosis. Microbiol Spectr 2023; 11:e0139223. [PMID: 37768091 PMCID: PMC10581221 DOI: 10.1128/spectrum.01392-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/06/2023] [Indexed: 09/29/2023] Open
Abstract
Latin-American Mediterranean (LAM) family is one of the most significant and global genotypes of Mycobacterium tuberculosis. Here, we used the murine model to study the virulence and lethality of the genetically and epidemiologically distinct LAM strains. The pathobiological characteristics of the four LAM strains (three drug resistant and one drug susceptible) and the susceptible reference strain H37Rv were studied in the C57BL/6 mouse model. The whole-genome sequencing was performed using the HiSeq Illumina platform, followed by bioinformatics and phylogenetic analysis. The susceptible strain H37Rv showed the highest virulence. Drug-susceptible LAM strain (spoligotype SIT264) was more virulent than three multidrug-resistant (MDR) strains (SIT252, SIT254, and SIT266). All three MDR isolates were low lethal, while the susceptible isolate and H37Rv were moderately/highly lethal. Putting the genomic, phenotypic, and virulence features of the LAM strains/spoligotypes in the context of their dynamic phylogeography over 20 years reveals three types of relationships between virulence, resistance, and transmission. First, the most virulent and more lethal drug-susceptible SIT264 increased its circulation in parts of Russia. Second, moderately virulent and pre-XDR SIT266 was prevalent in Belarus and continues to be visible in North-West Russia. Third, the low virulent and MDR strain SIT252 previously considered as emerging has disappeared from the population. These findings suggest that strain virulence impacts the transmission, irrespective of drug resistance properties. The increasing circulation of susceptible but more virulent and lethal strains implies that personalized TB treatment should consider not only resistance but also the virulence of the infecting M. tuberculosis strains. IMPORTANCE The study is multidisciplinary and investigates the epidemically/clinically important and global lineage of Mycobacterium tuberculosis, named Latin-American-Mediterranean (LAM), yet insufficiently studied with regard to its pathobiology. We studied different LAM strains (epidemic vs endemic and resistant vs susceptible) in the murine model and using whole-genome analysis. We also collected long-term, 20-year data on their prevalence in Eurasia. The findings are both expected and unexpected. (i) We observe that a drug-susceptible but highly virulent strain increased its prevalence. (ii) By contrast, the multidrug-resistant (MDR) but low-virulent, low-lethal strain (that we considered as emerging 15 years ago) has almost disappeared. (iii) Finally, an intermediate case is the MDR strain with moderate virulence that continues to circulate. We conclude that (i) the former and latter strains are the most hazardous and require close epidemiological monitoring, and (ii) personalized TB treatment should consider not only drug resistance but also the virulence of the infecting strains and development of anti-virulence drugs is warranted.
Collapse
Affiliation(s)
- Igor Mokrousov
- St. Petersburg Pasteur Institute, St. Petersburg, Russia
| | - Tatiana Vinogradova
- St. Petersburg Pasteur Institute, St. Petersburg, Russia
- St. Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
| | - Marine Dogonadze
- St. Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
| | - Natalia Zabolotnykh
- St. Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
| | - Anna Vyazovaya
- St. Petersburg Pasteur Institute, St. Petersburg, Russia
| | - Maria Vitovskaya
- St. Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
| | - Natalia Solovieva
- St. Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
| | - Boris Ariel
- St. Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
| |
Collapse
|
5
|
Dekhil N, Mardassi H. Genomic changes underpinning the emergence of a successful Mycobacterium tuberculosis Latin American and Mediterranean clonal complex. Front Microbiol 2023; 14:1159994. [PMID: 37425998 PMCID: PMC10325029 DOI: 10.3389/fmicb.2023.1159994] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/26/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction The Latin American and Mediterranean sublineage (L4.3/LAM) is the most common generalist sublineage of Mycobacterium tuberculosis lineage 4 (L4), yet certain L4.3/LAM genotypes appear to be confined to particular geographic regions. This is typically the case of a L4.3/LAM clonal complex (CC), TUN4.3_CC1, which is the most preponderant in Tunisia (61.5% of L4.3/LAM). Methods Here, we used whole-genome sequencing data of 346 globally distributed L4 clinical strains, including 278 L4.3/LAM isolates, to reconstruct the evolutionary history of TUN4.3_CC1 and delineate critical genomic changes underpinning its success. Results and Discussion Phylogenomic coupled to phylogeographic analyses indicated that TUN4.3_CC1 has evolved locally, being confined mainly to North Africa. Maximum likelihood analyses using the site and branch-site models of the PAML package disclosed strong evidence of positive selection in the gene category "cell wall and cell processes" of TUN4.3_CC1. Collectively, the data indicate that TUN4.3_CC1 has inherited several mutations, which could have potentially contributed to its evolutionary success. Of particular interest are amino acid replacements at the esxK and eccC2 genes of the ESX/Type VII secretion system, which were found to be specific to TUN4.3_CC1, being common to almost all isolates. Because of its homoplastic nature, the esxK mutation could potentially have endowed TUN4.3_CC1 with a selective advantage. Moreover, we noticed the occurrence of additional, previously described homoplasic nonsense mutations in ponA1 and Rv0197. The mutation in the latter gene, a putative oxido-reductase, has previously been shown to be correlated with enhanced transmissibility in vivo. In sum, our findings unveiled several features underpinning the success of a locally evolved L4.3/LAM clonal complex, lending further support to the critical role of genes encoded by the ESX/type VII secretion system.
Collapse
|
6
|
Ordaz-Vázquez A, Torres-González P, Ferreyra-Reyes L, Canizales-Quintero S, Delgado-Sánchez G, García-García L, Ponce-De-León A, Sifuentes-Osornio J, Bobadilla-Del-Valle M. Mycobacterium tuberculosis lineage 4 associated with cavitations and treatment failure. BMC Infect Dis 2023; 23:154. [PMID: 36918814 PMCID: PMC10012486 DOI: 10.1186/s12879-023-08055-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/06/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Mycobacterium tuberculosis genotyping has been crucial to determining the distribution and impact of different families on disease clinical presentation. The aim of the study was to evaluate the associations among sociodemographic and clinical characteristics and M. tuberculosis lineages from patients with pulmonary tuberculosis in Orizaba, Veracruz, Mexico. METHODS We analyzed data from 755 patients whose isolates were typified by 24-loci mycobacterial interspersed repetitive unit-variable number of tandem repeats (MIRU-VNTR). The associations among patient characteristics and sublineages found were evaluated using logistic regression analysis. RESULTS Among M. tuberculosis isolates, 730/755 (96.6%) were assigned to eight sublineages of lineage 4 (Euro-American). Alcohol consumption (adjusted odds ratio [aOR] 1.528, 95% confidence interval (CI) 1.041-2.243; p = 0.030), diabetes mellitus type 2 (aOR 1.625, 95% CI 1.130-2.337; p = 0.009), sputum smear positivity grade (3+) (aOR 2.198, 95% CI 1.524-3.168; p < 0.001) and LAM sublineage isolates (aOR 1.023, 95% CI 1.023-2.333; p = 0.039) were associated with the presence of cavitations. Resistance to at least one drug (aOR 25.763, 95% CI 7.096-93.543; p < 0.001) and having isolates other than Haarlem and LAM sublineages (aOR 6.740, 95% CI 1.704-26.661; p = 0.007) were associated with treatment failure. In a second model, multidrug resistance was associated with treatment failure (aOR 31.497, 95% CI 5.119-193.815; p < 0.001). Having more than 6 years of formal education was not associated with treatment failure. CONCLUSIONS Knowing M. tuberculosis genetic diversity plays an essential role in disease development and outcomes, and could have important implications for guiding treatment and improving tuberculosis control.
Collapse
Affiliation(s)
- Anabel Ordaz-Vázquez
- Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - Pedro Torres-González
- Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - Leticia Ferreyra-Reyes
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - Sergio Canizales-Quintero
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - Guadalupe Delgado-Sánchez
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - Lourdes García-García
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - Alfredo Ponce-De-León
- Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - José Sifuentes-Osornio
- Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - Miriam Bobadilla-Del-Valle
- Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Tlalpan, 14080, Mexico City, Mexico.
| |
Collapse
|
7
|
Ashton PM, Cha J, Anscombe C, Thuong NTT, Thwaites GE, Walker TM. Distribution and origins of Mycobacterium tuberculosis L4 in Southeast Asia. Microb Genom 2023; 9:mgen000955. [PMID: 36729036 PMCID: PMC9997747 DOI: 10.1099/mgen.0.000955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/21/2022] [Indexed: 02/03/2023] Open
Abstract
Molecular and genomic studies have revealed that Mycobacterium tuberculosis Lineage 4 (L4, Euro-American lineage) emerged in Europe before becoming distributed around the globe by trade routes, colonial migration and other historical connections. Although L4 accounts for tens or hundreds of thousands of tuberculosis (TB) cases in multiple Southeast Asian countries, phylogeographical studies have either focused on a single country or just included Southeast Asia as part of a global analysis. Therefore, we interrogated public genomic data to investigate the historical patterns underlying the distribution of L4 in Southeast Asia and surrounding countries. We downloaded 6037 genomes associated with 29 published studies, focusing on global analyses of L4 and Asian studies of M. tuberculosis. We identified 2256 L4 genomes including 968 from Asia. We show that 81 % of L4 in Thailand, 51 % of L4 in Vietnam and 9 % of L4 in Indonesia belong to sub-lineages of L4 that are rarely seen outside East and Southeast Asia (L4.2.2, L4.4.2 and L4.5). These sub-lineages have spread between East and Southeast Asian countries, with no recent European ancestor. Although there is considerable uncertainty about the exact direction and order of intra-Asian M. tuberculosis dispersal, due to differing sampling frames between countries, our analysis suggests that China may be the intermediate location between Europe and Southeast Asia for two of the three predominantly East and Southeast Asian L4 sub-lineages (L4.2.2 and L4.5). This new perspective on L4 in Southeast Asia raises the possibility of investigating host population-specific evolution and highlights the need for more structured sampling from Southeast Asian countries to provide more certainty of the historical and current routes of dispersal.
Collapse
Affiliation(s)
- Philip M. Ashton
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Jaeyoon Cha
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Catherine Anscombe
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nguyen T. T. Thuong
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Guy E. Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Timothy M. Walker
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Skhairia MA, Dekhil N, Mardassi H. Evolutionary history and spread of the Mycobacterium tuberculosis Latin American and Mediterranean (L4.3/LAM) sublineage, Tunisia. Tuberculosis (Edinb) 2023; 138:102297. [PMID: 36584485 DOI: 10.1016/j.tube.2022.102297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/02/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND To infer the origin and spread of the Mycobacterium tuberculosis Latin American and Mediterranean (L4.3/LAM) sublineage in a Mediterranean country, Tunisia, where it predominates. METHODS We combined Bayesian (STRUCTURE) and maximum likelihood (MIGRAINE) estimation approaches based on a global 24-loci mycobacterial interspersed repetitive units-variable numbers of tandem repeats (MIRU-VNTR24) genotyping dataset consisting of 1573 L4.3/LAM clinical strains from four continents, including 252 isolates originating from Tunisia. RESULTS Phylogenetic analyses coupled with Bayesian estimations suggested that the most predominant L4.3/LAM subpopulation in Tunisia (65.07%), which is dominated by a single clonal complex, TUN4.3_CC1 (94.51%), has evolved from an ancestral pool that is restricted to Europe and Africa, contrasting with the remaining L4.3/LAM subpopulations whose ancestry was traced all over the word. Maximum likelihood analysis revealed that TUN4.3_CC1 has been undergoing a demographic expansion since 131 years ago (CI95%: 90.7-205), thus explaining its preponderance relative to the second most predominant CC, TUN4.3_CC2, whose population was found under contraction. CONCLUSIONS The preponderance of L4.3/LAM in Tunisia stems from a 130-year expansion process of a locally evolved clone.
