1
|
Moreyra LD, Susanna A, Calleja JA, Ackerfield JR, Arabacı T, Blanco-Gavaldà C, Brochmann C, Dirmenci T, Fujikawa K, Galbany-Casals M, Gao T, Gizaw A, Mehregan I, Vilatersana R, Viruel J, Yıldız B, Leliaert F, Seregin AP, Roquet C. A thorny tale: The origin and diversification of Cirsium (Compositae). Mol Phylogenet Evol 2025; 204:108285. [PMID: 39800129 DOI: 10.1016/j.ympev.2025.108285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/20/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
Widely distributed plant genera offer insights into biogeographic processes and biodiversity. The Carduus-Cirsium group, with over 600 species in eight genera, is diverse across the Holarctic regions, especially in the Mediterranean Basin, Southwest Asia, Japan, and North America. Despite this diversity, evolutionary and biogeographic processes within the group, particularly for the genus Cirsium, remain underexplored. This study examines the biogeographic history and diversification of the group, focusing on Cirsium, using the largest molecular dataset for the group (299 plants from 251 taxa). Phylogenomic analyses based on 350 nuclear loci, derived from target capture sequencing, revealed highly resolved and consistent phylogenetic trees, with some incongruences likely due to hybridization and incomplete lineage sorting. Ancestral range estimations suggest that the Carduus-Cirsium group originated during the Late Miocene in the Western Palearctic, particularly in the Mediterranean, Eastern Europe, or Southwest Asia. A key dispersal event to tropical eastern Africa around 10.7 million years ago led to the genera Afrocarduus and Afrocirsium, which later diversified in the Afromontane region. The two subgenera of Cirsium-Lophiolepis and Cirsium-began diversifying around 7.2-7.3 million years ago in the Western Palearctic. During the Early Pliocene, diversification rates increased, with both subgenera dispersing to Southwest Asia, where extensive in situ diversification occurred. Rapid radiations in North America and Japan during the Pleistocene were triggered by jump-dispersals events from Asia, likely driven by geographic isolation and ecological specialization. This added further layers of complexity to the already challenging taxonomic classification of Cirsium.Keywords: Biogeography; Carduinae; Cirsium; Diversification; North Hemisphere; Target-enrichment; Taxonomy.
Collapse
Affiliation(s)
- Lucía D Moreyra
- Botanic Institute of Barcelona (IBB), CSIC-CMCNB, Pg. Migdia, s.n., 08038 Barcelona, Spain.
| | - Alfonso Susanna
- Botanic Institute of Barcelona (IBB), CSIC-CMCNB, Pg. Migdia, s.n., 08038 Barcelona, Spain
| | | | - Jennifer R Ackerfield
- Department of Research & Conservation, Denver Botanic Gardens, Denver, CO 80206, USA
| | - Turan Arabacı
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Inönü University, Malatya, Turkiye
| | - Carme Blanco-Gavaldà
- Autonomous University of Barcelona, Systematics and Evolution of Vascular Plants (UAB) - Associated Unit to CSIC by IBB - Cerdanyola del Vallès, Spain
| | - Christian Brochmann
- Natural History Museum, University of Oslo, PO Box 1172 Blindern, NO-0318 Oslo, Norway
| | - Tuncay Dirmenci
- Department of Biology, Faculty of Necatibey Education, Balıkesir University, 10145 Balıkesir, Turkiye
| | - Kazumi Fujikawa
- Kochi Prefectural Makino Botanical Garden, 4200-6, Godaisan, Kochi 781-8125, Japan
| | - Mercè Galbany-Casals
- Autonomous University of Barcelona, Systematics and Evolution of Vascular Plants (UAB) - Associated Unit to CSIC by IBB - Cerdanyola del Vallès, Spain
| | - Tiangang Gao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
| | - Abel Gizaw
- Natural History Museum, University of Oslo, PO Box 1172 Blindern, NO-0318 Oslo, Norway; Department of Urban Greening and Vegetation Ecology, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Iraj Mehregan
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Roser Vilatersana
- Botanic Institute of Barcelona (IBB), CSIC-CMCNB, Pg. Migdia, s.n., 08038 Barcelona, Spain
| | | | - Bayram Yıldız
- Yenikale District, I_smail Cem Street, No. 35, Narlidere, Izmir, Turkiye
| | | | - Alexey P Seregin
- Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Cristina Roquet
- Autonomous University of Barcelona, Systematics and Evolution of Vascular Plants (UAB) - Associated Unit to CSIC by IBB - Cerdanyola del Vallès, Spain
| |
Collapse
|
2
|
Xu L, Song Z, Li T, Jin Z, Zhang B, Du S, Liao S, Zhong X, Chen Y. New insights into the phylogeny and infrageneric taxonomy of Saussurea based on hybrid capture phylogenomics (Hyb-Seq). PLANT DIVERSITY 2025; 47:21-33. [PMID: 40041562 PMCID: PMC11873585 DOI: 10.1016/j.pld.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 03/06/2025]
Abstract
Saussurea is one of the largest and most rapidly evolving genera within the Asteraceae, comprising approximately 520 species from the Northern Hemisphere. A comprehensive infrageneric classification, supported by robust phylogenetic trees and corroborated by morphological and other data, has not yet been published. For the first time, we recovered a well-resolved nuclear phylogeny of Saussurea consisting of four main clades, which was also supported by morphological data. Our analyses show that ancient hybridization is the most likely source of deep cytoplasmic-nuclear conflict in Saussurea, and a phylogeny based on nuclear data is more suitable than one based on chloroplast data for exploring the infrageneric classification of Saussurea. Based on the nuclear phylogeny obtained and morphological characters, we proposed a revised infrageneric taxonomy of Saussurea, which includes four subgenera and 13 sections. Specifically, 1) S. sect. Cincta, S. sect. Gymnocline, S. sect. Lagurostemon, and S. sect. Strictae were moved from S. subg. Saussurea to S. subg. Amphilaena, 2) S. sect. Pseudoeriocoryne was moved from S. subg. Eriocoryne to S. subg. Amphilaena, and 3) S. sect. Laguranthera was moved from S. subg. Saussurea to S. subg. Theodorea.
Collapse
Affiliation(s)
- Liansheng Xu
- Plant Science Research Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou 510650, China
| | - Zhuqiu Song
- Plant Science Research Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou 510650, China
| | - Tian Li
- Plant Science Research Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Central-Southern Safety and Environment Technology Institute Co., LTD, Wuhan 430064, China
| | - Zichao Jin
- Plant Science Research Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Buyun Zhang
- Plant Science Research Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Siyi Du
- Plant Science Research Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyuan Liao
- Plant Science Research Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xingjie Zhong
- Plant Science Research Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yousheng Chen
- Plant Science Research Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou 510650, China
| |
Collapse
|
3
|
Liu C, Zhou X, Li Y, Hittinger CT, Pan R, Huang J, Chen XX, Rokas A, Chen Y, Shen XX. The Influence of the Number of Tree Searches on Maximum Likelihood Inference in Phylogenomics. Syst Biol 2024; 73:807-822. [PMID: 38940001 DOI: 10.1093/sysbio/syae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 06/29/2024] Open
Abstract
Maximum likelihood (ML) phylogenetic inference is widely used in phylogenomics. As heuristic searches most likely find suboptimal trees, it is recommended to conduct multiple (e.g., 10) tree searches in phylogenetic analyses. However, beyond its positive role, how and to what extent multiple tree searches aid ML phylogenetic inference remains poorly explored. Here, we found that a random starting tree was not as effective as the BioNJ and parsimony starting trees in inferring the ML gene tree and that RAxML-NG and PhyML were less sensitive to different starting trees than IQ-TREE. We then examined the effect of the number of tree searches on ML tree inference with IQ-TREE and RAxML-NG, by running 100 tree searches on 19,414 gene alignments from 15 animal, plant, and fungal phylogenomic datasets. We found that the number of tree searches substantially impacted the recovery of the best-of-100 ML gene tree topology among 100 searches for a given ML program. In addition, all of the concatenation-based trees were topologically identical if the number of tree searches was ≥10. Quartet-based ASTRAL trees inferred from 1 to 80 tree searches differed topologically from those inferred from 100 tree searches for 6/15 phylogenomic datasets. Finally, our simulations showed that gene alignments with lower difficulty scores had a higher chance of finding the best-of-100 gene tree topology and were more likely to yield the correct trees.
