1
|
Chahad-Ehlers S, Tagliatela J, de Oliveira JM, Arthur LP, de Brito RA. Intra- and interspecific temporal mating patterns in Anastrepha fraterculus and Anastrepha obliqua fruit flies. Chronobiol Int 2025; 42:360-377. [PMID: 40029704 DOI: 10.1080/07420528.2025.2471868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/27/2025] [Accepted: 02/20/2025] [Indexed: 03/05/2025]
Abstract
Daily rhythms, such as mating times, play a key role in shaping insect behavior and are pivotal in prezygotic reproductive isolation and speciation. To investigate whether mating behavior follows a daily rhythm under natural light-dark cycles and controlled temperature conditions, we examined the mating times of two related agricultural pest species, Anastrepha fraterculus and Anastrepha obliqua. Our observations revealed distinct patterns in their daily copulatory activities. A. fraterculus shows a unimodal pattern, peaking in the morning, while A. obliqua displays a bimodal pattern, with mating occurring in both the morning and late afternoon, all statistically validated. In A. obliqua, the morning peak is more pronounced before the winter solstice, reversing afterward. These results highlight the adaptability of these fruit flies' biological clocks, allowing them to adjust mating timing according to seasonal environmental changes. Our findings also reveal how each species gauges environmental light-dark durations, even if annual variation is less pronounced in tropical regions, with twilight serving as a daily marker. The observed plasticity, including phase shifts in both species and amplitude changes in A. obliqua, emphasizes their synchronization with environmental cycles, which may explain the absence of specific pre-mating behaviors and the initiation of mating in low-light conditions, as seen in A. fraterculus. This study underscores the importance of biological rhythm plasticity in understanding fruit fly mating behavior, with implications for population management and ecological dynamics, and reinforces the need for 24-h observations to capture these rhythms fully.
Collapse
Affiliation(s)
- Samira Chahad-Ehlers
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Jéssica Tagliatela
- Programa de Pós-Graduação em Biologia Comparada, FFCLRP, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Lucas Packer Arthur
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | | |
Collapse
|
2
|
de Cássia Bisio M, Dos Santos EM, Santos CA, Chahad-Ehlers S, de Brito RA. Molecular evolution and genetic diversity of defective chorion 1 in Anastrepha fraterculus and Anastrepha obliqua (Diptera, Tephritidae). Dev Genes Evol 2024; 234:153-171. [PMID: 39509071 DOI: 10.1007/s00427-024-00723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024]
Abstract
The family Tephritidae comprises numerous fruit fly species, some of which are economically significant, such as several in the genus Anastrepha. Most pest species in this genus belong to the fraterculus group, characterized by closely related species that are difficult to differentiate due to recent divergence and gene flow. Identifying genetic markers for their study is paramount for understanding the group's evolution and eventual phytosanitary control. Because there is variation in eggshell morphology among species in the genus, the study of the rapidly evolving defective chorion 1 (dec-1) gene, which is crucial for chorion formation and reproduction, could provide relevant information for Anastrepha differentiation. We compared transcriptome sequences of dec-1 from two of the most important pest species in the genus, Anastrepha fraterculus and Anastrepha obliqua to dec-1 sequences from Anastrepha ludens, which was used for structure prediction. Furthermore, we amplified a conserved exon across populations of these species. These data revealed three alternative transcripts in A. fraterculus and A. obliqua, consistent with patterns found in other Tephritidae; we obtained orthologous sequences for these other tephritids from NCBI to investigate patterns of selection affecting this gene at different hierarchical levels using different methods. These analyses show a general pattern of purifying selection across the whole gene and throughout its history at different hierarchical levels, from populations to more distantly related species. That notwithstanding, we still found evidence of positive and episodic diversifying selection at different levels. Different parts of the gene have shown distinct evolutionary rates, which were associated with the diverse proproteins produced by posttranslational changes of DEC-1, with proproteins that are incorporated in the chorion earlier in egg formation being in general more conserved than others that are incorporated later. This correlation appears more evident in certain lineages, including the branch that separates Anastrepha, as well as other internal branches that differentiate species within the genus. Our data showed that this gene shows remarkable variation across its different exons, which has proven to be informative at different evolutionary levels. These changes hold promise not only for studying differentiation in Anastrepha but also for the eventual management of selected pest species.
