1
|
Waneka G, Broz AK, Wold-McGimsey F, Zou Y, Wu Z, Sloan DB. Disruption of recombination machinery alters the mutational landscape in plant organellar genomes. G3 (BETHESDA, MD.) 2025; 15:jkaf029. [PMID: 39946260 PMCID: PMC12005158 DOI: 10.1093/g3journal/jkaf029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/08/2025] [Accepted: 01/27/2025] [Indexed: 02/17/2025]
Abstract
Land plant organellar genomes have extremely low rates of point mutation yet also experience high rates of recombination and genome instability. Characterizing the molecular machinery responsible for these patterns is critical for understanding the evolution of these genomes. While much progress has been made toward understanding recombination activity in land plant organellar genomes, the relationship between recombination pathways and point mutation rates remains uncertain. The organellar-targeted mutS homolog MSH1 has previously been shown to suppress point mutations as well as non-allelic recombination between short repeats in Arabidopsis thaliana. We therefore implemented high-fidelity Duplex Sequencing to test if other genes that function in recombination and maintenance of genome stability also affect point mutation rates. We found small to moderate increases in the frequency of single nucleotide variants (SNVs) and indels in mitochondrial and/or plastid genomes of A. thaliana mutant lines lacking radA, recA1, or recA3. In contrast, osb2 and why2 mutants did not exhibit an increase in point mutations compared to wild-type (WT) controls. In addition, we analyzed the distribution of SNVs in previously generated Duplex Sequencing data from A. thaliana organellar genomes and found unexpected strand asymmetries and large effects of flanking nucleotides on mutation rates in WT plants and msh1 mutants. Finally, using long-read Oxford Nanopore sequencing, we characterized structural variants in organellar genomes of the mutant lines and show that different short repeat sequences become recombinationally active in different mutant backgrounds. Together, these complementary sequencing approaches shed light on how recombination may impact the extraordinarily low point mutation rates in plant organellar genomes.
Collapse
Affiliation(s)
- Gus Waneka
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Amanda K Broz
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Yi Zou
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, GD 518120, China
| | - Zhiqiang Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, GD 518120, China
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
2
|
Liu X, Fu Y, Liu J, Li X, Li Y, Meng D, Hu Y, Sun T. The complete mitochondrial genome of the grasshopper Chorthippus dubius (Zub.) (Orthoptera: Acrididae: Gomphocerinae): detailed characterization and phylogenetic position. Mitochondrial DNA A DNA Mapp Seq Anal 2025; 35:111-118. [PMID: 40264337 DOI: 10.1080/24701394.2024.2446772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 12/18/2024] [Indexed: 04/24/2025]
Abstract
Chorthippus dubius (Zub.) is one of the dominant grasshopper species. The limited data on Ch. dubius (Zub.) has impeded further understanding of its genetic characteristics and molecular detection. In this study, we analyzed the mitogenome of Ch. dubius (Zub.), which was 15,561 bp in length and contained 13 protein-coding genes (PCGs), 22 tRNA genes, 2 rRNA genes and an AT-rich region. The entire mtDNA exhibited a strong AT bias, with an overall A+T content of 74.8%. The relative synonymous codon usage (RSCU) analysis revealed UUA (L) as the most frequently used codon. All the PCGs evolved under purifying selection (Ka/Ks <0.5), with ATP8 gene exhibited the highest Ka/Ks ratio. Maximum likelihood (ML) and Bayesian inference (BI) analyses reconstructed two topologically similar phylogenetic trees, and supported the monophly of the six subfamilies in Acrididae. Our results indicated two stable clades of the six subfamilies, with Oedipodinae emerging as the ancestral taxon and being sister group to the remaining taxa. In the alternative phylogenetic lineage, the remaining five subfamilies clustered the following relationship: Gomphocernae + (Acridinae + (Calliptaminae + (Melanoplinae + Oxyinae))). Both phylogenetic trees exhibited a closer relationship between Chorthippus dubius (Zub.) and Chorthippus aethalinus, members from the same genus.
Collapse
Affiliation(s)
- Xiaoli Liu
- College of Life Science, Huaibei Normal University, Huaibei, China
| | - Yun Fu
- College of Life Science, Huaibei Normal University, Huaibei, China
| | - Jizhuang Liu
- College of Life Science, Huaibei Normal University, Huaibei, China
| | - Xinxin Li
- College of Life Science, Huaibei Normal University, Huaibei, China
| | - Yuan Li
- College of Life Science, Huaibei Normal University, Huaibei, China
| | - Di Meng
- College of Life Science, Huaibei Normal University, Huaibei, China
| | - Yang Hu
- College of Life Science, Huaibei Normal University, Huaibei, China
| | - Tao Sun
- College of Life Science, Huaibei Normal University, Huaibei, China
| |
Collapse
|
3
|
Liu X, Fu Y, Li X, Li Y, Liu J, Hu Y, Xueting H, Ding X, Sun T. Description and Phylogenetic Studies on the Complete Mitochondrial Genome of Kingdonella qinghaiensis Zheng (Insecta: Orthoptera: Acrididae). Zootaxa 2025; 5601:476-490. [PMID: 40173690 DOI: 10.11646/zootaxa.5601.3.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Indexed: 04/04/2025]
Abstract
Kingdonella qinghaiensis Zheng, 1990 a species belonging to the genus Kingdonella Uvarov, 1933, within the family Acrididae in the order Orthoptera, is mainly distributed in Qinghai province, China. In this study, we determined, assembled and annotated the mitochondrial genome of Kingdonella qinghaiensis. The mitogenome is 15,597 bp in length and contains 13 protein-coding genes (PCGs), 22 tRNA genes, 2 rRNA genes and a control region (D-loop). The entire mitogenome exhibits a strong A/T bias, with an A+T content of 75.4%. All 13 PCGs had the typical start codon of ATN (9 ATGs, 2 ATCs and 2 ATTs) and TAA was the most frequent stop codon in Kingdonella qinghaiensis PCGs, except TAGs for ND3 and ND1 genes. A total of 3,730 codons are present in the mitogenomic PCGs of Kingdonella qinghaiensis. Among these, UUA (9.65%) is the most frequent codon for leucine (L), followed by AUU (9.3%) for isoleucine (I), and UUU (8.12%) for phenylalanine (F). The Ka/Ks ratios of the 13 PCGs in Kingdonella qinghaiensis mitogenome ranged from 0.1436 to 0.9107 (0
Collapse
Affiliation(s)
- Xiaoli Liu
- College of Life Science; Huaibei Normal University; Huaibei; 235000; China.
