1
|
Allouh MZ, Rizvi SFA, Alamri A, Jimoh Y, Aouda S, Ouda ZH, Hamad MIK, Perez-Cruet M, Chaudhry GR. Mesenchymal stromal/stem cells from perinatal sources: biological facts, molecular biomarkers, and therapeutic promises. Stem Cell Res Ther 2025; 16:127. [PMID: 40055783 PMCID: PMC11889844 DOI: 10.1186/s13287-025-04254-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/25/2025] [Indexed: 05/13/2025] Open
Abstract
The use of mesenchymal stem cells (MSCs) from perinatal tissue sources has gained attention due to their availability and lack of significant ethical or moral concerns. These cells have a higher proliferative capability than adult MSCs and less immunogenic or tumorigenesis risk than fetal and embryonic stem cells. Additionally, they do not require invasive isolation methods like fetal and adult MSCs. We reviewed the main biological and therapeutic aspects of perinatal MSCs in a three-part article. In the first part, we revised the main biological features and characteristics of MSCs and the advantages of perinatal MSCs over other types of SCs. In the second part, we provided a detailed molecular background for the main biomarkers that can be used to identify MSCs. In the final part, we appraised the therapeutic application of perinatal MSCs in four major degenerative disorders: degenerative disc disease, retinal degenerative diseases, ischemic heart disease, and neurodegenerative diseases. In conclusion, there is no single specific molecular marker to identify MSCs. We recommend using at least two positive markers of stemness (CD29, CD73, CD90, or CD105) and two negative markers (CD34, CD45, or CD14) to exclude the hematopoietic origin. Moreover, utilizing perinatal MSCs for managing degenerative diseases presents a promising therapeutic approach. This review emphasizes the significance of employing more specialized progenitor cells that originated from the perinatal MSCs. The review provides scientific evidence from the literature that applying these progenitor cells in therapeutic procedures provides a greater regenerative capacity than the original primitive MSCs. Finally, this review provides a valuable reference for researchers exploring perinatal MSCs and their therapeutic applications.
Collapse
Affiliation(s)
- Mohammed Z Allouh
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P. O. Box: 15551, Al Ain, UAE.
- OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, 48309, USA.
| | - Syed Faizan Ali Rizvi
- OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, 48309, USA
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA
| | - Ali Alamri
- OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, 48309, USA
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA
| | - Yusuf Jimoh
- OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, 48309, USA
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA
| | - Salma Aouda
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, UAE
| | - Zakaria H Ouda
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P. O. Box: 15551, Al Ain, UAE
| | - Mohammad I K Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P. O. Box: 15551, Al Ain, UAE
| | - Mick Perez-Cruet
- OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, 48309, USA
- Department of Neurosurgery, Corewell Health, Royal Oak, MI, USA
| | - G Rasul Chaudhry
- OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, 48309, USA.
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA.
| |
Collapse
|
2
|
Sprincl V, Romanyuk N. miRNA in blood-brain barrier repair: role of extracellular vesicles in stroke recovery. Front Cell Neurosci 2025; 19:1503193. [PMID: 39990970 PMCID: PMC11842324 DOI: 10.3389/fncel.2025.1503193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 01/24/2025] [Indexed: 02/25/2025] Open
Abstract
Ischemic stroke is a leading cause of mortality and long-term disability globally. One of its aspects is the breakdown of the blood-brain barrier (BBB). The disruption of BBB's integrity during stroke exacerbates neurological damage and hampers therapeutic intervention. Recent advances in regenerative medicine suggest that mesenchymal stem cells (MSCs) derived extracellular vesicles (EVs) show promise for restoring BBB integrity. This review explores the potential of MSC-derived EVs in mediating neuroprotective and reparative effects on the BBB after ischemic stroke. We highlight the molecular cargo of MSC-derived EVs, including miRNAs, and their role in enhancing angiogenesis, promoting the BBB and neural repair, and mitigating apoptosis. Furthermore, we discuss the challenges associated with the clinical translation of MSC-derived EV therapies and the possibilities of further enhancing EVs' innate protective qualities. Our findings underscore the need for further research to optimize the therapeutic potential of EVs and establish their efficacy and safety in clinical settings.
Collapse
Affiliation(s)
- Vojtech Sprincl
- Department of Neuroregeneration, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Department of Neuroscience, 2nd Medical Faculty, Charles University, Prague, Czechia
| | - Nataliya Romanyuk
- Department of Neuroregeneration, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
3
|
Pandamooz S, Safari A, Ghorbani N, Jamhiri I, Zare S, Belém-Filho IJA, Dolati P, Salehi MS. Dimethyl Fumarate Preconditioning can Reinforce the Therapeutic Potential of Bone Marrow Mesenchymal Stem Cells through Trophic Factor Profile Enhancement. Adv Biomed Res 2024; 13:37. [PMID: 39224404 PMCID: PMC11368223 DOI: 10.4103/abr.abr_298_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 09/04/2024] Open
Abstract
Background Numerous studies have confirmed the therapeutic efficacy of bone marrow-derived mesenchymal stem cells (BM-MSCs) in addressing neurologic disorders. To date, several preconditioning strategies have been designed to improve the therapeutic potential of these stem cells. This study was designed to evaluate the preconditioning effect of dimethyl fumarate (DMF) on the expression of main trophic factors in human BM-MSCs. Materials and Methods Initially, the identity of stem cells was confirmed through the evaluation of surface markers and their capacity for osteogenic and adipogenic differentiation using flow cytometry and differentiation assay, respectively. Subsequently, stem cells were subjected to different concentrations of DMF for 72 hours and their viability was defined by MTT assay. Following 72-hour preconditioning period with 10 µM DMF, gene expression was assessed by quantitative RT-PCR. Results Our findings demonstrated that the isolated stem cells expressed cardinal MSC surface markers and exhibited osteogenic and adipogenic differentiation potential. MTT results confirmed that 10 µM DMF was an optimal dose for maintaining cell viability. Preconditioning of stem cells with DMF significantly upregulated the expression of BDNF, NGF, and NT-3. Despite a slight increase in transcript level of GDNF and VEGF after DMF preconditioning, this difference was not statistically significant. Conclusions Our findings suggest that DMF preconditioning can enhance the expression of major neurotrophic factors in human BM-MSCs. Given the curative potential of both BM-MSCs and DMF in various neurological disease models and preconditioning outcomes, their combined use may synergistically enhance their neuroprotective properties.
Collapse
Affiliation(s)
- Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Anahid Safari
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasrin Ghorbani
- Department of Nursing, College of Nursing, Lebanese French University, Erbil, Kurdistan, Iraq
| | - Iman Jamhiri
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahrokh Zare
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Parisa Dolati
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Waseem A, Saudamini, Haque R, Janowski M, Raza SS. Mesenchymal stem cell-derived exosomes: Shaping the next era of stroke treatment. NEUROPROTECTION 2023; 1:99-116. [PMID: 38283953 PMCID: PMC10811806 DOI: 10.1002/nep3.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/05/2023] [Accepted: 11/10/2023] [Indexed: 01/30/2024]
Abstract
Exosome-based treatments are gaining traction as a viable approach to addressing the various issues faced by an ischemic stroke. These extracellular vesicles, mainly produced by Mesenchymal Stem Cells (MSCs), exhibit many properties with substantial therapeutic potential. Exosomes are particularly appealing for stroke therapy because of their low immunogenicity, effective cargo transport, and ability to cross the blood-brain barrier. Their diverse effects include neuroprotection, angiogenesis stimulation, inflammatory response modulation, and cell death pathway attenuation, synergistically promoting neuronal survival, tissue regeneration, and functional recovery. Exosomes also show potential as diagnostic indicators for early stroke identification and customized treatment options. Despite these promising qualities, current exosome-based therapeutics have some limitations. The heterogeneity of exosome release among cell types, difficulty in standardization and isolation techniques, and complications linked to dosage and targeted administration necessitates extensive investigation. It is critical to thoroughly understand exosomal processes and their complicated interactions within the cellular milieu. To improve the practicality and efficacy of exosome-based medicines, research efforts must focus on improving production processes, developing robust evaluation criteria, and developing large-scale isolation techniques. Altogether, exosomes' multifunctional properties offer a new route for transforming stroke treatment and significantly improving patient outcomes.
Collapse
Affiliation(s)
- Arshi Waseem
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College HospitalEra University, SarfarazganjLucknowIndia
| | - Saudamini
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College HospitalEra University, SarfarazganjLucknowIndia
- Department of BiotechnologyCentral University of South BiharGayaIndia
| | - Rizwanul Haque
- Department of BiotechnologyCentral University of South BiharGayaIndia
| | - Miroslaw Janowski
- Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear MedicineUniversity of MarylandBaltimoreMarylandUSA
| | - Syed S. Raza
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College HospitalEra University, SarfarazganjLucknowIndia
- Department of Stem Cell Biology and Regenerative Medicine, Era's Lucknow Medical College HospitalEra University, SarfarazganjLucknowIndia
| |
Collapse
|
5
|
Arakawa M, Sakamoto Y, Miyagawa Y, Nito C, Takahashi S, Nitahara-Kasahara Y, Suda S, Yamazaki Y, Sakai M, Kimura K, Okada T. iPSC-derived mesenchymal stem cells attenuate cerebral ischemia-reperfusion injury by inhibiting inflammatory signaling and oxidative stress. Mol Ther Methods Clin Dev 2023; 30:333-349. [PMID: 37637385 PMCID: PMC10448333 DOI: 10.1016/j.omtm.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 07/11/2023] [Indexed: 08/29/2023]
Abstract
Induced pluripotent stem cell-derived mesenchymal stem cells (iMSCs) hold great promise as a cell source for transplantation into injured tissues to alleviate inflammation. However, the therapeutic efficacy of iMSC transplantation for ischemic stroke remains unknown. In this study, we evaluated the therapeutic effects of iMSC transplantation on brain injury after ischemia-reperfusion using a rat transient middle cerebral artery occlusion model and compared its therapeutic efficacy with that of bone marrow mesenchymal stem cells (BMMSCs). We showed that iMSCs and BMMSCs reduced infarct volumes after reperfusion and significantly improved motor function on days 3, 7, 14, 28, and 56 and cognitive function on days 28 and 56 after reperfusion compared with the vehicle group. Furthermore, immunological analyses revealed that transplantation of iMSCs and BMMSCs inhibited microglial activation and expression of proinflammatory cytokines and suppressed oxidative stress and neuronal cell death in the cerebral cortex at the ischemic border zone. No difference in therapeutic effect was observed between the iMSC and BMMSC groups. Taken together, our results demonstrate that iMSC therapy can be a practical alternative as a cell source for attenuation of brain injury and improvement of neurological function because of the unlimited supply of uniform therapeutic cells.