Collapse
Affiliation(s)
- Chao Liu
- Department of Plant Protection, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
- Centre for Evolutionary & Organismal Biology, Zhejiang University, Hangzhou 310058, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Yuanning Li
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, DOE Great Lakes Bioenergy Research Center, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ronghui Pan
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| | - Jinyan Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou 310003, China
| | - Xue-Xin Chen
- Department of Plant Protection, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Antonis Rokas
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Yun Chen
- Department of Plant Protection, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Xing-Xing Shen
- Department of Plant Protection, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
- Centre for Evolutionary & Organismal Biology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Yan Y, da Fonseca RR, Rahbek C, Borregaard MK, Davis CC. A new nuclear phylogeny of the tea family (Theaceae) unravels rapid radiations in genus Camellia. Mol Phylogenet Evol 2024; 196:108089. [PMID: 38679302 DOI: 10.1016/j.ympev.2024.108089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 03/08/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Molecular analyses of rapidly radiating groups often reveal incongruence between gene trees. This mainly results from incomplete lineage sorting, introgression, and gene tree estimation error, which complicate the estimation of phylogenetic relationships. In this study, we reconstruct the phylogeny of Theaceae using 348 nuclear loci from 68 individuals and two outgroup taxa. Sequence data were obtained by target enrichment using the recently released Angiosperm 353 universal probe set applied to herbarium specimens. The robustness of the topologies to variation in data quality was established under a range of different filtering schemes, using both coalescent and concatenation approaches. Our results confirmed most of the previously hypothesized relationships among tribes and genera, while clarifying additional interspecific relationships within the rapidly radiating genus Camellia. We recovered a remarkably high degree of gene tree heterogeneity indicative of rapid radiation in the group and observed cytonuclear conflicts, especially within Camellia. This was especially pronounced around short branches, which we primarily associate with gene tree estimation error. Our analysis also indicates that incomplete lineage sorting (ILS) contributed to gene-tree conflicts and accounted for approximately 14 % of the explained variation, whereas inferred introgression levels were low. Our study advances the understanding of the evolution of this important plant family and provides guidance on the application of target capture methods and the evaluation of key processes that influence phylogenetic discordances.
Collapse
Affiliation(s)
- Yujing Yan
- Center for Macroecology, Evolution and Climate, Globe Institute, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark; Department of Organismic and Evolutionary Biology, Harvard University Herbaria, 22 Divinity Ave, Cambridge, MA 02138, USA.
| | - Rute R da Fonseca
- Center for Macroecology, Evolution and Climate, Globe Institute, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Carsten Rahbek
- Center for Macroecology, Evolution and Climate, Globe Institute, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark; Center for Global Mountain Biodiversity, Globe Institute, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark; Department of Life Sciences, Imperial College London, Silkwood Park campus, Ascot SL5 7PY, UK; Danish Institute for Advanced Study, University of Southern Denmark, 5230 Odense M, Denmark
| | - Michael K Borregaard
- Center for Macroecology, Evolution and Climate, Globe Institute, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Charles C Davis
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, 22 Divinity Ave, Cambridge, MA 02138, USA
| |
Collapse
|
5
|
Herrando-Moraira S, Roquet C, Calleja JA, Chen YS, Fujikawa K, Galbany-Casals M, Garcia-Jacas N, Liu JQ, López-Alvarado J, López-Pujol J, Mandel JR, Mehregan I, Sáez L, Sennikov AN, Susanna A, Vilatersana R, Xu LS. Impact of the climatic changes in the Pliocene-Pleistocene transition on Irano-Turanian species. The radiation of genus Jurinea (Compositae). Mol Phylogenet Evol 2023; 189:107928. [PMID: 37714444 DOI: 10.1016/j.ympev.2023.107928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
The Irano-Turanian region is one of the world's richest floristic regions and the centre of diversity for numerous xerophytic plant lineages. However, we still have limited knowledge on the timing of evolution and biogeographic history of its flora, and potential drivers of diversification remain underexplored. To fill this knowledge gap, we focus on the Eurasian genus Jurinea (ca. 200 species), one of the largest plant radiations that diversified in the region. We applied a macroevolutionary integrative approach to explicitly test diversification hypotheses and investigate the relative roles of geography vs. ecology and niche conservatism vs. niche lability in speciation processes. To do so, we gathered a sample comprising 77% of total genus richness and obtained data about (1) its phylogenetic history, recovering 502 nuclear loci sequences; (2) growth forms; (3) ecological niche, compiling data of 21 variables for more than 2500 occurrences; and (4) paleoclimatic conditions, to estimate climatic stability. Our results revealed that climate was a key factor in the evolutionary dynamics of Jurinea. The main diversification and biogeographic events that occurred during past climate changes, which led to colder and drier conditions, are the following: (1) the origin of the genus (10.7 Ma); (2) long-distance dispersals from the Iranian Plateau to adjacent regions (∼7-4 Ma); and (3) the diversification shift during Pliocene-Pleistocene Transition (ca. 3 Ma), when net diversification rate almost doubled. Our results supported the pre-adaptation hypothesis, i.e., the evolutionary success of Jurinea was linked to the retention of the ancestral niche adapted to aridity. Interestingly, the paleoclimatic analyses revealed that in the Iranian Plateau long-term climatic stability favoured old-lineage persistence, resulting in current high species richness of semi-arid and cold adapted clades; whereas moderate climate oscillations stimulated allopatric diversification in the lineages distributed in the Circumboreal region. In contrast, growth form lability and high niche disparity among closely related species in the Central Asian clade suggest adaptive radiation to mountain habitats. In sum, the radiation of Jurinea is the result of both adaptive and non-adaptive processes influenced by climatic, orogenic and ecological factors.