Collapse
Affiliation(s)
- Mohamed Amine Skhairia
- Unit of Typing & Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Naira Dekhil
- Unit of Typing & Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia.
| | - Helmi Mardassi
- Unit of Typing & Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia.
| |
Collapse
|
9
|
Genotypic and phenotypic characteristics of <i>Mycobacterium tuberculosis</i> drug resistance in TB children. ACTA BIOMEDICA SCIENTIFICA 2022. [DOI: 10.29413/abs.2022-7.6.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background. Russian Federation is included in the list of 30 countries with the highest burden of tuberculosis, including MDR tuberculosis. The most important part of this problem is the primary MDR/XDR TB in children.The aim: a comparative analysis of the phenotypic and genotypic profile of drug resistance to anti-tuberculosis drugs (ATP) according to whole genome sequencing of M. tuberculosis strains from children.Materials and methods. Whole genome sequencing (WGS) results of 61 M. tuberculosis isolates from children with tuberculosis in 2006–2020 in the Russian Federation were analyzed for anti-TB drug resistance mutations, according to the WHO catalog and were compared with the results of phenotypic drug sensitivity.Results. The M. tuberculosis belonged to two genetic groups: Beijing genotype – 82 % (50/61) dominant Central Asian Russian (31/50) and B0/W148 (16/50) subtypes, and non-Beijing (Ural, S, LAM) – 18 % (11/61). Three isolates belonged to Asian Ancestral subtype (3/50). Of the 61 isolates, only 14.7 % (9/61) were sensitive to antiTB drugs, 49.2 % (30/61) were MDR and 14.7 % (9/61) were pre-XDR. Comparison of the resistance profile (MDR/pre-XDR) with genotype revealed an upward shift for Beijing isolates, in particular Beijing B0/W148 (15/16) subline compared to other Beijing (19/34) (Chi-square with Yates correction = 5.535; p < 0.05) and nonBeijing (5/12) (Chi-square with Yates correction = 6.741; p < 0.05) subtypes. Discrepancies between genotypic and phenotypic drug resistance profiles were found in 11.5 % (7/61) of cases.Conclusions. Based on the analysis of WGS data, the genotypic characteristics of M. tuberculosis and the most complete set of drug resistance mutations were obtained, indicating a significant prevalence in MDR and pre-XDR TB of cases caused by epidemic subtypes of Beijing (B0/W148 and Central Asian Russian). The molecular mechanisms of adaptation of M. tuberculosis to the treatment of anti-TB drugs are not unique for the child population but reflect the general processes of the spread of MDR/XDR in Russia.
Collapse
|
10
|
Vyazovaya A, Felker I, Schwartz Y, Mokrousov I. Population structure of Mycobacterium tuberculosis from referral clinics in Western Siberia, Russia: Before and during the Covid-19 pandemic. INFECTION, GENETICS AND EVOLUTION 2022; 103:105343. [PMID: 35896142 PMCID: PMC9308567 DOI: 10.1016/j.meegid.2022.105343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/25/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022]
Abstract
The dramatic change in global health imposed by the Covid-19 pandemic has also impacted TB control. The TB incidence decreased dramatically not because of the improved situation but due to undertesting, reduced resources, and ultimately, substantially reduced detection rate. We hypothesized that multiple and partly counteracting factors could influence changes in the local Mycobacterium tuberculosis population. To test this hypothesis, we analyzed M. tuberculosis isolates collected in Western Siberia, Russia, before and during the Covid-19 pandemic. A total of 269 M. tuberculosis isolates from patients admitted at referral clinics were studied. The pre-pandemic and pandemic collections included 179 and 90 isolates, respectively. Based on genotyping, both pre-pandemic and pandemic samples are heavily dominated by the Beijing genotype isolates (95% and 88%) that were mostly MDR (80 and 68%). The high proportion of MDR isolates is due to the specific features of the studied collections biased towards patients with severe TB admitted at the National referral center in Novosibirsk. While no dramatic change was observed in the M. tuberculosis population structure in the survey area in Western Siberia during the Covid-19 pandemic in 2020–2021 compared to the pre-pandemic collection, still we note a certain decrease of the Beijing genotype and an increase in the proportion and diversity of the non-Beijing isolates. However, the transmissible and MDR Beijing B0/W148 did not increase its prevalence rate during the pandemic. More generally, the high prevalence rate of the Beijing genotype and its strong association with MDR both before and during the pandemic are alarming features of this region in Western Siberia, Russia.
Collapse
|
11
|
Bakuła Z, Wuyep VB, Bartocha Ł, Vyazovaya A, Ikeh EI, Bielecki J, Mokrousov I, Jagielski T. Molecular snapshot of drug-resistant Mycobacterium tuberculosis strains from the Plateau State, Nigeria. PLoS One 2022; 17:e0266837. [PMID: 35609028 PMCID: PMC9129033 DOI: 10.1371/journal.pone.0266837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 03/29/2022] [Indexed: 11/18/2022] Open
Abstract
Nigeria ranks 1st in Africa and 6th globally with the highest burden of tuberculosis (TB). However, only a relatively few studies have addressed the molecular epidemiology of Mycobacterium tuberculosis in this country. The aim of this work was to analyze the genetic structure of drug-resistant (DR) M. tuberculosis population in the Plateau State (central Nigeria), with the results placed in the broader context of West Africa. The study sample included 67 DR M. tuberculosis isolates, recovered from as many TB patients between November 2015 and January 2016, in the Plateau State. The isolates were subjected to spoligotyping and MIRU-VNTR typing. A total of 20 distinct spoligotypes were obtained, split into 3 clusters (n = 50, 74.6%, 2-33 isolates per cluster) and 17 (25.4%) unique patterns. The Cameroon clade was the largest lineage (62.7%) followed by T (28.3%), LAM (3%), and Haarlem (3%) clades. Upon MIRU-VNTR typing, the isolates produced 31 profiles, i.e. 7 clusters (n = 43, 64.2%, 2-17 isolates per cluster) and 24 singletons. A combined spoligotyping and MIRU-VNTR typing analysis showed 20.9% of the cases clustered and estimated the recent transmission rate at 11.9%. In conclusion, two lineages, namely Cameroon, and T accounted for the majority (91%) of cases. No association was observed between the most prevalent Cameroon lineage and drug resistance, including multidrug resistant (MDR) phenotype, or any of the patient demographic characteristics.
Collapse
Affiliation(s)
- Zofia Bakuła
- Department of Medical Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Łukasz Bartocha
- Department of Medical Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Anna Vyazovaya
- Laboratory of Molecular Epidemiology and Evolutionary Genetics, St. Petersburg Pasteur Institute, St. Petersburg, Russia
| | - Eugene I. Ikeh
- Department of Medical Microbiology, School of Medical and Health Sciences, College of Medical Sciences, University of Jos, Jos, Nigeria
| | - Jacek Bielecki
- Department of Medical Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Igor Mokrousov
- Laboratory of Molecular Epidemiology and Evolutionary Genetics, St. Petersburg Pasteur Institute, St. Petersburg, Russia
| | - Tomasz Jagielski
- Department of Medical Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
12
|
Zhdanova S, Mokrousov I, Orlova E, Sinkov V, Ogarkov O. Transborder molecular analysis of drug-resistant tuberculosis in Mongolia and Eastern Siberia, Russia. Transbound Emerg Dis 2022; 69:e1800-e1814. [PMID: 35294112 DOI: 10.1111/tbed.14515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 11/30/2022]
Abstract
Eastern Siberia (Russia) and Mongolia are borderline regions in Asia with a high incidence of tuberculosis (TB). In this study, we investigated the transborder transmission of Mycobacterium tuberculosis with a focus on endemic and epidemic clones and drug resistance. M. tuberculosis isolates (287 from Mongolia and 754 from Russia) were collected using cross-sectional population-based surveys between 2010 and 2016. The isolates were genotyped using 24 variable number of tandem repeat (VNTR) loci and by testing of the key markers to discriminate within the Beijing genotype. All isolates were divided into 427 MIRU-types that were assigned to Lineage 2 (Beijing) and Lineage 4 (Ural, Haarlem, Latin American-Mediterranean [LAM], S, unclassified). The Beijing genotype was dominant in both countries (69% in Russia, 75% in Mongolia). However, the Beijing isolates differed significantly between the countries, in terms of the identified subtypes. LAM was the most common non-Beijing genotype (11.1% in Mongolia and 14.9% in Russia) and LAM isolates mostly belonged to the LAM-RUS branch in both countries. The MDR rate was higher in Russia than in Mongolia among newly diagnosed patients: 29.4% versus 5.6% (p < 0.001). In Mongolia, the MDR rate was similar in Beijing (29.7%) and non-Beijing (27.5%) genotypes. In Russia, a higher MDR rate was observed in (i) Beijing compared to non-Beijing (48.7% versus 38.3%, p = 0.03) and (ii) Beijing B0/W148 compared to Beijing Central Asian/Russian (63.4% versus 37.3%, p<0.001). In conclusion, the M. tuberculosis population structure in Mongolia was shaped by mainly historical interaction with China (dominance of the Beijing genotype) and Northern Eurasia (presence of the LAM-RUS branch). In contrast, the transborder transmission of M. tuberculosis since the 1990s between Mongolia and its neighbors has been negligible, and the adverse trends of MDR-TB in Russia did not impact the current situation in Mongolia. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Svetlana Zhdanova
- Scientific Centre of the Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - Igor Mokrousov
- St. Petersburg Pasteur Institute, St. Petersburg, Russia
| | - Elizaveta Orlova
- Scientific Centre of the Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - Viacheslav Sinkov
- Scientific Centre of the Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - Oleg Ogarkov
- Scientific Centre of the Family Health and Human Reproduction Problems, Irkutsk, Russia
| |
Collapse
|
13
|
Genetic Diversity and Transmission of Multidrug Resistant Mycobacterium tuberculosis strains in Lusaka, Zambia. Int J Infect Dis 2021; 114:142-150. [PMID: 34718155 DOI: 10.1016/j.ijid.2021.10.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE Zambia is among the 30 high tuberculosis burden countries in the world. Despite increasing reports of multidrug resistant tuberculosis (MDR-TB) in routine surveillance, information on the transmission of MDR Mycobacterium tuberculosis strains is largely unknown. This study elucidated genetic diversity and transmission of MDR M. tuberculosis strains in Lusaka, Zambia. METHODS Eighty-five MDR M. tuberculosis samples collected from the year 2013 to 2017 at the University Teaching Hospital were used. Drug-resistance associated gene sequencing, spoligotyping, 24-loci mycobacterial interspersed repetitive units-variable number of tandem repeats, and multiplex PCR for RD-Rio sub-lineage identification were applied. RESULTS Clades identified were LAM (48%), CAS (29%), T (14%), X (6%) and Harlem (2%). Strains belonging to SITs 21/CAS1-Kili and 20/LAM1 formed the largest clonal complexes. Combined spoligotyping and 24 loci-MIRU-VNTR revealed 47 genotypic patterns with clustering rate of 63%. Ninety five percent of LAM strains belonged to RD-Rio sub-lineage. CONCLUSION The high clustering rate suggested that a large proportion of MDR-TB was due to recent transmission rather than independent acquisition of MDR. This spread was attributed to clonal expansion of SIT21/CAS1-Kili and SIT20/LAM1 strains. Therefore, TB control programs recommending genotyping coupled with conventional epidemiological methods can guide measures for stopping the spread of MDR-TB.