Collapse
Affiliation(s)
- Masafumi Arakawa
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yuki Sakamoto
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yoshitaka Miyagawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Chikako Nito
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
- Laboratory for Clinical Research, Collaborative Research Center, Nippon Medical School, Tokyo, Japan
| | - Shiro Takahashi
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yuko Nitahara-Kasahara
- Division of Molecular and Medical Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satoshi Suda
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yoshiyuki Yamazaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Mashito Sakai
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Kazumi Kimura
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Takashi Okada
- Division of Molecular and Medical Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Helsper S, Yuan X, Bagdasarian FA, Athey J, Li Y, Borlongan CV, Grant SC. Multinuclear MRI Reveals Early Efficacy of Stem Cell Therapy in Stroke. Transl Stroke Res 2023; 14:545-561. [PMID: 35900719 PMCID: PMC10733402 DOI: 10.1007/s12975-022-01057-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/28/2022] [Accepted: 06/16/2022] [Indexed: 10/16/2022]
Abstract
Compromised adult human mesenchymal stem cells (hMSC) can impair cell therapy efficacy and further reverse ischemic recovery. However, in vitro assays require extended passage to characterize cells, limiting rapid assessment for therapeutic potency. Multinuclear magnetic resonance imaging and spectroscopy (MRI/S) provides near real-time feedback on disease progression and tissue recovery. Applied to ischemic stroke, 23Na MRI evaluates treatment efficacy within 24 h after middle cerebral artery occlusion, showing recovery of sodium homeostasis and lesion reduction in specimens treated with hMSC while 1H MRS identifies reduction in lactate levels. This combined metric was confirmed by evaluating treatment groups receiving healthy or compromised hMSC versus vehicle (sham saline injection) over 21 days. Behavioral tests to assess functional recovery and cell analysis for immunomodulatory and macrophage activity to detect hMSC potency confirm MR findings. Clinically, these MR metrics may prove critical to early evaluations of therapeutic efficacy and overall stroke recovery.
Collapse
Affiliation(s)
- Shannon Helsper
- The National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr, Tallahassee, FL, 32310, USA
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310, USA
| | - Xuegang Yuan
- The National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr, Tallahassee, FL, 32310, USA
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310, USA
| | - F Andrew Bagdasarian
- The National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr, Tallahassee, FL, 32310, USA
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310, USA
| | - Jacob Athey
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310, USA
| | - Cesario V Borlongan
- Center of Excellence for Aging & Brain Repair, University of South Florida, Tampa, FL, 33612, USA
| | - Samuel C Grant
- The National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr, Tallahassee, FL, 32310, USA.
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310, USA.
| |
Collapse
|
7
|
Rahman MM, Islam MR, Supti FA, Dhar PS, Shohag S, Ferdous J, Shuvo SK, Akter A, Hossain MS, Sharma R. Exploring the Therapeutic Effect of Neurotrophins and Neuropeptides in Neurodegenerative Diseases: at a Glance. Mol Neurobiol 2023:10.1007/s12035-023-03328-5. [PMID: 37052791 DOI: 10.1007/s12035-023-03328-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/22/2023] [Indexed: 04/14/2023]
Abstract
Neurotrophins and neuropeptides are the essential regulators of peripheral nociceptive nerves that help to induce, sensitize, and maintain pain. Neuropeptide has a neuroprotective impact as it increases trophic support, regulates calcium homeostasis, and reduces excitotoxicity and neuroinflammation. In contrast, neurotrophins target neurons afflicted by ischemia, epilepsy, depression, and eating disorders, among other neuropsychiatric conditions. Neurotrophins are reported to inhibit neuronal death. Strategies maintained for "brain-derived neurotrophic factor (BDNF) therapies" are to upregulate BDNF levels using the delivery of protein and genes or compounds that target BDNF production and boosting BDNF signals by expanding with BDNF mimetics. This review discusses the mechanisms of neurotrophins and neuropeptides against acute neural damage as well as highlighting neuropeptides as a potential therapeutic agent against Parkinson's disease (PD), Huntington's disease (HD), Alzheimer's disease (AD), and Machado-Joseph disease (MJD), the signaling pathways affected by neurotrophins and their receptors in both standard and diseased CNS systems, and future perspectives that can lead to the potent application of neurotrophins and neuropeptides in neurodegenerative diseases (NDs).
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Fatema Akter Supti
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Puja Sutro Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Sheikh Shohag
- Department of Genetic Engineering and Biotechnology, Faculty of Earth and Ocean Science, Bangabandhu Sheikh Mujibur Rahman Maritime University, Mirpur 12, Dhaka, 1216, Bangladesh
| | - Jannatul Ferdous
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Shakil Khan Shuvo
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Aklima Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Sarowar Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Rohit Sharma
- Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
8
|
Yamaguchi S, Yoshida M, Horie N, Satoh K, Fukuda Y, Ishizaka S, Ogawa K, Morofuji Y, Hiu T, Izumo T, Kawakami S, Nishida N, Matsuo T. Stem Cell Therapy for Acute/Subacute Ischemic Stroke with a Focus on Intraarterial Stem Cell Transplantation: From Basic Research to Clinical Trials. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 10:bioengineering10010033. [PMID: 36671605 PMCID: PMC9854681 DOI: 10.3390/bioengineering10010033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Stem cell therapy for ischemic stroke holds great promise for the treatment of neurological impairment and has moved from the laboratory into early clinical trials. The mechanism of action of stem cell therapy includes the bystander effect and cell replacement. The bystander effect plays an important role in the acute to subacute phase, and cell replacement plays an important role in the subacute to chronic phase. Intraarterial (IA) transplantation is less invasive than intraparenchymal transplantation and can provide more cells in the affected brain region than intravenous transplantation. However, transplanted cell migration was reported to be insufficient, and few transplanted cells were retained in the brain for an extended period. Therefore, the bystander effect was considered the main mechanism of action of IA stem cell transplantation. In most clinical trials, IA transplantation was performed during the acute and subacute phases. Although clinical trials of IA transplantation demonstrated safety, they did not demonstrate satisfactory efficacy in improving patient outcomes. To increase efficacy, increased migration of transplanted cells and production of long surviving and effective stem cells would be crucial. Given the lack of knowledge on this subject, we review and summarize the mechanisms of action of transplanted stem cells and recent advancements in preclinical and clinical studies to provide information and guidance for further advancement of acute/subacute phase IA stem cell transplantation therapy for ischemic stroke.
Collapse
Affiliation(s)
- Susumu Yamaguchi
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
- Department of Neurosurgery, Sasebo General Hospital, Nagasaki 857-8511, Japan
- Correspondence: ; Tel.: +81-095-819-7375
| | - Michiharu Yoshida
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
- Department of Neurosurgery, Sasebo General Hospital, Nagasaki 857-8511, Japan
| | - Nobutaka Horie
- Department of Neurosurgery, Hiroshima University, Hiroshima 734-8551, Japan
| | - Katsuya Satoh
- Department of Occupational Therapy Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Yuutaka Fukuda
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Shunsuke Ishizaka
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Koki Ogawa
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | - Yoichi Morofuji
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Takeshi Hiu
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Tsuyoshi Izumo
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Shigeru Kawakami
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | - Noriyuki Nishida
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Takayuki Matsuo
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| |
Collapse
|
9
|
Tan N, Xin W, Huang M, Mao Y. Mesenchymal stem cell therapy for ischemic stroke: Novel insight into the crosstalk with immune cells. Front Neurol 2022; 13:1048113. [PMID: 36425795 PMCID: PMC9679024 DOI: 10.3389/fneur.2022.1048113] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/17/2022] [Indexed: 09/29/2023] Open
Abstract
Stroke, a cerebrovascular accident, is prevalent and the second highest cause of death globally across patient populations; it is as a significant cause of morbidity and mortality. Mesenchymal stem cell (MSC) transplantation is emerging as a promising treatment for alleviating neurological deficits, as indicated by a great number of animal and clinical studies. The potential of regulating the immune system is currently being explored as a therapeutic target after ischemic stroke. This study will discuss recent evidence that MSCs can harness the immune system by interacting with immune cells to boost neurologic recovery effectively. Moreover, a notion will be given to MSCs participating in multiple pathological processes, such as increasing cell survival angiogenesis and suppressing cell apoptosis and autophagy in several phases of ischemic stroke, consequently promoting neurological function recovery. We will conclude the review by highlighting the clinical opportunities for MSCs by reviewing the safety, feasibility, and efficacy of MSCs therapy.