Collapse
Affiliation(s)
- Sonia Herrando-Moraira
- Botanic Institute of Barcelona (IBB, CSIC-Ajuntament de Barcelona), Pg. del Migdia, s.n., 08038 Barcelona, Spain
| | - Cristina Roquet
- Systematics and Evolution of Vascular Plants (UAB) - Associated Unit to CSIC, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Juan-Antonio Calleja
- Departament of Biology (Botany), Faculty of Sciences, Research Centre on Biodiversity and Global Change (CIBC-UAM), 28049 Madrid, Spain
| | - You-Sheng Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Kazumi Fujikawa
- Kochi Prefectural Makino Botanical Garden, 4200-6, Godaisan, Kochi 781-8125, Japan
| | - Mercè Galbany-Casals
- Systematics and Evolution of Vascular Plants (UAB) - Associated Unit to CSIC, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Núria Garcia-Jacas
- Botanic Institute of Barcelona (IBB, CSIC-Ajuntament de Barcelona), Pg. del Migdia, s.n., 08038 Barcelona, Spain
| | - Jian-Quan Liu
- Key Laboratory for Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Javier López-Alvarado
- Systematics and Evolution of Vascular Plants (UAB) - Associated Unit to CSIC, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Jordi López-Pujol
- Botanic Institute of Barcelona (IBB, CSIC-Ajuntament de Barcelona), Pg. del Migdia, s.n., 08038 Barcelona, Spain; Escuela de Ciencias Ambientales, Universidad Espíritu Santo (UEES), Samborondón 091650, Ecuador
| | - Jennifer R Mandel
- Department of Biological Sciences, Center for Biodiversity, University of Memphis, Memphis, TN 38152, USA
| | - Iraj Mehregan
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Llorenç Sáez
- Systematics and Evolution of Vascular Plants (UAB) - Associated Unit to CSIC, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Alexander N Sennikov
- Botanical Museum, Finnish Museum of Natural History, P.O. Box 7, 00014 University of Helsinki, Finland
| | - Alfonso Susanna
- Botanic Institute of Barcelona (IBB, CSIC-Ajuntament de Barcelona), Pg. del Migdia, s.n., 08038 Barcelona, Spain
| | - Roser Vilatersana
- Botanic Institute of Barcelona (IBB, CSIC-Ajuntament de Barcelona), Pg. del Migdia, s.n., 08038 Barcelona, Spain
| | - Lian-Sheng Xu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
6
|
McLay TGB, Fowler RM, Fahey PS, Murphy DJ, Udovicic F, Cantrill DJ, Bayly MJ. Phylogenomics reveals extreme gene tree discordance in a lineage of dominant trees: hybridization, introgression, and incomplete lineage sorting blur deep evolutionary relationships despite clear species groupings in Eucalyptus subgenus Eudesmia. Mol Phylogenet Evol 2023; 187:107869. [PMID: 37423562 DOI: 10.1016/j.ympev.2023.107869] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/11/2023]
Abstract
Eucalypts are a large and ecologically important group of plants on the Australian continent, and understanding their evolution is important in understanding evolution of the unique Australian flora. Previous phylogenies using plastome DNA, nuclear-ribosomal DNA, or random genome-wide SNPs, have been confounded by limited genetic sampling or by idiosyncratic biological features of the eucalypts, including widespread plastome introgression. Here we present phylogenetic analyses of Eucalyptus subgenus Eudesmia (22 species from western, northern, central and eastern Australia), in the first study to apply a target-capture sequencing approach using custom, eucalypt-specific baits (of 568 genes) to a lineage of Eucalyptus. Multiple accessions of all species were included, and target-capture data were supplemented by separate analyses of plastome genes (average of 63 genes per sample). Analyses revealed a complex evolutionary history likely shaped by incomplete lineage sorting and hybridization. Gene tree discordance generally increased with phylogenetic depth. Species, or groups of species, toward the tips of the tree are mostly supported, and three major clades are identified, but the branching order of these clades cannot be confirmed with confidence. Multiple approaches to filtering the nuclear dataset, by removing genes or samples, could not reduce gene tree conflict or resolve these relationships. Despite inherent complexities in eucalypt evolution, the custom bait kit devised for this research will be a powerful tool for investigating the evolutionary history of eucalypts more broadly.
Collapse
Affiliation(s)
- Todd G B McLay
- Royal Botanic Gardens Victoria, Melbourne 3004, Vic, Australia; School of BioSciences, The University of Melbourne, Parkville 3010, Vic, Australia.
| | - Rachael M Fowler
- School of BioSciences, The University of Melbourne, Parkville 3010, Vic, Australia
| | - Patrick S Fahey
- Research Centre for Ecosystem Resilience, The Royal Botanic Garden Sydney, Sydney 2000, NSW, Australia; Qld Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia 4072, Qld, Australia
| | - Daniel J Murphy
- Royal Botanic Gardens Victoria, Melbourne 3004, Vic, Australia; School of BioSciences, The University of Melbourne, Parkville 3010, Vic, Australia
| | - Frank Udovicic
- Royal Botanic Gardens Victoria, Melbourne 3004, Vic, Australia
| | - David J Cantrill
- Royal Botanic Gardens Victoria, Melbourne 3004, Vic, Australia; School of BioSciences, The University of Melbourne, Parkville 3010, Vic, Australia
| | - Michael J Bayly
- School of BioSciences, The University of Melbourne, Parkville 3010, Vic, Australia
| |
Collapse
|
7
|
Pezzini FF, Ferrari G, Forrest LL, Hart ML, Nishii K, Kidner CA. Target capture and genome skimming for plant diversity studies. APPLICATIONS IN PLANT SCIENCES 2023; 11:e11537. [PMID: 37601316 PMCID: PMC10439825 DOI: 10.1002/aps3.11537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 06/16/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023]
Abstract
Recent technological advances in long-read high-throughput sequencing and assembly methods have facilitated the generation of annotated chromosome-scale whole-genome sequence data for evolutionary studies; however, generating such data can still be difficult for many plant species. For example, obtaining high-molecular-weight DNA is typically impossible for samples in historical herbarium collections, which often have degraded DNA. The need to fast-freeze newly collected living samples to conserve high-quality DNA can be complicated when plants are only found in remote areas. Therefore, short-read reduced-genome representations, such as target capture and genome skimming, remain important for evolutionary studies. Here, we review the pros and cons of each technique for non-model plant taxa. We provide guidance related to logistics, budget, the genomic resources previously available for the target clade, and the nature of the study. Furthermore, we assess the available bioinformatic analyses, detailing best practices and pitfalls, and suggest pathways to combine newly generated data with legacy data. Finally, we explore the possible downstream analyses allowed by the type of data generated using each technique. We provide a practical guide to help researchers make the best-informed choice regarding reduced genome representation for evolutionary studies of non-model plants in cases where whole-genome sequencing remains impractical.
Collapse
Affiliation(s)
| | - Giada Ferrari
- Royal Botanic Garden EdinburghEdinburghUnited Kingdom
| | | | | | - Kanae Nishii
- Royal Botanic Garden EdinburghEdinburghUnited Kingdom
| | - Catherine A. Kidner
- Royal Botanic Garden EdinburghEdinburghUnited Kingdom
- School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
8
|
Hatami E, Jones KE, Kilian N. New Insights Into the Relationships Within Subtribe Scorzonerinae (Cichorieae, Asteraceae) Using Hybrid Capture Phylogenomics (Hyb-Seq). FRONTIERS IN PLANT SCIENCE 2022; 13:851716. [PMID: 35873957 PMCID: PMC9298463 DOI: 10.3389/fpls.2022.851716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Subtribe Scorzonerinae (Cichorieae, Asteraceae) contains 12 main lineages and approximately 300 species. Relationships within the subtribe, either at inter- or intrageneric levels, were largely unresolved in phylogenetic studies to date, due to the lack of phylogenetic signal provided by traditional Sanger sequencing markers. In this study, we employed a phylogenomics approach (Hyb-Seq) that targets 1,061 nuclear-conserved ortholog loci designed for Asteraceae and obtained chloroplast coding regions as a by-product of off-target reads. Our objectives were to evaluate the potential of the Hyb-Seq approach in resolving the phylogenetic relationships across the subtribe at deep and shallow nodes, investigate the relationships of major lineages at inter- and intrageneric levels, and examine the impact of the different datasets and approaches on the robustness of phylogenetic inferences. We analyzed three nuclear datasets: exon only, excluding all potentially paralogous loci; exon only, including loci that were only potentially paralogous in 1-3 samples; exon plus intron regions (supercontigs); and the plastome CDS region. Phylogenetic relationships were reconstructed using both multispecies coalescent and concatenation (Maximum Likelihood and Bayesian analyses) approaches. Overall, our phylogenetic reconstructions recovered the same monophyletic major lineages found in previous studies and were successful in fully resolving the backbone phylogeny of the subtribe, while the internal resolution of the lineages was comparatively poor. The backbone topologies were largely congruent among all inferences, but some incongruent relationships were recovered between nuclear and plastome datasets, which are discussed and assumed to represent cases of cytonuclear discordance. Considering the newly resolved phylogenies, a new infrageneric classification of Scorzonera in its revised circumscription is proposed.
