1
|
He GH, Meng Y, Zhang MH, Wang D, Meng R, Zhang L, Chu ZF, Wen J, Nie ZL. Extensive genome-wide phylogenetic discordance is due to incomplete lineage sorting in the rapidly radiated East Asian genus Nekemias (Vitaceae). ANNALS OF BOTANY 2025; 135:925-934. [PMID: 39715332 PMCID: PMC12064426 DOI: 10.1093/aob/mcae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/22/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND AND AIMS Nekemias is a small genus of the grape family, with nine species discontinuously distributed in temperate to subtropical zones of the Northern Hemisphere but mostly in East Asia. Previous phylogenetic studies on Nekemias have mainly been based on a few chloroplast markers, and the phylogenetic framework and systematic relationships are still highly contested. METHODS We carried out a systematic framework reconstruction of Nekemias and intra-generic reticulate evolutionary analyses based on extensive single-copy nuclear and chloroplast genomic data obtained by the Hyb-Seq approach, combining genome skimming and target enrichment. KEY RESULTS Both nuclear and chloroplast genomic data strongly support the monophyly of Nekemias with its division into two major lineages from East Asia and North America, respectively. There are strong and extensive topological conflicts among nuclear gene trees and between nuclear and chloroplast topologies within the genus, especially within the East Asian clade. CONCLUSIONS Rapid radiation through predominant incomplete lineage sorting (ILS) throughout the evolutionary history of the East Asian taxa is supported to explain the relatively high species diversity of Nekemias in East Asia. This study highlights the important role of short periods of rapid evolutionary radiations accompanied by ILS as a mechanism for the complex and fast species diversifications in the grape family as well as potentially in many other plant lineages in East Asia and beyond.
Collapse
Affiliation(s)
- Guan-Hao He
- Hunan Provincial Key Laboratory of Ecological Conservation and Sustainable Utilization of Wulingshan Resources, College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, 416000, China
| | - Ying Meng
- Hunan Provincial Key Laboratory of Ecological Conservation and Sustainable Utilization of Wulingshan Resources, College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, 416000, China
| | - Meng-Hua Zhang
- Hunan Provincial Key Laboratory of Ecological Conservation and Sustainable Utilization of Wulingshan Resources, College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, 416000, China
| | - Da Wang
- Hunan Provincial Key Laboratory of Ecological Conservation and Sustainable Utilization of Wulingshan Resources, College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, 416000, China
| | - Ran Meng
- Hunan Provincial Key Laboratory of Ecological Conservation and Sustainable Utilization of Wulingshan Resources, College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, 416000, China
| | - Lei Zhang
- Hunan Provincial Key Laboratory of Ecological Conservation and Sustainable Utilization of Wulingshan Resources, College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, 416000, China
| | - Zhao-Fu Chu
- Tiantong National Forest Ecosystem Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013-7012, USA
- Hunan Provincial Key Laboratory of Ecological Conservation and Sustainable Utilization of Wulingshan Resources, College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, 416000, China
| | - Ze-Long Nie
- Hunan Provincial Key Laboratory of Ecological Conservation and Sustainable Utilization of Wulingshan Resources, College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, 416000, China
| |
Collapse
|
2
|
Yuan Y, Feng Y, Wang J, Ulah F, Yuan M, Gao Y. Integrative Taxonomy for Species Delimitation: A Case Study in Two Widely Accepted Yet Morphologically Confounding Rosa Species Within Sect. Pimpinellifoliae (Rosaceae). Mol Ecol 2025:e17779. [PMID: 40285506 DOI: 10.1111/mec.17779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
The use of morphological traits as a practical approach for delimiting taxa at various ranks has long been regarded as a reliable basis for taxonomy. However, its efficacy has been increasingly called into question in many taxonomic groups due to its inherent limitations, such as failing to account for phenotypic plasticity, ecologically driven variation (e.g., ecotypes), and parallel evolution. These factors often introduce ambiguity or misleading similarities, thereby obscuring the true evolutionary relationships among taxa, particularly in the context of species delimitation. In the present study, we employ an integrated methodology that combines quantitative morphological analyses, whole-genome data, and ecological measurements to resolve the species boundaries of two morphologically similar roses, Rosa sericea and Rosa hugonis, which have long been considered as two distinct species but lack clear morphological boundaries. Our findings reveal that the unbiased analysis of morphological data based on a large and representative sample size was insufficient to identify effective diagnostic traits. However, when complemented with genome-wide population-level sequencing data or integrated with geographic and ecological niche assessments, the delineation of species boundaries was significantly improved. Furthermore, ecological data provide additional insight into the abiotic factors driving interspecific and intraspecific divergence. By integrating multiple lines of evidence-spanning genomic (intrinsic) and phenotypic (extrinsic) traits-and incorporating the interaction between species and their environments, species boundaries can be delineated with greater confidence. A well-defined species can thus be established through the mutual corroboration of diverse datasets, thereby ensuring a more rigorous and comprehensive taxonomic framework.