Collapse
Affiliation(s)
- Nana Tan
- Department of Health Management, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenqiang Xin
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Min Huang
- Department of Health Management, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuling Mao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
10
|
Nito C, Suda S, Nitahara-Kasahara Y, Okada T, Kimura K. Dental-Pulp Stem Cells as a Therapeutic Strategy for Ischemic Stroke. Biomedicines 2022; 10:biomedicines10040737. [PMID: 35453487 PMCID: PMC9032844 DOI: 10.3390/biomedicines10040737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/03/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Regenerative medicine aims to restore human functions by regenerating organs and tissues using stem cells or living tissues for the treatment of organ and tissue defects or dysfunction. Clinical trials investigating the treatment of cerebral infarction using mesenchymal stem cells, a type of somatic stem cell therapy, are underway. The development and production of regenerative medicines using somatic stem cells is expected to contribute to the treatment of cerebral infarction, a central nervous system disease for which there is no effective treatment. Numerous experimental studies have shown that cellular therapy, including the use of human dental pulp stem cells, is an attractive strategy for patients with ischemic brain injury. This review describes the basic research, therapeutic mechanism, clinical trials, and future prospects for dental pulp stem cell therapy, which is being investigated in Japan in first-in-human clinical trials for the treatment of patients with acute cerebral ischemia.
Collapse
Affiliation(s)
- Chikako Nito
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan; (S.S.); (K.K.)
- Collaborative Research Center, Laboratory for Clinical Research, Nippon Medical School, Tokyo 113-8603, Japan
- Correspondence: ; Tel.: +81-3-3822-2131; Fax: +81-3-5814-6176
| | - Satoshi Suda
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan; (S.S.); (K.K.)
| | - Yuko Nitahara-Kasahara
- Division of Molecular and Medical Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.N.-K.); (T.O.)
| | - Takashi Okada
- Division of Molecular and Medical Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.N.-K.); (T.O.)
| | - Kazumi Kimura
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan; (S.S.); (K.K.)
| |
Collapse
|
11
|
Rasińska J, Klein C, Stahn L, Maidhof F, Pfeffer A, Schreyer S, Gossen M, Kurtz A, Steiner B, Hemmati‐Sadeghi S. Transposon‐mediated glial cell line‐derived neurotrophic factor overexpression in human adipose tissue‐derived mesenchymal stromal cells: A potential approach for neuroregenerative medicine? J Tissue Eng Regen Med 2022; 16:515-529. [DOI: 10.1002/term.3296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 02/17/2022] [Accepted: 02/26/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Justyna Rasińska
- Department of Neurology Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
| | - Charlotte Klein
- Department of Neurology Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
| | - Laura Stahn
- Department of Neurology Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
| | - Felix Maidhof
- Department of Neurology Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
| | - Anna Pfeffer
- Department of Neurology Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
| | - Stefanie Schreyer
- Department of Neurology Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
| | - Manfred Gossen
- Berlin‐Brandenburg Center for Regenerative Therapies (BCRT) Charité Virchow Campus Berlin Germany
- Institute of Active Polymers Helmholtz‐Zentrum Geesthacht Teltow Germany
| | - Andreas Kurtz
- Berlin‐Brandenburg Center for Regenerative Therapies (BCRT) Charité Virchow Campus Berlin Germany
| | - Barbara Steiner
- Department of Neurology Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
| | - Shabnam Hemmati‐Sadeghi
- Department of Neurology Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
| |
Collapse
|
12
|
Ding Y, Botchway BOA, Zhang Y, Jin T, Liu X. The combination of autologous mesenchymal stem cell-derived exosomes and neurotrophic factors as an intervention for amyotrophic lateral sclerosis. Ann Anat 2022; 242:151921. [PMID: 35278658 DOI: 10.1016/j.aanat.2022.151921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/19/2022] [Accepted: 02/24/2022] [Indexed: 10/18/2022]
Abstract
Amyotrophic lateral sclerosis is a chronic progressive degeneration of motor neurons and has a high mortality. Riluzole and edaravone are the only approved medications currently being used for amyotrophic lateral sclerosis in clinical settings. However, they can lead to serious complications, such as injuries to the liver and kidney. To date, there is no effective treatment for amyotrophic lateral sclerosis. In this regard, investigations concerning the employment of exosomes, mesenchymal stem cells, and neurotrophic factors to ameliorate amyotrophic lateral sclerosis are attracting considerable attention in the scientific community. Herein, we systematically analyze the relationship relevant to autologous mesenchymal stem cell derived-exosomes, neurotrophic factors and amyotrophic lateral sclerosis. Mesenchymal stem cells modulate immune response, mitigate oxidative stress, promote neuronal regeneration, and differentiate into neuronal and glial cells. Furthermore, exosomes from mesenchymal stem cells exert beneficial effects on their mother cells by preventing abnormal differentiation of mesenchymal stem cells. Similarly, neurotrophic factors regulate inflammatory response, stimulate the neuron repair, and the recovery of neuronal functioning. Therefore, autologous mesenchymal stem cells-derived exosomes combined with neurotrophic factors could potentially be an effective interventional medium for amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Yingying Ding
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China; School of Basic Medical Sciences, Hangzhou Normal University, Zhejiang, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Tian Jin
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China.
| |
Collapse
|
13
|
Mesenchymal Stem Cells: Therapeutic Mechanisms for Stroke. Int J Mol Sci 2022; 23:ijms23052550. [PMID: 35269692 PMCID: PMC8910569 DOI: 10.3390/ijms23052550] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Due to aging of the world’s population, stroke has become increasingly prevalent, leading to a rise in socioeconomic burden. In the recent past, stroke research and treatment have become key scientific issues that need urgent solutions, with a sharp focus on stem cell transplantation, which is known to treat neurodegenerative diseases related to traumatic brain injuries, such as stroke. Indeed, stem cell therapy has brought hope to many stroke patients, both in animal and clinical trials. Mesenchymal stem cells (MSCs) are most commonly utilized in biological medical research, due to their pluripotency and universality. MSCs are often obtained from adipose tissue and bone marrow, and transplanted via intravenous injection. Therefore, this review will discuss the therapeutic mechanisms of MSCs and extracellular vehicles (EVs) secreted by MSCs for stroke, such as in attenuating inflammation through immunomodulation, releasing trophic factors to promote therapeutic effects, inducing angiogenesis, promoting neurogenesis, reducing the infarct volume, and replacing damaged cells.
Collapse
|
14
|
Salehi MS, Safari A, Pandamooz S, Jurek B, Hooshmandi E, Owjfard M, Bayat M, Zafarmand SS, Miyan JA, Borhani-Haghighi A. The Beneficial Potential of Genetically Modified Stem Cells in the Treatment of Stroke: a Review. Stem Cell Rev Rep 2022; 18:412-440. [PMID: 34033001 PMCID: PMC8144279 DOI: 10.1007/s12015-021-10175-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2021] [Indexed: 12/16/2022]
Abstract
The last two decades have witnessed a surge in investigations proposing stem cells as a promising strategy to treat stroke. Since growth factor release is considered as one of the most important aspects of cell-based therapy, stem cells over-expressing growth factors are hypothesized to yield higher levels of therapeutic efficiency. In pre-clinical studies of the last 15 years that were investigating the efficiency of stem cell therapy for stroke, a variety of stem cell types were genetically modified to over-express various factors. In this review we summarize the current knowledge on the therapeutic efficiency of stem cell-derived growth factors, encompassing techniques employed and time points to evaluate. In addition, we discuss several types of stem cells, including the recently developed model of epidermal neural crest stem cells, and genetically modified stem cells over-expressing specific factors, which could elevate the restorative potential of naive stem cells. The restorative potential is based on enhanced survival/differentiation potential of transplanted cells, apoptosis inhibition, infarct volume reduction, neovascularization or functional improvement. Since the majority of studies have focused on the short-term curative effects of genetically engineered stem cells, we emphasize the need to address their long-term impact.
Collapse
Affiliation(s)
- Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Anahid Safari
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Benjamin Jurek
- Institute of Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | - Etrat Hooshmandi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahnaz Bayat
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Jaleel A Miyan
- Faculty of Biology, Division of Neuroscience & Experimental Psychology, The University of Manchester, Manchester, UK
| | | |
Collapse
|
15
|
Parambi DGT, Alharbi KS, Kumar R, Harilal S, Batiha GES, Cruz-Martins N, Magdy O, Musa A, Panda DS, Mathew B. Gene Therapy Approach with an Emphasis on Growth Factors: Theoretical and Clinical Outcomes in Neurodegenerative Diseases. Mol Neurobiol 2022; 59:191-233. [PMID: 34655056 PMCID: PMC8518903 DOI: 10.1007/s12035-021-02555-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/05/2021] [Indexed: 12/11/2022]
Abstract
The etiology of many neurological diseases affecting the central nervous system (CNS) is unknown and still needs more effective and specific therapeutic approaches. Gene therapy has a promising future in treating neurodegenerative disorders by correcting the genetic defects or by therapeutic protein delivery and is now an attraction for neurologists to treat brain disorders, like Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, spinal muscular atrophy, spinocerebellar ataxia, epilepsy, Huntington's disease, stroke, and spinal cord injury. Gene therapy allows the transgene induction, with a unique expression in cells' substrate. This article mainly focuses on the delivering modes of genetic materials in the CNS, which includes viral and non-viral vectors and their application in gene therapy. Despite the many clinical trials conducted so far, data have shown disappointing outcomes. The efforts done to improve outcomes, efficacy, and safety in the identification of targets in various neurological disorders are also discussed here. Adapting gene therapy as a new therapeutic approach for treating neurological disorders seems to be promising, with early detection and delivery of therapy before the neuron is lost, helping a lot the development of new therapeutic options to translate to the clinic.