Collapse
Affiliation(s)
- Elham Hatami
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Katy E. Jones
- Botanic Garden and Botanical Museum Berlin, Freie Universität Berlin, Berlin, Germany
| | - Norbert Kilian
- Botanic Garden and Botanical Museum Berlin, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
9
|
Murillo-A J, Valencia-D J, Orozco CI, Parra-O C, Neubig KM. Incomplete lineage sorting and reticulate evolution mask species relationships in Brunelliaceae, an Andean family with rapid, recent diversification. AMERICAN JOURNAL OF BOTANY 2022; 109:1139-1156. [PMID: 35709353 DOI: 10.1002/ajb2.16025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
PREMISE To date, phylogenetic relationships within the monogeneric Brunelliaceae have been based on morphological evidence, which does not provide sufficient phylogenetic resolution. Here we use target-enriched nuclear data to improve our understanding of phylogenetic relationships in the family. METHODS We used the Angiosperms353 toolkit for targeted recovery of exonic regions and supercontigs (exons + introns) from low copy nuclear genes from 53 of 70 species in Brunellia, and several outgroup taxa. We removed loci that indicated biased inference of relationships and applied concatenated and coalescent methods to infer Brunellia phylogeny. We identified conflicts among gene trees that may reflect hybridization or incomplete lineage sorting events and assessed their impact on phylogenetic inference. Finally, we performed ancestral-state reconstructions of morphological traits and assessed the homology of character states used to define sections and subsections in Brunellia. RESULTS Brunellia comprises two major clades and several subclades. Most of these clades/subclades do not correspond to previous infrageneric taxa. There is high topological incongruence among the subclades across analyses. CONCLUSIONS Phylogenetic reconstructions point to rapid species diversification in Brunelliaceae, reflected in very short branches between successive species splits. The removal of putatively biased loci slightly improves phylogenetic support for individual clades. Reticulate evolution due to hybridization and/or incomplete lineage sorting likely both contribute to gene-tree discordance. Morphological characters used to define taxa in current classification schemes are homoplastic in the ancestral character-state reconstructions. While target enrichment data allows us to broaden our understanding of diversification in Brunellia, the relationships among subclades remain incompletely understood.
Collapse
Affiliation(s)
- José Murillo-A
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Carrera 30 # 45-03, edificio 425, Bogotá, D.C., Colombia
| | - Janice Valencia-D
- School of Biological Sciences, Southern Illinois University Carbondale, 1125 Lincoln Dr., Carbondale, Illinois, 62901-6509, USA
| | - Clara I Orozco
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Carrera 30 # 45-03, edificio 425, Bogotá, D.C., Colombia
| | - Carlos Parra-O
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Carrera 30 # 45-03, edificio 425, Bogotá, D.C., Colombia
| | - Kurt M Neubig
- School of Biological Sciences, Southern Illinois University Carbondale, 1125 Lincoln Dr., Carbondale, Illinois, 62901-6509, USA
| |
Collapse
|
10
|
Lagomarsino LP, Frankel L, Uribe-Convers S, Antonelli A, Muchhala N. Increased resolution in the face of conflict: phylogenomics of the Neotropical bellflowers (Campanulaceae: Lobelioideae), a rapid plant radiation. ANNALS OF BOTANY 2022; 129:723-736. [PMID: 35363863 PMCID: PMC9113290 DOI: 10.1093/aob/mcac046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/24/2022] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND AIMS The centropogonid clade (Lobelioideae: Campanulaceae) is an Andean-centred rapid radiation characterized by repeated convergent evolution of morphological traits, including fruit type and pollination syndromes. While previous studies have resolved relationships of lineages with fleshy fruits into subclades, relationships among capsular species remain unresolved. This lack of resolution has impeded reclassification of non-monophyletic genera, whose current taxonomy relies heavily on traits that have undergone convergent evolution. METHODS Targeted sequence capture using a probe-set recently developed for the centropogonid clade was used to obtain phylogenomic data from DNA extracted from both silica-dried and herbarium leaf tissue. These data were used to infer relationships among species using concatenated and partitioned species tree methods, and to quantify gene tree discordance. KEY RESULTS While silica-dried leaf tissue resulted in longer assembled sequence data, the inclusion of herbarium samples improved taxonomic representation. Relationships among baccate lineages are similar to those inferred in previous studies, although they differ for lineages within and among capsular clades. We improve the phylogenetic resolution of Siphocampylus, which forms ten groups of closely related species which we informally name. Two subclades of Siphocampylus and two individual species are rogue taxa whose placement differs widely across analyses. Gene tree discordance (including cytonuclear discordance) is rampant. CONCLUSIONS This first phylogenomic study of the centropogonid clade considerably improves our understanding of relationships in this rapid radiation. Differences across analyses and the possibility of additional lineage discoveries still hamper a solid and stable reclassification. Rapid morphological innovation corresponds with a high degree of phylogenomic complexity, including cytonuclear discordance, nuclear gene tree conflict and well-supported differences between analyses based on different nuclear loci. Together, these results point to a potential role of hemiplasy underlying repeated convergent evolution. This hallmark of rapid radiations is probably present in many other species-rich Andean plant radiations.
Collapse
Affiliation(s)
- Laura P Lagomarsino
- Shirley C. Tucker Herbarium, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, USA
| | - Lauren Frankel
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA
| | - Simon Uribe-Convers
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, USA
- Invitae Corporation, San Francisco, CA, USA
| | - Alexandre Antonelli
- Royal Botanic Gardens, Kew, TW9 3AE, UK
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, 405 30, Sweden
- Department of Plant Science, University of Oxford, Oxford, UK
| | - Nathan Muchhala
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, USA
| |
Collapse
|
11
|
de Lima Ferreira P, Batista R, Andermann T, Groppo M, Bacon CD, Antonelli A. Target sequence capture of Barnadesioideae (Compositae) demonstrates the utility of low coverage loci in phylogenomic analyses. Mol Phylogenet Evol 2022; 169:107432. [DOI: 10.1016/j.ympev.2022.107432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/21/2021] [Accepted: 01/14/2022] [Indexed: 11/26/2022]
|
12
|
Lara-Cabrera SI, Perez-Garcia MDLL, Maya-Lastra CA, Montero-Castro JC, Godden GT, Cibrian-Jaramillo A, Fisher AE, Porter JM. Phylogenomics of Salvia L. subgenus Calosphace (Lamiaceae). FRONTIERS IN PLANT SCIENCE 2021; 12:725900. [PMID: 34721456 PMCID: PMC8554000 DOI: 10.3389/fpls.2021.725900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/07/2021] [Indexed: 05/13/2023]
Abstract
The evolutionary relationships of Salvia have been difficult to estimate. In this study, we used the Next Generation Sequencing method Hyb-Seq to evaluate relationships among 90 Lamiaceae samples, including representatives of Mentheae, Ocimeae, Salvia subgenera Audibertia, Leonia, Salvia, and 69 species of subgenus Calosphace, representing 32 of Epling's sections. A bait set was designed in MarkerMiner using available transcriptome data to enrich 119 variable nuclear loci. Nuclear and chloroplast loci were assembled with hybphylomaker (HPM), followed by coalescent approach analyses for nuclear data (ASTRAL, BEAST) and a concatenated Maximum Likelihood analysis of chloroplast loci. The HPM assembly had an average of 1,314,368 mapped reads for the sample and 527 putative exons. Phylogenetic inferences resolved strongly supported relationships for the deep-level nodes, agreeing with previous hypotheses which assumed that subgenus Audibertia is sister to subgenus Calosphace. Within subgenus Calosphace, we recovered eight monophyletic sections sensu Epling, Cardinalis, Hastatae, Incarnatae, and Uricae in all the analyses (nDNA and cpDNA), Biflorae, Lavanduloideae, and Sigmoideae in nuclear analyses (ASTRAL, BEAST) and Curtiflorae in ASTRAL trees. Network analysis supports deep node relationships, some of the main clades, and recovers reticulation within the core Calosphace. The chloroplast phylogeny resolved deep nodes and four monophyletic Calosphace sections. Placement of S. axillaris is distinct in nuclear evidence and chloroplast, as sister to the rest of the S. subg. Calosphace in chloroplast and a clade with "Hastatae clade" sister to the rest of the subgenus in nuclear evidence. We also tested the monophyly of S. hispanica, S. polystachia, S. purpurea, and S. tiliifolia, including two samples of each, and found that S. hispanica and S. purpurea are monophyletic. Our baits can be used in future studies of Lamiaceae phylogeny to estimate relationships between genera and among species. In this study, we presented a Hyb-Seq phylogeny for complex, recently diverged Salvia, which could be implemented in other Lamiaceae.