| | - Yun Fu
- College of Life Science; Huaibei Normal University; Huaibei; 235000; China.
| | - Xinxin Li
- College of Life Science; Huaibei Normal University; Huaibei; 235000; China.
| | - Yuan Li
- College of Life Science; Huaibei Normal University; Huaibei; 235000; China.
| | - Jizhuang Liu
- College of Life Science; Huaibei Normal University; Huaibei; 235000; China.
| | - Yang Hu
- College of Life Science; Huaibei Normal University; Huaibei; 235000; China.
| | - Hong Xueting
- College of Life Science; Huaibei Normal University; Huaibei; 235000; China.
| | - Xunhuan Ding
- College of Life Science; Huaibei Normal University; Huaibei; 235000; China.
| | - Tao Sun
- College of Life Science; Huaibei Normal University; Huaibei; 235000; China.
| |
Collapse
|
4
|
Lin X, Pu J, Dong W. Evolution of the Neopsylla hongyangensis Mitogenome: Insights Into the Mitogenomic Evolution of the Orders Siphonaptera and the Phthiraptera. Ecol Evol 2025; 15:e71108. [PMID: 40078320 PMCID: PMC11896888 DOI: 10.1002/ece3.71108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 02/06/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
The evidence that parasitic animals exhibit elevated mitogenomic evolution rates is inconsistent and limited to Arthropoda. Neopsylla hongyangensis Li, Bai et Chen, 1986 (Siphonaptera: Ctenophthalmidae) feeds on the host's blood and is an important medical insect with plague transmission. In this study, we sequenced the N. hongyangensis mitogenome and explored the mitogenomic evolution of Siphonaptera and Phthiraptera, which both belong to the Insecta on warm-blooded animals. The mitogenomes of Siphonaptera are closed-circular double-stranded DNA molecules and exhibit highly conserved structural features. In contrast, the mitogenomes of most Phthiraptera species exhibit extensive fragmentation and comprise multiple minichromosomes. We performed a comparative analysis of nucleotide composition, Ka/Ks ratios, and codon usage patterns in Siphonaptera and Phthiraptera mitogenomes. Compared to Phthiraptera with low locomotory capacity, Siphonaptera with high locomotory capacity have higher AT content, slower evolution, and greater influence from natural selection (i.e., micro-habitat). The mitogenomic evolution of Siphonaptera and Phthiraptera was influenced by locomotory capacity and life history. Phylogenetic analysis based on 13 PCGs showed that Ceratophyllidae, Leptopsyllidae, and Ctenophthalmidae were paraphyletic, and Vermipsyllidae, Hystrichopsyllidae, Pulicidae, and Pygiopsyllidae were monophyletic. This study provides new insights into the phylogenetic relationships and mitogenomic evolution of Siphonaptera.
Collapse
Affiliation(s)
- Xiaoxia Lin
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Institute of Pathogens and VectorsDali UniversityDaliYunnanChina
| | - Ju Pu
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Institute of Pathogens and VectorsDali UniversityDaliYunnanChina
| | - Wenge Dong
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Institute of Pathogens and VectorsDali UniversityDaliYunnanChina
| |
Collapse
|
5
|
Zhao C, Liu G, Yang X, Wang X, Zhou S, Liu Z, Liu K, Zhang H. Mutation pressure mediates a pattern of substitution rates with latitude and climate in carnivores. Ecol Evol 2024; 14:e70159. [PMID: 39193169 PMCID: PMC11347990 DOI: 10.1002/ece3.70159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/30/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
The evolutionary patterns of the mitochondrial genome are influenced by both adaptive and nonadaptive forces, with their contributions varying among taxa. There appears to be a correlation linking mutagenesis and latitude, which could be due to differences in metabolic rates. These discrepancies in metabolic rates exhibit a positive connection with mutation pressure. On this basis, we hypothesise that nonadaptive forces play a role in the differences in mutation rates observed along latitudinal gradients. In this study, we selected widely distributed carnivores as representatives of mammals to test our hypothesis. We examined the correlations between the dN/dS ratio (ω), as well as the substitution rates (dS and dN), of 13 PCGs in the mtDNA of 122 carnivores, and the latitude and climatic factors. We found that taxa distributed in higher latitudes tend to have higher substitution rates, but not ω values indicating selective pressure. Notably, dN shows a strong positive correlation with dS, although dS is primarily influenced by mutation pressure, while dN is also influenced by effective population size (N e ). Phylogenetic generalised least squares (PGLS) regression analyses showed that both substitution rates were correlated with climatic factors representing the temperature, precipitation and variability of climate. Based on our findings, we propose that the mutations are primarily influenced by nonadaptive forces (mutation pressure). This forms the fundamental premise for natural selection and speciation. Moreover, the correlation between substitution rates and latitudinal distribution and climate, which are outcomes of nonadaptive factors, can aid in comprehending the global distribution of species diversity.
