1
|
Jiang Y, Jin Y, Shan Y, Zhong Q, Wang H, Shen C, Feng S. Advances in Physalis molecular research: applications in authentication, genetic diversity, phylogenetics, functional genes, and omics. FRONTIERS IN PLANT SCIENCE 2024; 15:1407625. [PMID: 38993935 PMCID: PMC11236614 DOI: 10.3389/fpls.2024.1407625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/07/2024] [Indexed: 07/13/2024]
Abstract
The plants of the genus Physalis L. have been extensively utilized in traditional and indigenous Chinese medicinal practices for treating a variety of ailments, including dermatitis, malaria, asthma, hepatitis, and liver disorders. The present review aims to achieve a comprehensive and up-to-date investigation of the genus Physalis, a new model crop, to understand plant diversity and fruit development. Several chloroplast DNA-, nuclear ribosomal DNA-, and genomic DNA-based markers, such as psbA-trnH, internal-transcribed spacer (ITS), simple sequence repeat (SSR), random amplified microsatellites (RAMS), sequence-characterized amplified region (SCAR), and single nucleotide polymorphism (SNP), were developed for molecular identification, genetic diversity, and phylogenetic studies of Physalis species. A large number of functional genes involved in inflated calyx syndrome development (AP2-L, MPF2, MPF3, and MAGO), organ growth (AG1, AG2, POS1, and CNR1), and active ingredient metabolism (24ISO, DHCRT, P450-CPL, SR, DUF538, TAS14, and 3β-HSB) were identified contributing to the breeding of novel Physalis varieties. Various omic studies revealed and functionally identified a series of reproductive organ development-related factors, environmental stress-responsive genes, and active component biosynthesis-related enzymes. The chromosome-level genomes of Physalis floridana Rydb., Physalis grisea (Waterf.) M. Martínez, and Physalis pruinosa L. have been recently published providing a valuable resource for genome editing in Physalis crops. Our review summarizes the recent progress in genetic diversity, molecular identification, phylogenetics, functional genes, and the application of omics in the genus Physalis and accelerates efficient utilization of this traditional herb.
Collapse
Affiliation(s)
- Yan Jiang
- Hangzhou Normal University, Hangzhou, China
| | - Yanyun Jin
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Yiyi Shan
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Quanzhou Zhong
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Huizhong Wang
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Chenjia Shen
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Shangguo Feng
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
2
|
Deanna R, Martínez C, Manchester S, Wilf P, Campos A, Knapp S, Chiarini FE, Barboza GE, Bernardello G, Sauquet H, Dean E, Orejuela A, Smith SD. Fossil berries reveal global radiation of the nightshade family by the early Cenozoic. THE NEW PHYTOLOGIST 2023; 238:2685-2697. [PMID: 36960534 DOI: 10.1111/nph.18904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/14/2023] [Indexed: 05/19/2023]
Abstract
Fossil discoveries can transform our understanding of plant diversification over time and space. Recently described fossils in many plant families have pushed their known records farther back in time, pointing to alternative scenarios for their origin and spread. Here, we describe two new Eocene fossil berries of the nightshade family (Solanaceae) from the Esmeraldas Formation in Colombia and the Green River Formation in Colorado (USA). The placement of the fossils was assessed using clustering and parsimony analyses based on 10 discrete and five continuous characters, which were also scored in 291 extant taxa. The Colombian fossil grouped with members of the tomatillo subtribe, and the Coloradan fossil aligned with the chili pepper tribe. Along with two previously reported early Eocene fossils from the tomatillo genus, these findings indicate that Solanaceae were distributed at least from southern South America to northwestern North America by the early Eocene. Together with two other recently discovered Eocene berries, these fossils demonstrate that the diverse berry clade and, in turn, the entire nightshade family, is much older and was much more widespread in the past than previously thought.
Collapse
Affiliation(s)
- Rocío Deanna
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, 1800 Colorado Avenue, Boulder, CO, 80309-0334, USA
- Instituto Multidisciplinario de Biología Vegetal, IMBIV (CONICET-UNC), Vélez Sarsfield 299, Córdoba, 5000, Argentina
- Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende y Haya de la Torre, Córdoba, 5000, Argentina
| | - Camila Martínez
- Biological Science Department, Universidad EAFIT, Carrera 49, Cl. 7 Sur #50, Medellín, 050022, Antioquia, Colombia
- Center for Tropical Paleoecology and Archaeology, Smithsonian Tropical Research Institute, Luis Clement Avenue, Bldg. 401 Tupper Balboa Ancon, Panama City, 0843-03092, Panama
| | - Steven Manchester
- Florida Museum of Natural History, University of Florida, 3215 Hull Rd, Gainesville, FL, 32611, USA
| | - Peter Wilf
- Department of Geosciences and Earth and Environmental Systems Institute, Pennsylvania State University, State College, 201 Old Main, University Park, PA, 16802, USA
| | - Abel Campos
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, 1800 Colorado Avenue, Boulder, CO, 80309-0334, USA
| | - Sandra Knapp
- Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Franco E Chiarini
- Instituto Multidisciplinario de Biología Vegetal, IMBIV (CONICET-UNC), Vélez Sarsfield 299, Córdoba, 5000, Argentina
| | - Gloria E Barboza
- Instituto Multidisciplinario de Biología Vegetal, IMBIV (CONICET-UNC), Vélez Sarsfield 299, Córdoba, 5000, Argentina
| | - Gabriel Bernardello
- Instituto Multidisciplinario de Biología Vegetal, IMBIV (CONICET-UNC), Vélez Sarsfield 299, Córdoba, 5000, Argentina
| | - Hervé Sauquet