Collapse
Affiliation(s)
- Sabina Irene Lara-Cabrera
- Laboratorio de Sistemática Molecular de Plantas, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Maria de la Luz Perez-Garcia
- Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Mexico
| | - Carlos Alonso Maya-Lastra
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, United States
| | - Juan Carlos Montero-Castro
- Laboratorio de Sistemática Molecular de Plantas, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Grant T. Godden
- Florida Museum of Natural History, University of Florida, Gainesville, FL, United States
| | - Angelica Cibrian-Jaramillo
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada del Centro de Investigación y de Estudios Avanzados del instituto Politécnico Nacional, Irapuato, Mexico
| | - Amanda E. Fisher
- Department of Biological Sciences, California State University, Long Beach, CA, United States
| | | |
Collapse
|
13
|
Phylogeny, origin, and dispersal of Dubyaea (Asteraceae) based on Hyb-Seq data. Mol Phylogenet Evol 2021; 164:107289. [PMID: 34371187 DOI: 10.1016/j.ympev.2021.107289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/31/2021] [Accepted: 08/04/2021] [Indexed: 11/22/2022]
Abstract
Dubyaea DC. is a small genus of Asteraceae that is almost exclusively endemic to the Pan-Himalayan region. Within Dubyaea, phylogenetic relationships remain poorly understood. Here, our well-supported phylogeny based on Hyb-Seq data shows that all samples of Dubyaea in this study belong to a monophyletic group, which is sister to the clade of Soroseris, Syncalathium, and Nabalus. Dubyaea (s. str.) can be divided into three major clades, which are supported by flower color as well as morphological features of the stems and basal leaves. Based on our phylogenetic results, we performed biogeographic analyses and inferred that Dubyaea arose in the late Miocene in Hengduan Mountains and its eastern areas. Following its evolutionary origin, Dubyaea underwent diversification in situ as well as spread to the Himalayas.
Collapse
|
14
|
Thomas AE, Igea J, Meudt HM, Albach DC, Lee WG, Tanentzap AJ. Using target sequence capture to improve the phylogenetic resolution of a rapid radiation in New Zealand Veronica. AMERICAN JOURNAL OF BOTANY 2021; 108:1289-1306. [PMID: 34173225 DOI: 10.1002/ajb2.1678] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/10/2021] [Indexed: 05/08/2023]
Abstract
PREMISE Recent, rapid radiations present a challenge for phylogenetic reconstruction. Fast successive speciation events typically lead to low sequence divergence and poorly resolved relationships with standard phylogenetic markers. Target sequence capture of many independent nuclear loci has the potential to improve phylogenetic resolution for rapid radiations. METHODS Here we applied target sequence capture with 353 protein-coding genes (Angiosperms353 bait kit) to Veronica sect. Hebe (common name hebe) to determine its utility for improving the phylogenetic resolution of rapid radiations. Veronica section Hebe originated 5-10 million years ago in New Zealand, forming a monophyletic radiation of ca 130 extant species. RESULTS We obtained approximately 150 kbp of 353 protein-coding exons and an additional 200 kbp of flanking noncoding sequences for each of 77 hebe and two outgroup species. When comparing coding, noncoding, and combined data sets, we found that the latter provided the best overall phylogenetic resolution. While some deep nodes in the radiation remained unresolved, our phylogeny provided broad and often improved support for subclades identified by both morphology and standard markers in previous studies. Gene-tree discordance was nonetheless widespread, indicating that additional methods are needed to disentangle fully the history of the radiation. CONCLUSIONS Phylogenomic target capture data sets both increase phylogenetic signal and deliver new insights into the complex evolutionary history of rapid radiations as compared with traditional markers. Improving methods to resolve remaining discordance among loci from target sequence capture is now important to facilitate the further study of rapid radiations.
Collapse
Affiliation(s)
- Anne E Thomas
- Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Javier Igea
- Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Heidi M Meudt
- Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand
| | - Dirk C Albach
- Carl von Ossietzky-University, Oldenburg, D-26111, Germany
| | - William G Lee
- Manaaki Whenua - Landcare Research Otago, Dunedin, New Zealand
| | - Andrew J Tanentzap
- Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
15
|
Siniscalchi CM, Hidalgo O, Palazzesi L, Pellicer J, Pokorny L, Maurin O, Leitch IJ, Forest F, Baker WJ, Mandel JR. Lineage-specific vs. universal: A comparison of the Compositae1061 and Angiosperms353 enrichment panels in the sunflower family. APPLICATIONS IN PLANT SCIENCES 2021; 9:APS311422. [PMID: 34336403 PMCID: PMC8312747 DOI: 10.1002/aps3.11422] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/15/2021] [Indexed: 05/10/2023]
Abstract
PREMISE Phylogenetic studies in the Compositae are challenging due to the sheer size of the family and the challenges they pose for molecular tools, ranging from the genomic impact of polyploid events to their very conserved plastid genomes. The search for better molecular tools for phylogenetic studies led to the development of the family-specific Compositae1061 probe set, as well as the universal Angiosperms353 probe set designed for all flowering plants. In this study, we evaluate the extent to which data generated using the family-specific kit and those obtained with the universal kit can be merged for downstream analyses. METHODS We used comparative methods to verify the presence of shared loci between probe sets. Using two sets of eight samples sequenced with Compositae1061 and Angiosperms353, we ran phylogenetic analyses with and without loci flagged as paralogs, a gene tree discordance analysis, and a complementary phylogenetic analysis mixing samples from both sample sets. RESULTS Our results show that the Compositae1061 kit provides an average of 721 loci, with 9-46% of them presenting paralogs, while the Angiosperms353 set yields an average of 287 loci, which are less affected by paralogy. Analyses mixing samples from both sets showed that the presence of 30 shared loci in the probe sets allows the combination of data generated in different ways. DISCUSSION Combining data generated using different probe sets opens up the possibility of collaborative efforts and shared data within the synantherological community.