Collapse
|
14
|
Sánchez-Corrales L, Tovar-Aguirre OL, Galeano-Vanegas NF, Castaño Jiménez PA, Martínez-Vega RA, Maldonado-Londoño CE, Hernández-Botero JS, Siller-López F. Phylogenomic analysis and Mycobacterium tuberculosis antibiotic resistance prediction by whole-genome sequencing from clinical isolates of Caldas, Colombia. PLoS One 2021; 16:e0258402. [PMID: 34618869 PMCID: PMC8496870 DOI: 10.1371/journal.pone.0258402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/25/2021] [Indexed: 12/30/2022] Open
Abstract
Mycobacterium tuberculosis (M. tuberculosis) was the pathogen responsible for the highest number of deaths from infectious diseases in the world, before the arrival of the COVID-19 pandemic. Whole genome sequencing (WGS) has contributed to the understanding of genetic diversity, the mechanisms involved in drug resistance and the transmission dynamics of this pathogen. The object of this study is to use WGS for the epidemiological and molecular characterization of M. tuberculosis clinical strains from Chinchiná, Caldas, a small town in Colombia with a high incidence of TB. Sputum samples were obtained during the first semester of 2020 from six patients and cultured in solid Löwenstein-Jensen medium. DNA extraction was obtained from positive culture samples and WGS was performed with the Illumina HiSeq 2500 platform for subsequent bioinformatic analysis. M. tuberculosis isolates were typified as Euro-American lineage 4 with a predominance of the Harlem and LAM sublineages. All samples were proven sensitive to antituberculosis drugs by genomic analysis, although no phenotype antimicrobial tests were performed on the samples, unreported mutations were identified that could require further analysis. The present study provides preliminary data for the construction of a genomic database line and the follow-up of lineages in this region.
Collapse
Affiliation(s)
- Lusayda Sánchez-Corrales
- Maestría en Investigación en Enfermedades Infecciosas, Universidad de Santander, Bucaramanga, Santander, Colombia
| | | | - Narmer Fernando Galeano-Vanegas
- Instituto de Investigación en Microbiología y Biotecnología Agroindustrial, Universidad Católica de Manizales, Manizales, Caldas, Colombia
- Departamento de Biotecnología, BIOS Centro de Bioinformática y Biología Computacional, Manizales, Caldas, Colombia
| | | | | | | | - Johan Sebastián Hernández-Botero
- Grupo de Investigación Médica, Escuela de Medicina, Universidad de Manizales, Manizales, Caldas, Colombia
- Grupo de Resistencia Antibiótica de Manizales, Manizales, Caldas, Colombia
| | - Fernando Siller-López
- Programa de Bacteriología, Universidad Católica de Manizales, Manizales, Caldas, Colombia
- Programa de Microbiología, Universidad Libre, Pereira, Risaralda, Colombia
- * E-mail:
| |
Collapse
|
15
|
Arenas-Suarez NE, Cuervo LI, Avila EF, Duitama-Leal A, Pineda-Peña AC. The impact of immigration on tuberculosis and HIV burden between Colombia and Venezuela and across frontier regions. CAD SAUDE PUBLICA 2021; 37:e00078820. [PMID: 34076096 DOI: 10.1590/0102-311x00078820] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/17/2020] [Indexed: 11/21/2022] Open
Abstract
Historically, human migrations have determined the spread of many infectious diseases by promoting the emergence of temporal outbreaks between populations. We aimed to analyze health indicators, expenditure, and disability caused by tuberculosis (TB) and HIV/AIDS burden under the Colombian-Venezuelan migration flow focusing on the Northeastern border. A retrospective study was conducted using TB and HIV/AIDS data since 2009. We consolidated a database using official reports from the Colombian Surveillance System, World Health Organization, Indexmundi, the Global Health Observatory, IHME HIV atlas, and Joint United Nations Programme on HIV/AIDS (UNAIDS). Disability metrics regarding DALYs (disability adjusted life years) and YLDs (years lived with disability), were compared between countries. Mapping was performed on ArcGIS using official migration data of Venezuelan citizens. Our results indicate that TB profiles from Colombia and Venezuela are identical in terms of disease burden, except for an increase in TB incidence in the Colombian-Venezuelan border departments in recent years, concomitantly with the massive Venezuelan immigration since 2005. We identified a four-fold underfunding for the TB program in Venezuela, which might explain the low-testing rates for cases of multidrug-resistant TB (67%) and HIV/AIDS (60%), as well as extended hospital stays (150 days). We found a significant increase in DALYs of HIV/AIDS patients in Venezuela, specifically, 362.35 compared to 265.37 observed in Colombia during 2017. This study suggests that the Venezuelan massive migration and program underfunding might exacerbate the dual burden of TB and HIV in Colombia, especially towards the Colombian-Venezuelan border.
Collapse
Affiliation(s)
- Nelson Enrique Arenas-Suarez
- Faculdad de Ciencias, Universidad Antonio Nariño, Bogotá, Colombia.,Facultad de Ciencias Agropecuarias, Universidad de Cundinamarca, Fusagasugá, Colombia
| | - Laura I Cuervo
- Faculdad de Ciencias, Universidad Antonio Nariño, Bogotá, Colombia
| | - Edier F Avila
- Facultad de Ciencias Agropecuarias, Universidad de Cundinamarca, Fusagasugá, Colombia
| | | | - Andrea Clemencia Pineda-Peña
- Departamento de Biología Molecular e Inmunología, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,Facultad de Ciencias Agropecuarias, Universidad de Ciencias Aplicadas y Ambientales, Bogotá, Colombia
| |
Collapse
|
16
|
Marín AV, Rastogi N, Couvin D, Mape V, Murcia MI. First approach to the population structure of Mycobacterium tuberculosis complex in the indigenous population in Puerto Nariño-Amazonas, Colombia. PLoS One 2021; 16:e0245084. [PMID: 33411781 PMCID: PMC7790298 DOI: 10.1371/journal.pone.0245084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/21/2020] [Indexed: 11/18/2022] Open
Abstract
Introduction Tuberculosis affects vulnerable groups to a greater degree, indigenous population among them. Objective To determine molecular epidemiology of clinical isolates of Mycobacterium tuberculosis circulating in an indigenous population through Spoligotyping and 24-loci MIRU-VNTR. Methodology A descriptive cross-sectional study was conducted in 23 indigenous communities of Puerto Nariño-Amazonas, Colombia. Recovered clinical isolates were genotyped. For genotyping analyzes global SITVIT2 database and the MIRU-VNTRplus web portal were used. Results 74 clinical isolates were recovered. Genotyping of clinical isolates by spoligotyping determined 5 different genotypes, all of them belonged to Euro-American lineage. By MIRU-VNTR typing, a total of 14 different genotypes were recorded. Furthermore, polyclonal infection was found in two patients from the same community. The combination of the two methodologies determined the presence of 19 genotypes, 8 formed clusters with 63 clinical isolates in total. Based on epidemiological information, it was possible to establish a potential chain of active transmission in 10/63 (15.9%) patients. Conclusions High genomic homogeneity was determined in the indigenous population suggesting possible chains of active transmission. The results obtained showed that specific genotypes circulating among the indigenous population of Colombia are significantly different from those found in the general population.
Collapse
Affiliation(s)
- Alejandro Vega Marín
- MICOBAC-UN, Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Nalin Rastogi
- WHO Supranational TB Reference Laboratory, Unité de la Tuberculose et des Mycobactéries, Institut Pasteur de la Guadeloupe, Abymes, Guadeloupe, France
| | - David Couvin
- WHO Supranational TB Reference Laboratory, Unité de la Tuberculose et des Mycobactéries, Institut Pasteur de la Guadeloupe, Abymes, Guadeloupe, France
| | - Viviana Mape
- MICOBAC-UN, Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Martha Isabel Murcia
- MICOBAC-UN, Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
- * E-mail:
| |
Collapse
|
17
|
Skhairia MA, Dekhil N, Mhenni B, Fradj SB, Mardassi H. Successful expansion of Mycobacterium tuberculosis Latin American and Mediterranean sublineage (L4.3/LAM) in Tunisia mainly driven by a single, long-established clonal complex. Int J Infect Dis 2020; 103:220-225. [PMID: 33307222 DOI: 10.1016/j.ijid.2020.11.195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVES To explore the evolutionary history of Mycobacterium tuberculosis Latin American and Mediterranean (L4.3/LAM) sublineage in Tunisia, where it predominates. METHODS High-resolution genotyping of 252 L4.3/LAM clinical strains was undertaken, and whole-genome sequencing was performed on 31 representative isolates. RESULTS Genotyping data coupled with Bayesian analyses split the Tunisian L4.3/LAM strain collection into two divergent entities (65.07% vs 34.92%): a major subpopulation, dominated by a single clonal complex (CC), TUN4.3_CC1 (94.51%); and a minor subpopulation, dominated by TUN4.3_CC2 (42.04%). TUN4.3_CC1 is clearly thriving in Tunisia, accounting for 61.5% of the L4.3/LAM sublineage. TUN4.3_CC1 displayed higher mean allelic richness compared with TUN4.3_CC2 and predominated throughout the entire region, indicating a long-established history. The very low proportion of drug resistance among TUN4.3_CC1 isolates is indicative of their intrinsic ability to spread successfully in the host population. Genomic analyses further confirmed the clear genetic separation between the two main CCs (pairwise fixation index 0.56), and suggested the relatively ancient origin of TUN4.3_CC1. Consistent with its successful expansion, TUN4.3_CC1 showed reduced mean pairwise genetic distance between genomes. CONCLUSIONS These findings link the successful expansion of L4.3/LAM in Tunisia to a single long-established clone.