- National Herbarium of New South Wales (NSW), Royal Botanic Gardens and Domain Trust, Mrs Macquaries Road, Sydney, NSW, 2000, Australia
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, High St Kensington, Sydney, NSW, 2052, Australia
| | - Ellen Dean
- Center for Plant Diversity, Department of Plant Sciences, University of California, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Andrés Orejuela
- Grupo de Investigación en Recursos Naturales Amazónicos - GRAM, Facultad de Ingenierías y Ciencias Básicas, Instituto Tecnológico del Putumayo - ITP, Calle 17, Carrera 17, Mocoa, Putumayo, Colombia
- Subdirección científica, Jardín Botánico de Bogotá José Celestino Mutis, Calle 63 #68-95, Bogotá, DC, Colombia
| | - Stacey D Smith
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, 1800 Colorado Avenue, Boulder, CO, 80309-0334, USA
| |
Collapse
|
3
|
Huang J, Xu W, Zhai J, Hu Y, Guo J, Zhang C, Zhao Y, Zhang L, Martine C, Ma H, Huang CH. Nuclear phylogeny and insights into whole-genome duplications and reproductive development of Solanaceae plants. PLANT COMMUNICATIONS 2023:100595. [PMID: 36966360 PMCID: PMC10363554 DOI: 10.1016/j.xplc.2023.100595] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/02/2023] [Accepted: 03/22/2023] [Indexed: 06/18/2023]
Abstract
Solanaceae, the nightshade family, have ∼2700 species, including the important crops potato and tomato, ornamentals, and medicinal plants. Several sequenced Solanaceae genomes show evidence for whole-genome duplication (WGD), providing an excellent opportunity to investigate WGD and its impacts. Here, we generated 93 transcriptomes/genomes and combined them with 87 public datasets, for a total of 180 Solanaceae species representing all four subfamilies and 14 of 15 tribes. Nearly 1700 nuclear genes from these transcriptomic/genomic datasets were used to reconstruct a highly resolved Solanaceae phylogenetic tree with six major clades. The Solanaceae tree supports four previously recognized subfamilies (Goetzeioideae, Cestroideae, Nicotianoideae, and Solanoideae) and the designation of three other subfamilies (Schizanthoideae, Schwenckioideae, and Petunioideae), with the placement of several previously unassigned genera. We placed a Solanaceae-specific whole-genome triplication (WGT1) at ∼81 million years ago (mya), before the divergence of Schizanthoideae from other Solanaceae subfamilies at ∼73 mya. In addition, we detected two gene duplication bursts (GDBs) supporting proposed WGD events and four other GDBs. An investigation of the evolutionary histories of homologs of carpel and fruit developmental genes in 14 gene (sub)families revealed that 21 gene clades have retained gene duplicates. These were likely generated by the Solanaceae WGT1 and may have promoted fleshy fruit development. This study presents a well-resolved Solanaceae phylogeny and a new perspective on retained gene duplicates and carpel/fruit development, providing an improved understanding of Solanaceae evolution.
Collapse
Affiliation(s)
- Jie Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China; Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuangzu Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
| | - Weibin Xu
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuangzu Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
| | - Junwen Zhai
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Hu
- Department of Biology, the Huck Institutes of Life Sciences, the Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Jing Guo
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Caifei Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yiyong Zhao
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Lin Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | | | - Hong Ma
- Department of Biology, the Huck Institutes of Life Sciences, the Pennsylvania State University, University Park, State College, PA 16802, USA.
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
4
|
He J, Alonge M, Ramakrishnan S, Benoit M, Soyk S, Reem NT, Hendelman A, Van Eck J, Schatz MC, Lippman ZB. Establishing Physalis as a Solanaceae model system enables genetic reevaluation of the inflated calyx syndrome. THE PLANT CELL 2023; 35:351-368. [PMID: 36268892 PMCID: PMC9806562 DOI: 10.1093/plcell/koac305] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The highly diverse Solanaceae family contains several widely studied models and crop species. Fully exploring, appreciating, and exploiting this diversity requires additional model systems. Particularly promising are orphan fruit crops in the genus Physalis, which occupy a key evolutionary position in the Solanaceae and capture understudied variation in traits such as inflorescence complexity, fruit ripening and metabolites, disease and insect resistance, self-compatibility, and most notable, the striking inflated calyx syndrome (ICS), an evolutionary novelty found across angiosperms where sepals grow exceptionally large to encapsulate fruits in a protective husk. We recently developed transformation and genome editing in Physalis grisea (groundcherry). However, to systematically explore and unlock the potential of this and related Physalis as genetic systems, high-quality genome assemblies are needed. Here, we present chromosome-scale references for P. grisea and its close relative Physalis pruinosa and use these resources to study natural and engineered variations in floral traits. We first rapidly identified a natural structural variant in a bHLH gene that causes petal color variation. Further, and against expectations, we found that CRISPR-Cas9-targeted mutagenesis of 11 MADS-box genes, including purported essential regulators of ICS, had no effect on inflation. In a forward genetics screen, we identified huskless, which lacks ICS due to mutation of an AP2-like gene that causes sepals and petals to merge into a single whorl of mixed identity. These resources and findings elevate Physalis to a new Solanaceae model system and establish a paradigm in the search for factors driving ICS.