Collapse
Affiliation(s)
- Carolina M. Siniscalchi
- Department of Biological SciencesMississippi State UniversityMississippi StateMississippi39762USA
- Department of Biological SciencesUniversity of MemphisMemphisTennessee38152USA
| | - Oriane Hidalgo
- Royal Botanic Gardens, KewRichmondSurreyTW9 3AEUnited Kingdom
- Institut Botànic de Barcelona (IBB, CSIC‐Ajuntament de Barcelona)Passeig del Migdia s.n.BarcelonaCatalonia08038Spain
| | - Luis Palazzesi
- División PaleobotánicaMuseo Argentino de Ciencias NaturalesCONICETBuenos AiresC1405DJRArgentina
| | - Jaume Pellicer
- Royal Botanic Gardens, KewRichmondSurreyTW9 3AEUnited Kingdom
- Institut Botànic de Barcelona (IBB, CSIC‐Ajuntament de Barcelona)Passeig del Migdia s.n.BarcelonaCatalonia08038Spain
| | - Lisa Pokorny
- Royal Botanic Gardens, KewRichmondSurreyTW9 3AEUnited Kingdom
- Present address:
Centre for Plant Biotechnology and Genomics (CBGP) UPM‐INIAPozuelo de Alarcón (Madrid)28223Spain
| | - Olivier Maurin
- Royal Botanic Gardens, KewRichmondSurreyTW9 3AEUnited Kingdom
| | - Ilia J. Leitch
- Royal Botanic Gardens, KewRichmondSurreyTW9 3AEUnited Kingdom
| | - Felix Forest
- Royal Botanic Gardens, KewRichmondSurreyTW9 3AEUnited Kingdom
| | | | - Jennifer R. Mandel
- Department of Biological SciencesUniversity of MemphisMemphisTennessee38152USA
- Center for BiodiversityUniversity of MemphisMemphisTennessee38152USA
| |
Collapse
|
16
|
Ren C, Wang L, Nie ZL, Johnson G, Yang QE, Wen J. Development and phylogenetic utilities of a new set of single-/low-copy nuclear genes in Senecioneae (Asteraceae), with new insights into the tribal position and the relationships within subtribe Tussilagininae. Mol Phylogenet Evol 2021; 162:107202. [PMID: 33992786 DOI: 10.1016/j.ympev.2021.107202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/13/2021] [Accepted: 05/06/2021] [Indexed: 11/26/2022]
Abstract
The tribe Senecioneae is one of the largest tribes in Asteraceae, with a nearly cosmopolitan distribution. Despite great efforts devoted to elucidate the evolution of Senecioneae, many questions still remain concerning the systematics of this group, from the tribal circumscription and position to species relationships in many genera. The hybridization-based target enrichment method of next-generation sequencing has been accepted as a promising approach to resolve phylogenetic problems. We herein develop a set of single-/low-copy genes for Senecioneae, and test their phylogenetic utilities. Our results demonstrate that these genes work highly efficiently for Senecioneae, with a high average gene recovery of 98.8% across the tribe and recovering robust phylogenetic hypotheses at different levels. In particular, the delimitation of the Senecioneae has been confirmed to include Abrotanella and exclude Doronicum, with the former sister to core Senecioneae and the latter shown to be more closely related to Calenduleae. Moreover, Doronicum and Calenduleae are inferred to be the closest relatives of Senecioneae, which is a new hypothesis well supported by statistical topology tests, morphological evidence, and the profile of pyrrolizidine alkaloids, a special kind of chemical characters generally used to define Senecioneae. Furthermore, this study suggests a complex reticulation history in the diversification of Senecioneae, accounting for the prevalence of polyploid groups in the tribe. With subtribe Tussilagininae s.str. as a case study showing a more evident pattern of gene duplication, we further explored reconstructing the phylogeny in the groups with high ploidy levels. Our results also demonstrate that tree topologies based on sorted paralogous copies are stable across different methods of phylogenetic inference, and more congruent with the morphological evidence and the results of previous phylogenetic studies.
Collapse
Affiliation(s)
- Chen Ren
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China
| | - Long Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China
| | - Ze-Long Nie
- Key Laboratory of Plant Resources Conservation and Utilization, College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan 416000, China
| | - Gabriel Johnson
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC 20013-7012, USA
| | - Qin-Er Yang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China; Key Laboratory of Digital Botanical Garden of Guangdong Province, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China.
| | - Jun Wen
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC 20013-7012, USA.
| |
Collapse
|
17
|
Montero-Mendieta S, De la Riva I, Irisarri I, Leonard JA, Webster MT, Vilà C. Phylogenomics and evolutionary history of Oreobates (Anura: Craugastoridae) Neotropical frogs along elevational gradients. Mol Phylogenet Evol 2021; 161:107167. [PMID: 33798672 DOI: 10.1016/j.ympev.2021.107167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 03/11/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
Mountain ranges offer opportunities for understanding how species evolved and diversified across different environmental conditions. Neotropical frogs of the genus Oreobates (Anura: Craugastoridae) are adapted to highland and lowland habitats along the Andes, but many aspects of their evolution remain unknown. We studied their evolutionary history using ~18,000 exons enriched by targeted sequence-capture. Since capture success was very variable across samples, we evaluated to what degree differing data filtering produced robust inferences. The inferred evolutionary framework evidenced phylogenetic discordances among lowland species that can be explained by taxonomic misidentification or admixture of ancestral lineages. Highland species showed smaller effective populations than lowland frogs, probably due to greater habitat fragmentation in montane environments. Stronger genetic drift likely decreased the power of purifying selection and led to an increased proportion of nonsynonymous mutations in highland populations that could play an important role in their adaptation. Overall, our work sheds light on the evolutionary history and diversification of this group of Neotropical frogs along elevational gradients in the Andes as well as on their patterns of intraspecific diversity.
Collapse
Affiliation(s)
- Santiago Montero-Mendieta
- Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - Ignacio De la Riva
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| | - Iker Irisarri
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| | - Jennifer A Leonard
- Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - Matthew T Webster
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Carles Vilà
- Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain.
| |
Collapse
|
18
|
Ogutcen E, Christe C, Nishii K, Salamin N, Möller M, Perret M. Phylogenomics of Gesneriaceae using targeted capture of nuclear genes. Mol Phylogenet Evol 2021; 157:107068. [PMID: 33422648 DOI: 10.1016/j.ympev.2021.107068] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 01/07/2023]
Abstract
Gesneriaceae (ca. 3400 species) is a pantropical plant family with a wide range of growth form and floral morphology that are associated with repeated adaptations to different environments and pollinators. Although Gesneriaceae systematics has been largely improved by the use of Sanger sequencing data, our understanding of the evolutionary history of the group is still far from complete due to the limited number of informative characters provided by this type of data. To overcome this limitation, we developed here a Gesneriaceae-specific gene capture kit targeting 830 single-copy loci (776,754 bp in total), including 279 genes from the Universal Angiosperms-353 kit. With an average of 557,600 reads and 87.8% gene recovery, our target capture was successful across the family Gesneriaceae and also in other families of Lamiales. From our bait set, we selected the most informative 418 loci to resolve phylogenetic relationships across the entire Gesneriaceae family using maximum likelihood and coalescent-based methods. Upon testing the phylogenetic performance of our baits on 78 taxa representing 20 out of 24 subtribes within the family, we showed that our data provided high support for the phylogenetic relationships among the major lineages, and were able to provide high resolution within more recent radiations. Overall, the molecular resources we developed here open new perspectives for the study of Gesneriaceae phylogeny at different taxonomical levels and the identification of the factors underlying the diversification of this plant group.
Collapse
Affiliation(s)
- Ezgi Ogutcen
- Conservatoire et Jardin botaniques de la Ville de Genève and Department of Botany and Plant Biology, University of Geneva, 1292 Chambésy, Switzerland
| | - Camille Christe
- Conservatoire et Jardin botaniques de la Ville de Genève and Department of Botany and Plant Biology, University of Geneva, 1292 Chambésy, Switzerland
| | - Kanae Nishii
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, Scotland, UK; Kanagawa University, 2946, Tsuchiya, Hiratsuka-shi, Kanagawa 259-1293, Japan
| | - Nicolas Salamin
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Michael Möller
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, Scotland, UK
| | - Mathieu Perret
- Conservatoire et Jardin botaniques de la Ville de Genève and Department of Botany and Plant Biology, University of Geneva, 1292 Chambésy, Switzerland.