Collapse
Affiliation(s)
- Chao Zhao
- College of Life ScienceQufu Normal UniversityQufuChina
| | | | - Xiufeng Yang
- College of Life ScienceQufu Normal UniversityQufuChina
| | - Xibao Wang
- College of Life ScienceQufu Normal UniversityQufuChina
| | | | - Zhao Liu
- College of Life ScienceQufu Normal UniversityQufuChina
| | - Kangning Liu
- College of Life ScienceQufu Normal UniversityQufuChina
| | - Honghai Zhang
- College of Life ScienceQufu Normal UniversityQufuChina
| |
Collapse
|
6
|
Zhu Y, Yan S, Ma P, Zhang Y, Zuo C, Ma X, Zhang Z. Comparative mitochondrial genome analysis provides new insights into the classification of Modiolinae. Mol Biol Rep 2024; 51:823. [PMID: 39023631 DOI: 10.1007/s11033-024-09767-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Mitochondrial genomes have become a powerful tool for studying molecular genetics and phylogeny of mollusks. Currently, the position of Modiolinae within Mytilidae and the taxonomic and phylogenetic relationships within Modiolinae were still controversial. This study focuses on the complete mitochondrial genomes of two species: Modiolus modulaides (Röding, 1798) and Modiolus auriculatus Krauss, 1848, which have not been sequenced before. METHODS AND RESULTS We assembled and characterized the mitochondrial genomes of M. modulaides and M. auriculatus and then analyzed the phylogenetic relationships. The mitochondrial genomes of M. modulaides and M. auriculatus were 15,422 bp and 16,027 bp, respectively. Both of them were composed of 36 functional genes, including 12 protein-coding genes, 22 transfer RNAs, and 2 ribosomal RNAs. All protein-coding genes showed A + T bias, positive GC skews, and negative AT skews in nucleotide composition. Phylogenetic analysis based on the mitochondrial genomes showed that Modiolinae and Bathymodiolinae clustered together to form a sister relationship. Seven Modiolinae species were divided into two clades: L1 (M. modulaides, M. auriculatus and Modiolus philippinarum Hanley, 1843) and L2 [Modiolus modiolus (Linnaeus, 1758), Modiolus kurilensis Bernard, 1983, Modiolus nipponicus (Oyama, 1950), and Modiolus comptus (Sowerby III, 1915)]. The divergence time of the two clades was approximately 105.75 Ma. Furthermore, the transfer RNA gene rearrangement, longer genetic distance, and greater genetic differentiation were confirmed between the L1 and L2 clades, as well as differences in the external characteristics of the shells of the two clades. CONCLUSIONS Based on the molecular data, it was speculated that species from the L1 clade might belong to other genera or new genera. This study provides molecular information for further taxonomic and phylogenetic studies of Mytilidae.
Collapse
Affiliation(s)
- Yi Zhu
- Laboratory of Marine Organism Taxonomy & Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shaojing Yan
- Laboratory of Marine Organism Taxonomy & Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Peizhen Ma
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Yifei Zhang
- Laboratory of Marine Organism Taxonomy & Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenxia Zuo
- Laboratory of Marine Organism Taxonomy & Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- College of Life Sciences, Qingdao University, Qingdao, 266000, China
| | - Xiaojie Ma
- Laboratory of Marine Organism Taxonomy & Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Zhang
- Laboratory of Marine Organism Taxonomy & Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Sukee T, Koehler AV, Webster BL, Gauci CG, Fogarty CE, Ponder WF, Gasser RB, Young ND. Mitochondrial genome of the fluke pond snail, Austropeplea cf. brazieri (Gastropoda: Lymnaeidae). Parasit Vectors 2024; 17:283. [PMID: 38956636 PMCID: PMC11218368 DOI: 10.1186/s13071-024-06358-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/15/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Lymnaeid snails of the genus Austropeplea are an important vector of the liver fluke (Fasciola hepatica), contributing to livestock production losses in Australia and New Zealand. However, the species status within Austropeplea is ambiguous due to heavy reliance on morphological analysis and a relative lack of genetic data. This study aimed to characterise the mitochondrial genome of A. cf. brazieri, an intermediate host of liver fluke in eastern Victoria. METHODS The mitochondrial genome was assembled and annotated from a combination of second- and third-generation sequencing data. For comparative purposes, we performed phylogenetic analyses of the concatenated nucleotide sequences of the mitochondrial protein-coding genes, cytochrome c oxidase subunit 1 and 16S genes. RESULTS The assembled mt genome was 13,757 base pairs and comprised 37 genes, including 13 protein-coding genes, 22 transfer RNA genes and 2 ribosomal RNA genes. The mt genome length, gene order and nucleotide compositions were similar to related species of lymnaeids. Phylogenetic analyses of the mt nucleotide sequences placed A. cf. brazieri within the same clade as Orientogalba ollula with strong statistical supports. Phylogenies of the cox1 and 16S mt sequences were constructed due to the wide availability of these sequences representing the lymnaeid taxa. As expected in both these phylogenies, A. cf. brazieri clustered with other Austropeplea sequences, but the nodal supports were low. CONCLUSIONS The representative mt genome of A. cf. brazieri should provide a useful resource for future molecular, epidemiology and parasitological studies of this socio-economically important lymnaeid species.
Collapse
Affiliation(s)
- Tanapan Sukee
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Victoria, Australia
| | - Anson V Koehler
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Victoria, Australia
| | | | - Charles G Gauci
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Victoria, Australia
| | - Conor E Fogarty
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Victoria, Australia
| | | | - Robin B Gasser
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Victoria, Australia
| | - Neil D Young
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
8
|
Waneka G, Broz AK, Wold-McGimsey F, Zou Y, Wu Z, Sloan DB. Disruption of recombination machinery alters the mutational landscape in plant organellar genomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597120. [PMID: 38895361 PMCID: PMC11185577 DOI: 10.1101/2024.06.03.597120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Land plant organellar genomes have extremely low rates of point mutation yet also experience high rates of recombination and genome instability. Characterizing the molecular machinery responsible for these patterns is critical for understanding the evolution of these genomes. While much progress has been made towards understanding recombination activity in land plant organellar genomes, the relationship between recombination pathways and point mutation rates remains uncertain. The organellar targeted mutS homolog MSH1 has previously been shown to suppress point mutations as well as non-allelic recombination between short repeats in Arabidopsis thaliana. We therefore implemented high-fidelity Duplex Sequencing to test if other genes that function in recombination and maintenance of genome stability also affect point mutation rates. We found small to moderate increases in the frequency of single nucleotide variants (SNVs) and indels in mitochondrial and/or plastid genomes of A. thaliana mutant lines lacking radA, recA1, or recA3. In contrast, osb2 and why2 mutants did not exhibit an increase in point mutations compared to wild type (WT) controls. In addition, we analyzed the distribution of SNVs in previously generated Duplex Sequencing data from A. thaliana organellar genomes and found unexpected strand asymmetries and large effects of flanking nucleotides on mutation rates in WT plants and msh1 mutants. Finally, using long-read Oxford Nanopore sequencing, we characterized structural variants in organellar genomes of the mutant lines and show that different short repeat sequences become recombinationally active in different mutant backgrounds. Together, these complementary sequencing approaches shed light on how recombination may impact the extraordinarily low point mutation rates in plant organellar genomes.