Collapse
Affiliation(s)
- Jia He
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Michael Alonge
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Srividya Ramakrishnan
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Matthias Benoit
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Sebastian Soyk
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Nathan T Reem
- Boyce Thompson Institute, Ithaca, New York 14853, USA
| | - Anat Hendelman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Joyce Van Eck
- Boyce Thompson Institute, Ithaca, New York 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Michael C Schatz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Zachary B Lippman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
5
|
Martínez M, Vargas-Ponce O, Zamora-Tavares P. Taxonomic revision of Physalis in Mexico. Front Genet 2023; 14:1080176. [PMID: 37124620 PMCID: PMC10141326 DOI: 10.3389/fgene.2023.1080176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/27/2023] [Indexed: 05/02/2023] Open
Abstract
Physalis (Solanaceae, Solanoideae) is an American genus of ca. 90 species, with its diversity centered on Mexico. We recognize 61 species within the country, for which we provide a generic morphological description, an artificial key to determine species, and brief descriptions. We include distributions, habitats, diagnostic characters, phenology, and uses. Distribution maps and field photographs are also provided. We include conservation status as evaluated by the IUCN.
Collapse
Affiliation(s)
- Mahinda Martínez
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, Mexico
- Laboratorio Nacional de Identificación y Caracterización Vegetal, Querétaro, Mexico
| | - Ofelia Vargas-Ponce
- Instituto de Botánica, departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
- Laboratorio Nacional de Identificación y Caracterización Vegetal, Guadalajara, Mexico
- *Correspondence: Ofelia Vargas-Ponce,
| | - Pilar Zamora-Tavares
- Instituto de Botánica, departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
- Laboratorio Nacional de Identificación y Caracterización Vegetal, Guadalajara, Mexico
| |
Collapse
|
6
|
Sandoval-Padilla I, Zamora-Tavares MDP, Ruiz-Sánchez E, Pérez-Alquicira J, Vargas-Ponce O. Characterization of the plastome of Physaliscordata and comparative analysis of eight species of Physalis sensu stricto. PHYTOKEYS 2022; 210:109-134. [PMID: 36760406 PMCID: PMC9836641 DOI: 10.3897/phytokeys.210.85668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/07/2022] [Indexed: 06/18/2023]
Abstract
In this study, we sequenced, assembled, and annotated the plastome of Physaliscordata Mill. and compared it with seven species of the genus Physalis sensu stricto. Sequencing, annotating, and comparing plastomes allow us to understand the evolutionary mechanisms associated with physiological functions, select possible molecular markers, and identify the types of selection that have acted in different regions of the genome. The plastome of P.cordata is 157,000 bp long and presents the typical quadripartite structure with a large single-copy (LSC) region of 87,267 bp and a small single-copy (SSC) region of 18,501 bp, which are separated by two inverted repeat (IRs) regions of 25,616 bp each. These values are similar to those found in the other species, except for P.angulata L. and P.pruinosa L., which presented an expansion of the LSC region and a contraction of the IR regions. The plastome in all Physalis species studied shows variation in the boundary of the regions with three distinct types, the percentage of the sequence identity between coding and non-coding regions, and the number of repetitive regions and microsatellites. Four genes and 10 intergenic regions show promise as molecular markers and eight genes were under positive selection. The maximum likelihood analysis showed that the plastome is a good source of information for phylogenetic inference in the genus, given the high support values and absence of polytomies. In the Physalis plastomes analyzed here, the differences found, the positive selection of genes, and the phylogenetic relationships do not show trends that correspond to the biological or ecological characteristics of the species studied.
Collapse
Affiliation(s)
- Isaac Sandoval-Padilla
- Doctorado en Ciencias en Biosistemática, Ecología y Manejo de Recursos Naturales y Agrícolas, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Ramón Padilla Sánchez 2100, 45200 Las Agujas, Zapopan, Jalisco, MexicoUniversidad de GuadalajaraZapopanMexico
| | - María del Pilar Zamora-Tavares
- Doctorado en Ciencias en Biosistemática, Ecología y Manejo de Recursos Naturales y Agrícolas, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Ramón Padilla Sánchez 2100, 45200 Las Agujas, Zapopan, Jalisco, MexicoUniversidad de GuadalajaraZapopanMexico
| | - Eduardo Ruiz-Sánchez
- Doctorado en Ciencias en Biosistemática, Ecología y Manejo de Recursos Naturales y Agrícolas, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Ramón Padilla Sánchez 2100, 45200 Las Agujas, Zapopan, Jalisco, MexicoUniversidad de GuadalajaraZapopanMexico
| | - Jessica Pérez-Alquicira
- Doctorado en Ciencias en Biosistemática, Ecología y Manejo de Recursos Naturales y Agrícolas, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Ramón Padilla Sánchez 2100, 45200 Las Agujas, Zapopan, Jalisco, MexicoUniversidad de GuadalajaraZapopanMexico
- Laboratorio Nacional de Identificación y Caracterización Vegetal A(LaniVeg), Consejo Nacional de Ciencia y Tecnología (CONACyT), Universidad de Guadalajara, Ramón Padilla Sánchez 2100, 45200 Las Agujas, Zapopan, Jalisco, MexicoCONACYTMexico CityMexico
| | - Ofelia Vargas-Ponce
- Doctorado en Ciencias en Biosistemática, Ecología y Manejo de Recursos Naturales y Agrícolas, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Ramón Padilla Sánchez 2100, 45200 Las Agujas, Zapopan, Jalisco, MexicoUniversidad de GuadalajaraZapopanMexico
| |
Collapse
|
7
|
Powell AF, Zhang J, Hauser D, Vilela JA, Hu A, Gates DJ, Mueller LA, Li FW, Strickler SR, Smith SD. Genome sequence for the blue-flowered Andean shrub Iochroma cyaneum reveals extensive discordance across the berry clade of Solanaceae. THE PLANT GENOME 2022; 15:e20223. [PMID: 35666039 DOI: 10.1002/tpg2.20223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
The tomato (Solanum lycopersicum L.) family, Solanaceae, is a model clade for a wide range of applied and basic research questions. Currently, reference-quality genomes are available for over 30 species from seven genera, and these include numerous crops as well as wild species [e.g., Jaltomata sinuosa (Miers) Mione and Nicotiana attenuata Torr. ex S. Watson]. Here we present the genome of the showy-flowered Andean shrub Iochroma cyaneum (Lindl.) M. L. Green, a woody lineage from the tomatillo (Physalis philadelphica Lam.) subfamily Physalideae. The assembled size of the genome (2.7 Gb) is more similar in size to pepper (Capsicum annuum L.) (2.6 Gb) than to other sequenced diploid members of the berry clade of Solanaceae [e.g., potato (Solanum tuberosum L.), tomato, and Jaltomata]. Our assembly recovers 92% of the conserved orthologous set, suggesting a nearly complete genome for this species. Most of the genomic content is repetitive (69%), with Gypsy elements alone accounting for 52% of the genome. Despite the large amount of repetitive content, most of the 12 I. cyaneum chromosomes are highly syntenic with tomato. Bayesian concordance analysis provides strong support for the berry clade, including I. cyaneum, but reveals extensive discordance along the backbone, with placement of chili pepper and Jaltomata being highly variable across gene trees. The I. cyaneum genome contributes to a growing wealth of genomic resources in Solanaceae and underscores the need for expanded sampling of diverse berry genomes to dissect major morphological transitions.