Collapse
Affiliation(s)
- Mohamed Amine Skhairia
- Unit of Typing and Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Naira Dekhil
- Unit of Typing and Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Besma Mhenni
- Unit of Typing and Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Saloua Ben Fradj
- Unit of Typing and Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Helmi Mardassi
- Unit of Typing and Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia.
| |
Collapse
|
18
|
Rodríguez-Castillo JG, Llerena C, Argoty-Chamorro L, Guerra J, Couvin D, Rastogi N, Murcia MI. Population structure of multidrug-resistant Mycobacterium tuberculosis clinical isolates in Colombia. Tuberculosis (Edinb) 2020; 125:102011. [PMID: 33137696 DOI: 10.1016/j.tube.2020.102011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 11/19/2022]
Abstract
Emergence of multidrug-resistant (MDR) Mycobacterium tuberculosis complex (MTBC) isolates is a major public health problem that threatens progress made in tuberculosis (TB) care and control worldwide. In Colombia, the prevalence of MDR tuberculosis (MDR-TB) has increased slowly but steadily since 2001. However, the population structure of the MDR-TB strains circulating in Colombia is sparsely known. In this work, 203 MDR isolates isolated in 2012-2013 were collected, and characterized by spoligotyping, followed by 24-loci MIRU-VNTR (data available for 190 isolates). The most prevalent genotypes corresponded to SIT42/LAM9 (12.81%), SIT62/H1 (10.34%), and SIT190/Beijing (10.34%). A fine analysis showed that although the MDR strains came from 29 of the 33 departments of Colombia, the distribution of these main lineages was not at random and depended on the city of isolation (p-value <0.000001). Both LAM and Beijing lineage strains were significantly associated with MDR-TB (p-value <0.0001): LAM lineage was associated with 2 patterns of MDR, namely combined resistance to INH + Rifampin (HR), and to SHRE (Streptomycin + INH + Rifampin + Ethambutol), while the Beijing lineage strains were essentially associated with MDR (SHRE). Interestingly, distribution of genotypic lineages in function of drug resistance information (e.g. pansusceptible vs. MDR) was different in our setting as compared to other countries in Latin America. However, MIRU-VNTR patterns were unique for all strains, an observation that did not support active transmission of circulating MDR clones.
Collapse
Affiliation(s)
- Juan Germán Rodríguez-Castillo
- Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Carrera 30 45 - 03, Facultad de Medicina, Edifcio 471, Bogotá, D.C, Colombia
| | - Claudia Llerena
- Grupo de Micobacterias, Red Nacional de Laboratorios, Instituto Nacional de Salud, Avenida calle 26 No. 51-20 - Zona 6 CAN, Bogotá, D.C, Colombia
| | - Lorena Argoty-Chamorro
- Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Carrera 30 45 - 03, Facultad de Medicina, Edifcio 471, Bogotá, D.C, Colombia
| | - Julio Guerra
- Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Carrera 30 45 - 03, Facultad de Medicina, Edifcio 471, Bogotá, D.C, Colombia
| | - David Couvin
- WHO Supranational TB Reference Laboratory, Institut Pasteur de la Guadeloupe, Morne Jolivière, BP484, F97183 Abymes Cedex, Abymes, Guadeloupe, France
| | - Nalin Rastogi
- WHO Supranational TB Reference Laboratory, Institut Pasteur de la Guadeloupe, Morne Jolivière, BP484, F97183 Abymes Cedex, Abymes, Guadeloupe, France.
| | - Martha Isabel Murcia
- Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Carrera 30 45 - 03, Facultad de Medicina, Edifcio 471, Bogotá, D.C, Colombia.
| |
Collapse
|
19
|
Tarlykov P, Atavliyeva S, Alenova A, Ramankulov Y. Genomic analysis of Latin American-Mediterranean family of Mycobacterium tuberculosis clinical strains from Kazakhstan. Mem Inst Oswaldo Cruz 2020; 115:e200215. [PMID: 32965331 PMCID: PMC7508292 DOI: 10.1590/0074-02760200215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/20/2020] [Indexed: 11/22/2022] Open
Abstract
The human-adapted strains of the Mycobacterium tuberculosis complex (MTBC) comprise seven phylogenetic lineages originally associated with their geographical distribution. Here, we report the genomes of three drug-resistant clinical isolates of the Latin American-Mediterranean (LAM) family collected in Kazakhstan. We utilised whole-genome sequencing to study the distribution and drug resistance of these isolates. Phylogenetic analysis grouped the genomes described in this study with the sequences from Russia, Uzbekistan, and Kazakhstan belonging to the LAM family. One isolate has acquired extensive drug resistance to seven antituberculosis drugs. Our results suggest at least two multi-drug resistant (MDR)/extensively drug-resistant (XDR)-associated genotypes of the LAM family circulate in Kazakhstan.
Collapse
Affiliation(s)
- Pavel Tarlykov
- National Center for Biotechnology, Nur-Sultan, Kazakhstan
| | | | - Arike Alenova
- National Scientific Center for Phthisiopulmonology, Almaty, Kazakhstan
| | | |
Collapse
|
20
|
Vyazovaya A, Proshina E, Gerasimova A, Avadenii I, Solovieva N, Zhuravlev V, Narvskaya O, Mokrousov I. Increased transmissibility of Russian successful strain Beijing B0/W148 of Mycobacterium tuberculosis: Indirect clues from history and demographics. Tuberculosis (Edinb) 2020; 122:101937. [PMID: 32501261 DOI: 10.1016/j.tube.2020.101937] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/15/2020] [Accepted: 04/19/2020] [Indexed: 01/12/2023]
Abstract
The local situation with tuberculosis (TB) is shaped by the complex interplay of multiple factors related to both human host and Mycobacterium tuberculosis. We hypothesized that TB epidemiology in the rural regions in the Soviet Union was impacted by construction of the Gulag camps and significant incoming migration. This molecular M. tuberculosis study was conducted in 2017 in the Komi Republic in northern Russia, a region with high rate (26%) of primary multidrug-resistant (MDR) TB. MDR was detected in 30.8% (40/130) isolates; eight were extensively drug resistant. The Beijing genotype was predominant (56.2%). The main Beijing subtypes B0/W148 and 94-32 differed in the MDR rate, 83.3% and 27.2%, respectively. The non-Beijing isolates represented five genotypes (LAM, Ural, Haarlem, X, T). The proportion of Beijing B0/W148 in the "camp" cities (originated from Gulag camps) was twice as large as in other districts of the Komi Republic. To conclude, сirculation of the MDR-associated Beijing B0/W148 cluster critically influences the current situation with MDR-TB in this Russian region. The increased prevalence of B0/W148 in the urban setting on the whole, and in the "camp cities", in particular, indirectly points to the increased transmission capacity of this successful Russian strain of M. tuberculosis.
Collapse
Affiliation(s)
- Anna Vyazovaya
- St. Petersburg Pasteur Institute, St. Petersburg, Russia.
| | - Eugeniya Proshina
- Republican Anti-Tuberculosis Dispensary, Syktyvkar, Komi Republic, Russia
| | | | - Ion Avadenii
- St. Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
| | - Natalia Solovieva
- St. Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
| | - Viacheslav Zhuravlev
- St. Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
| | - Olga Narvskaya
- St. Petersburg Pasteur Institute, St. Petersburg, Russia; St. Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
| | - Igor Mokrousov
- St. Petersburg Pasteur Institute, St. Petersburg, Russia
| |
Collapse
|
21
|
Tafaj S, Mokrousov I, Borroni E, Trovato A, Kapisyzi P, Bardhi D, Hafizi H, Bala S, Bulo A, Bino S, Rastogi N, Cirillo D. Peculiar features of the Mycobacterium tuberculosis population structure in Albania. INFECTION GENETICS AND EVOLUTION 2019; 78:104136. [PMID: 31830600 DOI: 10.1016/j.meegid.2019.104136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 12/21/2022]
Abstract
Albania is a Balkan country with moderate to low incidence of tuberculosis (TB) and very low prevalence of drug resistant TB. Here, we analyzed a country-wide multi-year Mycobacterium tuberculosis collection in order to detect possible dynamic trends of TB in Albania, with a focus on drug resistance and endemic/epidemic clones. In total, 743 isolates collected in 2007 to 2011 were divided into 107 spoligotypes and 351 MIRU-types. Based on the MIRU-VNTR phylogenetic analysis, the isolates were assigned to the following lineages/families: animal ecotypes (5 M. bovis and 2 M. caprae isolates), Lineage 2 (5 Beijing isolates), Lineage 3 (1 CAS-Delhi isolate) and, mostly and overwhelmingly, Lineage 4 (Cameroon, Uganda, Ghana and related; NEW-1-related; Ural, Haarlem, LAM, S, TUR; and unclassified isolates). Most of the isolates (452/743) were intermediately located on the global VNTR tree and did not cluster with any reference profile; they were distantly related to different families within Lineage 4 and we designated them as "unclassified L4" isolates. The significantly higher proportion of drug resistance was observed in (i) Beijing genotype compared to all other isolates (60%, P = .008), (ii) "unclassified L4" compared to all other isolates (13.9%, P = .04) and (iii) SIT2936 compared to other "unclassified L4" (34.3%, P = .0006). Analysis of the yearly collections revealed (i) some decrease of the large heterogeneous "unclassified L4" from 65% to 57%; (ii) steadily increasing gradient of LAM from 3.4 to 13.3%; (iii) stable prevalence of Haarlem (15-20%); and (iv) decrease of TUR with only 1.1% in 2011. Most of the LAM (33/49) and Beijing (3/5) isolates belonged to the VNTR types specific for Russia and former Soviet Union countries. To conclude, our results highlight a peculiar nature of M. tuberculosis population in Albania that is dominated by local and unclassified genotypes within Lineage 4, and also features European genotypes and epidemically relevant clones originating from the former Soviet Union countries. At the same time, these imported clones remain drug susceptible and prevalence of drug resistance on a whole is low.
Collapse
Affiliation(s)
- Silva Tafaj
- National TB Reference Laboratory, University Hospital Shefqet Ndroqi, Tirana, Albania.
| | - Igor Mokrousov
- Laboratory of Molecular Epidemiology and Evolutionary Genetics, St. Petersburg Pasteur Institute, St. Petersburg, Russia.
| | - Emanuele Borroni
- Emerging Bacterial Pathogens Unit, Division of Immunology and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alberto Trovato
- Emerging Bacterial Pathogens Unit, Division of Immunology and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Perlat Kapisyzi
- National TB Reference Laboratory, University Hospital Shefqet Ndroqi, Tirana, Albania
| | - Donika Bardhi
- National TB Reference Laboratory, University Hospital Shefqet Ndroqi, Tirana, Albania
| | - Hasan Hafizi
- National TB Reference Laboratory, University Hospital Shefqet Ndroqi, Tirana, Albania
| | - Silvana Bala
- National TB Reference Laboratory, University Hospital Shefqet Ndroqi, Tirana, Albania
| | - Anyla Bulo
- Laboratory Department, University of Medicine, Tirana, Albania
| | - Silvia Bino
- Control of Infectious Diseases Department, Institute of Public Health, Tirana, Albania
| | - Nalin Rastogi
- WHO Supranational TB Reference Laboratory, Tuberculosis & Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Abymes, Guadeloupe, France
| | - Daniela Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
22
|
Cerezo-Cortés MI, Rodríguez-Castillo JG, Hernández-Pando R, Murcia MI. Circulation of M. tuberculosis Beijing genotype in Latin America and the Caribbean. Pathog Glob Health 2019; 113:336-351. [PMID: 31903874 PMCID: PMC7006823 DOI: 10.1080/20477724.2019.1710066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Lineage 2 (East Asian), which includes the Beijing genotype, is one of the most prevalent lineages of Mycobacterium tuberculosis (Mtb) throughout the world. The Beijing family is associated to hypervirulence and drug-resistant tuberculosis. The study of this genotype's circulation in Latin America is crucial for achieving total control of TB, the goal established by the World Health Organization, for the American sub-continent, before 2035. In this sense, the present work presents an overview of the status of the Beijing genotype for this region, with a bibliographical review, and data analysis of MIRU-VNTRs for available Beijing isolates. Certain countries present a prevalent trend of <5%, suggesting low transmissibility for the region, with the exception of Cuba (17.2%), Perú (16%) and Colombia (5%). Minimum Spanning Tree analysis, obtained from MIRU-VNTR data, shows distribution of specific clonal complex strains in each country. From this data, in most countries, we found that molecular epidemiology has not been a tool used for the control of TB, suggesting that the Beijing genotype may be underestimated in Latin America. It is recommended that countries with the highest incidence of the Beijing genotype use effective control strategies and increased care, as a requirement for public health systems.