| |
Collapse
|
19
|
Tomasello S, Karbstein K, Hodač L, Paetzold C, Hörandl E. Phylogenomics unravels Quaternary vicariance and allopatric speciation patterns in temperate‐montane plant species: A case study on the
Ranunculus auricomus
species complex. Mol Ecol 2020; 29:2031-2049. [DOI: 10.1111/mec.15458] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/21/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Salvatore Tomasello
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium) Albrecht‐von‐Haller Institute for Plant Sciences University of Goettingen Göttingen Germany
| | - Kevin Karbstein
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium) Albrecht‐von‐Haller Institute for Plant Sciences University of Goettingen Göttingen Germany
- Georg‐August University School of Science (GAUSS) University of Goettingen Goettingen Germany
| | - Ladislav Hodač
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium) Albrecht‐von‐Haller Institute for Plant Sciences University of Goettingen Göttingen Germany
| | - Claudia Paetzold
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium) Albrecht‐von‐Haller Institute for Plant Sciences University of Goettingen Göttingen Germany
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium) Albrecht‐von‐Haller Institute for Plant Sciences University of Goettingen Göttingen Germany
| |
Collapse
|
20
|
Bagley JC, Uribe-Convers S, Carlsen MM, Muchhala N. Utility of targeted sequence capture for phylogenomics in rapid, recent angiosperm radiations: Neotropical Burmeistera bellflowers as a case study. Mol Phylogenet Evol 2020; 152:106769. [PMID: 32081762 DOI: 10.1016/j.ympev.2020.106769] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023]
Abstract
Targeted sequence capture is a promising approach for large-scale phylogenomics. However, rapid evolutionary radiations pose significant challenges for phylogenetic inference (e.g. incomplete lineages sorting (ILS), phylogenetic noise), and the ability of targeted nuclear loci to resolve species trees despite such issues remains poorly studied. We test the utility of targeted sequence capture for inferring phylogenetic relationships in rapid, recent angiosperm radiations, focusing on Burmeistera bellflowers (Campanulaceae), which diversified into ~130 species over less than 3 million years. We compared phylogenies estimated from supercontig (exons plus flanking sequences), exon-only, and flanking-only datasets with 506-546 loci (~4.7 million bases) for 46 Burmeistera species/lineages and 10 outgroup taxa. Nuclear loci resolved backbone nodes and many congruent internal relationships with high support in concatenation and coalescent-based species tree analyses, and inferences were largely robust to effects of missing taxa and base composition biases. Nevertheless, species trees were incongruent between datasets, and gene trees exhibited remarkably high levels of conflict (~4-60% congruence, ~40-99% conflict) not simply driven by poor gene tree resolution. Higher gene tree heterogeneity at shorter branches suggests an important role of ILS, as expected for rapid radiations. Phylogenetic informativeness analyses also suggest this incongruence has resulted from low resolving power at short internal branches, consistent with ILS, and homoplasy at deeper nodes, with exons exhibiting much greater risk of incorrect topologies due to homoplasy than other datasets. Our findings suggest that targeted sequence capture is feasible for resolving rapid, recent angiosperm radiations, and that results based on supercontig alignments containing nuclear exons and flanking sequences have higher phylogenetic utility and accuracy than either alone. We use our results to make practical recommendations for future target capture-based studies of Burmeistera and other rapid angiosperm radiations, including that such studies should analyze supercontigs to maximize the phylogenetic information content of loci.
Collapse
Affiliation(s)
- Justin C Bagley
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - Simon Uribe-Convers
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA
| | - Mónica M Carlsen
- Research Department, Science and Conservation Division, Missouri Botanical Garden, St. Louis, MO 63110, USA
| | - Nathan Muchhala
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA
| |
Collapse
|
21
|
Jones KE, Fér T, Schmickl RE, Dikow RB, Funk VA, Herrando‐Moraira S, Johnston PR, Kilian N, Siniscalchi CM, Susanna A, Slovák M, Thapa R, Watson LE, Mandel JR. An empirical assessment of a single family-wide hybrid capture locus set at multiple evolutionary timescales in Asteraceae. APPLICATIONS IN PLANT SCIENCES 2019; 7:e11295. [PMID: 31667023 PMCID: PMC6814182 DOI: 10.1002/aps3.11295] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 09/05/2019] [Indexed: 05/23/2023]
Abstract
PREMISE Hybrid capture with high-throughput sequencing (Hyb-Seq) is a powerful tool for evolutionary studies. The applicability of an Asteraceae family-specific Hyb-Seq probe set and the outcomes of different phylogenetic analyses are investigated here. METHODS Hyb-Seq data from 112 Asteraceae samples were organized into groups at different taxonomic levels (tribe, genus, and species). For each group, data sets of non-paralogous loci were built and proportions of parsimony informative characters estimated. The impacts of analyzing alternative data sets, removing long branches, and type of analysis on tree resolution and inferred topologies were investigated in tribe Cichorieae. RESULTS Alignments of the Asteraceae family-wide Hyb-Seq locus set were parsimony informative at all taxonomic levels. Levels of resolution and topologies inferred at shallower nodes differed depending on the locus data set and the type of analysis, and were affected by the presence of long branches. DISCUSSION The approach used to build a Hyb-Seq locus data set influenced resolution and topologies inferred in phylogenetic analyses. Removal of long branches improved the reliability of topological inferences in maximum likelihood analyses. The Astereaceae Hyb-Seq probe set is applicable at multiple taxonomic depths, which demonstrates that probe sets do not necessarily need to be lineage-specific.
Collapse
Affiliation(s)
- Katy E. Jones
- Botanischer Garten und Botanisches Museum BerlinFreie Universität BerlinKönigin‐Luise‐Str. 6–814195BerlinGermany
| | - Tomáš Fér
- Department of BotanyFaculty of ScienceCharles UniversityBenátská 2CZ 12800PragueCzech Republic
| | - Roswitha E. Schmickl
- Department of BotanyFaculty of ScienceCharles UniversityBenátská 2CZ 12800PragueCzech Republic
- Institute of BotanyThe Czech Academy of SciencesZámek 1CZ 25243PrůhoniceCzech Republic
| | - Rebecca B. Dikow
- Data Science LabOffice of the Chief Information OfficerSmithsonian InstitutionWashingtonD.C.20013‐7012USA
| | - Vicki A. Funk
- Department of BotanyNational Museum of Natural HistorySmithsonian InstitutionWashingtonD.C.20013‐7012USA
| | | | - Paul R. Johnston
- Freie Universität BerlinEvolutionary BiologyBerlinGermany
- Berlin Center for Genomics in Biodiversity ResearchBerlinGermany
- Leibniz‐Institute of Freshwater Ecology and Inland Fisheries (IGB)BerlinGermany
| | - Norbert Kilian
- Botanischer Garten und Botanisches Museum BerlinFreie Universität BerlinKönigin‐Luise‐Str. 6–814195BerlinGermany
| | - Carolina M. Siniscalchi
- Department of Biological SciencesUniversity of MemphisMemphisTennessee38152USA
- Center for BiodiversityUniversity of MemphisMemphisTennessee38152USA
| | - Alfonso Susanna
- Botanic Institute of Barcelona (IBB‐CSIC‐ICUB)Pg. del Migdia s.n.ES 08038BarcelonaSpain
| | - Marek Slovák
- Department of BotanyFaculty of ScienceCharles UniversityBenátská 2CZ 12800PragueCzech Republic
- Plant Science and Biodiversity CentreSlovak Academy of SciencesSK‐84523BratislavaSlovakia
| | - Ramhari Thapa
- Department of Biological SciencesUniversity of MemphisMemphisTennessee38152USA
- Center for BiodiversityUniversity of MemphisMemphisTennessee38152USA
| | - Linda E. Watson
- Department of Plant Biology, Ecology, and EvolutionOklahoma State UniversityStillwaterOklahoma74078USA
| | - Jennifer R. Mandel
- Department of Biological SciencesUniversity of MemphisMemphisTennessee38152USA
- Center for BiodiversityUniversity of MemphisMemphisTennessee38152USA
| |
Collapse
|
22
|
Herrando-Moraira S, Calleja JA, Galbany-Casals M, Garcia-Jacas N, Liu JQ, López-Alvarado J, López-Pujol J, Mandel JR, Massó S, Montes-Moreno N, Roquet C, Sáez L, Sennikov A, Susanna A, Vilatersana R. Nuclear and plastid DNA phylogeny of tribe Cardueae (Compositae) with Hyb-Seq data: A new subtribal classification and a temporal diversification framework. Mol Phylogenet Evol 2019; 137:313-332. [DOI: 10.1016/j.ympev.2019.05.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/04/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023]
|
23
|
Zhang X, Deng T, Moore MJ, Ji Y, Lin N, Zhang H, Meng A, Wang H, Sun Y, Sun H. Plastome phylogenomics of Saussurea (Asteraceae: Cardueae). BMC PLANT BIOLOGY 2019; 19:290. [PMID: 31266465 PMCID: PMC6604455 DOI: 10.1186/s12870-019-1896-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/19/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND Saussurea DC. is one of the largest and most morphologically heterogeneous genera in Asteraceae. The relationships within Saussurea have been poorly resolved, probably due an early, rapid radiation. To examine plastome evolution and resolve backbone relationships within Saussurea, we sequenced the complete plastomes of 17 species representing all four subgenera. RESULTS All Saussurea plastomes shared the gene content and structure of most Asteraceae plastomes. Molecular evolutionary analysis showed most of the plastid protein-coding genes have been under purifying selection. Phylogenomic analyses of 20 Saussurea plastomes that alternatively included nucleotide or amino acid sequences of all protein-coding genes, vs. the nucleotide sequence of the entire plastome, supported the monophyly of Saussurea and identified three clades within it. Three of the four traditional subgenera were recovered as paraphyletic. Seven plastome regions were identified as containing the highest nucleotide variability. CONCLUSIONS Our analyses reveal both the structural conservatism and power of the plastome for resolving relationships in congeneric taxa. It is very likely that differences in topology among data sets is due primarily to differences in numbers of parsimony-informative characters. Our study demonstrates that the current taxonomy of Saussurea is likely based at least partly on convergent morphological character states. Greater taxon sampling will be necessary to explore character evolution and biogeography in the genus. Our results here provide helpful insight into which loci will provide the most phylogenetic signal in Saussurea and Cardueae.