Collapse
Affiliation(s)
| | - Jing Zhang
- Boyce Thompson Institute, Ithaca, NY, USA
| | | | - Julianne A Vilela
- Philippine Genome Center, Program for Agriculture, Livestock, Forestry and Fisheries, Univ. of the Phillipines Los Baños, Laguna, Phillipines
| | - Alice Hu
- Boyce Thompson Institute, Ithaca, NY, USA
| | - Daniel J Gates
- School of Biological Sciences, Univ. of Nebraska, Lincoln, NE, USA
- Current address: Checkerspot, Inc., Alameda, CA, USA
| | | | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY, USA
- Plant Biology Section, Cornell Univ., Ithaca, NY, USA
| | | | - Stacey D Smith
- Dep. of Ecology and Evolutionary Biology, Univ. of Colorado, Boulder, CO, USA
| |
Collapse
|
8
|
de Souza AX, Riederer M, Leide J. Multifunctional Contribution of the Inflated Fruiting Calyx: Implication for Cuticular Barrier Profiles of the Solanaceous Genera Physalis, Alkekengi, and Nicandra. FRONTIERS IN PLANT SCIENCE 2022; 13:888930. [PMID: 35874003 PMCID: PMC9298275 DOI: 10.3389/fpls.2022.888930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Pivotal barrier properties of the hydrophobic plant cuticle covering aerial plant surfaces depend on its physicochemical composition. Among plant species and organs, compounds of this boundary layer between the plant interior and the environment vary considerably but cuticle-related studies comparing different organs from the same plant species are still scarce. Thus, this study focused on the cuticle profiles of Physalis peruviana, Physalis ixocarpa, Alkekengi officinarum, and Nicandra physalodes species. Inflated fruiting calyces enveloping fruits make Physalis, Alkekengi, and Nicandra highly recognizable genera among the Solanoideae subfamily. Although the inflation of fruiting calyces is well discussed in the literature still little is known about their post-floral functionalities. Cuticular composition, surface structure, and barrier function were examined and compared in fully expanded amphistomatous leaves, ripe astomatous fruits, and fully inflated hypostomatous fruiting calyces. Species- and organ-specific abundances of non-glandular and glandular trichomes revealed high structural diversity, covering not only abaxial and adaxial leaf surfaces but also fruiting calyx surfaces, whereas fruits were glabrous. Cuticular waxes, which limit non-stomatal transpiration, ranged from <1 μg cm-2 on P. peruviana fruiting calyces and N. physalodes fruits to 22 μg cm-2 on P. peruviana fruits. Very-long-chain aliphatic compounds, notably n-alkanes, iso-, and anteiso-branched alkanes, alkanols, alkanoic acids, and alkyl esters, dominated the cuticular wax coverages (≥86%). Diversity of cuticular wax patterns rose from leaves to fruiting calyces and peaked in fruits. The polymeric cutin matrix providing the structural framework for cuticular waxes was determined to range from 81 μg cm-2 for N. physalodes to 571 μg cm-2 for A. officinarum fruits. Cuticular transpiration barriers were highly efficient, with water permeabilities being ≤5 × 10-5 m s-1. Only the cuticular water permeability of N. physalodes fruits was 10 × 10-5 m s-1 leading to their early desiccation and fruits that easily split, whereas P. peruviana, P. ixocarpa, and A. officinarum bore fleshy fruits for extended periods after maturation. Regarding the functional significance, fruiting calyces establish a physicochemical shield that reduces water loss and enables fruit maturation within a protective microclimate, and promotes different seed dispersal strategies among plant species investigated.
Collapse
|
9
|
Añibarro-Ortega M, Pinela J, Alexopoulos A, Petropoulos SA, Ferreira ICFR, Barros L. The powerful Solanaceae: Food and nutraceutical applications in a sustainable world. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 100:131-172. [PMID: 35659351 DOI: 10.1016/bs.afnr.2022.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The Solanaceae family is considered one of the most important families among plant species because, on one hand encompasses many staple food crops of the human diet while, on the other hand, it includes species rich in powerful secondary metabolites that could be valorized in medicine or drug formulation as well as nutraceuticals and food supplements. The main genera are Solanum, Capsicum, Physalis, and Lycium which comprise several important cultivated crops (e.g., tomato, pepper, eggplant, tomatillo, and goji berry), as well as genera notable for species with several pharmaceutical properties (e.g., Datura, Nicotiana, Atropa, Mandragora, etc.). This chapter discusses the nutritional value of the most important Solanaceae species commonly used for their edible fruit, as well as those used in the development of functional foods, food supplements, and nutraceuticals due to their bioactive constituents. The toxic and poisonous effects are also discussed aiming to highlight possible detrimental consequences due to irrational use. Finally, considering the high amount of waste and by-products generated through the value chain of the main crops, the sustainable management practices implemented so far are presented with the aim to increase the added-value of these crops.