Collapse
Affiliation(s)
- Yumei Yuan
- Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Feng
- Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jingbo Wang
- Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fazal Ulah
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Meng Yuan
- Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yundong Gao
- Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Wei ZR, Jiao D, Wehenkel CA, Wei XX, Wang XQ. Phylotranscriptomic and ecological analyses reveal the evolution and morphological adaptation of Abies. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2664-2682. [PMID: 39152659 DOI: 10.1111/jipb.13760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/19/2024]
Abstract
Coniferous forests are under severe threat of the rapid anthropogenic climate warming. Abies (firs), the fourth-largest conifer genus, is a keystone component of the boreal and temperate dark-coniferous forests and harbors a remarkably large number of relict taxa. However, the uncertainty of the phylogenetic and biogeographic history of Abies significantly impedes our prediction of future dynamics and efficient conservation of firs. In this study, using 1,533 nuclear genes generated from transcriptome sequencing and a complete sampling of all widely recognized species, we have successfully reconstructed a robust phylogeny of global firs, in which four clades are strongly supported and all intersectional relationships are resolved, although phylogenetic discordance caused mainly by incomplete lineage sorting and hybridization was detected. Molecular dating and ancestral area reconstruction suggest a Northern Hemisphere high-latitude origin of Abies during the Late Cretaceous, but all extant firs diversified during the Miocene to the Pleistocene, and multiple continental and intercontinental dispersals took place in response to the late Neogene climate cooling and orogenic movements. Notably, four critically endangered firs endemic to subtropical mountains of China, including A. beshanzuensis, A. ziyuanensis, A. fanjingshanensis and A. yuanbaoshanensis from east to west, have different origins and evolutionary histories. Moreover, three hotspots of species richness, including western North America, central Japan, and the Hengduan Mountains, were identified in Abies. Elevation and precipitation, particularly precipitation of the coldest quarter, are the most significant environmental factors driving the global distribution pattern of fir species diversity. Some morphological traits are evolutionarily constrained, and those linked to elevational variation (e.g., purple cone) and cold resistance (e.g., pubescent branch and resinous bud) may have contributed to the diversification of global firs. Our study sheds new light on the spatiotemporal evolution of global firs, which will be of great help to forest management and species conservation in a warming world.