Collapse
Affiliation(s)
- Della Grace Thomas Parambi
- College of Pharmacy, Department of Pharmaceutical Chemistry, Jouf University, Al Jouf-2014, Sakaka, Saudi Arabia
| | - Khalid Saad Alharbi
- College of Pharmacy, Department of Pharmaceutical Chemistry, Jouf University, Al Jouf-2014, Sakaka, Saudi Arabia
| | - Rajesh Kumar
- Kerala University of Health Sciences, Thrissur, Kerala 680596 India
| | - Seetha Harilal
- Kerala University of Health Sciences, Thrissur, Kerala 680596 India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 Al Beheira Egypt
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| | - Omnia Magdy
- Department of Clinical Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al Jouf-2014 Kingdom of Saudi Arabia
- Pharmacognosy Department, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341 Kingdom of Saudi Arabia
| | - Arafa Musa
- Pharmacognosy Department, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341 Kingdom of Saudi Arabia
- Pharmacognosy Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11371 Egypt
| | - Dibya Sundar Panda
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Al Jouf, Sakaka, 72341 Kingdom of Saudi Arabia
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041 India
| |
Collapse
|
16
|
Raghav PK, Mann Z, Ahlawat S, Mohanty S. Mesenchymal stem cell-based nanoparticles and scaffolds in regenerative medicine. Eur J Pharmacol 2021; 918:174657. [PMID: 34871557 DOI: 10.1016/j.ejphar.2021.174657] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/05/2021] [Accepted: 11/24/2021] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cells (MSCs) are adult stem cells owing to their regenerative potential and multilineage potency. MSCs have wide-scale applications either in their native cellular form or in conjugation with specific biomaterials as nanocomposites. Majorly, these natural or synthetic biomaterials are being used in the form of metallic and non-metallic nanoparticles (NPs) to encapsulate MSCs within hydrogels like alginate or chitosan or drug cargo loading into MSCs. In contrast, nanofibers of polymer scaffolds such as polycaprolactone (PCL), poly-lactic-co-glycolic acid (PLGA), poly-L-lactic acid (PLLA), silk fibroin, collagen, chitosan, alginate, hyaluronic acid (HA), and cellulose are used to support or grow MSCs directly on it. These MSCs based nanotherapies have application in multiple domains of biomedicine including wound healing, bone and cartilage engineering, cardiac disorders, and neurological disorders. This study focused on current approaches of MSCs-based therapies and has been divided into two major sections. The first section elaborates on MSC-based nano-therapies and their plausible applications including exosome engineering and NPs encapsulation. The following section focuses on the various MSC-based scaffold approaches in tissue engineering. Conclusively, this review mainly focused on MSC-based nanocomposite's current approaches and compared their advantages and limitations for building effective regenerative medicines.
Collapse
Affiliation(s)
- Pawan Kumar Raghav
- Stem Cell Facility, DBT Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Zoya Mann
- Stem Cell Facility, DBT Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Swati Ahlawat
- Stem Cell Facility, DBT Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Sujata Mohanty
- Stem Cell Facility, DBT Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
17
|
Samal J, Segura T. Injectable biomaterial shuttles for cell therapy in stroke. Brain Res Bull 2021; 176:25-42. [PMID: 34391821 PMCID: PMC8524625 DOI: 10.1016/j.brainresbull.2021.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 07/26/2021] [Accepted: 08/06/2021] [Indexed: 01/01/2023]
Abstract
Ischemic stroke (IS) is the leading cause of disability and contributes to a significant socio-economic cost in the western world. Brain repair strategies investigated in the pre-clinical models include the delivery of drug or cell-based therapeutics; which is hindered by the complex anatomy and functional organization of the brain. Biomaterials can be instrumental in alleviating some of these challenges by providing a structural support, localization, immunomodulation and/or modulating cellular cross-talk in the brain. This review addresses the significance of and challenges associated with cell therapy in an ischemic brain. This is followed by a detailed insight into the biomaterial-based delivery systems which have been designed to provide sustained trophic factor delivery for endogenous repair and to support transplanted cell survival and integration. A biomaterial intervention uses a multifaceted approach in enhancing the survival and engraftment of cells during transplantation and this has driven them as potential candidates for the treatment of IS. The biological processes that are activated as a response to the biomaterials and how to modulate them is one of the key factors contributing to the success of the biomaterial-based therapeutic approach. Future perspectives highlight the need of a combinative approach of merging the material design with disease biology to fabricate effective biomaterial-based intervention of stroke.
Collapse
Affiliation(s)
- Juhi Samal
- Department of Biomedical Engineering, 534 Research Drive, Durham, NC 27708, United States
| | - Tatiana Segura
- Department of Biomedical Engineering, 534 Research Drive, Durham, NC 27708, United States.
| |
Collapse
|
18
|
Genetic Modification of Mesenchymal Stem Cells for Neurological Disease Therapy: What Effects Does it Have on Phenotype/Cell Behavior, Determining Their Effectiveness? Mol Diagn Ther 2021; 24:683-702. [PMID: 32926348 DOI: 10.1007/s40291-020-00491-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mesenchymal stem cells are a promising tool in regenerative medicine, and their functions can be enhanced through genetic modification. Recent advances in genetic engineering provide several methods that enable gene delivery to mesenchymal stem cells. However, it remains to be decided whether genetic modification of mesenchymal stem cells by vectors carrying reporter or therapeutic genes leads to adverse effects on morphology, phenotypic profiles, and viability of transplanted cells. In this regard, we focus on the description of genetic modification methods of mesenchymal stem cells, their effectiveness, and the impact on phenotype/cell behavior/proliferation and the differentiation ability of these cells in vitro and in vivo. Furthermore, we compare the main effects of genetically modified mesenchymal stem cells with native mesenchymal stem cells when applied in the therapy of neurological diseases.
Collapse
|
19
|
Islam R, Drecun S, Varga BV, Vonderwalde I, Siu R, Nagy A, Morshead CM. Transplantation of Human Cortically-Specified Neuroepithelial Progenitor Cells Leads to Improved Functional Outcomes in a Mouse Model of Stroke. Front Cell Neurosci 2021; 15:654290. [PMID: 33994947 PMCID: PMC8116536 DOI: 10.3389/fncel.2021.654290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/08/2021] [Indexed: 12/02/2022] Open
Abstract
Stroke is a leading cause of death and long-term disability worldwide. Current therapeutic options are limited in terms of their time for implementation and efficacy in promoting recovery. Cell transplantation has been shown to have promise in several animal models however significant challenges remain, including the optimal source of cells to promote neural repair. Here, we report on the use of a population of human ESC derived, cortically specified, neuroepithelial precursor cells (cNEPs) that are neurally restricted in their lineage potential. CNEPs have the potential to give rise to mature neural cell types following transplantation, including neurons, astrocytes and oligodendrocytes. With a view towards translation, we sought to determine whether this human cell source was effective in promoting improved functional outcomes following stroke. Undifferentiated cNEPs were transplanted in a pre-clinical endothelin-1 (ET-1) model of ischemic motor cortical stroke in immunocompromised SCID-beige mice and cellular and functional outcomes were assessed. We demonstrate that cNEP transplantation in the acute phase (4 days post-stroke) improves motor function as early as 20 days post-stroke, compared to stroke-injured, non-transplanted mice. At the time of recovery, a small fraction (<6%) of the transplanted cNEPs are observed within the stroke injury site. The surviving cells expressed the immature neuronal marker, doublecortin, with no differentiation into mature neural phenotypes. At longer survival times (40 days), the majority of recovered, transplanted mice had a complete absence of surviving cNEPS. Hence, human cNEPs grafted at early times post-stroke support the observed functional recovery following ET-1 stroke but their persistence is not required, thereby supporting a by-stander effect rather than cell replacement.
Collapse
Affiliation(s)
- Rehnuma Islam
- Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Stasja Drecun
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Balazs V. Varga
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Ilan Vonderwalde
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Ricky Siu
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Andras Nagy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Cindi M. Morshead
- Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
20
|
Zhou G, Wang Y, Gao S, Fu X, Cao Y, Peng Y, Zhuang J, Hu J, Shao A, Wang L. Potential Mechanisms and Perspectives in Ischemic Stroke Treatment Using Stem Cell Therapies. Front Cell Dev Biol 2021; 9:646927. [PMID: 33869200 PMCID: PMC8047216 DOI: 10.3389/fcell.2021.646927] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke (IS) remains one of the major causes of death and disability due to the limited ability of central nervous system cells to regenerate and differentiate. Although several advances have been made in stroke therapies in the last decades, there are only a few approaches available to improve IS outcome. In the acute phase of IS, mechanical thrombectomy and the administration of tissue plasminogen activator have been widely used, while aspirin or clopidogrel represents the main therapy used in the subacute or chronic phase. However, in most cases, stroke patients fail to achieve satisfactory functional recovery under the treatments mentioned above. Recently, cell therapy, especially stem cell therapy, has been considered as a novel and potential therapeutic strategy to improve stroke outcome through mechanisms, including cell differentiation, cell replacement, immunomodulation, neural circuit reconstruction, and protective factor release. Different stem cell types, such as mesenchymal stem cells, marrow mononuclear cells, and neural stem cells, have also been considered for stroke therapy. In recent years, many clinical and preclinical studies on cell therapy have been carried out, and numerous results have shown that cell therapy has bright prospects in the treatment of stroke. However, some cell therapy issues are not yet fully understood, such as its optimal parameters including cell type choice, cell doses, and injection routes; therefore, a closer relationship between basic and clinical research is needed. In this review, the role of cell therapy in stroke treatment and its mechanisms was summarized, as well as the function of different stem cell types in stroke treatment and the clinical trials using stem cell therapy to cure stroke, to reveal future insights on stroke-related cell therapy, and to guide further studies.