Collapse
Affiliation(s)
- Mikel Añibarro-Ortega
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal.
| | - Alexios Alexopoulos
- Laboratory of Agronomy, Department of Agriculture, University of the Peloponnese, Kalamata, Messinia, Greece
| | - Spyridon A Petropoulos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal.
| |
Collapse
|
10
|
Sennikov A, Lazkov G. The first checklist of alien vascular plants of Kyrgyzstan, with new records and critical evaluation of earlier data. Contribution 2. Biodivers Data J 2022; 10:e80804. [PMID: 35437395 PMCID: PMC8971126 DOI: 10.3897/bdj.10.e80804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/09/2022] [Indexed: 11/27/2022] Open
Abstract
Background We continue the inventory of alien vascular plants of Kyrgyzstan, with emphasis on the time and pathways of introduction of the species and their current status in the territory. Each taxon is discussed in the context of plant invasions in Central Asia. This work is a further development of the preliminary checklist of alien plants of Kyrgyzstan, which was compiled for the Global Register of Introduced and Invasive Species in 2018. New information This contribution includes all alien species of Kyrgyzstan belonging to Solanaceae and Asphodelaceae and one species of Asteraceae. Physalisphiladelphicus (syn. P.ixocarpa) is reported for the first time from Central Asia, as new to Kazakhstan, Kyrgyzstan and Uzbekistan, thus marking a recent invasion with a variety of imported grain and seed material. The old records of P.ixocarpa from Uzbekistan are based on misidentified specimens of P.angulata. Physalisangulata is an old cotton immigrant in Central Asia, whose invasion started in the 1920s; it is excluded from the alien flora of Kyrgyzstan as registered in error on the basis of cultivated plants. Alkekengiofficinarum is an archaeophyte of the Neolithic period in Central Asia, formerly used for food, now strongly declining and largely casual in Kyrgyzstan. The only historical record of Physalisviscosa from Uzbekistan was based on a technical error and belongs to A.officinarum. Daturastramonium and Hyoscyamusniger were introduced as medicinal plants during the period of the Arabic invasion of Central Asia, by the 11th century. Daturainnoxia is a newly recorded casual alien, recently escaped from ornamental cultivation. Nicandraphysalodes is a casual alien, which was cultivated by Russian colonists in the early 20th century for culinary use and is currently used in ornamental cultivation. Hemerocallisfulva was a remnant of historical cultivation in the former Khanate of Buxoro, and its formerly established colonies are presumably extinct in the wild. Bidensfrondosa was seemingly introduced with contaminated forage and seed of American origin during the late Soviet period and started to spread in the period of independence; its invasion in the former USSR is analysed.
Collapse
Affiliation(s)
- Alexander Sennikov
- Komarov Botanical Institute, Saint-Petersburg, Russia Komarov Botanical Institute Saint-Petersburg Russia.,University of Helsinki, Helsinki, Finland University of Helsinki Helsinki Finland
| | - Georgy Lazkov
- Institute of Biology, Bishkek, Kyrgyzstan Institute of Biology Bishkek Kyrgyzstan
| |
Collapse
|
11
|
Pretz C, Smith SD. Intraspecific breakdown of self-incompatibility in Physalis acutifolia (Solanaceae). AOB PLANTS 2022; 14:plab080. [PMID: 35079331 PMCID: PMC8783618 DOI: 10.1093/aobpla/plab080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/21/2021] [Indexed: 05/13/2023]
Abstract
Variation in mating systems is prevalent throughout angiosperms, with many transitions between outcrossing and selfing above and below the species level. This study documents a new case of an intraspecific breakdown of self-incompatibility in a wild relative of tomatillo, Physalis acutifolia. We used controlled greenhouse crosses to identify self-incompatible (SI) and self-compatible (SC) individuals grown from seed sampled across seven sites across Arizona and New Mexico. We measured 14 flower and fruit traits to test for trait variation associated with mating system. We also quantified pollen tube growth in vivo and tested for the presence of the S-RNase proteins in SI and SC styles. We found that seed from six of the seven sites produced SI individuals that terminated self-pollen tubes in the style and showed detectable S-RNase expression. By contrast, seed from one Arizona site produced SC individuals with no S-RNase expression. These SC individuals displayed typical selfing-syndrome traits such as smaller corollas, reduced stigma-anther distances, and a smaller pollen-ovule ratio. We also found plasticity in self-incompatibility as most of the SI individuals became SC and lost S-RNase expression roughly after 6 months in the greenhouse. While fixed differences in mating systems are known among the SI wild species and the often SC domesticated tomatillos, our study is the first to demonstrate intraspecific variation in natural populations as well as variation in SI over an individual's lifespan.