Collapse
Affiliation(s)
- Gus Waneka
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Amanda K Broz
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | | | - Yi Zou
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Zhiqiang Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
9
|
Xu M, Li J, Guo B, Xu K, Ye Y, Yan X. Insights into the Deep Phylogeny and Novel Gene Rearrangement of Mytiloidea from Complete Mitochondrial Genome. Biochem Genet 2023; 61:1704-1726. [PMID: 36745306 DOI: 10.1007/s10528-023-10338-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/17/2023] [Indexed: 02/07/2023]
Abstract
The extant marine mussels which belong to the Mytiloidea are widespread species inhabiting mostly coastal waters, with some distributed in the deep sea. To clarify the classification systems and phylogenetic relationships range from genus to family level within Mytiloidea, new sequence was used in a phylogenetic analysis including all the available Mytiloidea mitochondrial genomes. In this study, the complete mitochondrial genome of Vignadula atrata is 15,624 bp in length and contains 12 protein-coding genes (PCGs, atp8 is absent), two ribosomal RNA genes, and 22 transfer RNA genes. Phylogenetic analysis based on 12 PCGs showed that it has a close relationship to Bathymodiolus. The analysis of gene rearrangements in the Pteriomorphia showed that the arrangements are highly variable across species, novel gene rearrangements were found within Mytiloidea. The V. atrata mitogenome was provided in detail, with notes on the sequence and a key to the species of Vignadula. This study provides a perspective on the taxonomic histories of the marine mussels and refines the unclear relationship between the origin and evolution of species in Mytiloidea within Bivalvia.
Collapse
Affiliation(s)
- Minhui Xu
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Jiji Li
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Baoying Guo
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Kaida Xu
- Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Marine Fishery Institute of Zhejiang Province, Zhejiang Ocean University, Zhoushan, China
| | - Yingying Ye
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China.
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, 316022, China.
| | - Xiaojun Yan
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China.
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
10
|
Mendivil A, Ramírez R, Morin J, Ramirez JL, Siccha-Ramirez R, Britzke R, Rivera F, Ampuero A, Oliveros N, Congrains C. Comparative Mitogenome Analysis of Two Native Apple Snail Species (Ampullariidae, Pomacea) from Peruvian Amazon. Genes (Basel) 2023; 14:1769. [PMID: 37761909 PMCID: PMC10531094 DOI: 10.3390/genes14091769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Apple snails of the genus Pomacea Perry, 1810 (Mollusca: Caenogastropoda: Ampullariidae) are native to the Neotropics and exhibit high species diversity, holding cultural and ecological significance as an important protein source in Peru. However, most genetic studies in Pomacea have focused mostly on invasive species, especially in Southeast Asia, where they are considered important pests. In this study, we assembled and annotated the mitochondrial genomes of two Pomacea species native to the Peruvian Amazon: Pomacea reevei Ampuero & Ramírez, 2023 and Pomacea aulanieri (Deville & Hupé, 1850). The mitogenomes of P. reevei and P. aulanieri comprise 15,660 and 16,096 bp, respectively, and contain the typical 37 genes of the animal mitochondria with a large control region of 292 bp in P. reevei and 524 bp in P. aulanieri-which fall within the range of what is currently known in Pomacea. Comparisons with previously published mitogenomes in Pomacea revealed differences in the overlapping of adjacent genes, the size of certain protein-coding genes (PCGs) and the secondary structure of some tRNAs that are consistent with the phylogenetic relationships between these species. These findings provide valuable insights into the systematics and genomics of the genus Pomacea.
Collapse
Affiliation(s)
- Alejandro Mendivil
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Carlos Germán Amezaga 375, Lima 15081, Peru; (A.M.); (J.L.R.); (R.S.-R.); (R.B.); (F.R.); (N.O.)
- Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Av. Arenales 1256, Lima 15046, Peru
| | - Rina Ramírez
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Carlos Germán Amezaga 375, Lima 15081, Peru; (A.M.); (J.L.R.); (R.S.-R.); (R.B.); (F.R.); (N.O.)
- Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Av. Arenales 1256, Lima 15046, Peru
| | - Jaime Morin
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Carlos Germán Amezaga 375, Lima 15081, Peru; (A.M.); (J.L.R.); (R.S.-R.); (R.B.); (F.R.); (N.O.)
- Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Av. Arenales 1256, Lima 15046, Peru
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, Erlings Skakkes gate 47B, 7012 Trondheim, Norway; (J.M.)
| | - Jorge L. Ramirez
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Carlos Germán Amezaga 375, Lima 15081, Peru; (A.M.); (J.L.R.); (R.S.-R.); (R.B.); (F.R.); (N.O.)
- Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Av. Arenales 1256, Lima 15046, Peru
| | - Raquel Siccha-Ramirez
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Carlos Germán Amezaga 375, Lima 15081, Peru; (A.M.); (J.L.R.); (R.S.-R.); (R.B.); (F.R.); (N.O.)
| | - Ricardo Britzke
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Carlos Germán Amezaga 375, Lima 15081, Peru; (A.M.); (J.L.R.); (R.S.-R.); (R.B.); (F.R.); (N.O.)
- Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Av. Arenales 1256, Lima 15046, Peru
| | - Fátima Rivera
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Carlos Germán Amezaga 375, Lima 15081, Peru; (A.M.); (J.L.R.); (R.S.-R.); (R.B.); (F.R.); (N.O.)
- Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Av. Arenales 1256, Lima 15046, Peru
| | - Andre Ampuero
- Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Av. Arenales 1256, Lima 15046, Peru
- Department of Marine Zoology, Senckenberg Research Institute, 60325 Frankfurt am Main, Germany; (A.A.)
| | - Nilda Oliveros
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Carlos Germán Amezaga 375, Lima 15081, Peru; (A.M.); (J.L.R.); (R.S.-R.); (R.B.); (F.R.); (N.O.)
| | - Carlos Congrains
- Department of Plant and Environmental Protection Services, University of Hawaii at Manoa, Honolulu, HI 96822, USA;
- U.S. Department of Agriculture-Agricultural Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Tropical Pest Genetics and Molecular Biology Research Unit, Hilo, HI 96720, USA
| |
Collapse
|
11
|
Mito-nuclear coevolution and phylogenetic artifacts: the case of bivalve mollusks. Sci Rep 2022; 12:11040. [PMID: 35773462 PMCID: PMC9247169 DOI: 10.1038/s41598-022-15076-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/17/2022] [Indexed: 11/08/2022] Open
Abstract
Mito-nuclear phylogenetic discordance in Bivalvia is well known. In particular, the monophyly of Amarsipobranchia (Heterodonta + Pteriomorphia), retrieved from mitochondrial markers, contrasts with the monophyly of Heteroconchia (Heterodonta + Palaeoheterodonta), retrieved from nuclear markers. However, since oxidative phosphorylation nuclear markers support the Amarsipobranchia hypothesis instead of the Heteroconchia one, interacting subunits of the mitochondrial complexes ought to share the same phylogenetic signal notwithstanding the genomic source, which is different from the signal obtained from other nuclear markers. This may be a clue of coevolution between nuclear and mitochondrial genes. In this work we inferred the phylogenetic signal from mitochondrial and nuclear oxidative phosphorylation markers exploiting different phylogenetic approaches and added two more datasets for comparison: genes of the glycolytic pathway and genes related to the biogenesis of regulative small noncoding RNAs. All trees inferred from mitochondrial and nuclear subunits of the mitochondrial complexes support the monophyly of Amarsipobranchia, regardless of the phylogenetic pipeline. However, not every single marker agrees with this topology: this is clearly visible in nuclear subunits that do not directly interact with the mitochondrial counterparts. Overall, our data support the hypothesis of a coevolution between nuclear and mitochondrial genes for the oxidative phosphorylation. Moreover, we suggest a relationship between mitochondrial topology and different nucleotide composition between clades, which could be associated to the highly variable gene arrangement in Bivalvia.
Collapse
|
12
|
Jakovlić I, Zou H, Chen JH, Lei HP, Wang GT, Liu J, Zhang D. Slow crabs - fast genomes: Locomotory capacity predicts skew magnitude in crustacean mitogenomes. Mol Ecol 2021; 30:5488-5502. [PMID: 34418213 DOI: 10.1111/mec.16138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 02/05/2023]
Abstract
Base composition skews (G-C/G+C) of mitochondrial genomes are believed to be primarily driven by mutational pressure, which is positively correlated with metabolic rate. In marine animals, metabolic rate is also positively correlated with locomotory capacity. Given the central role of mitochondria in energy metabolism, we hypothesised that selection for locomotory capacity should be positively correlated with the strength of purifying selection (dN/dS), and thus be negatively correlated with the skew magnitude. Therefore, these two models assume diametrically opposite associations between the metabolic rate and skew magnitude: positive correlation in the prevailing paradigm, and negative in our working hypothesis. We examined correlations between the skew magnitude, metabolic rate, locomotory capacity, and several other variables previously associated with mitochondrial evolution on 287 crustacean mitogenomes. Weakly locomotory taxa had higher skew magnitude and ω (dN/dS) values, but not the gene order rearrangement rate. Skew and ω magnitudes were correlated. Multilevel regression analyses indicated that three competing variables, body size, gene order rearrangement rate, and effective population size, had negligible impacts on the skew magnitude. In most crustacean lineages selection for locomotory capacity appears to be the primary factor determining the skew magnitude. Contrary to the prevailing paradigm, this implies that adaptive selection outweighs nonadaptive selection (mutation pressure) in crustaceans. However, we found indications that effective population size (nonadaptive factor) may outweigh the impact of locomotory capacity in sessile crustaceans (Thecostraca). In conclusion, skew magnitude is a product of the interplay between adaptive and nonadaptive factors, the balance of which varies among lineages.
Collapse
Affiliation(s)
- Ivan Jakovlić
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, Lanzhou University, Lanzhou, China
| | - Hong Zou
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jian-Hai Chen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong-Peng Lei
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, Lanzhou University, Lanzhou, China
| | - Gui-Tang Wang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jianquan Liu
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, Lanzhou University, Lanzhou, China
| | - Dong Zhang
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, Lanzhou University, Lanzhou, China
| |
Collapse
|
13
|
Jakovlić I, Zou H, Zhao XM, Zhang J, Wang GT, Zhang D. Evolutionary History of Inversions in Directional Mutational Pressures in Crustacean Mitochondrial Genomes: Implications for Evolutionary Studies. Mol Phylogenet Evol 2021; 164:107288. [PMID: 34365015 DOI: 10.1016/j.ympev.2021.107288] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 01/29/2023]
Abstract
Inversions of the origin of replication (ORI) in mitochondrial genomes produce asymmetrical mutational pressures that can cause strong base composition skews. Due to skews often being overlooked, the total number of crustacean lineages that underwent ORI events remains unknown. We analysed skews, cumulative skew plots, conserved sequence motifs, and mitochondrial architecture of all 965 available crustacean mitogenomes (699 unique species). We found indications of an ORI in 159 (22.7%) species, and mapped these to 23 ORI events: 16 identified with confidence and 7 putative (13 newly proposed, and for 5 we improved the resolution). Two ORIs occurred at or above the order level: Isopoda and Copepoda. Shifts in skew plots are not a precise tool for identifying the replication mechanism. We discuss how ORIs can produce mutational bursts in mitogenomes and show how these can interfere with various types of evolutionary studies. Phylogenetic analyses were plagued by artefactual clustering, and ORI lineages exhibited longer branches, a higher number of synonymous substitutions, higher mutational saturation, and higher compositional heterogeneity. ORI events also affected codon usage and protein properties. We discuss how this may have caused erroneous interpretation of data in previous studies that did not account for skew patterns.