Collapse
Affiliation(s)
- Guoyang Zhou
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongjie Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shiqi Gao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiongjie Fu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Cao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yucong Peng
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianfeng Zhuang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junwen Hu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lin Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Carinci M, Vezzani B, Patergnani S, Ludewig P, Lessmann K, Magnus T, Casetta I, Pugliatti M, Pinton P, Giorgi C. Different Roles of Mitochondria in Cell Death and Inflammation: Focusing on Mitochondrial Quality Control in Ischemic Stroke and Reperfusion. Biomedicines 2021; 9:biomedicines9020169. [PMID: 33572080 PMCID: PMC7914955 DOI: 10.3390/biomedicines9020169] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunctions are among the main hallmarks of several brain diseases, including ischemic stroke. An insufficient supply of oxygen and glucose in brain cells, primarily neurons, triggers a cascade of events in which mitochondria are the leading characters. Mitochondrial calcium overload, reactive oxygen species (ROS) overproduction, mitochondrial permeability transition pore (mPTP) opening, and damage-associated molecular pattern (DAMP) release place mitochondria in the center of an intricate series of chance interactions. Depending on the degree to which mitochondria are affected, they promote different pathways, ranging from inflammatory response pathways to cell death pathways. In this review, we will explore the principal mitochondrial molecular mechanisms compromised during ischemic and reperfusion injury, and we will delineate potential neuroprotective strategies targeting mitochondrial dysfunction and mitochondrial homeostasis.
Collapse
Affiliation(s)
- Marianna Carinci
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
| | - Bianca Vezzani
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
| | - Simone Patergnani
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
| | - Peter Ludewig
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany; (P.L.); (K.L.); (T.M.)
| | - Katrin Lessmann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany; (P.L.); (K.L.); (T.M.)
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany; (P.L.); (K.L.); (T.M.)
| | - Ilaria Casetta
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (M.P.)
| | - Maura Pugliatti
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (M.P.)
| | - Paolo Pinton
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
- Correspondence:
| |
Collapse
|
22
|
Almalki WH, Alghamdi S, Alzahrani A, Zhang W. Emerging paradigms in treating cerebral infarction with nanotheranostics: opportunities and clinical challenges. Drug Discov Today 2020; 26:826-835. [PMID: 33383212 DOI: 10.1016/j.drudis.2020.12.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/10/2020] [Accepted: 12/21/2020] [Indexed: 12/28/2022]
Abstract
Interest is increasing in the use of nanotheranostics as diagnosis, imaging and therapeutic tools for stroke management, but movement to the clinic remains challenging.
Collapse
Affiliation(s)
- Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm al-qura University, Saudi Arabia.
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-qura University, Makkah, Saudi Arabia
| | - Abdulaziz Alzahrani
- Department of Pharmacology, College of Clinical Pharmacy, Albaha University, Saudi Arabia
| | - Wenzhi Zhang
- Senior Research Scientist, Inn Research Sdn. Bhd., Subang Jaya, Selangor, Malaysia
| |
Collapse
|
23
|
Ma Q, Cai M, Shang JW, Yang J, Gu XY, Liu WB, Yang Q. Glial cell induced neural differentiation of bone marrow stromal cells. Open Med (Wars) 2020; 15:954-961. [PMID: 33336053 PMCID: PMC7712328 DOI: 10.1515/med-2020-0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 11/15/2022] Open
Abstract
Background Bone marrow stromal cells (BMSCs) have an important application prospect in the field of cell therapy for various neurodegenerative diseases, and inducing factors that regulate BMSC differentiation are proposed as a promising therapeutic strategy. In this study, we explored the effect of glial cell-derived neurotrophic factor (GDNF) on the course of BMSC differentiation. Methods BMSCs were isolated from rat bone marrow and induced by GDNF. The effects of GDNF on BMSC viability and proliferation were verified by cell counting kit-8, MTT, bromodeoxyuridine, and flow cytometry assays. Neuronal differentiation from BMSCs was detected by quantitative real-time polymerase chain reaction and immunofluorescence via measuring the expression of several neural specific markers. Results Compared to untreated BMSCs, GDNF induced the differentiation of BMSCs into neuron-like cells and enhanced the expression levels of neuronal markers including nestin and NCAM. Moreover, the expression of SCF was suppressed by GDNF stimulation. Conclusion GDNF could elevate the differentiation of BMSCs into neuron-like cells and could be considered as an effective candidate cell for future neuroscience research.
Collapse
Affiliation(s)
- Qiang Ma
- School of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian 116023, Liaoning Province, China.,Department of Neurology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, Liaoning Province, China
| | - Ming Cai
- Department of Neurology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, Liaoning Province, China
| | - Jing-Wei Shang
- Department of Neurology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, Liaoning Province, China
| | - Jun Yang
- School of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian 116023, Liaoning Province, China
| | - Xin-Yi Gu
- Department of Neurology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, Liaoning Province, China
| | - Wen-Bo Liu
- Department of Neurology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, Liaoning Province, China
| | - Qing Yang
- School of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian 116023, Liaoning Province, China
| |
Collapse
|
24
|
Wu MR, Lee CH, Hsiao JK. Bidirectional Enhancement of Cell Proliferation Between Iron Oxide Nanoparticle-Labeled Mesenchymal Stem Cells and Choroid Plexus in a Cell-Based Therapy Model of Ischemic Stroke. Int J Nanomedicine 2020; 15:9181-9195. [PMID: 33239875 PMCID: PMC7682617 DOI: 10.2147/ijn.s278687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/14/2020] [Indexed: 01/02/2023] Open
Abstract
PURPOSE Stem cell therapy for ischemic stroke has shown success in experimental settings, but its translation into clinical practice is challenging. The choroid plexus (CP) plays a regulatory role in neural regeneration. Mesenchymal stem cells (MSCs) promote neurogenesis in the ventricular-subventricular zone. However, it is unclear whether MSCs interact with the CP in brain tissue repair. METHODS Rat (r)MSCs were labeled with iron oxide nanoparticles (IONs) and transduced with red fluorescent protein, and then injected into the brain of rats with ischemic stroke and monitored over time by magnetic resonance imaging. The functional recovery of rats was determined by the corner test score, Modified Neurological Severity score, and stroke volume. MSCs and CP were also co-cultured for 14 days, and the medium was analyzed with a cytokine array. RESULTS In vivo imaging and histologic analysis revealed that ION-labeled MSCs were mainly located at the injection site and migrated to the infarct area and to the CP. Functional recovery was greater in rats treated with MSCs as compared to those that received mock treatment. Bidirectional enhancement of proliferation in MSCs and CP was observed in the co-culture; moreover, MSCs migrated to the CP. Cytokine analysis revealed elevated levels of proliferation- and adhesion-related cytokines and chemokines in the culture medium. Wikipathway predictions indicated that insulin-like growth factor 1/Akt signaling (WP3675), chemokine signaling pathway (WP2292), and spinal cord injury (WP2432) are involved in the increased proliferation and migration of MSCs co-cultured with the CP. CONCLUSION Crosstalk with the CP enhances MSC proliferation and migration in a transwell assay. Moreover, MRI reveals MSC migration towards the CP in an ischemic stroke model. The secreted factors resulting from this interaction have therapeutic potential for promoting functional recovery in the brain after ischemic stroke.
Collapse
Affiliation(s)
- Menq-Rong Wu
- Department of Medical Imaging, Taipei Tzuchi Hospital, Buddhist Tzu-Chi Medical Foundation, New Taipei City23142, Taiwan
- Institute of Biomedical Engineering, National Taiwan University, Taipei10617, Taiwan
| | - Chia-Hsun Lee
- Department of Medical Imaging, Taipei Tzuchi Hospital, Buddhist Tzu-Chi Medical Foundation, New Taipei City23142, Taiwan
| | - Jong-Kai Hsiao
- Department of Medical Imaging, Taipei Tzuchi Hospital, Buddhist Tzu-Chi Medical Foundation, New Taipei City23142, Taiwan
- School of Medicine, Tzu Chi University, Hualien97004, Taiwan
| |
Collapse
|
25
|
Jurkowski MP, Bettio L, K. Woo E, Patten A, Yau SY, Gil-Mohapel J. Beyond the Hippocampus and the SVZ: Adult Neurogenesis Throughout the Brain. Front Cell Neurosci 2020; 14:576444. [PMID: 33132848 PMCID: PMC7550688 DOI: 10.3389/fncel.2020.576444] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/19/2020] [Indexed: 12/31/2022] Open
Abstract
Convincing evidence has repeatedly shown that new neurons are produced in the mammalian brain into adulthood. Adult neurogenesis has been best described in the hippocampus and the subventricular zone (SVZ), in which a series of distinct stages of neuronal development has been well characterized. However, more recently, new neurons have also been found in other brain regions of the adult mammalian brain, including the hypothalamus, striatum, substantia nigra, cortex, and amygdala. While some studies have suggested that these new neurons originate from endogenous stem cell pools located within these brain regions, others have shown the migration of neurons from the SVZ to these regions. Notably, it has been shown that the generation of new neurons in these brain regions is impacted by neurologic processes such as stroke/ischemia and neurodegenerative disorders. Furthermore, numerous factors such as neurotrophic support, pharmacologic interventions, environmental exposures, and stem cell therapy can modulate this endogenous process. While the presence and significance of adult neurogenesis in the human brain (and particularly outside of the classical neurogenic regions) is still an area of debate, this intrinsic neurogenic potential and its possible regulation through therapeutic measures present an exciting alternative for the treatment of several neurologic conditions. This review summarizes evidence in support of the classic and novel neurogenic zones present within the mammalian brain and discusses the functional significance of these new neurons as well as the factors that regulate their production. Finally, it also discusses the potential clinical applications of promoting neurogenesis outside of the classical neurogenic niches, particularly in the hypothalamus, cortex, striatum, substantia nigra, and amygdala.