Collapse
Affiliation(s)
- Chelsea Pretz
- Department of Ecology and Evolutionary Biology, University of Colorado, 1900 Pleasant Street, Boulder, CO 80309, USA
- Corresponding author’s e-mail address:
| | - Stacey D Smith
- Department of Ecology and Evolutionary Biology, University of Colorado, 1900 Pleasant Street, Boulder, CO 80309, USA
| |
Collapse
|
12
|
Trujillo-Pahua V, Vargas-Ponce O, Rodríguez-Zaragoza FA, Ordaz-Ortiz JJ, Délano-Frier JP, Winkler R, Sánchez-Hernández CV. Metabolic response to larval herbivory in three Physalis species. PLANT SIGNALING & BEHAVIOR 2021; 16:1962050. [PMID: 34435930 PMCID: PMC9208789 DOI: 10.1080/15592324.2021.1962050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
The Physalis genus includes species of commercial importance due to their ornamental, edible and medicinal properties. These qualities stem from their variety of biologically active compounds. We performed a metabolomic analysis of three Physalis species, i.e., P. angulata, P. grisea, and P. philadelphica, differing in domestication stage and cultivation practices, to determine the degree of inter-species metabolite variation and to test the hypothesis that these related species mount a common metabolomic response to foliar damage caused by Trichoplusia ni larvae. The results indicated that the metabolomic differences detected in the leaves of these species were species-specific and remained even after T. ni herbivory. They also show that each Physalis species displayed a unique response to insect herbivory. This study highlighted the metabolite variation present in Physalis spp. and the persistence of this variability when faced with biotic stressors. Furthermore, it sets an experimental precedent from which highly species-specific metabolites could be identified and subsequently used for plant breeding programs designed to increase insect resistance in Physalis and related plant species.
Collapse
Affiliation(s)
- Verónica Trujillo-Pahua
- Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, México
| | - Ofelia Vargas-Ponce
- Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, México
| | - Fabián A. Rodríguez-Zaragoza
- Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, México
| | - José J. Ordaz-Ortiz
- Unidad de Genómica Avanzada-Laboratorio Nacional de Genómica Para la Biodiversidad, Irapuato, Guanajuato, México
| | - John P. Délano-Frier
- Unidad de Biotecnología e Ingeniería Genética De Plantas, Centro de Investigación y Estudios Avanzados del IPN, Irapuato, Guanajuato, México
| | - Robert Winkler
- Unidad de Biotecnología e Ingeniería Genética De Plantas, Centro de Investigación y Estudios Avanzados del IPN, Irapuato, Guanajuato, México
| | - Carla V. Sánchez-Hernández
- Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, México
| |
Collapse
|
13
|
Correction. PLANT SIGNALING & BEHAVIOR 2021; 16:1984521. [PMID: 34613886 PMCID: PMC9208773 DOI: 10.1080/15592324.2021.1984521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
|
14
|
Deanna R, Wilf P, Gandolfo MA. New physaloid fruit-fossil species from early Eocene South America. AMERICAN JOURNAL OF BOTANY 2020; 107:1749-1762. [PMID: 33247843 DOI: 10.1002/ajb2.1565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/19/2020] [Indexed: 06/12/2023]
Abstract
PREMISE Solanaceae is a scientifically and economically important angiosperm family with a minimal fossil record and an intriguing early evolutionary history. Here, we report a newly discovered fossil lantern fruit with a suite of features characteristic of Physalideae within Solanaceae. The fossil comes from the early Eocene Laguna del Hunco site (ca. 52 Ma) in Chubut, Argentina, which previously yielded the only other physaloid fruit fossil, Physalis infinemundi. METHODS The fruit morphology and calyx venation pattern of the new fossil were compared with P. infinemundi and extant species of Solanaceae. RESULTS Physalis hunickenii sp. nov. is clearly distinct from P. infinemundi in its fruiting calyx with wider primary veins, longer and thinner lobes, and especially in its venation pattern with high density, transverse tertiary veins; these features support its placement in a new species. In comparison with extant physaloid genera, the calyx venation pattern and other diagnostic traits reinforce placement of the new fossil, like P. infinemundi, within the tribe Physalideae of Solanaceae. CONCLUSIONS Both species of fossil nightshades from Laguna del Hunco represent crown-group Solanaceae but are older than all prior age estimates of the family. Although at least 20 transoceanic dispersals have been proposed as the driver of range expansion of Solanaceae, the Patagonian fossils push back the diversification of the family to Gondwanan times. Thus, overland dispersal across Gondwana is now a likely scenario for at least some biogeographic patterns, in light of the ancient trans-Antarctic land connections between South America and Australia.
Collapse
Affiliation(s)
- Rocío Deanna
- Instituto Multidisciplinario de Biología Vegetal, IMBIV (CONICET-UNC), CC 495, Córdoba, 5000, Argentina
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas (FCQ, UNC), Medina Allende s.n., Córdoba, 5000, Argentina
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80305, USA
| | - Peter Wilf
- Department of Geosciences and Earth and Environmental Systems Institute, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Maria A Gandolfo
- L.H. Bailey Hortorium, Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, 14853, USA
| |
Collapse
|
15
|
Rodríguez J, Deanna R, Chiarini F. Karyotype asymmetry shapes diversity within the physaloids (Physalidinae, Physalideae, Solanaceae). SYST BIODIVERS 2020. [DOI: 10.1080/14772000.2020.1832156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Julieta Rodríguez
- Facultad de Ciencias Exactas, Físicas y Naturales, UNC, Vélez Sarsfield 299, Córdoba, 5000, Argentina
- Instituto Multidisciplinario de Biología Vegetal, IMBIV (CONICET-UNC), CC 495, Córdoba, 5000, Argentina
| | - Rocío Deanna
- Instituto Multidisciplinario de Biología Vegetal, IMBIV (CONICET-UNC), CC 495, Córdoba, 5000, Argentina
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, 80305, CO, USA
- Facultad de Ciencias Químicas, UNC, Medina Allende s.n, Córdoba, 5000, Argentina
| | - Franco Chiarini
- Facultad de Ciencias Exactas, Físicas y Naturales, UNC, Vélez Sarsfield 299, Córdoba, 5000, Argentina
- Instituto Multidisciplinario de Biología Vegetal, IMBIV (CONICET-UNC), CC 495, Córdoba, 5000, Argentina
| |
Collapse
|
16
|
Yu Y, Chen X, Zheng Q. Metabolomic Profiling of Carotenoid Constituents in Physalis peruviana During Different Growth Stages by LC-MS/MS Technology. J Food Sci 2019; 84:3608-3613. [PMID: 31724748 DOI: 10.1111/1750-3841.14916] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/28/2019] [Accepted: 10/06/2019] [Indexed: 11/28/2022]
Abstract
With the current ongoing changes in global food demands, natural carotenoids are preferred by consumers and are gaining attention among food scientists and producers alike. Metabolomic profiling of carotenoid constituents in Physalis peruviana during distinct on-tree growth stages was performed with liquid chromatography-tandem mass spectrometry (LC-MS/MS) technology. The results show that the β rings of β-carotene are hydroxylated with great efficiency, and there is a continual synthesis of zeaxanthin at half-ripe and full-ripe stages, which is confirmed by relating the zeaxanthin content to that of its precursor (β-carotene). Lutein was, in terms of mass intensity, the most abundant carotenoid constituent (64.61 µg/g at the half-ripe stage) observed in this study. In addition, γ-carotene, which is rare in dietary fruits and vegetables, was detected in the mature and breaker stages, albeit at a relatively low level. The results suggest that when we consider the variation in carotenoid content during different growth stages, Physalis peruviana can be considered a good source of natural carotenoids.