Collapse
Affiliation(s)
- Ivan Jakovlić
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, Lanzhou University, 730000 Lanzhou, China
| | - Hong Zou
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xu-Mao Zhao
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, Lanzhou University, 730000 Lanzhou, China
| | - Jin Zhang
- Bio-Transduction Lab, Wuhan 430075, China
| | - Gui-Tang Wang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Zhang
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, Lanzhou University, 730000 Lanzhou, China.
| |
Collapse
|
14
|
Mitochondrial Genomic Landscape: A Portrait of the Mitochondrial Genome 40 Years after the First Complete Sequence. Life (Basel) 2021; 11:life11070663. [PMID: 34357035 PMCID: PMC8303319 DOI: 10.3390/life11070663] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 12/11/2022] Open
Abstract
Notwithstanding the initial claims of general conservation, mitochondrial genomes are a largely heterogeneous set of organellar chromosomes which displays a bewildering diversity in terms of structure, architecture, gene content, and functionality. The mitochondrial genome is typically described as a single chromosome, yet many examples of multipartite genomes have been found (for example, among sponges and diplonemeans); the mitochondrial genome is typically depicted as circular, yet many linear genomes are known (for example, among jellyfish, alveolates, and apicomplexans); the chromosome is normally said to be “small”, yet there is a huge variation between the smallest and the largest known genomes (found, for example, in ctenophores and vascular plants, respectively); even the gene content is highly unconserved, ranging from the 13 oxidative phosphorylation-related enzymatic subunits encoded by animal mitochondria to the wider set of mitochondrial genes found in jakobids. In the present paper, we compile and describe a large database of 27,873 mitochondrial genomes currently available in GenBank, encompassing the whole eukaryotic domain. We discuss the major features of mitochondrial molecular diversity, with special reference to nucleotide composition and compositional biases; moreover, the database is made publicly available for future analyses on the MoZoo Lab GitHub page.
Collapse
|
15
|
Guzmán LB, Vogler RE, Beltramino AA. The mitochondrial genome of the semi-slug Omalonyx unguis (Gastropoda: Succineidae) and the phylogenetic relationships within Stylommatophora. PLoS One 2021; 16:e0253724. [PMID: 34170937 PMCID: PMC8232460 DOI: 10.1371/journal.pone.0253724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/10/2021] [Indexed: 11/23/2022] Open
Abstract
Here we report the first complete mitochondrial genome of the semi-slug Omalonyx unguis (d’Orbigny, 1836) (Gastropoda: Succineidae). Sequencing was performed on a specimen from Argentina. Assembly was performed using Sanger data and Illumina next generation sequencing (NGS). The mitogenome was 13,984 bp in length and encoded the 37 typical Metazoan genes. A potential origin for mitochondrial DNA replication was found in a non-coding intergenic spacer (49 bp) located between cox3 and tRNA-Ile genes, and its secondary structure was characterized. Secondary structure models of the tRNA genes of O. unguis largely agreed with those proposed for other mollusks. Secondary structure models for the two rRNA genes were also obtained. To our knowledge, the 12S-rRNA model derived here is the first complete one available for mollusks. Phylogenetic analyses based on the mitogenomes of O. unguis and 37 other species of Stylommatophora were performed using amino acid sequences from the 13 protein-coding genes. Our results located Succineoidea as a sister group of Helicoidea + Urocoptoidea, similar to previous studies based on mitochondrial genomes. The gene arrangement of O. unguis was identical to that reported for another species of Succineoidea. The unique rearrangements observed for this group within Stylommatophora, may constitute synapomorphies for the superfamily.
Collapse
Affiliation(s)
- Leila Belén Guzmán
- Grupo de Investigación en Genética de Moluscos (GIGeMol), Instituto de Biología Subtropical (IBS), CONICET–UNaM, Posadas, Misiones, Argentina
- * E-mail: (LBG); (AAB)
| | - Roberto Eugenio Vogler
- Grupo de Investigación en Genética de Moluscos (GIGeMol), Instituto de Biología Subtropical (IBS), CONICET–UNaM, Posadas, Misiones, Argentina
| | - Ariel Aníbal Beltramino
- Grupo de Investigación en Genética de Moluscos (GIGeMol), Instituto de Biología Subtropical (IBS), CONICET–UNaM, Posadas, Misiones, Argentina
- * E-mail: (LBG); (AAB)
| |
Collapse
|
16
|
Ghiselli F, Gomes-Dos-Santos A, Adema CM, Lopes-Lima M, Sharbrough J, Boore JL. Molluscan mitochondrial genomes break the rules. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200159. [PMID: 33813887 DOI: 10.1098/rstb.2020.0159] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The first animal mitochondrial genomes to be sequenced were of several vertebrates and model organisms, and the consistency of genomic features found has led to a 'textbook description'. However, a more broad phylogenetic sampling of complete animal mitochondrial genomes has found many cases where these features do not exist, and the phylum Mollusca is especially replete with these exceptions. The characterization of full mollusc mitogenomes required considerable effort involving challenging molecular biology, but has created an enormous catalogue of surprising deviations from that textbook description, including wide variation in size, radical genome rearrangements, gene duplications and losses, the introduction of novel genes, and a complex system of inheritance dubbed 'doubly uniparental inheritance'. Here, we review the extraordinary variation in architecture, molecular functioning and intergenerational transmission of molluscan mitochondrial genomes. Such features represent a great potential for the discovery of biological history, processes and functions that are novel for animal mitochondrial genomes. This provides a model system for studying the evolution and the manifold roles that mitochondria play in organismal physiology, and many ways that the study of mitochondrial genomes are useful for phylogeny and population biology. This article is part of the Theo Murphy meeting issue 'Molluscan genomics: broad insights and future directions for a neglected phylum'.
Collapse
Affiliation(s)
- Fabrizio Ghiselli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Italy
| | - André Gomes-Dos-Santos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, and Department of Biology, Faculty of Sciences, University of Porto, Portugal
| | - Coen M Adema
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, USA
| | - Manuel Lopes-Lima
- CIBIO/InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
| | - Joel Sharbrough
- Department of Biology, Colorado State University, Fort Collins, USA
| | - Jeffrey L Boore
- Providence St Joseph Health and the Institute for Systems Biology, Seattle, USA
| |
Collapse
|
17
|
Comparative mitogenomic analysis of the superfamily Tellinoidea (Mollusca: Bivalvia): Insights into the evolution of the gene rearrangements. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 36:100739. [PMID: 32932163 DOI: 10.1016/j.cbd.2020.100739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/19/2020] [Accepted: 08/27/2020] [Indexed: 11/23/2022]
Abstract
The superfamily Tellinoidea is widespread and contains approximately 180 living species, which is one of the most diverse and representative groups among the bivalves. In order to extend our knowledge on evolution of tellinoidean species, we newly determined five tellinoidean mitochondrial genomes (mitogenomes). The newly determined mitogenome vary in size from 16,333 to 16,986 bp. The results show that the genome size and genome organization are conserved in tellinoideans. However, gene arrangement and the location of the major non-coding region (NCR) show diversity. The atp8 gene presents in all the five new mitogenomes. Two trnK and trnP genes were detected in Gari togata mitogenome. Phylogenetic analysis supports the monophyly of Tellinoidea, however, it's family Psammobiidae is polyphyletic. CREx analysis suggests that the gene order of Nuttallia olivacea is assumed as the most primitive condition of Tellinoidea. We map the gene order onto the phylogeny and infers the possible gene rearrangement scenarios among tellinoidean mitogenomes. The mitochondrial gene rearrangement is a useful information that help reassessing the phylogeny of Tellinoidea. Phylogenetic relationship and gene arrangement analyses suggest that a careful review for the current taxonomy of the family Psammobiidae is required.