Collapse
Affiliation(s)
- Michal P. Jurkowski
- Island Medical Program, University of British Columbia, Vancouver, BC, Canada
| | - Luis Bettio
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Emma K. Woo
- Island Medical Program, University of British Columbia, Vancouver, BC, Canada
| | - Anna Patten
- Centre for Interprofessional Clinical Simulation Learning (CICSL), Royal Jubilee Hospital, Victoria, BC, Canada
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Joana Gil-Mohapel
- Island Medical Program, University of British Columbia, Vancouver, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
26
|
Suda S, Nito C, Yokobori S, Sakamoto Y, Nakajima M, Sowa K, Obinata H, Sasaki K, Savitz SI, Kimura K. Recent Advances in Cell-Based Therapies for Ischemic Stroke. Int J Mol Sci 2020; 21:ijms21186718. [PMID: 32937754 PMCID: PMC7555943 DOI: 10.3390/ijms21186718] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022] Open
Abstract
Stroke is the most prevalent cardiovascular disease worldwide, and is still one of the leading causes of death and disability. Stem cell-based therapy is actively being investigated as a new potential treatment for certain neurological disorders, including stroke. Various types of cells, including bone marrow mononuclear cells, bone marrow mesenchymal stem cells, dental pulp stem cells, neural stem cells, inducible pluripotent stem cells, and genetically modified stem cells have been found to improve neurological outcomes in animal models of stroke, and there are some ongoing clinical trials assessing their efficacy in humans. In this review, we aim to summarize the recent advances in cell-based therapies to treat stroke.
Collapse
Affiliation(s)
- Satoshi Suda
- Department of Neurology, Nippon Medical School, Tokyo 113-8602, Japan; (C.N.); (Y.S.); (M.N.); (K.S.); (K.K.)
- Correspondence: ; Tel.: +81-3-3822-2131; Fax: +81-3-3822-4865
| | - Chikako Nito
- Department of Neurology, Nippon Medical School, Tokyo 113-8602, Japan; (C.N.); (Y.S.); (M.N.); (K.S.); (K.K.)
| | - Shoji Yokobori
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8602, Japan; (S.Y.); (H.O.); (K.S.)
| | - Yuki Sakamoto
- Department of Neurology, Nippon Medical School, Tokyo 113-8602, Japan; (C.N.); (Y.S.); (M.N.); (K.S.); (K.K.)
| | - Masataka Nakajima
- Department of Neurology, Nippon Medical School, Tokyo 113-8602, Japan; (C.N.); (Y.S.); (M.N.); (K.S.); (K.K.)
| | - Kota Sowa
- Department of Neurology, Nippon Medical School, Tokyo 113-8602, Japan; (C.N.); (Y.S.); (M.N.); (K.S.); (K.K.)
| | - Hirofumi Obinata
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8602, Japan; (S.Y.); (H.O.); (K.S.)
| | - Kazuma Sasaki
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8602, Japan; (S.Y.); (H.O.); (K.S.)
| | - Sean I. Savitz
- Institute for Stroke and Cerebrovascular Disease, UTHealth, Houston, TX 77030, USA;
| | - Kazumi Kimura
- Department of Neurology, Nippon Medical School, Tokyo 113-8602, Japan; (C.N.); (Y.S.); (M.N.); (K.S.); (K.K.)
| |
Collapse
|
27
|
Leitão L, Neto E, Conceição F, Monteiro A, Couto M, Alves CJ, Sousa DM, Lamghari M. Osteoblasts are inherently programmed to repel sensory innervation. Bone Res 2020; 8:20. [PMID: 32435517 PMCID: PMC7220946 DOI: 10.1038/s41413-020-0096-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/19/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023] Open
Abstract
Tissue innervation is a complex process controlled by the expression profile of signaling molecules secreted by tissue-resident cells that dictate the growth and guidance of axons. Sensory innervation is part of the neuronal network of the bone tissue with a defined spatiotemporal occurrence during bone development. Yet, the current understanding of the mechanisms regulating the map of sensory innervation in the bone tissue is still limited. Here, we demonstrated that differentiation of human mesenchymal stem cells to osteoblasts leads to a marked impairment of their ability to promote axonal growth, evidenced under sensory neurons and osteoblastic-lineage cells crosstalk. The mechanisms by which osteoblast lineage cells provide this nonpermissive environment for axons include paracrine-induced repulsion and loss of neurotrophic factors expression. We identified a drastic reduction of NGF and BDNF production and stimulation of Sema3A, Wnt4, and Shh expression culminating at late stage of OB differentiation. We noted a correlation between Shh expression profile, OB differentiation stages, and OB-mediated axonal repulsion. Blockade of Shh activity and signaling reversed the repulsive action of osteoblasts on sensory axons. Finally, to strengthen our model, we localized the expression of Shh by osteoblasts in bone tissue. Overall, our findings provide evidence that the signaling profile associated with osteoblast phenotype differentiating program can regulate the patterning of sensory innervation, and highlight osteoblast-derived Shh as an essential player in this cue-induced regulation.
Collapse
Affiliation(s)
- Luís Leitão
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - Estrela Neto
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
| | - Francisco Conceição
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - Ana Monteiro
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
| | - Marina Couto
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
| | - Cecília J. Alves
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
| | - Daniela M. Sousa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
| | - Meriem Lamghari
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
28
|
Bonsack B, Corey S, Shear A, Heyck M, Cozene B, Sadanandan N, Zhang H, Gonzales-Portillo B, Sheyner M, Borlongan CV. Mesenchymal stem cell therapy alleviates the neuroinflammation associated with acquired brain injury. CNS Neurosci Ther 2020; 26:603-615. [PMID: 32356605 PMCID: PMC7248547 DOI: 10.1111/cns.13378] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/28/2020] [Accepted: 03/29/2020] [Indexed: 01/01/2023] Open
Abstract
Ischemic stroke and traumatic brain injury (TBI) comprise two particularly prevalent and costly examples of acquired brain injury (ABI). Following stroke or TBI, primary cell death and secondary cell death closely model disease progression and worsen outcomes. Mounting evidence indicates that long‐term neuroinflammation extensively exacerbates the secondary deterioration of brain structure and function. Due to their immunomodulatory and regenerative properties, mesenchymal stem cell transplants have emerged as a promising approach to treating this facet of stroke and TBI pathology. In this review, we summarize the classification of cell death in ABI and discuss the prominent role of inflammation. We then consider the efficacy of bone marrow–derived mesenchymal stem/stromal cell (BM‐MSC) transplantation as a therapy for these injuries. Finally, we examine recent laboratory and clinical studies utilizing transplanted BM‐MSCs as antiinflammatory and neurorestorative treatments for stroke and TBI. Clinical trials of BM‐MSC transplants for stroke and TBI support their promising protective and regenerative properties. Future research is needed to allow for better comparison among trials and to elaborate on the emerging area of cell‐based combination treatments.
Collapse
Affiliation(s)
- Brooke Bonsack
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Sydney Corey
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Alex Shear
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Matt Heyck
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Blaise Cozene
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Nadia Sadanandan
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Henry Zhang
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | | | - Michael Sheyner
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| |
Collapse
|
29
|
Salehi MS, Pandamooz S, Safari A, Jurek B, Tamadon A, Namavar MR, Dianatpour M, Dargahi L, Azarpira N, Fattahi S, Shid Moosavi SM, Keshavarz S, Khodabandeh Z, Zare S, Nazari S, Heidari M, Izadi S, Poursadeghfard M, Borhani-Haghighi A. Epidermal neural crest stem cell transplantation as a promising therapeutic strategy for ischemic stroke. CNS Neurosci Ther 2020; 26:670-681. [PMID: 32281225 PMCID: PMC7298983 DOI: 10.1111/cns.13370] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 12/22/2022] Open
Abstract
Introduction Cell‐based therapy is considered as promising strategy to cure stroke. However, employing appropriate type of stem cell to fulfill many therapeutic needs of cerebral ischemia is still challenging. In this regard, the current study was designed to elucidate therapeutic potential of epidermal neural crest stem cells (EPI‐NCSCs) compared to bone marrow mesenchymal stem cells (BM‐MSCs) in rat model of ischemic stroke. Methods Ischemic stroke was induced by middle cerebral artery occlusion (MCAO) for 45 minutes. Immediately after reperfusion, EPI‐NCSCs or BM‐MSCs were transplanted via intra‐arterial or intravenous route. A test for neurological function was performed before ischemia and 1, 3, and 7 days after MCAO. Also, infarct volume ratio and relative expression of 15 selected target genes were evaluated 7 days after transplantation. Results EPI‐NCSCs transplantation (both intra‐arterial and intravenous) and BM‐MSCs transplantation (only intra‐arterial) tended to result in a better functional outcome, compared to the MCAO group; however, this difference was not statistically significant. The infarct volume ratio significantly decreased in NCSC‐intra‐arterial, NCSC‐intravenous and MSC‐intra‐arterial groups compared to the control. EPI‐NCSCs interventions led to higher expression levels of Bdnf, nestin, Sox10, doublecortin, β‐III tubulin, Gfap, and interleukin‐6, whereas neurotrophin‐3 and interleukin‐10 were decreased. On the other hand, BM‐MSCs therapy resulted in upregulation of Gdnf, β‐III tubulin, and Gfap and down‐regulation of neurotrophin‐3, interleukin‐1, and interleukin‐10. Conclusion These findings highlight the therapeutic effects of EPI‐NCSCs transplantation, probably through simultaneous induction of neuronal and glial formation, as well as Bdnf over‐expression in a rat model of ischemic stroke.