Collapse
Affiliation(s)
- Yougui Yu
- School of Food and Chemical Engineering, Shaoyang Univ., Shaoyang, 422000, China
| | - Xuepeng Chen
- School of Food and Chemical Engineering, Shaoyang Univ., Shaoyang, 422000, China
| | - Qing Zheng
- School of Food and Chemical Engineering, Shaoyang Univ., Shaoyang, 422000, China
| |
Collapse
|
17
|
Deanna R, Larter MD, Barboza GE, Smith SD. Repeated evolution of a morphological novelty: a phylogenetic analysis of the inflated fruiting calyx in the Physalideae tribe (Solanaceae). AMERICAN JOURNAL OF BOTANY 2019; 106:270-279. [PMID: 30779447 DOI: 10.1002/ajb2.1242] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
PREMISE OF THE STUDY The evolution of novel fruit morphologies has been integral to the success of angiosperms. The inflated fruiting calyx, in which the balloon-like calyx swells to completely surround the fruit, has evolved repeatedly across angiosperms and is postulated to aid in protection and dispersal. We investigated the evolution of this trait in the tomatillos and their allies (Physalideae, Solanaceae). METHODS The Physalideae phylogeny was estimated using four regions (ITS, LEAFY, trnL-F, waxy) with maximum likelihood (ML) and Bayesian inference. Under the best-fitting ML model of trait evolution, we estimated ancestral states along with the numbers of gains and losses of fruiting calyx accrescence and inflation with Bayesian stochastic mapping. Also, phylogenetic signal in calyx morphology was examined with two metrics (parsimony score and Fritz and Purvis's D). KEY RESULTS Based on our well-resolved and densely sampled phylogeny, we infer that calyx evolution has proceeded in a stepwise and directional fashion, from non-accrescent to accrescent to inflated. In total, we inferred 24 gains of accrescence, 24 subsequent transitions to a fully inflated calyx, and only two reversals. Despite this lability, fruiting calyx accrescence and inflation showed strong phylogenetic signal. CONCLUSIONS Our phylogeny greatly improves the resolution of Physalideae and highlights the need for taxonomic work. The comparative analyses reveal that the inflated fruiting calyx has evolved many times and that the trajectory toward this phenotype is generally stepwise and irreversible. These results provide a strong foundation for studying the genetic and developmental mechanisms responsible for the repeated origins of this charismatic fruit trait.
Collapse
Affiliation(s)
- Rocío Deanna
- Instituto Multidisciplinario de Biología Vegetal, IMBIV (CONICET-UNC), CC 495, Córdoba, 5000, Argentina
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80305, USA
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas (FCQ, UNC), Medina Allende s.n., Córdoba, 5000, Argentina
| | - Maximilian D Larter
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80305, USA
| | - Gloria E Barboza
- Instituto Multidisciplinario de Biología Vegetal, IMBIV (CONICET-UNC), CC 495, Córdoba, 5000, Argentina
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80305, USA
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas (FCQ, UNC), Medina Allende s.n., Córdoba, 5000, Argentina
| | - Stacey D Smith
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80305, USA
| |
Collapse
|
18
|
Deanna R, Orejuela A, Barboza GE. An updated phylogeny of Deprea (Solanaceae) with a new species from Colombia: interspecific relationships, conservation assessment, and a key for Colombian species. SYST BIODIVERS 2018. [DOI: 10.1080/14772000.2018.1483976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Rocío Deanna
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET and Universidad Nacional de Córdoba, CC 495, CP 5000, Córdoba, Argentina
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Haya de la Torre y Medina Allende, Córdoba, Argentina
| | - Andrés Orejuela
- Tropical Diversity Section, Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK
- University of Edinburgh, King's Buildings, Edinburgh, UK
| | - Gloria Estela Barboza
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET and Universidad Nacional de Córdoba, CC 495, CP 5000, Córdoba, Argentina
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Haya de la Torre y Medina Allende, Córdoba, Argentina
| |
Collapse
|
19
|
Phylogenetic relationships of Deprea: New insights into the evolutionary history of physaloid groups. Mol Phylogenet Evol 2017; 119:71-80. [PMID: 29108936 DOI: 10.1016/j.ympev.2017.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 01/29/2023]
Abstract
Deprea is the genus with the second highest species richness in tribe Physalideae (Solanaceae) and comprises 50 species that are mainly distributed in the Andes of South America. The taxonomy of Deprea has been unstable after controversial hypotheses about its position and circumscription. Additionally, biogeographical inferences are only based on observations of the restricted area of distribution of some species and no ancestral area estimation have been performed. Here, we present a phylogenetic analysis and an ancestral area reconstruction of Deprea in order to establish its circumscription, resolve its position within Physalideae, and reconstruct its biogeographical history. Phylogenetic analyses were conducted using Maximum Likelihood and Bayesian approaches. Forty-three Deprea species and 26 related taxa were sampled for three DNA markers (psbA-trnH, ITS, and waxy). A Bayesian binary MCMC model was applied in order to infer ancestral areas. Deprea is resolved as a strongly supported monophyletic group according to its current circumscription and is placed within subtribe Withaninae of Physalideae. The phylogenetic relationships enabled us to solve taxonomic problems including the rejection and acceptance of previous synonyms. The most probable ancestral area for Deprea is the Northern Andes of South America and the Amotape-Huancabamba zone. Our phylogeny provides increased resolution and support for the current position and circumscription of Deprea. Better resolution of interspecific relationships was also obtained, although some affinities remain unclear. The phylogenetic and ancestral area reconstructions provide a framework for addressing taxonomic problems and investigating new evolutionary questions.