Collapse
|
18
|
Tang Y, Zheng X, Liu H, Sunxie F. Population genetics and comparative mitogenomic analyses reveal cryptic diversity of Amphioctopus neglectus (Cephalopoda: Octopodidae). Genomics 2020; 112:3893-3902. [PMID: 32603760 DOI: 10.1016/j.ygeno.2020.06.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/14/2020] [Accepted: 06/22/2020] [Indexed: 12/28/2022]
Abstract
This study presented 96 cox1 and 76 cox3 genes of Amphioctopus neglectus populations. Three distinct lineages were formed from phylogenetic trees and networks constructed using haplotypes. Mitogenomes of A. neglectus-a and A. neglectus-b as the representatives of two lineages separated from population genetics were sequenced to compare with A. neglectus at the genome-level. Amphioctopus neglectus-a showed significant differences with A. neglectus, mainly reflected in gene length, intergenic regions and the secondary structure of tandem repeat motifs. Notably, two sequence deletions in mitogenomes of the two representative species were detected in different positions of major non-coding regions, which were the most distinct differences with A. neglectus. Pairwise genetic distances and the phylogenetic analysis supported the relationship of (A. neglectus-a + (A. neglectus + A. neglectus-b)). This study suggested that A. neglectus-a should be considered as a potential cryptic species of this complex, while A. neglectus-b needed further verification to be defined.
Collapse
Affiliation(s)
- Yan Tang
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Key Laboratory of Mariculture, Ocean University of China, Qingdao 266003, China
| | - Xiaodong Zheng
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Key Laboratory of Mariculture, Ocean University of China, Qingdao 266003, China.
| | - Haijuan Liu
- Guangxi Key Laboratory of Marine Biotechnology, Guangxi Institute of Oceanology, Beihai 536000, China
| | - Feige Sunxie
- Dongshan Boguangtianxing Foods Co., Ltd., Zhangzhou 363000, China
| |
Collapse
|
19
|
Tan MH, Gan HM, Lee YP, Bracken-Grissom H, Chan TY, Miller AD, Austin CM. Comparative mitogenomics of the Decapoda reveals evolutionary heterogeneity in architecture and composition. Sci Rep 2019; 9:10756. [PMID: 31341205 PMCID: PMC6656734 DOI: 10.1038/s41598-019-47145-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/05/2019] [Indexed: 01/21/2023] Open
Abstract
The emergence of cost-effective and rapid sequencing approaches has resulted in an exponential rise in the number of mitogenomes on public databases in recent years, providing greater opportunity for undertaking large-scale comparative genomic and systematic research. Nonetheless, current datasets predominately come from small and disconnected studies on a limited number of related species, introducing sampling biases and impeding research of broad taxonomic relevance. This study contributes 21 crustacean mitogenomes from several under-represented decapod infraorders including Polychelida and Stenopodidea, which are used in combination with 225 mitogenomes available on NCBI to investigate decapod mitogenome diversity and phylogeny. An overview of mitochondrial gene orders (MGOs) reveals a high level of genomic variability within the Decapoda, with a large number of MGOs deviating from the ancestral arthropod ground pattern and unevenly distributed among infraorders. Despite the substantial morphological and ecological variation among decapods, there was limited evidence for correlations between gene rearrangement events and species ecology or lineage specific nucleotide substitution rates. Within a phylogenetic context, predicted scenarios of rearrangements show some MGOs to be informative synapomorphies for some taxonomic groups providing strong independent support for phylogenetic relationships. Additional comparisons for a range of mitogenomic features including nucleotide composition, strand asymmetry, unassigned regions and codon usage indicate several clade-specific trends that are of evolutionary and ecological interest.
Collapse
Affiliation(s)
- Mun Hua Tan
- Centre of Integrative Ecology, School of Life and Environmental Sciences Deakin University, Geelong, Australia.
- Deakin Genomics Centre, Deakin University, Geelong, Australia.