Collapse
Affiliation(s)
- Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sareh Pandamooz
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anahid Safari
- Stem cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Benjamin Jurek
- Department of Behavioral and Molecular Neurobiology, Faculty of Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany
| | - Amin Tamadon
- The Persian Gulf Marine Biotechnology Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohammad Reza Namavar
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Dianatpour
- Stem cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sadegh Fattahi
- Cellular & Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | | - Somaye Keshavarz
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Khodabandeh
- Stem cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahrokh Zare
- Stem cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Nazari
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojdeh Heidari
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sadegh Izadi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Poursadeghfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
30
|
Akhlaghpasand M, Tizro M, Raoofi A, Meymand AZ, Farhadieh M, Khodagholi F, Khatmi A, Soltani R, Hoseini Y, Jahanian A, Boroujeni ME, Aliaghaei A. Grafted human chorionic stem cells restore motor function and preclude cerebellar neurodegeneration in rat model of cerebellar ataxia. Metab Brain Dis 2020; 35:615-625. [PMID: 32062747 DOI: 10.1007/s11011-020-00543-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
Cerebellar ataxia (CA) is a form of ataxia that adversely affects the cerebellum. Cell replacement therapy (CRT) has been considered as a potential treatment for neurological disorders. In this report, we investigated the neuro-restorative effects of human chorionic stem cells (HCSCs) transplantation on rat model of CA induced by 3-acetylpyridine (3-AP). In this regard, HCSCs were isolated and phenotypically determined. Next, a single injection of 3-AP was administered for ataxia induction, and bilateral HCSCs implantation was conducted 3 days after 3-AP injection, followed by expression analysis of a number of apoptotic, autophagic and inflammatory genes as well as vascular endothelial growth factor (VEGF) level, along with assessment of cerebellar neurodegeneration, motor coordination and muscle activity. The findings revealed that grafting of HCSCs in 3-AP model of ataxia decreased the expression levels of several inflammatory, autophagic and apoptotic genes and provoked the up-regulation of VEGF in the cerebellar region, prevented the degeneration of Purkinje cells caused by 3-AP toxicity and ameliorated motor coordination and muscle function. In conclusion, these data indicate in vivo efficacy of HCSCs in the reestablishment of motor skills and reversal of CA.
Collapse
Affiliation(s)
- Mohammadhosein Akhlaghpasand
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Tizro
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Raoofi
- Department of Anatomical Sciences, School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | | | | | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aysan Khatmi
- Cell Biology and Anatomical Sciences, School Of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Soltani
- Cell Biology and Anatomical Sciences, School Of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yadolah Hoseini
- Neurosurgery Department, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Jahanian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Eskandarian Boroujeni
- Department of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| | - Abbas Aliaghaei
- Cell Biology and Anatomical Sciences, School Of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
Jezierska-Wozniak K, Sinderewicz E, Czelejewska W, Wojtacha P, Barczewska M, Maksymowicz W. Influence of Bone Marrow-Derived Mesenchymal Stem Cell Therapy on Oxidative Stress Intensity in Minimally Conscious State Patients. J Clin Med 2020; 9:E683. [PMID: 32138308 PMCID: PMC7141306 DOI: 10.3390/jcm9030683] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022] Open
Abstract
Neurological disorders, including minimally conscious state (MCS), may be associated with the presence of high concentrations of reactive oxygen species within the central nervous system. Regarding the documented role of mesenchymal stem cells (MSCs) in oxidative stress neutralization, the aim of this study is to evaluate the effect of bone marrow-derived MSC (BM-MSC) transplantation on selected markers of oxidative stress in MCS patients. Antioxidant capacity was measured in cerebrospinal fluid (CSF) and plasma collected from nine patients aged between 19 and 45 years, remaining in MCS for 3 to 14 months. Total antioxidant capacity, ascorbic acid and ascorbate concentrations, superoxide dismutase, catalase, and peroxidase activity were analyzed and the presence of tested antioxidants in the CSF and plasma was confirmed. Higher ascorbic acid (AA) content and catalase (CAT) activity were noted in CSF relative to plasma, whereas superoxide dismutase (SOD) activity and total antioxidant capacity were higher in plasma relative to CSF. Total antioxidant capacity measured in CSF was greater after BM-MSC transplantations. The content of ascorbates was lower and CAT activity was higher both in CSF and plasma after the administration of BM-MSC. The above results suggest that MSCs modulate oxidative stress intensity in MCS patients, mainly via ascorbates and CAT activity.
Collapse
Affiliation(s)
- Katarzyna Jezierska-Wozniak
- Department of Neurosurgery, Laboratory of Regenerative Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska 30 Str., 10-082 Olsztyn, Poland; (E.S.); (W.C.)
- Department of Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska 30 Str., 10-082 Olsztyn, Poland; (M.B.); (W.M.)
| | - Emilia Sinderewicz
- Department of Neurosurgery, Laboratory of Regenerative Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska 30 Str., 10-082 Olsztyn, Poland; (E.S.); (W.C.)
- Department of Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska 30 Str., 10-082 Olsztyn, Poland; (M.B.); (W.M.)
| | - Wioleta Czelejewska
- Department of Neurosurgery, Laboratory of Regenerative Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska 30 Str., 10-082 Olsztyn, Poland; (E.S.); (W.C.)
- Department of Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska 30 Str., 10-082 Olsztyn, Poland; (M.B.); (W.M.)
| | - Pawel Wojtacha
- Department of Industrial and Food Microbiology, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Plac Cieszynski 1 Str., 10-726 Olsztyn, Poland;
| | - Monika Barczewska
- Department of Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska 30 Str., 10-082 Olsztyn, Poland; (M.B.); (W.M.)
| | - Wojciech Maksymowicz
- Department of Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska 30 Str., 10-082 Olsztyn, Poland; (M.B.); (W.M.)
| |
Collapse
|
32
|
Andrejew R, Glaser T, Oliveira-Giacomelli Á, Ribeiro D, Godoy M, Granato A, Ulrich H. Targeting Purinergic Signaling and Cell Therapy in Cardiovascular and Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1201:275-353. [PMID: 31898792 DOI: 10.1007/978-3-030-31206-0_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extracellular purines exert several functions in physiological and pathophysiological mechanisms. ATP acts through P2 receptors as a neurotransmitter and neuromodulator and modulates heart contractility, while adenosine participates in neurotransmission, blood pressure, and many other mechanisms. Because of their capability to differentiate into mature cell types, they provide a unique therapeutic strategy for regenerating damaged tissue, such as in cardiovascular and neurodegenerative diseases. Purinergic signaling is pivotal for controlling stem cell differentiation and phenotype determination. Proliferation, differentiation, and apoptosis of stem cells of various origins are regulated by purinergic receptors. In this chapter, we selected neurodegenerative and cardiovascular diseases with clinical trials using cell therapy and purinergic receptor targeting. We discuss these approaches as therapeutic alternatives to neurodegenerative and cardiovascular diseases. For instance, promising results were demonstrated in the utilization of mesenchymal stem cells and bone marrow mononuclear cells in vascular regeneration. Regarding neurodegenerative diseases, in general, P2X7 and A2A receptors mostly worsen the degenerative state. Stem cell-based therapy, mainly through mesenchymal and hematopoietic stem cells, showed promising results in improving symptoms caused by neurodegeneration. We propose that purinergic receptor activity regulation combined with stem cells could enhance proliferative and differentiation rates as well as cell engraftment.
Collapse
Affiliation(s)
- Roberta Andrejew
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Talita Glaser
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Ágatha Oliveira-Giacomelli
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Deidiane Ribeiro
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Mariana Godoy
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil.,Laboratory of Neurodegenerative Diseases, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandro Granato
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
33
|
Zhi Z, Zhang C, Kang J, Wang Y, Liu J, Wu F, Xu G. The therapeutic effect of bone marrow-derived mesenchymal stem cells on osteoarthritis is improved by the activation of the KDM6A/SOX9 signaling pathway caused by exposure to hypoxia. J Cell Physiol 2020; 235:7173-7182. [PMID: 32020624 DOI: 10.1002/jcp.29615] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/09/2020] [Indexed: 12/27/2022]
Abstract
Abnormal expression of KDM6A and SOX9 is a key factor in the pathogenesis of osteoarthritis (OA). Cellular treatments of OA with articular cartilage chondrocytes (ACCs) and bone marrow mesenchymal stem cells (BMSCs) are promising, but their underlying mechanisms remain to be explored. The pellet size, weight and sulfated glycosaminoglycan/DNA content of ACCs were measured to evaluate the effect of BMSCs on the chondrogenic differentiation of SCCs. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to analyze the proliferation of ACCs cultured along or cocultured with BMSCs. Quantitative polymerase chain reaction (qPCR) was performed to evaluate the messenger RNA expression of KDM6A, SOX9, type2 collagen, and Aggrecan in ACCs and OA rats. Western blot and immunohistochemistry were performed to analyze the expression of KDM6A and SOX9 proteins. Bisulfite sequencing PCR was performed to assess the DNA methylation level of the SOX9 promoter. Flow cytometry was used to evaluate the apoptotic status of ACCs. The chondrogenic differentiation of ACCs was significantly enhanced by coculturing with BMSCs, especially under a hypoxic condition. The expression of KDM6A, SOX9, type2 collagen, and Aggrecan was remarkably elevated in ACCs cocultured with BMSCs. Also, the DNA methylation of SOX9 promoter was decreased in ACCs cocultured with BMSCs, along with notably reduced apoptosis. Moreover, ACCs cocultured with BMSCs could repair cartilage lesions and prevent the abnormal expression of KDM6A, SOX9, type2 collagen, and Aggrecan in OA rats. In this study, we cocultured ACCs with BMSCs and used them to treat OA rats. Our findings presented a mechanistic basis for explaining the therapeutic effect of BMSCs on OA treatment.