Collapse
Affiliation(s)
- Xu Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Tao Deng
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Michael J Moore
- Department of Biology, Oberlin College, 119 Woodland St, Oberlin, OH, USA
| | - Yunheng Ji
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Nan Lin
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Huajie Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aiping Meng
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Hengchang Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China.
| | - Yanxia Sun
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China.
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| |
Collapse
|
24
|
A fully resolved backbone phylogeny reveals numerous dispersals and explosive diversifications throughout the history of Asteraceae. Proc Natl Acad Sci U S A 2019; 116:14083-14088. [PMID: 31209018 PMCID: PMC6628808 DOI: 10.1073/pnas.1903871116] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Flowering plant species represent at least 95% of all vascular plants on Earth, and members of the sunflower family comprise roughly 10% of this diversity. The family is often considered taxonomically difficult primarily because it is enormous in size and cosmopolitan in distribution. Using phylogenomics, we were able to fully resolve the backbone of the sunflower family tree. We provide evidence for a late Cretaceous origin followed by explosive diversifications and dispersals during the middle Eocene—ultimately resulting in the family’s 25,000+ extant species. Our results provide a framework to interpret the spatiotemporal patterns of migration out of South America and the family’s explosive diversifications out of Africa that led to its global evolutionary and ecological success. The sunflower family, Asteraceae, comprises 10% of all flowering plant species and displays an incredible diversity of form. Asteraceae are clearly monophyletic, yet resolving phylogenetic relationships within the family has proven difficult, hindering our ability to understand its origin and diversification. Recent molecular clock dating has suggested a Cretaceous origin, but the lack of deep sampling of many genes and representative taxa from across the family has impeded the resolution of migration routes and diversifications that led to its global distribution and tremendous diversity. Here we use genomic data from 256 terminals to estimate evolutionary relationships, timing of diversification(s), and biogeographic patterns. Our study places the origin of Asteraceae at ∼83 MYA in the late Cretaceous and reveals that the family underwent a series of explosive radiations during the Eocene which were accompanied by accelerations in diversification rates. The lineages that gave rise to nearly 95% of extant species originated and began diversifying during the middle Eocene, coincident with the ensuing marked cooling during this period. Phylogenetic and biogeographic analyses support a South American origin of the family with subsequent dispersals into North America and then to Asia and Africa, later followed by multiple worldwide dispersals in many directions. The rapid mid-Eocene diversification is aligned with the biogeographic range shift to Africa where many of the modern-day tribes appear to have originated. Our robust phylogeny provides a framework for future studies aimed at understanding the role of the macroevolutionary patterns and processes that generated the enormous species diversity of Asteraceae.
Collapse
|
25
|
Montero‐Mendieta S, Dheer A. Digest: Resolving phylogenomic conflicts in characiform fishes†. Evolution 2019; 73:416-418. [DOI: 10.1111/evo.13666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 12/12/2018] [Indexed: 11/28/2022]
Affiliation(s)
| | - Arjun Dheer
- Department of Evolutionary EcologyLeibniz Institute for Zoo and Wildlife Research (IZW) Berlin Germany
| |
Collapse
|
26
|
Siniscalchi CM, Loeuille B, Funk VA, Mandel JR, Pirani JR. Phylogenomics Yields New Insight Into Relationships Within Vernonieae (Asteraceae). FRONTIERS IN PLANT SCIENCE 2019; 10:1224. [PMID: 31749813 PMCID: PMC6843069 DOI: 10.3389/fpls.2019.01224] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/04/2019] [Indexed: 05/10/2023]
Abstract
Asteraceae, or the sunflower family, is the largest family of flowering plants and is usually considered difficult to work with, not only due to its size, but also because of the abundant cases of polyploidy and ancient whole-genome duplications. Traditional molecular systematics studies were often impaired by the low levels of variation found in chloroplast markers and the high paralogy of traditional nuclear markers like ITS. Next-generation sequencing and novel phylogenomics methods, such as target capture and Hyb-Seq, have provided new ways of studying the phylogeny of the family with great success. While the resolution of the backbone of the family is in progress with some results already published, smaller studies focusing on internal clades of the phylogeny are important to increase sampling and allow morphological, biogeography, and diversification analyses, as well as serving as basis to test the current infrafamilial classification. Vernonieae is one of the largest tribes in the family, accounting for approximately 1,500 species. From the 1970s to the 1990s, the tribe went through several reappraisals, mainly due to the splitting of the mega genus Vernonia into several smaller segregates. Only three phylogenetic studies focusing on the Vernonieae have been published to date, both using a few molecular markers, overall presenting low resolution and support in deepest nodes, and presenting conflicting topologies when compared. In this study, we present the first attempt at studying the phylogeny of Vernonieae using phylogenomics. Even though our sampling includes only around 4% of the diversity of the tribe, we achieved complete resolution of the phylogeny with high support recovering approximately 700 nuclear markers obtained through target capture. We also analyzed the effect of missing data using two different matrices with different number of markers and the difference between concatenated and gene tree analysis.
Collapse
Affiliation(s)
- Carolina M. Siniscalchi
- The Mandel Lab, Department of Biological Sciences, University of Memphis, Memphis, TN, United States
- Laboratório de Sistemática Vegetal, Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- *Correspondence: Carolina M. Siniscalchi,
| | - Benoit Loeuille
- Departamento de Botânica - CCB, Universidade Federal de Pernambuco, Recife, Brazil
| | - Vicki A. Funk
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Jennifer R. Mandel
- The Mandel Lab, Department of Biological Sciences, University of Memphis, Memphis, TN, United States
| | - José R. Pirani
- Laboratório de Sistemática Vegetal, Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|