Collapse
Affiliation(s)
- MI Cerezo-Cortés
- Grupo MICOBAC-UN, Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - JG Rodríguez-Castillo
- Grupo MICOBAC-UN, Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - R Hernández-Pando
- Experimental Pathology Section, Department of Pathology, National Institute of Medical Sciences and Nutrition, México D.F., Mexico
| | - MI Murcia
- Grupo MICOBAC-UN, Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
23
|
Skiba Y, Mokrousov I, Nabirova D, Vyazovaya A, Maltseva E, Malakhova N, Ismagulova G, Pole I, Ranka R, Sapiyeva Z, Ismailov S, Moffett D. Mycobacterium tuberculosis RD-Rio Strain in Kazakhstan. Emerg Infect Dis 2019; 25:604-606. [PMID: 30789328 PMCID: PMC6390763 DOI: 10.3201/eid2503.181179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium tuberculosis RD-Rio strains are still rare in the former Soviet Union countries and Asia. We describe a strain in Kazakhstan that belongs to the RD-Rio secondary branch, which is endemic to northwest Russia and eastern Europe. Although RD-Rio strains are frequently multidrug resistant, this heterogeneous branch included only drug-susceptible isolates.
Collapse
|
24
|
Klotoe BJ, Kacimi S, Costa-Conceicão E, Gomes HM, Barcellos RB, Panaiotov S, Haj Slimene D, Sikhayeva N, Sengstake S, Schuitema AR, Akhalaia M, Alenova A, Zholdybayeva E, Tarlykov P, Anthony R, Refrégier G, Sola C. Genomic characterization of MDR/XDR-TB in Kazakhstan by a combination of high-throughput methods predominantly shows the ongoing transmission of L2/Beijing 94-32 central Asian/Russian clusters. BMC Infect Dis 2019; 19:553. [PMID: 31234780 PMCID: PMC6592005 DOI: 10.1186/s12879-019-4201-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 06/18/2019] [Indexed: 12/27/2022] Open
Abstract
Background Kazakhstan remains a high-burden TB prevalence country with a concomitent high-burden of multi-drug resistant tuberculosis. For this reason, we performed an in depth genetic diversity and population structure characterization of Mycobacterium tuberculosis complex (MTC) genetic diversity in Kazakhstan with both patient and community benefit. Methods A convenience sample of 700 MTC DNA cultures extracts from 630 tuberculosis patients recruited from 12 out of 14 regions in Kazakhstan, between 2010 and 2015, was independently studied by high-throughput hybridization-based methods, TB-SPRINT (59-Plex, n = 700), TB-SNPID (50-Plex, n = 543). DNA from 391 clinical isolates was successfully typed by two methods. To resolve the population structure of drug-resistant clades in more detail two complementary assays were run on the L2 isolates: an IS6110-NTF insertion site typing assay and a SigE SNP polymorphism assay. Results Strains belonged to L2/Beijing and L4/Euro-American sublineages; L2/Beijing prevalence totaled almost 80%. 50% of all samples were resistant to RIF and to INH., Subtyping showed that: (1) all L2/Beijing were “modern” Beijing and (2) most of these belonged to the previously described 94–32 sublineage (Central Asian/Russian), (3) at least two populations of the Central Asian/Russian sublineages are circulating in Kazakhstan, with different evolutionary dynamics. Conclusions For the first time, the global genetic diversity and population structure of M. tuberculosis genotypes circulating in Kazakhstan was obtained and compared to previous local studies. Results suggest a region-specific spread of a very limited number of L2/Beijing clonal complexes in Kazakhstan many strongly associated with an MDR phenotype. Electronic supplementary material The online version of this article (10.1186/s12879-019-4201-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- B J Klotoe
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - S Kacimi
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - E Costa-Conceicão
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - H M Gomes
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.,Laboratory of Molecular Biology Applied to Mycobacteria, FIOCRUZ, Rio de Janeiro, Brazil
| | - R B Barcellos
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.,Center of Scientific and Technological Development (CDCT), Secretary of Health of Rio Grande do Sul State (SES/RS), Porto Alegre, Brazil
| | - S Panaiotov
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.,National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - D Haj Slimene
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.,Institut Pasteur de Tunisie, Tunis, Tunisie
| | - N Sikhayeva
- National Centre for Biotechnology, Astana, Kazakhstan
| | - S Sengstake
- Royal Tropical Institute (KIT), Amsterdam, The Netherlands
| | - A R Schuitema
- Royal Tropical Institute (KIT), Amsterdam, The Netherlands
| | - M Akhalaia
- Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland
| | - A Alenova
- National Centre for Tuberculosis Problems, Almaty, Kazakhstan
| | | | - P Tarlykov
- National Centre for Biotechnology, Astana, Kazakhstan
| | - R Anthony
- Royal Tropical Institute (KIT), Amsterdam, The Netherlands
| | - G Refrégier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - C Sola
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.
| |
Collapse
|
25
|
Díaz Acosta CC, Russomando G, Candia N, Ritacco V, Vasconcellos SEG, de Berrêdo Pinho Moreira M, de Romero NJ, Morcillo N, De Waard JH, Gomes HM, Suffys PN. Exploring the "Latin American Mediterranean" family and the RD Rio lineage in Mycobacterium tuberculosis isolates from Paraguay, Argentina and Venezuela. BMC Microbiol 2019; 19:131. [PMID: 31195979 PMCID: PMC6567603 DOI: 10.1186/s12866-019-1479-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 05/07/2019] [Indexed: 11/21/2022] Open
Abstract
Background The Latin American & Mediterranean (LAM) spoligotype family is one of the most successful genotype of Mycobacterium tuberculosis worldwide and particularly prevalent in South-America. Within this family, a sublineage named Region of Difference Rio (RDRio) was reported initially in Brazil and is characterized by a genomic deletion of about 26.3 kb. This lineage seems to show a specific adaptation to the Euro-Latin American population. In this context, we sought to evaluate the LAM family and the presence of the RDRio genotype in samples from three Latin American countries including Paraguay, Venezuela and Argentina. To detect LAM strains reliably we applied a typing scheme using spoligotyping, 12 loci MIRU-VNTR, the Ag85C103 SNP and the regions of difference RDRio and RD174. IS6110-RFLP results were also used when available. Results Genotyping of 413 M. tuberculosis isolates from three Latin-American countries detected LAM (46%) and the ill-defined T clade (16%) as the most frequent families. The highest clustering rate was detected in the sample population from the city of Caracas in Venezuela. We observed considerable differences in the presence of the RDRio lineage, with high frequency in Caracas-Venezuela (55%) and low frequency in Buenos Aires-Argentina (11%) and Paraguay (10%). The molecular markers (RD174, Ag85C103, MIRU02-MIRU40 signature) of the RDRio lineage were essentially confirmed. For the LAM family, the most polymorphic loci were MIRU40, MIRU31, MIRU10, MIRU26, MIRU16 and the least polymorphic MIRU24, MIRU20, MIRU04, MIRU23. Conclusions Our results suggest a differential adaptation of LAM-sublineages in neighboring populations and that RDRio strains spread regionally with different rates of distribution. The Ag85C SNP and RDs (RD174, RDRio) tested in this study can in fact facilitate molecular epidemiological studies of LAM strains in endemic settings and low-income countries. Electronic supplementary material The online version of this article (10.1186/s12866-019-1479-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chyntia Carolina Díaz Acosta
- Departamento de Biología Molecular y Biotecnología. Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, Asunción, Paraguay.,Laboratório de Biologia Molecular aplicada às Micobactérias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Graciela Russomando
- Departamento de Biología Molecular y Biotecnología. Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, Asunción, Paraguay
| | - Norma Candia
- Departamento de Biología Molecular y Biotecnología. Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, Asunción, Paraguay
| | - Viviana Ritacco
- Servicio de Micobacterias, Instituto Nacional de Enfermedades Infecciosas, ANLIS "Carlos G. Malbran", Buenos Aires, Argentina
| | - Sidra E G Vasconcellos
- Laboratório de Biologia Molecular aplicada às Micobactérias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21045-900, Brazil
| | | | | | - Nora Morcillo
- Instituto Nacional de Enfermedades Respiratorias Emilio Coni, Buenos Aires, Argentina
| | - Jacobus Henri De Waard
- Laboratorio de Tuberculosis, Instituto de Biomedicina, Caracas, Venezuela.,Present Address: One Health Research Group. Facultad de Ciencias de la Salud, Universidad de Las Américas (UDLA), Quito, Ecuador
| | - Harrison Magdinier Gomes
- Laboratório de Biologia Molecular aplicada às Micobactérias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Philip Noel Suffys
- Laboratório de Biologia Molecular aplicada às Micobactérias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21045-900, Brazil.
| |
Collapse
|
26
|
Chihota VN, Niehaus A, Streicher EM, Wang X, Sampson SL, Mason P, Källenius G, Mfinanga SG, Pillay M, Klopper M, Kasongo W, Behr MA, Gey van Pittius NC, van Helden PD, Couvin D, Rastogi N, Warren RM. Geospatial distribution of Mycobacterium tuberculosis genotypes in Africa. PLoS One 2018; 13:e0200632. [PMID: 30067763 PMCID: PMC6070189 DOI: 10.1371/journal.pone.0200632] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/29/2018] [Indexed: 11/24/2022] Open
Abstract
Objective To investigate the distribution of Mycobacterium tuberculosis genotypes across Africa. Methods The SITVIT2 global repository and PUBMED were searched for spoligotype and published genotype data respectively, of M. tuberculosis from Africa. M. tuberculosis lineages in Africa were described and compared across regions and with those from 7 European and 6 South-Asian countries. Further analysis of the major lineages and sub-lineages using Principal Component analysis (PCA) and hierarchical cluster analysis were done to describe clustering by geographical regions. Evolutionary relationships were assessed using phylogenetic tree analysis. Results A total of 14727 isolates from 35 African countries were included in the analysis and of these 13607 were assigned to one of 10 major lineages, whilst 1120 were unknown. There were differences in geographical distribution of major lineages and their sub-lineages with regional clustering. Southern African countries were grouped based on high prevalence of LAM11-ZWE strains; strains which have an origin in Portugal. The grouping of North African countries was due to the high percentage of LAM9 strains, which have an origin in the Eastern Mediterranean region. East African countries were grouped based on Central Asian (CAS) and East-African Indian (EAI) strain lineage possibly reflecting historic sea trade with Asia, while West African Countries were grouped based on Cameroon lineage of unknown origin. A high percentage of the Haarlem lineage isolates were observed in the Central African Republic, Guinea, Gambia and Tunisia, however, a mixed distribution prevented close clustering. Conclusions This study highlighted that the TB epidemic in Africa is driven by regional epidemics characterized by genetically distinct lineages of M. tuberculosis. M. tuberculosis in these regions may have been introduced from either Europe or Asia and has spread through pastoralism, mining and war. The vast array of genotypes and their associated phenotypes should be considered when designing future vaccines, diagnostics and anti-TB drugs.