Collapse
Affiliation(s)
- Mariana de Cássia Bisio
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Via Washington Luis Km 235, São Carlos, SP, 13565-905, Brazil
| | - Edyane Moraes Dos Santos
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Via Washington Luis Km 235, São Carlos, SP, 13565-905, Brazil
| | - Camilla Alves Santos
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências - Universidade de São Paulo., São Paulo, SP, 05508-090, Brazil
| | - Samira Chahad-Ehlers
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Via Washington Luis Km 235, São Carlos, SP, 13565-905, Brazil
| | - Reinaldo Alves de Brito
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Via Washington Luis Km 235, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
3
|
Congrains C, Sim SB, Paulo DF, Corpuz RL, Kauwe AN, Simmonds TJ, Simpson SA, Scheffler BE, Geib SM. Chromosome-scale genome of the polyphagous pest Anastrepha ludens (Diptera: Tephritidae) provides insights on sex chromosome evolution in Anastrepha. G3 (BETHESDA, MD.) 2024; 14:jkae239. [PMID: 39365162 PMCID: PMC11631503 DOI: 10.1093/g3journal/jkae239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024]
Abstract
The Mexican fruit fly, Anastrepha ludens, is a polyphagous true fruit fly (Diptera: Tephritidae) considered one of the most serious insect pests in Central and North America to various economically relevant fruits. Despite its agricultural relevance, a high-quality genome assembly has not been reported. Here, we described the generation of a chromosome-level genome for the A. ludens using a combination of PacBio high fidelity long-reads and chromatin conformation capture sequencing data. The final assembly consisted of 140 scaffolds (821 Mb, N50 = 131 Mb), containing 99.27% complete conserved orthologs (BUSCO) for Diptera. We identified the sex chromosomes using three strategies: 1) visual inspection of Hi-C contact map and coverage analysis using the HiFi reads, 2) synteny with Drosophila melanogaster, and 3) the difference in the average read depth of autosomal versus sex chromosomal scaffolds. The X chromosome was found in one major scaffold (100 Mb) and eight smaller contigs (1.8 Mb), and the Y chromosome was recovered in one large scaffold (6.1 Mb) and 35 smaller contigs (4.3 Mb). Sex chromosomes and autosomes showed considerable differences of transposable elements and gene content. Moreover, evolutionary rates of orthologs of A. ludens and Anastrepha obliqua revealed a faster evolution of X-linked, compared to autosome-linked, genes, consistent with the faster-X effect, leading us to new insights on the evolution of sex chromosomes in this diverse group of flies. This genome assembly provides a valuable resource for future evolutionary, genetic, and genomic translational research supporting the management of this important agricultural pest.
Collapse
Affiliation(s)
- Carlos Congrains
- U.S. Department of Agriculture-Agricultural Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Tropical Pest Genetics and Molecular Biology Research Unit, Hilo, HI 96720, USA
- Department of Plant and Environmental Protection Services, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Sheina B Sim
- U.S. Department of Agriculture-Agricultural Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Tropical Pest Genetics and Molecular Biology Research Unit, Hilo, HI 96720, USA
| | - Daniel F Paulo
- U.S. Department of Agriculture-Agricultural Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Tropical Pest Genetics and Molecular Biology Research Unit, Hilo, HI 96720, USA
- Department of Plant and Environmental Protection Services, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Renee L Corpuz
- U.S. Department of Agriculture-Agricultural Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Tropical Pest Genetics and Molecular Biology Research Unit, Hilo, HI 96720, USA
| | - Angela N Kauwe
- U.S. Department of Agriculture-Agricultural Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Tropical Pest Genetics and Molecular Biology Research Unit, Hilo, HI 96720, USA
| | - Tyler J Simmonds
- U.S. Department of Agriculture-Agricultural Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Tropical Pest Genetics and Molecular Biology Research Unit, Hilo, HI 96720, USA
| | - Sheron A Simpson
- U.S. Department of Agriculture-Agricultural Research Service, Genomics and Bioinformatics Research Unit, Stoneville, MS 38776, USA
| | - Brian E Scheffler
- U.S. Department of Agriculture-Agricultural Research Service, Genomics and Bioinformatics Research Unit, Stoneville, MS 38776, USA
| | - Scott M Geib
- U.S. Department of Agriculture-Agricultural Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Tropical Pest Genetics and Molecular Biology Research Unit, Hilo, HI 96720, USA
| |
Collapse
|
4
|
Zhang Q, Folk RA, Mo ZQ, Ye H, Zhang ZY, Peng H, Zhao JL, Yang SX, Yu XQ. Phylotranscriptomic analyses reveal deep gene tree discordance in Camellia (Theaceae). Mol Phylogenet Evol 2023; 188:107912. [PMID: 37648181 DOI: 10.1016/j.ympev.2023.107912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/09/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