Collapse
Affiliation(s)
- Zhou-Rui Wei
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Jiao
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | - Christian Anton Wehenkel
- Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de Durango, Durango, 34000, Mexico
| | - Xiao-Xin Wei
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Xiao-Quan Wang
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Boom AF, Migliore J, Ojeda Alayon DI, Kaymak E, Hardy OJ. Phylogenomics of Brachystegia: Insights into the origin of African miombo woodlands. AMERICAN JOURNAL OF BOTANY 2024; 111:e16352. [PMID: 38853465 DOI: 10.1002/ajb2.16352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 06/11/2024]
Abstract
PREMISE Phylogenetic approaches can provide valuable insights on how and when a biome emerged and developed using its structuring species. In this context, Brachystegia Benth, a dominant genus of trees in miombo woodlands, appears as a key witness of the history of the largest woodland and savanna biome of Africa. METHODS We reconstructed the evolutionary history of the genus using targeted-enrichment sequencing on 60 Brachystegia specimens for a nearly complete species sampling. Phylogenomic inferences used supermatrix (RAxML-NG) and summary-method (ASTRAL-III) approaches. Conflicts between species and gene trees were assessed, and the phylogeny was time-calibrated in BEAST. Introgression between species was explored using Phylonet. RESULTS The phylogenies were globally congruent regardless of the method used. Most of the species were recovered as monophyletic, unlike previous plastid phylogenetic reconstructions where lineages were shared among geographically close individuals independently of species identity. Still, most of the individual gene trees had low levels of phylogenetic information and, when informative, were mostly in conflict with the reconstructed species trees. These results suggest incomplete lineage sorting and/or reticulate evolution, which was supported by network analyses. The BEAST analysis supported a Pliocene origin for current Brachystegia lineages, with most of the diversification events dated to the Pliocene-Pleistocene. CONCLUSIONS These results suggest a recent origin of species of the miombo, congruently with their spatial expansion documented from plastid data. Brachystegia species appear to behave potentially as a syngameon, a group of interfertile but still relatively well-delineated species, an aspect that deserves further investigations.
Collapse
Affiliation(s)
- Arthur F Boom
- Royal Museum for Central Africa, Biology Department, Section Vertebrates, Tervuren, Belgium
- Université Libre de Bruxelles, Faculté des Sciences, Service Evolution Biologique et Ecologie, Bruxelles, Belgium
| | - Jérémy Migliore
- Université Libre de Bruxelles, Faculté des Sciences, Service Evolution Biologique et Ecologie, Bruxelles, Belgium
- Muséum départemental du Var, Toulon, France
| | - Dario I Ojeda Alayon
- Muséum départemental du Var, Toulon, France
- Department of Forest Biodiversity, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Esra Kaymak
- Université Libre de Bruxelles, Faculté des Sciences, Service Evolution Biologique et Ecologie, Bruxelles, Belgium
- Institute of Science and Technology (OIST), Okinawa, Japan
| | - Olivier J Hardy
- Université Libre de Bruxelles, Faculté des Sciences, Service Evolution Biologique et Ecologie, Bruxelles, Belgium
| |
Collapse
|
5
|
Yang Y, Ferguson DK, Liu B, Mao KS, Gao LM, Zhang SZ, Wan T, Rushforth K, Zhang ZX. Recent advances on phylogenomics of gymnosperms and a new classification. PLANT DIVERSITY 2022; 44:340-350. [PMID: 35967253 PMCID: PMC9363647 DOI: 10.1016/j.pld.2022.05.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 05/30/2023]
Abstract
Living gymnosperms comprise four major groups: cycads, Ginkgo, conifers, and gnetophytes. Relationships among/within these lineages have not been fully resolved. Next generation sequencing has made available a large number of sequences, including both plastomes and single-copy nuclear genes, for reconstruction of solid phylogenetic trees. Recent advances in gymnosperm phylogenomic studies have updated our knowledge of gymnosperm systematics. Here, we review major advances of gymnosperm phylogeny over the past 10 years and propose an updated classification of extant gymnosperms. This new classification includes three classes (Cycadopsida, Ginkgoopsida, and Pinopsida), five subclasses (Cycadidae, Ginkgoidae, Cupressidae, Pinidae, and Gnetidae), eight orders (Cycadales, Ginkgoales, Araucariales, Cupressales, Pinales, Ephedrales, Gnetales, and Welwitschiales), 13 families, and 86 genera. We also described six new tribes including Acmopyleae Y. Yang, Austrocedreae Y. Yang, Chamaecyparideae Y. Yang, Microcachrydeae Y. Yang, Papuacedreae Y. Yang, and Prumnopityeae Y. Yang, and made 27 new combinations in the genus Sabina.