Collapse
|
20
|
Wilf P, Carvalho MR, Gandolfo MA, Cúneo NR. Eocene lantern fruits from Gondwanan Patagonia and the early origins of Solanaceae. Science 2017; 355:71-75. [PMID: 28059765 DOI: 10.1126/science.aag2737] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/15/2016] [Accepted: 11/18/2016] [Indexed: 11/02/2022]
Abstract
The nightshade family Solanaceae holds exceptional economic and cultural importance. The early diversification of Solanaceae is thought to have occurred in South America during its separation from Gondwana, but the family's sparse fossil record provides few insights. We report 52.2-million-year-old lantern fruits from terminal-Gondwanan Patagonia, featuring highly inflated, five-lobed calyces, as a newly identified species of the derived, diverse New World genus Physalis (e.g., groundcherries and tomatillos). The fossils are considerably older than corresponding molecular divergence dates and demonstrate an ancient history for the inflated calyx syndrome. The derived position of these early Eocene fossils shows that Solanaceae were well diversified long before final Gondwanan breakup.
Collapse
Affiliation(s)
- Peter Wilf
- Department of Geosciences, Pennsylvania State University, University Park, PA 16802, USA.
| | - Mónica R Carvalho
- L. H. Bailey Hortorium, Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - María A Gandolfo
- L. H. Bailey Hortorium, Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - N Rubén Cúneo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Museo Paleontológico Egidio Feruglio, 9100 Trelew, Chubut, Argentina
| |
Collapse
|
21
|
Song J, Cui BK. Phylogeny, divergence time and historical biogeography of Laetiporus (Basidiomycota, Polyporales). BMC Evol Biol 2017; 17:102. [PMID: 28424048 PMCID: PMC5397748 DOI: 10.1186/s12862-017-0948-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 03/31/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aim of this study was to characterize the molecular relationship, origin and historical biogeography of the species in important brown rot fungal genus Laetiporus from East Asia, Europe, Pan-America, Hawaii and South Africa. We used six genetic markers to estimate a genus-level phylogeny including (1) the internal transcribed spacer (ITS), (2) nuclear large subunit rDNA (nrLSU), (3) nuclear small subunit rDNA (nrSSU), (4) translation elongation factor 1-α (EF-1α), (5) DNA-directed RNA polymerase II subunit 2 (RPB2), and (6) mitochondrial small subunit rDNA (mtSSU). RESULTS Results of multi-locus phylogenetic analyses show clade support for at least seventeen species-level lineages including two new Laetiporus in China. Molecular dating using BEAST estimated the present crown group diverged approximately 20.16 million years ago (Mya) in the early Miocene. Biogeographic analyses using RASP indicated that Laetiporus most likely originated in temperate zones with East Asia and North America having the highest probability (48%) of being the ancestral area. CONCLUSIONS Four intercontinental dispersal routes and a possible concealed dispersal route were established for the first time.
Collapse
Affiliation(s)
- Jie Song
- Institute of Microbiology, Beijing Forestry University, P.O. Box 61, 35#, Qinghua East Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Bao-Kai Cui
- Institute of Microbiology, Beijing Forestry University, P.O. Box 61, 35#, Qinghua East Road, Haidian District, Beijing, 100083, People's Republic of China.
| |
Collapse
|
22
|
Phylogeny and biogeography of the remarkable genus Bondarzewia (Basidiomycota, Russulales). Sci Rep 2016; 6:34568. [PMID: 27680391 PMCID: PMC5041112 DOI: 10.1038/srep34568] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/15/2016] [Indexed: 11/08/2022] Open
Abstract
Bondarzewia is a conspicuous and widely distributed mushroom genus, but little is known about its origin and biogeography. Here, we investigated the systematics and biogeography of Bondarzewia species using multi-locus phylogenetic analysis. Four genetic markers, including the internal transcribed spacer (ITS), large nuclear ribosomal RNA subunit (nLSU), elongation factor 1-α (tef1) and mitochondrial small subunit rDNA (mtSSU), were used to infer the phylogenetic relationships of Bondarzewia. We performed Bayesian evolutionary analysis on the gene datasets of the largest and second largest subunits of RNA polymerase II (RPB1 and RPB2). From the results, we inferred that the maximum crown age of Bondarzewia is approximately 25.5 million-years-ago (Mya) and that tropical East Asia is likely to be its ancestral area, with three possible expansions leading to its distribution in North America, Europe and Oceania.
Collapse
|