Gene tree discordance is a significant legacy of biological evolution. Multiple factors can result in incongruence among genes, such as introgression, incomplete lineage sorting (ILS), gene duplication or loss. Resolving the background of gene tree discordance is a critical way to uncover the process of species diversification. Camellia, the largest genus in Theaceae, has controversial taxonomy and systematics due in part to a complex evolutionary history. We used 60 transcriptomes of 55 species, which represented 15 sections of Camellia to investigate its phylogeny and the possible causes of gene tree discordance. We conducted gene tree discordance analysis based on 1,617 orthologous low-copy nuclear genes, primarily using coalescent species trees and polytomy tests to distinguish hard and soft conflict. A selective pressure analysis was also performed to assess the impact of selection on phylogenetic topology reconstruction. Our results detected different levels of gene tree discordance in the backbone of Camellia, and recovered rapid diversification as one of the possible causes of gene tree discordance. Furthermore, we confirmed that none of the currently proposed sections of Camellia was monophyletic. Comparisons among datasets partitioned under different selective pressure regimes showed that integrating all orthologous genes provided the best phylogenetic resolution of the species tree of Camellia. The findings of this study reveal rapid diversification as a major source of gene tree discordance in Camellia and will facilitate future investigation of reticulate relationships at the species level in this important plant genus.
Collapse
Affiliation(s)
- Qiong Zhang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ryan A Folk
- Department of Biological Sciences, Mississippi State University, MS 39762, United States
| | - Zhi-Qiong Mo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Hang Ye
- Guangxi Key Laboratory of Special Non-wood Forest Cultivation and Utilization, Guangxi Forestry Research Institute, Nanning 530002, Guangxi, China
| | - Zhao-Yuan Zhang
- Guangxi Key Laboratory of Special Non-wood Forest Cultivation and Utilization, Guangxi Forestry Research Institute, Nanning 530002, Guangxi, China
| | - Hua Peng
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jian-Li Zhao
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China.
| | - Shi-Xiong Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Xiang-Qin Yu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
5
|
Congrains C, Dupuis JR, Rodriguez EJ, Norrbom AL, Steck G, Sutton B, Nolazco N, de Brito RA, Geib SM. Phylogenomic analysis provides diagnostic tools for the identification of Anastrepha fraterculus (Diptera: Tephritidae) species complex. Evol Appl 2023; 16:1598-1618. [PMID: 37752958 PMCID: PMC10519418 DOI: 10.1111/eva.13589] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 07/24/2023] [Accepted: 08/10/2023] [Indexed: 09/28/2023] Open
Abstract
Insect pests cause tremendous impact to agriculture worldwide. Species identification is crucial for implementing appropriate measures of pest control but can be challenging in closely related species. True fruit flies of the genus Anastrepha Schiner (Diptera: Tephritidae) include some of the most serious agricultural pests in the Americas, with the Anastrepha fraterculus (Wiedemann) complex being one of the most important due to its extreme polyphagy and wide distribution across most of the New World tropics and subtropics. The eight morphotypes described for this complex as well as other closely related species are classified in the fraterculus species group, whose evolutionary relationships are unresolved due to incomplete lineage sorting and introgression. We performed multifaceted phylogenomic approaches using thousands of genes to unravel the evolutionary relationships within the A. fraterculus complex to provide a baseline for molecular diagnosis of these pests. We used a methodology that accommodates variable sources of data (transcriptome, genome, and whole-genome shotgun sequencing) and developed a tool to align and filter orthologs, generating reliable datasets for phylogenetic studies. We inferred 3031 gene trees that displayed high levels of discordance. Nevertheless, the topologies of the inferred coalescent species trees were consistent across methods and datasets, except for one lineage in the A. fraterculus complex. Furthermore, network analysis indicated introgression across lineages in the fraterculus group. We present a robust phylogeny of the group that provides insights into the intricate patterns of evolution of the A. fraterculus complex supporting the hypothesis that this complex is an assemblage of closely related cryptic lineages that have evolved under interspecific gene flow. Despite this complex evolutionary scenario, our subsampling analysis revealed that a set of as few as 80 loci has a similar phylogenetic resolution as the genome-scale dataset, offering a foundation to develop more efficient diagnostic tools in this species group.