| | - Han Ming Gan
- Centre of Integrative Ecology, School of Life and Environmental Sciences Deakin University, Geelong, Australia
- Deakin Genomics Centre, Deakin University, Geelong, Australia
- Genomics Facility, Tropical Medicine and Biology Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia
| | - Yin Peng Lee
- Centre of Integrative Ecology, School of Life and Environmental Sciences Deakin University, Geelong, Australia
- Deakin Genomics Centre, Deakin University, Geelong, Australia
| | - Heather Bracken-Grissom
- Department of Biological Sciences, Florida International University, North Miami, Florida, 33181, USA
| | - Tin-Yam Chan
- Institute of Marine Biology and Center of Excellence for the Oceans, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung, 20224, Taiwan
| | - Adam D Miller
- Centre of Integrative Ecology, School of Life and Environmental Sciences Deakin University, Geelong, Australia
- Deakin Genomics Centre, Deakin University, Geelong, Australia
| | - Christopher M Austin
- Centre of Integrative Ecology, School of Life and Environmental Sciences Deakin University, Geelong, Australia
- Deakin Genomics Centre, Deakin University, Geelong, Australia
- Genomics Facility, Tropical Medicine and Biology Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia
| |
Collapse
|
20
|
Zhang D, Zou H, Hua CJ, Li WX, Mahboob S, Al-Ghanim KA, Al-Misned F, Jakovlić I, Wang GT. Mitochondrial Architecture Rearrangements Produce Asymmetrical Nonadaptive Mutational Pressures That Subvert the Phylogenetic Reconstruction in Isopoda. Genome Biol Evol 2019; 11:1797-1812. [PMID: 31192351 PMCID: PMC6601869 DOI: 10.1093/gbe/evz121] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2019] [Indexed: 01/04/2023] Open
Abstract
The phylogeny of Isopoda, a speciose order of crustaceans, remains unresolved, with different data sets (morphological, nuclear, mitochondrial) often producing starkly incongruent phylogenetic hypotheses. We hypothesized that extreme diversity in their life histories might be causing compositional heterogeneity/heterotachy in their mitochondrial genomes, and compromising the phylogenetic reconstruction. We tested the effects of different data sets (mitochondrial, nuclear, nucleotides, amino acids, concatenated genes, individual genes, gene orders), phylogenetic algorithms (assuming data homogeneity, heterogeneity, and heterotachy), and partitioning; and found that almost all of them produced unique topologies. As we also found that mitogenomes of Asellota and two Cymothoida families (Cymothoidae and Corallanidae) possess inversed base (GC) skew patterns in comparison to other isopods, we concluded that inverted skews cause long-branch attraction phylogenetic artifacts between these taxa. These asymmetrical skews are most likely driven by multiple independent inversions of origin of replication (i.e., nonadaptive mutational pressures). Although the PhyloBayes CAT-GTR algorithm managed to attenuate some of these artifacts (and outperform partitioning), mitochondrial data have limited applicability for reconstructing the phylogeny of Isopoda. Regardless of this, our analyses allowed us to propose solutions to some unresolved phylogenetic debates, and support Asellota are the most likely candidate for the basal isopod branch. As our findings show that architectural rearrangements might produce major compositional biases even on relatively short evolutionary timescales, the implications are that proving the suitability of data via composition skew analyses should be a prerequisite for every study that aims to use mitochondrial data for phylogenetic reconstruction, even among closely related taxa.
Collapse
Affiliation(s)
- Dong Zhang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Hong Zou
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Cong-Jie Hua
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Wen-Xiang Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Zoology, GC University, Faisalabad, Pakistan
| | | | - Fahad Al-Misned
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Gui-Tang Wang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
| |
Collapse
|
21
|
Chacón GM, Arias‐Pérez A, Freire R, Martínez L, Nóvoa S, Naveira H, Insua A. Evidence of doubly uniparental inheritance of the mitochondrial
DNA
in
Polititapes rhomboides
(Bivalvia, Veneridae): Evolutionary and population genetic analysis of F and M mitotypes. J ZOOL SYST EVOL RES 2019. [DOI: 10.1111/jzs.12267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ginna M. Chacón
- Departamento de Bioloxía‐Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA)Universidade da Coruña A Coruña Spain
| | - Alberto Arias‐Pérez
- Departamento de Bioloxía‐Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA)Universidade da Coruña A Coruña Spain
| | - Ruth Freire
- Departamento de Bioloxía‐Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA)Universidade da Coruña A Coruña Spain
| | - Luisa Martínez
- Departamento de Bioloxía‐Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA)Universidade da Coruña A Coruña Spain
| | - Susana Nóvoa
- Centro de Cultivos Marinos de Ribadeo‐CIMAXunta de Galicia Ribadeo (Lugo) Spain
| | - Horacio Naveira
- Departamento de Bioloxía‐Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA)Universidade da Coruña A Coruña Spain
| | - Ana Insua
- Departamento de Bioloxía‐Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA)Universidade da Coruña A Coruña Spain
| |
Collapse
|
22
|
Antarctic and sub-Antarctic Nacella limpets reveal novel evolutionary characteristics of mitochondrial genomes in Patellogastropoda. Mol Phylogenet Evol 2018; 131:1-7. [PMID: 30395937 DOI: 10.1016/j.ympev.2018.10.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 07/23/2018] [Accepted: 10/30/2018] [Indexed: 11/22/2022]
Abstract
Mitochondrial genomes (mitogenomes) provide valuable phylogenetic information and genome-level characters that are useful in resolving evolutionary relationships within major lineages of gastropods. However, for more than one decade, these relationships and the phylogenetic position of Patellogastropoda have been inferred based on the genomic architecture as well as the nucleotide and protein sequences of a single representative, the limpet Lottia digitalis. This mitogenome exhibits extensive rearrangements and several repetitive units that may not represent universal features for Patellogastropoda. Here, we sequenced the complete mitogenomes of three Nacella limpets, providing new insights into the dynamics of gene order and phylogenetic relationships of Patellogastropoda. Comparative analyses revealed novel gene rearrangements in Gastropoda, characterised by two main translocations that affect the KARNI and the MYCWQ clusters in Nacella limpets. Our phylogenetic reconstructions using combined sequence datasets of 13 mitochondrial protein-coding genes and two rRNAs, recovered Patellogastropoda, and Gastropoda in general, as non-monophyletic. These findings could be related to the long-branch attraction tendency of these groups, and/or taxon sampling bias. In our novel mitogenome-based phylogenetic hypothesis, L. digitalis is placed in a sister position to Bivalvia and Heterobranchia, whereas Nacella limpets are placed sister to a clade containing Caenogastropoda + Neritimorpha and Vetigastropoda + Neomphalina.
Collapse
|
23
|
Guo Z, Jiang Z, Han L, Ding Y, Hou X. Characterisation of the complete mitochondrial genome of the black-footed abalone Haliotis iris. NEW ZEALAND JOURNAL OF ZOOLOGY 2018. [DOI: 10.1080/03014223.2018.1495655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Zhansheng Guo
- Marine College, Shandong University at Weihai, Weihai, People’s Republic of China
| | - Zhaoyang Jiang
- Marine College, Shandong University at Weihai, Weihai, People’s Republic of China
| | - Leng Han
- Marine College, Shandong University at Weihai, Weihai, People’s Republic of China
| | - Yi Ding
- Marine College, Shandong University at Weihai, Weihai, People’s Republic of China
| | - Xuguang Hou
- Marine College, Shandong University at Weihai, Weihai, People’s Republic of China
| |
Collapse
|