Collapse
Affiliation(s)
- Yong Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, 159 Longpan Road, Nanjing Forestry University, Nanjing 210037, China
| | | | - Bing Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Kang-Shan Mao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang 674100, China
| | - Shou-Zhou Zhang
- Key Laboratory of Southern Subtropical Plant Diversity, FairyLake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Tao Wan
- Key Laboratory of Southern Subtropical Plant Diversity, FairyLake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | | | - Zhi-Xiang Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
6
|
Xi J, Lv S, Zhang W, Zhang J, Wang K, Guo H, Hu J, Yang Y, Wang J, Xia G, Fan G, Wang X, Xiao L. Comparative plastomes of Carya species provide new insights into the plastomes evolution and maternal phylogeny of the genus. FRONTIERS IN PLANT SCIENCE 2022; 13:990064. [PMID: 36407576 PMCID: PMC9667483 DOI: 10.3389/fpls.2022.990064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/21/2022] [Indexed: 05/03/2023]
Abstract
Carya, in the Juglandiodeae subfamily, is to a typical temperate-subtropical forest-tree genus for studying the phylogenetic evolution and intercontinental disjunction between eastern Asia (EA) and North America (NA). Species of the genus have high economic values worldwide for their high-quality wood and the rich healthy factors of their nuts. Although previous efforts based on multiple molecular markers or genome-wide SNPs supported the monophyly of Carya and its two EA and NA major subclades, the maternal phylogeny of Carya still need to be comprehensively evaluated. The variation of Carya plastome has never been thoroughly characterized. Here, we novelly present 19 newly generated plastomes of congeneric Carya species, including the recently rediscovered critically endangered C. poilanei. The overall assessment of plastomes revealed highly conservative in the general structures. Our results indicated that remarkable differences in several plastome features are highly consistent with the EA-NA disjunction and showed the relatively diverse matrilineal sources among EA Carya compared to NA Carya. The maternal phylogenies were conducted with different plastome regions and full-length plastome datasets from 30 plastomes, representing 26 species in six genera of Juglandoideae and Myrica rubra (as root). Six out of seven phylogenetic topologies strongly supported the previously reported relationships among genera of Juglandoideae and the two subclades of EA and NA Carya, but displayed significant incongruencies between species within the EA and NA subclades. The phylogenetic tree generated from full-length plastomes demonstrated the optimal topology and revealed significant geographical maternal relationships among Carya species, especially for EA Carya within overlapping distribution areas. The full-length plastome-based phylogenetic topology also strongly supported the taxonomic status of five controversial species as separate species of Carya. Historical and recent introgressive hybridization and plastid captures might contribute to plastome geographic patterns and inconsistencies between topologies built from different datasets, while incomplete lineage sorting could account for the discordance between maternal topology and the previous nuclear genome data-based phylogeny. Our findings highlight full-length plastomes as an ideal tool for exploring maternal relationships among the subclades of Carya, and potentially in other outcrossing perennial woody plants, for resolving plastome phylogenetic relationships.
Collapse
Affiliation(s)
- Jianwei Xi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Saibin Lv
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Weiping Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jingbo Zhang
- Department of Biological Sciences, St. John’s University - Queens, NY, United States
- *Correspondence: Lihong Xiao, ; Jingbo Zhang,
| | - Ketao Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Haobing Guo
- The Beijing Genomics Institute (BGI) -Qingdao, The Beijing Genomics Institute (BGI)-Shenzhen, Qingdao, China
| | - Jie Hu
- The Beijing Genomics Institute (BGI) -Qingdao, The Beijing Genomics Institute (BGI)-Shenzhen, Qingdao, China
| | - Yang Yang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jianhua Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Guohua Xia
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Guangyi Fan
- The Beijing Genomics Institute (BGI) -Qingdao, The Beijing Genomics Institute (BGI)-Shenzhen, Qingdao, China
| | - Xinwang Wang
- Pecan Breeding and Genetics, Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX, United States
| | - Lihong Xiao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- *Correspondence: Lihong Xiao, ; Jingbo Zhang,
| |
Collapse
|