Collapse
Affiliation(s)
- Carlos Congrains
- U.S. Department of Agriculture‐Agricultural Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Tropical Pest Genetics and Molecular Biology Research UnitHiloHawaiiUSA
- Department of Plant and Environmental Protection ServicesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Julian R. Dupuis
- Department of EntomologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Erick J. Rodriguez
- Division of Plant Industry, Florida Department of Agriculture and Consumer ServicesGainesvilleFloridaUSA
| | - Allen L. Norrbom
- Systematic Entomology LabUSDA, ARS c/o Smithsonian InstitutionWashington DCUSA
| | - Gary Steck
- Division of Plant Industry, Florida Department of Agriculture and Consumer ServicesGainesvilleFloridaUSA
| | - Bruce Sutton
- Department of Entomology (Research Associate), National Museum of Natural HistorySmithsonian InstitutionGainesvilleFloridaUSA
| | - Norma Nolazco
- Centro de Diagnóstico de Sanidad Vegetal, Servicio Nacional de Sanidad AgrariaPeru
| | - Reinaldo A. de Brito
- Departamento de Genética e EvoluçãoUniversidade Federal de São CarlosSão CarlosSão PauloBrazil
| | - Scott M. Geib
- U.S. Department of Agriculture‐Agricultural Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Tropical Pest Genetics and Molecular Biology Research UnitHiloHawaiiUSA
| |
Collapse
|
6
|
Selivon D, Perondini ALP, Hernández-Ortiz V, doVal FC, Camacho A, Gomes FR, Prezotto LF. Genetical, Morphological, Behavioral, and Ecological Traits Support the Existence of Three Brazilian Species of the Anastrepha fraterculus Complex of Cryptic Species. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.836608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Within the Neotropical genus Anastrepha, the nominal species Anastrepha fraterculus is widely distributed from Mexico through northern Argentina. Currently it is believed to comprises a complex of at least eight cryptic species—known as the Anastrepha fraterculus complex (AF complex)—three of which occur in Brazil: A. sp.1 aff. fraterculus, A. sp.2 aff. fraterculus, and A. sp.3 aff. fraterculus. In this study, we present the results of a broad integrated analysis of multiple biological attributes in samples of the three species collected in sympatric areas. Analyses of the mitotic chromosomes confirm that all of them differ in sex chromosomes, and that the relative frequency of the distinct karyotypes is associated with variation in altitude. In these sympatric areas, a single female hybrid karyotype was detected within a significant sample of individuals. Population samples were analyzed for the ribosomal transcribed spacer ITS1, confirming that the three species have specific sequence types. Observations of reproductive behavior under laboratory conditions revealed that A. sp.1 and A. sp.2 mate early in the morning, while A. sp.3 mates in the middle of the day. A bimodal distribution of mating time was observed in the laboratory for hybrids, obtained between A. sp.1 and A. sp.3. In a mating choice experiment, most of the mating pairs were homospecific. In addition, through a list of the most frequent hosts associated with geographical occurrence, a bioclimatic model of their potential distribution was generated. The set of data allowed for the construction of explanatory hypothesis about the observed geographical pattern and the differential use of host fruits. Morphometric analyses of wings clearly demonstrated differences among the three species, for both males and females. Based on a wing image of the A. fraterculus (Wiedemann, 1830) type specimen, the morphometric analysis indicated that the type specimen would correspond to a male of A. sp.2 aff. fraterculus. The information provided by this report is not only useful for taxonomic purposes, but also reveals aspects to be considered in any reconstruction of an evolutionary scenario of the Anastrepha fraterculus complex.
Collapse
|