Collapse
Affiliation(s)
- Violet N. Chihota
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research /SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
- The Aurum Institute, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- * E-mail:
| | - Antoinette Niehaus
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research /SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Elizabeth M. Streicher
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research /SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Xia Wang
- Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Samantha L. Sampson
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research /SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Peter Mason
- Biomedical Research and Training Institute, Harare, Zimbabwe
| | - Gunilla Källenius
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Sayoki G. Mfinanga
- National Institute for Medical Research Muhimbili Medical Research Centre, Dar es Saalam, Tanzania
| | - Marnomorney Pillay
- Department of Medical Microbiology University of KwaZulu Natal, Durban, South Africa
| | - Marisa Klopper
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research /SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | | | - Marcel A. Behr
- Division of Infectious Diseases, Department of Medicine McGill University Health Centre, Montreal, Quebec, Canada
| | - Nicolaas C. Gey van Pittius
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research /SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Paul D. van Helden
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research /SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - David Couvin
- WHO Supranational TB Reference Laboratory, Institut Pasteur de la Guadeloupe, Abymes, Guadeloupe, France
| | - Nalin Rastogi
- WHO Supranational TB Reference Laboratory, Institut Pasteur de la Guadeloupe, Abymes, Guadeloupe, France
| | - Robin M. Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research /SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
27
|
On sunspots, click science and molecular iconography. Tuberculosis (Edinb) 2018; 110:91-95. [PMID: 29779780 DOI: 10.1016/j.tube.2018.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/02/2018] [Accepted: 04/06/2018] [Indexed: 01/21/2023]
Abstract
CRISPR-spoligotyping and MIRU-VNTR typing, SITVIT_WEB and MIRU-VNTRplus are the methods and online resources most widely used for Mycobacterium tuberculosis genotype family assignment and clustering analysis. They have been proven invaluable for molecular epidemiological studies of this important human pathogen in setting up the terminology and classification framework. However, they are inherently limited by insufficient knowledge of evolution of the targeted genome loci (especially, CRISPR). The situation is aggravated by the dogmatic, iconographic perception of these increasingly user-friendly online tools. Here, I present a critical essay on hot practical aspects related to the use of SITVIT_WEB and MIRU-VNTRplus, in particular, partly inadequate (sub)clade assignment due to imperfect decision rules, partly outdated methodological options offered to the users that permit to build scientifically unsound phylogenies from spoligotyping data. A confusing terminology, misclassification and false clustering are not abstract issues but make a scientific discussion meaningless, and I propose some courses for improvement.
Collapse
|
28
|
Perdigão J, Silva C, Diniz J, Pereira C, Machado D, Ramos J, Silva H, Abilleira F, Brum C, Reis AJ, Macedo M, Scaini JL, Silva AB, Esteves L, Macedo R, Maltez F, Clemente S, Coelho E, Viegas S, Rabna P, Rodrigues A, Taveira N, Jordao L, Kritski A, Lapa E Silva JR, Mokrousov I, Couvin D, Rastogi N, Couto I, Pain A, McNerney R, Clark TG, von Groll A, Dalla-Costa ER, Rossetti ML, Silva PEA, Viveiros M, Portugal I. Clonal expansion across the seas as seen through CPLP-TB database: A joint effort in cataloguing Mycobacterium tuberculosis genetic diversity in Portuguese-speaking countries. INFECTION GENETICS AND EVOLUTION 2018; 72:44-58. [PMID: 29559379 PMCID: PMC6598853 DOI: 10.1016/j.meegid.2018.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 12/22/2022]
Abstract
Tuberculosis (TB) remains a major health problem within the Community of Portuguese Language Speaking Countries (CPLP). Despite the marked variation in TB incidence across its member-states and continued human migratory flux between countries, a considerable gap in the knowledge on the Mycobacterium tuberculosis population structure and strain circulation between the countries still exists. To address this, we have assembled and analysed the largest CPLP M. tuberculosis molecular and drug susceptibility dataset, comprised by a total of 1447 clinical isolates, including 423 multidrug-resistant isolates, from five CPLP countries. The data herein presented reinforces Latin American and Mediterranean (LAM) strains as the hallmark of M. tuberculosis populational structure in the CPLP coupled with country-specific differential prevalence of minor clades. Moreover, using high-resolution typing by 24-loci MIRU-VNTR, six cross-border genetic clusters were detected, thus supporting recent clonal expansion across the Lusophone space. To make this data available to the scientific community and public health authorities we developed CPLP-TB (available at http://cplp-tb.ff.ulisboa.pt), an online database coupled with web-based tools for exploratory data analysis. As a public health tool, it is expected to contribute to improved knowledge on the M. tuberculosis population structure and strain circulation within the CPLP, thus supporting the risk assessment of strain-specific trends. The Community of Portuguese Speaking Countries (CPLP) occupies a vast geographical area. Three CPLP countries are shortlisted in the WHO's list of Top 30 high-burden countries. Common Mycobacterium tuberculosis population structure denote historical strain flow. Cross-border clusters suggest recent intercontinental tuberculosis transmission. CPLP-TB: a novel strain database and framework for collaborative studies and strain tracing.
Collapse
Affiliation(s)
- João Perdigão
- iMed.ULisboa - Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal.
| | - Carla Silva
- iMed.ULisboa - Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Jaciara Diniz
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Catarina Pereira
- iMed.ULisboa - Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Diana Machado
- Unidade de Microbiologia Médica, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisboa, Portugal
| | - Jorge Ramos
- Unidade de Microbiologia Médica, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisboa, Portugal
| | - Hugo Silva
- iMed.ULisboa - Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Fernanda Abilleira
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Clarice Brum
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Ana J Reis
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Maíra Macedo
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - João L Scaini
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Ana B Silva
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Leonardo Esteves
- Centro de Desenvolvimento Científico e Tecnológico (CDCT), Porto Alegre, Brazil
| | - Rita Macedo
- Departamento de Doenças Infecciosas, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| | - Fernando Maltez
- Serviço de Doenças Infecciosas, Hospital de Curry Cabral, Lisboa, Portugal
| | - Sofia Clemente
- Hospital da Divina Providência, Serviço de Doenças Infecciosas, Luanda, Angola
| | - Elizabeth Coelho
- Programa Nacional de Controlo da Tuberculose, Ministério da Saúde de Moçambique, Mozambique
| | - Sofia Viegas
- Instituto Nacional de Saúde, Ministério da Saúde de Moçambique, Mozambique
| | - Paulo Rabna
- Instituto Nacional de Saúde Pública, Projecto de Saúde de Bandim (INASA/PSB), Bissau, Guinea-Bissau
| | - Amabélia Rodrigues
- Instituto Nacional de Saúde Pública, Projecto de Saúde de Bandim (INASA/PSB), Bissau, Guinea-Bissau
| | - Nuno Taveira
- iMed.ULisboa - Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal; Centro de Investigação Interdisciplinar Egas Moniz, Instituto Superior de Ciências da Saúde Egas Moniz, Monte de Caparica, Portugal
| | - Luísa Jordao
- Departamento de Doenças Infecciosas, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| | - Afrânio Kritski
- Academic Tuberculosis Program, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - José R Lapa E Silva
- Thoracic Diseases Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Igor Mokrousov
- Laboratory of Molecular Epidemiology and Evolutionary Genetics (former Laboratory of Molecular Microbiology), St. Petersburg Pasteur Institute, St. Petersburg, Russia
| | - David Couvin
- WHO Supranational TB Reference Laboratory, Tuberculosis and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Morne Jolivière Abymes, Guadeloupe, France
| | - Nalin Rastogi
- WHO Supranational TB Reference Laboratory, Tuberculosis and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Morne Jolivière Abymes, Guadeloupe, France
| | - Isabel Couto
- Unidade de Microbiologia Médica, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisboa, Portugal
| | - Arnab Pain
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ruth McNerney
- Lung Infection and Immunity Unit, UCT Lung Institute, University of Cape Town, Groote Schuur Hospital, Observatory, 7925, Cape Town, South Africa
| | - Taane G Clark
- London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Andrea von Groll
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Elis R Dalla-Costa
- Centro de Desenvolvimento Científico e Tecnológico (CDCT), Porto Alegre, Brazil
| | - Maria Lúcia Rossetti
- Centro de Desenvolvimento Científico e Tecnológico (CDCT), Porto Alegre, Brazil; Universidade Luterana do Brasil (ULBRA/RS), Porto Alegre, Brazil
| | - Pedro E A Silva
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Miguel Viveiros
- Unidade de Microbiologia Médica, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisboa, Portugal
| | - Isabel Portugal
- iMed.ULisboa - Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
29
|
Ioannidis P, van Soolingen D, Mokrousov I, Papaventsis D, Karabela S, Konstantinidou E, Marinou I, Nikolaou S, Kanavaki S, Mantadakis E, Samonis G, Anthony R, Vogiatzakis E. Multidrug-resistant/extensively drug-resistant tuberculosis in Greece: predominance of Mycobacterium tuberculosis genotypes endemic in the Former Soviet Union countries. Clin Microbiol Infect 2017; 23:1002-1004. [DOI: 10.1016/j.cmi.2017.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/28/2017] [Accepted: 07/01/2017] [Indexed: 11/17/2022]
|
30
|
Pasechnik O, Dymova MA, Stasenko VL, Blokh AI, Tatarintseva MP, Kolesnikova LP, Filipenko ML. Molecular & genetic characteristics of Mycobacterium tuberculosis strains circulating in the southern part of West Siberia. Indian J Med Res 2017; 146:49-55. [PMID: 29168460 PMCID: PMC5719607 DOI: 10.4103/ijmr.ijmr_162_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background & objectives: A complicated epidemiological situation characterized by significantly high tuberculosis (TB) morbidity is observed in West Siberia. This study was aimed to investigate the genetic characteristics of Mycobacterium tuberculosis circulating in the southern part of West Siberia (in the Omsk region). Methods: From March 2013 to January 2015, 100 isolates of M. tuberculosis were obtained from patients with pulmonary TB living in the Omsk region. Drug susceptibility testing was performed on Lowenstein-Jensen medium (absolute concentration method). Genetic typing of isolates was carried out by variable number tandem repeats of mycobacterial interspersed repetitive units (MIRU-VNTR) typing and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. The genetic types and characteristics of cluster strains were determined using 15 MIRU-VNTR loci. Results: Thirty six VNTR types were found. Twenty six (26.0%) isolates had a unique profile, and the remaining 74 were grouped in 10 clusters containing from 2 to 23 isolates. The Beijing genotype was found in 72 isolates, 61 (85.0%) of which were part of five clusters that included two large clusters containing 23 isolates. Other genetic families, such as Latin-American Mediterranean (LAM, 11.0%), S family (2.0%) and Haarlem (4.0%), were also detected. The genetic family of 11 isolates could not be determined. Six different VNTR profiles were found in these non-classified isolates. Only 16 per cent of isolates were sensitive to anti-TB drugs. The katG315 (94.8%) and rpoB531 (92.2%) mutations were identified in 77 multidrug-resistant M. tuberculosis isolates. Interpretation & conclusions: This study showed that the M. tuberculosis population in the Omsk region was heterogeneous. The Beijing genotype predominated and was actively spreading. The findings obtained point to the need for the implementation of more effective preventive measures to stop the spread of drug-resistant M. tuberculosis strains.
Collapse
Affiliation(s)
- Oksana Pasechnik
- Department of Epidemiology, Omsk State Medical University, Omsk, Russia
| | - Maya Alexandrovna Dymova
- Laboratory of Pharmacogenomics, Institute of Chemical Biology & Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
| | | | | | | | | | - Maksim Leonidovich Filipenko
- Laboratory of Pharmacogenomics, Institute of Chemical Biology & Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
| |
Collapse
|
31
|
Brites D, Gagneux S. The Nature and Evolution of Genomic Diversity in the Mycobacterium tuberculosis Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1019:1-26. [DOI: 10.1007/978-3-319-64371-7_1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Perdigão J, Clemente S, Ramos J, Masakidi P, Machado D, Silva C, Couto I, Viveiros M, Taveira N, Portugal I. Genetic diversity, transmission dynamics and drug resistance of Mycobacterium tuberculosis in Angola. Sci Rep 2017; 7:42814. [PMID: 28230095 PMCID: PMC5322374 DOI: 10.1038/srep42814] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/16/2017] [Indexed: 12/02/2022] Open
Abstract
Tuberculosis (TB) poses a serious public health problem in Angola. No surveillance data on drug resistance is available and nothing is known regarding the genetic diversity and population structure of circulating Mycobacterium tuberculosis strains. Here, we have genotyped and evaluated drug susceptibility of 89 Mycobacterium tuberculosis clinical isolates from Luanda. Thirty-three different spoligotype profiles corresponding to 24 different Shared International Types (SIT) and 9 orphan profiles were detected. SIT 20 (LAM1) was the most prevalent (n = 16, 18.2%) followed by SIT 42 (LAM9; n = 15, 17.1%). Overall, the M. tuberculosis population structure in this sample was dominated by LAM (64.8%) and T (33.0%) strains. Twenty-four-loci MIRU-VNTR analysis revealed that a total of 13 isolates were grouped in 5 distinct clusters. Drug susceptibility data showed that 22 (24.7%) of the 89 clinical isolates were resistant to one or more antibacillary drugs of which 4 (4.5%) were multidrug resistant. In conclusion, this study demonstrates a high predominance of LAM strains circulating in the Luanda setting and the presence of recent transmission events. The rate and the emergence dynamics of drug resistant TB found in this sample are significant and highlight the need of further studies specifically focused on MDR-TB transmission.
Collapse
Affiliation(s)
- João Perdigão
- iMed.ULisboa - Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Sofia Clemente
- Hospital da Divina Providência, Serviço de Doenças Infecciosas, Luanda, Angola
| | - Jorge Ramos
- Unidade de Microbiologia Médica, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisboa, Portugal
| | - Pedro Masakidi
- Hospital da Divina Providência, Serviço de Doenças Infecciosas, Luanda, Angola
| | - Diana Machado
- Unidade de Microbiologia Médica, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisboa, Portugal
| | - Carla Silva
- iMed.ULisboa - Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Isabel Couto
- Unidade de Microbiologia Médica, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisboa, Portugal
| | - Miguel Viveiros
- Unidade de Microbiologia Médica, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisboa, Portugal
| | - Nuno Taveira
- iMed.ULisboa - Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal.,Centro de Investigação Interdisciplinar Egas Moniz, Instituto Superior de Ciências da Saúde Egas Moniz, Monte de Caparica, Portugal
| | - Isabel Portugal
- iMed.ULisboa - Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
33
|
Mokrousov I. Revisiting the Hunter Gaston discriminatory index: Note of caution and courses of change. Tuberculosis (Edinb) 2017; 104:20-23. [PMID: 28454645 DOI: 10.1016/j.tube.2017.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/07/2017] [Accepted: 02/12/2017] [Indexed: 10/20/2022]
Abstract
Hunter Gaston Discriminatory Index (HGDI) is a widely used estimator of discriminatory power of genotyping methods and diversity of molecular markers in bacterial pathogens, including Mycobacterium tuberculosis. In my opinion, the index is somewhat misleading: a closer look at common practice and particular studies reveals that values in the range of 0.6-0.9 are modest but uncritically perceived as high. I propose and discuss three courses of change: (i) to continue using HGDI but be aware of the true meaning behind its value and increase a threshold of acceptable resolution to the more adequate values of 0.90-0.99, depending on study design; (ii) to turn to other known indices of diversity (e.g., Shannon index), in order to complement HGDI; (iii) to develop new, intuitively more realistic estimator.
Collapse
Affiliation(s)
- Igor Mokrousov
- Laboratory of Molecular Epidemiology and Evolutionary Genetics (former Laboratory of Molecular Microbiology), St. Petersburg Pasteur Institute, 14 Mira Street, St. Petersburg 197101, Russia.
| |
Collapse
|
34
|
The Evolution of Strain Typing in the Mycobacterium tuberculosis Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1019:43-78. [PMID: 29116629 DOI: 10.1007/978-3-319-64371-7_3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tuberculosis (TB) is a contagious disease with a complex epidemiology. Therefore, molecular typing (genotyping) of Mycobacterium tuberculosis complex (MTBC) strains is of primary importance to effectively guide outbreak investigations, define transmission dynamics and assist global epidemiological surveillance of the disease. Large-scale genotyping is also needed to get better insights into the biological diversity and the evolution of the pathogen. Thanks to its shorter turnaround and simple numerical nomenclature system, mycobacterial interspersed repetitive unit-variable-number tandem repeat (MIRU-VNTR) typing, based on 24 standardized plus 4 hypervariable loci, optionally combined with spoligotyping, has replaced IS6110 DNA fingerprinting over the last decade as a gold standard among classical strain typing methods for many applications. With the continuous progress and decreasing costs of next-generation sequencing (NGS) technologies, typing based on whole genome sequencing (WGS) is now increasingly performed for near complete exploitation of the available genetic information. However, some important challenges remain such as the lack of standardization of WGS analysis pipelines, the need of databases for sharing WGS data at a global level, and a better understanding of the relevant genomic distances for defining clusters of recent TB transmission in different epidemiological contexts. This chapter provides an overview of the evolution of genotyping methods over the last three decades, which culminated with the development of WGS-based methods. It addresses the relative advantages and limitations of these techniques, indicates current challenges and potential directions for facilitating standardization of WGS-based typing, and provides suggestions on what method to use depending on the specific research question.
Collapse
|
35
|
New Mycobacterium tuberculosis LAM sublineage with geographical specificity for the Old World revealed by phylogenetical and Bayesian analyses. Tuberculosis (Edinb) 2016; 101:62-66. [PMID: 27865400 DOI: 10.1016/j.tube.2016.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 11/23/2022]
Abstract
We recently showed that the Mycobacterium tuberculosis sublineage LAM9 could be subdivided as two distinct subpopulations - each reflecting its unique biogeographical structure and evolutionary history. We subsequently attempted to verify if this genetic structuration could be traced in an enlarged global sample. For this purpose, we analyzed global evolutionary relationships of LAM strains in a large dataset (n = 1923 isolates from 35 countries worldwide) with concomitant spoligotyping and MIRU-VNTR data, followed by a deeper analysis of LAM9 sublineage (n = 851 isolates). Based on a combination of phylogenetical analysis and Bayesian statistics, a total of three different clusters, tentatively named LAM9C1, C2 and C3 were described in this dataset. Closer inspection of the phylogenetic tree with concomitant data on origin of isolates with genetic clusterization revealed LAM9C3 being the most tightly knit group exclusively found in the Old World as opposed to LAM9C2 being a loosely-knit group without any phylogeographical specificity; while LAM9C1 appeared with a majority of strains being well-clustered despite some isolates that intermixed with unrelated LAM clusters. Subsequently, we hereby describe a new M. tuberculosis LAM sublineage named LAM9C3 with phylogeographical specificity for the Old World. These findings open new perspectives to study respective migration histories and adaptation to human hosts of specific M. tuberculosis clones during the exploration and conquest of the New World. We therefore plan to reevaluate the nomenclature and evolutionary history of various LAM sublineages using Whole Genome Sequencing (WGS).
Collapse
|
36
|
Stucki D, Brites D, Jeljeli L, Coscolla M, Liu Q, Trauner A, Fenner L, Rutaihwa L, Borrell S, Luo T, Gao Q, Kato-Maeda M, Ballif M, Egger M, Macedo R, Mardassi H, Moreno M, Tudo Vilanova G, Fyfe J, Globan M, Thomas J, Jamieson F, Guthrie JL, Asante-Poku A, Yeboah-Manu D, Wampande E, Ssengooba W, Joloba M, Henry Boom W, Basu I, Bower J, Saraiva M, Vaconcellos SEG, Suffys P, Koch A, Wilkinson R, Gail-Bekker L, Malla B, Ley SD, Beck HP, de Jong BC, Toit K, Sanchez-Padilla E, Bonnet M, Gil-Brusola A, Frank M, Penlap Beng VN, Eisenach K, Alani I, Wangui Ndung'u P, Revathi G, Gehre F, Akter S, Ntoumi F, Stewart-Isherwood L, Ntinginya NE, Rachow A, Hoelscher M, Cirillo DM, Skenders G, Hoffner S, Bakonyte D, Stakenas P, Diel R, Crudu V, Moldovan O, Al-Hajoj S, Otero L, Barletta F, Jane Carter E, Diero L, Supply P, Comas I, Niemann S, Gagneux S. Mycobacterium tuberculosis lineage 4 comprises globally distributed and geographically restricted sublineages. Nat Genet 2016; 48:1535-1543. [PMID: 27798628 PMCID: PMC5238942 DOI: 10.1038/ng.3704] [Citation(s) in RCA: 266] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/27/2016] [Indexed: 12/30/2022]
Abstract
Generalist and specialist species differ in the breadth of their ecological niches. Little is known about the niche width of obligate human pathogens. Here we analyzed a global collection of Mycobacterium tuberculosis lineage 4 clinical isolates, the most geographically widespread cause of human tuberculosis. We show that lineage 4 comprises globally distributed and geographically restricted sublineages, suggesting a distinction between generalists and specialists. Population genomic analyses showed that, whereas the majority of human T cell epitopes were conserved in all sublineages, the proportion of variable epitopes was higher in generalists. Our data further support a European origin for the most common generalist sublineage. Hence, the global success of lineage 4 reflects distinct strategies adopted by different sublineages and the influence of human migration.
Collapse
Affiliation(s)
- David Stucki
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Daniela Brites
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Leïla Jeljeli
- Forschungszentrum Borstel, Germany.,Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Mireia Coscolla
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Qingyun Liu
- The Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institutes of Biomedical Sciences and Institute of Medical Microbiology, School of Basic Medical Science of Fudan University, Shanghai, China
| | - Andrej Trauner
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Lukas Fenner
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland.,Institute for Social and Preventive Medicine, University of Bern, Switzerland
| | - Liliana Rutaihwa
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Tao Luo
- Laboratory of Infection and Immunity, School of Basic Medical Science, West China Center of Medical Sciences, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qian Gao
- The Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institutes of Biomedical Sciences and Institute of Medical Microbiology, School of Basic Medical Science of Fudan University, Shanghai, China
| | | | - Marie Ballif
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland.,Institute for Social and Preventive Medicine, University of Bern, Switzerland
| | - Matthias Egger
- Institute for Social and Preventive Medicine, University of Bern, Switzerland
| | - Rita Macedo
- Laboratòrio de Saùde Publica, Lisbon, Portugal
| | - Helmi Mardassi
- Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | | | | | - Janet Fyfe
- Victorian Infectious Diseases Reference Laboratory, Victoria, Australia
| | - Maria Globan
- Victorian Infectious Diseases Reference Laboratory, Victoria, Australia
| | | | | | | | - Adwoa Asante-Poku
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Eddie Wampande
- Department of Medical Microbiology, Makerere University, Kampala, Uganda
| | - Willy Ssengooba
- Department of Medical Microbiology, Makerere University, Kampala, Uganda.,Department of Global Health, University of Amsterdam, Amsterdam, the Netherlands
| | - Moses Joloba
- Department of Medical Microbiology, Makerere University, Kampala, Uganda
| | - W Henry Boom
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, USA
| | - Indira Basu
- LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - James Bower
- LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Margarida Saraiva
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | | | - Anastasia Koch
- Institute of Infectious Disease and Molecular Medicine and Department of Clinical Laboratory Sciences, University of Cape Town, South Africa
| | - Robert Wilkinson
- Institute of Infectious Disease and Molecular Medicine and Department of Clinical Laboratory Sciences, University of Cape Town, South Africa.,Department of Medicine, Imperial College London, UK.,The Francis Crick Institute Mill Hill Laboratory, London, UK
| | - Linda Gail-Bekker
- Institute of Infectious Disease and Molecular Medicine and Department of Clinical Laboratory Sciences, University of Cape Town, South Africa
| | - Bijaya Malla
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Serej D Ley
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland.,Papua New Guinea Institute of Medical Research, Goroka, PNG
| | - Hans-Peter Beck
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | | | - Kadri Toit
- Tartu University Hospital United Laboratories, Mycobacteriology, Tartu, Estonia
| | | | | | - Ana Gil-Brusola
- Department of Microbiology, University Hospital La Fe, Valencia, Spain
| | - Matthias Frank
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Veronique N Penlap Beng
- Institute Laboratory for Tuberculosis Research (LTR), Biotechnology Center (BTC), University of Yaoundé I, Yaoundé, Cameroon
| | - Kathleen Eisenach
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Issam Alani
- Department of Medical Laboratory Technology, Faculty of Medical Technology, Baghdad, Iraq
| | - Perpetual Wangui Ndung'u
- Institute of Tropical Medicine and Infectious Diseases (ITROMID), Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Gunturu Revathi
- Department of Pathology, Aga Khan University Hospital (AKUH), Nairobi, Kenya
| | - Florian Gehre
- Insitute of Tropical Medicine, Antwerp, Belgium.,Medical Research Council, Fajara, the Gambia
| | | | - Francine Ntoumi
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Fondation Congolaise pour la Recherche Médicale, Université Marien Gouabi, Brazzaville, Congo
| | - Lynsey Stewart-Isherwood
- Right to Care and the Clinical HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Nyanda E Ntinginya
- National Institute of Medical Research, Mbeya Medical Research Centre (NIMR-MMRC), Mbeya, Tanzania
| | - Andrea Rachow
- Division of Infectious Diseases and Tropical Medicine, Medical Centre of the University of Munich, Munich, Germany; German Centre for Infection Research (DZIF), partner site Munich, Germany
| | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, Medical Centre of the University of Munich, Munich, Germany; German Centre for Infection Research (DZIF), partner site Munich, Germany
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Girts Skenders
- Riga East University Hospital, Centre of Tuberculosis and Lung Diseases, Riga, Latvia
| | - Sven Hoffner
- WHO Supranational TB Reference Laboratory, Department of Microbiology, The Public Health Agency of Sweden, Solna, Sweden
| | - Daiva Bakonyte
- Department of Immunology and Cell Biology, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Petras Stakenas
- Department of Immunology and Cell Biology, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Roland Diel
- Institute for Epidemiology, Schleswig-Holstein University Hospital, Kiel, Germany
| | - Valeriu Crudu
- National Tuberculosis Reference Laboratory, Phthysiopneumology Institute, Chisinau, Republic of Moldova
| | - Olga Moldovan
- 'Marius Nasta' Pneumophtisiology Institute, Bucharest, Romania
| | - Sahal Al-Hajoj
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Larissa Otero
- Instituto de Medicina Tropical Alexander von Humboldt, Molecular Epidemiology Unit-Tuberculosis, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Francesca Barletta
- Instituto de Medicina Tropical Alexander von Humboldt, Molecular Epidemiology Unit-Tuberculosis, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - E Jane Carter
- Alpert School of Medicine at Brown University, Providence, Rhode Island, USA.,Moi University School of Medicine, Eldoret, Kenya
| | - Lameck Diero
- Moi University School of Medicine, Eldoret, Kenya
| | - Philip Supply
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Iñaki Comas
- Institute of Biomedicine of Valencia (IBV-CSIC), 46010, Valencia, Spain.,CIBER Epidemiology and Public Health, Madrid, Spain
| | - Stefan Niemann
- Forschungszentrum Borstel, Germany.,German Center for Infection Research, Borstel Site, Borstel, Germany
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| |
Collapse
|
37
|
Refrégier G, Abadia E, Matsumoto T, Ano H, Takashima T, Tsuyuguchi I, Aktas E, Cömert F, Gomgnimbou MK, Panaiotov S, Phelan J, Coll F, McNerney R, Pain A, Clark TG, Sola C. Turkish and Japanese Mycobacterium tuberculosis sublineages share a remote common ancestor. INFECTION GENETICS AND EVOLUTION 2016; 45:461-473. [PMID: 27746295 DOI: 10.1016/j.meegid.2016.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/23/2016] [Accepted: 10/12/2016] [Indexed: 12/19/2022]
Abstract
Two geographically distant M. tuberculosis sublineages, Tur from Turkey and T3-Osaka from Japan, exhibit partially identical genotypic signatures (identical 12-loci MIRU-VNTR profiles, distinct spoligotyping patterns). We investigated T3-Osaka and Tur sublineages characteristics and potential genetic relatedness, first using MIRU-VNTR locus analysis on 21 and 25 samples of each sublineage respectively, and second comparing Whole Genome Sequences of 8 new samples to public data from 45 samples uncovering human tuberculosis diversity. We then tried to date their Most Recent Common Ancestor (MRCA) using three calibrations of SNP accumulation rate (long-term=0.03SNP/genome/year, derived from a tuberculosis ancestor of around 70,000years old; intermediate=0.2SNP/genome/year derived from a Peruvian mummy; short-term=0.5SNP/genome/year). To disentangle between these scenarios, we confronted the corresponding divergence times with major human history events and knowledge on human genetic divergence. We identified relatively high intrasublineage diversity for both T3-Osaka and Tur. We definitively proved their monophyly; the corresponding super-sublineage (referred to as "T3-Osa-Tur") shares a common ancestor with T3-Ethiopia and Ural sublineages but is only remotely related to other Euro-American sublineages such as X, LAM, Haarlem and S. The evolutionary scenario based on long-term evolution rate being valid until T3-Osa-Tur MRCA was not supported by Japanese fossil data. The evolutionary scenario relying on short-term evolution rate since T3-Osa-Tur MRCA was contradicted by human history and potential traces of past epidemics. T3-Osaka and Tur sublineages were found likely to have diverged between 800y and 2000years ago, potentially at the time of Mongol Empire. Altogether, this study definitively proves a strong genetic link between Turkish and Japanese tuberculosis. It provides a first hypothesis for calibrating TB Euro-American lineage molecular clock; additional studies are needed to reliably date events corresponding to intermediate depths in tuberculosis phylogeny.
Collapse
Affiliation(s)
- Guislaine Refrégier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.
| | - Edgar Abadia
- Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | - Tomoshige Matsumoto
- Department of Clinical Research and Development, Osaka Prefectural Hospital Organization, Osaka Prefectural Medical Center for Respiratory and Allergic Diseases, Habikino-city, Japan
| | - Hiromi Ano
- Department of Clinical Research and Development, Osaka Prefectural Hospital Organization, Osaka Prefectural Medical Center for Respiratory and Allergic Diseases, Habikino-city, Japan
| | - Tetsuya Takashima
- Department of Clinical Research and Development, Osaka Prefectural Hospital Organization, Osaka Prefectural Medical Center for Respiratory and Allergic Diseases, Habikino-city, Japan
| | - Izuo Tsuyuguchi
- Department of Clinical Research and Development, Osaka Prefectural Hospital Organization, Osaka Prefectural Medical Center for Respiratory and Allergic Diseases, Habikino-city, Japan
| | - Elif Aktas
- Şişli Etfal Research and Training Hopital, Istanbul, Turkey
| | - Füsun Cömert
- Faculty of Medicine, Bülent Ecevit University, Zonguldak, Turkey
| | - Michel Kireopori Gomgnimbou
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Stefan Panaiotov
- National Center of Parasitic and Infectious Diseases, Sofia, Bulgaria
| | - Jody Phelan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Francesc Coll
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Ruth McNerney
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK; Infection and Immunity Unit, UCT Lung Institute, University of Cape Town, Old Main Building, Groote Schuur Hospital, Cape Town,South Africa
| | - Arnab Pain
- Pathogen Genomics Group, Biological, Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Christophe Sola
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| |
Collapse
|
38
|
Andam CP, Worby CJ, Chang Q, Campana MG. Microbial Genomics of Ancient Plagues and Outbreaks. Trends Microbiol 2016; 24:978-990. [PMID: 27618404 DOI: 10.1016/j.tim.2016.08.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 07/29/2016] [Accepted: 08/16/2016] [Indexed: 01/22/2023]
Abstract
The recent use of next-generation sequencing methods to investigate historical disease outbreaks has provided us with an unprecedented ability to address important and long-standing questions in epidemiology, pathogen evolution, and human history. In this review, we present major findings that illustrate how microbial genomics has provided new insights into the nature and etiology of infectious diseases of historical importance, such as plague, tuberculosis, and leprosy. Sequenced isolates collected from archaeological remains also provide evidence for the timing of historical evolutionary events as well as geographic spread of these pathogens. Elucidating the genomic basis of virulence in historical diseases can provide relevant information on how we can effectively understand the emergence and re-emergence of infectious diseases today and in the future.
Collapse
Affiliation(s)
- Cheryl P Andam
- Harvard T. H. Chan School of Public Health, Department of Epidemiology, Boston, MA 02115, USA; University of New Hampshire, Department of Molecular, Cellular and Biomedical Sciences, Durham, NH 03824, USA.
| | - Colin J Worby
- Harvard T. H. Chan School of Public Health, Department of Epidemiology, Boston, MA 02115, USA
| | - Qiuzhi Chang
- Harvard T. H. Chan School of Public Health, Department of Epidemiology, Boston, MA 02115, USA
| | - Michael G Campana
- Smithsonian Conservation Biology Institute, Center for Conservation Genomics, 3001 Connecticut Avenue NW, Washington, DC 20008, USA.
| |
Collapse
|