Collapse
Affiliation(s)
- Zhongzheng Zhi
- Department of Orthopedics, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Chenglin Zhang
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jian Kang
- Department of Orthopedics, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Yingjie Wang
- Department of Orthopedics, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Jingdong Liu
- Department of Orthopedics, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Furong Wu
- Shanghai Clinical Research Center for Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guanghui Xu
- Department of Orthopedics, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
34
|
Corey S, Bonsack B, Heyck M, Shear A, Sadanandan N, Zhang H, Borlongan CV. Harnessing the anti-inflammatory properties of stem cells for transplant therapy in hemorrhagic stroke. BRAIN HEMORRHAGES 2020; 1:24-33. [PMID: 34056567 PMCID: PMC8158660 DOI: 10.1016/j.hest.2019.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hemorrhagic stroke is a global health crisis plagued by neuroinflammation in the acute and chronic phases. Neuroinflammation approximates secondary cell death, which in turn robustly contributes to stroke pathology. Both the physiological and behavioral symptoms of stroke correlate with various inflammatory responses in animal and human studies. That slowing the secondary cell death mediated by this inflammation may attenuate stroke pathology presents a novel treatment strategy. To this end, experimental therapies employing stem cell transplants support their potential for neuroprotection and neuroregeneration after hemorrhagic stroke. In this review, we evaluate experiments using different types of stem cell transplants as treatments for stroke-induced neuroinflammation. We also update this emerging area by examining recent preclinical and clinical trials that have deployed these therapies. While further investigations are warranted to solidify their therapeutic profile, the reviewed studies largely posit stem cells as safe and potent biologics for stroke, specifically owing to their mode of action for sequestering neuroinflammation and promoting neuroregenerative processes.
Collapse
Affiliation(s)
- Sydney Corey
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Brooke Bonsack
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Matt Heyck
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Alex Shear
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Nadia Sadanandan
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Henry Zhang
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| |
Collapse
|
35
|
Hsu CC, Kuo TW, Liu WP, Chang CP, Lin HJ. Calycosin Preserves BDNF/TrkB Signaling and Reduces Post-Stroke Neurological Injury after Cerebral Ischemia by Reducing Accumulation of Hypertrophic and TNF-α-Containing Microglia in Rats. J Neuroimmune Pharmacol 2020; 15:326-339. [PMID: 31927682 DOI: 10.1007/s11481-019-09903-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 12/15/2019] [Indexed: 01/01/2023]
Abstract
Both brain-derived neurotrophic factor (BDNF) and microglia activation are involved in the pathogenesis of ischemic stroke. Herein, we attempt to ascertain whether Calycosin, an isoflavonoid, protects against ischemic stroke by modulating the endogenous production of BDNF and/or the microglia activation. This study was a prospective, randomized, blinded and placebo-controlled preclinical experiment. Sprague-Dawley adult rats, subjected to transient focal cerebral ischemia by middle cerebral artery occlusion (MCAO), were treated randomly with 0 (corn oil and/or saline as placebo), 30 mg/kg of Calycosin and/or 1 mg/kg of a tropomyosin-related kinase B (TrkB) receptor antagonist (ANA12) at 1 h after reperfusion and once daily for a total of 7 consecutive days. BDNF and its functional receptor, full-length TrkB (TrkB-FL) levels, the percentage of hypertrophic microglia, tumor necrosis factor-α (TNF-α)-containing microglia, and degenerative and apoptotic neurons in ischemic brain regions were determined 7 days after cerebral ischemia. A battery of functional sensorimotor test was performed over 7 days. Post-stroke Calycosin therapy increased the cerebral expression of BDNF/TrkB, ameliorated the neurological injury and switched the microglia from the activated amoeboid state to the resting ramified state in ischemic stroke rats. However, the beneficial effects of BDNF/ TrkB-mediated Calycosin could be reversed by ANA12. Our data indicate that BDNF/TrkB-mediated Calycosin ameliorates rat ischemic stroke injury by switching the microglia from the activated amoeboid state to the resting ramified state. Graphical abstract.
Collapse
Affiliation(s)
- Chien-Chin Hsu
- Department of Emergency Medicine, Chi Mei Medical Center, No. 901, Zhonghua Rd., Yongkang District, Tainan City, 710, Taiwan.,Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan, 710, Taiwan
| | - Ting-Wei Kuo
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan, 710, Taiwan
| | - Wen-Pin Liu
- Department of Medical Research, Chi Mei Medical Center, No. 901, Zhonghua Rd., Yongkang District, Tainan City, 710, Taiwan
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, No. 901, Zhonghua Rd., Yongkang District, Tainan City, 710, Taiwan.
| | - Hung-Jung Lin
- Department of Emergency Medicine, Chi Mei Medical Center, No. 901, Zhonghua Rd., Yongkang District, Tainan City, 710, Taiwan. .,School of Medicine, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
36
|
Influencing neuroplasticity in stroke treatment with advanced biomaterials-based approaches. Adv Drug Deliv Rev 2019; 148:204-218. [PMID: 30579882 DOI: 10.1016/j.addr.2018.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/05/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023]
Abstract
Since the early 1990s, we have known that the adult brain is not static and has the capacity to repair itself. The delivery of various therapeutic factors and cells have resulted in some exciting pre-clinical and clinical outcomes in stroke models by targeting post-injury plasticity to enhance recovery. Developing a deeper understanding of the pathways that modulate plasticity will enable us to optimize delivery strategies for therapeutics and achieve more robust effects. Biomaterials are a key tool for the optimization of these potential treatments, owing to their biocompatibility and tunability. In this review, we identify factors and targets that impact plastic processes known to contribute to recovery, discuss the role of biomaterials in enhancing the efficacy of treatment strategies, and suggest combinatorial approaches based on the stage of injury progression.
Collapse
|
37
|
Arteaga Cabeza O, Mikrogeorgiou A, Kannan S, Ferriero DM. Advanced nanotherapies to promote neuroregeneration in the injured newborn brain. Adv Drug Deliv Rev 2019; 148:19-37. [PMID: 31678359 DOI: 10.1016/j.addr.2019.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/19/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022]
Abstract
Neonatal brain injury affects thousands of babies each year and may lead to long-term and permanent physical and neurological problems. Currently, therapeutic hypothermia is standard clinical care for term newborns with moderate to severe neonatal encephalopathy. Nevertheless, it is not completely protective, and additional strategies to restore and promote regeneration are urgently needed. One way to ensure recovery following injury to the immature brain is to augment endogenous regenerative pathways. However, novel strategies such as stem cell therapy, gene therapies and nanotechnology have not been adequately explored in this unique age group. In this perspective review, we describe current efforts that promote neuroprotection and potential targets that are unique to the developing brain, which can be leveraged to facilitate neuroregeneration.
Collapse
|
38
|
Han F, Guan X, Guo W, Lu B. Therapeutic potential of a TrkB agonistic antibody for ischemic brain injury. Neurobiol Dis 2019; 127:570-581. [DOI: 10.1016/j.nbd.2019.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/04/2019] [Accepted: 04/10/2019] [Indexed: 12/20/2022] Open
|
39
|
Optochemogenetic Stimulation of Transplanted iPS-NPCs Enhances Neuronal Repair and Functional Recovery after Ischemic Stroke. J Neurosci 2019; 39:6571-6594. [PMID: 31263065 DOI: 10.1523/jneurosci.2010-18.2019] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 02/23/2019] [Accepted: 06/11/2019] [Indexed: 12/21/2022] Open
Abstract
Cell transplantation therapy provides a regenerative strategy for neural repair. We tested the hypothesis that selective excitation of transplanted induced pluripotent stem cell-derived neural progenitor cells (iPS-NPCs) could recapitulate an activity-enriched microenvironment that confers regenerative benefits for the treatment of stroke. Mouse iPS-NPCs were transduced with a novel optochemogenetics fusion protein, luminopsin 3 (LMO3), which consisted of a bioluminescent luciferase, Gaussia luciferase, and an opsin, Volvox Channelrhodopsin 1. These LMO3-iPS-NPCs can be activated by either photostimulation using light or by the luciferase substrate coelenterazine (CTZ). In vitro stimulations of LMO3-iPS-NPCs increased expression of synapsin-1, postsynaptic density 95, brain derived neurotrophic factor (BDNF), and stromal cell-derived factor 1 and promoted neurite outgrowth. After transplantation into the ischemic cortex of mice, LMO3-iPS-NPCs differentiated into mature neurons. Synapse formation between implanted and host neurons was identified using immunogold electron microscopy and patch-clamp recordings. Stimulation of transplanted cells with daily intranasal administration of CTZ enhanced axonal myelination, synaptic transmission, improved thalamocortical connectivity, and functional recovery. Patch-clamp and multielectrode array recordings in brain slices showed that CTZ or light stimulation facilitated synaptic transmission and induced neuroplasticity mimicking the LTP of EPSPs. Stroke mice received the combined LMO3-iPS-NPC/CTZ treatment, but not cell or CTZ alone, showed enhanced neural network connections in the peri-infarct region, promoted optimal functional recoveries after stroke in male and female, young and aged mice. Thus, excitation of transplanted cells via the noninvasive optochemogenetics treatment provides a novel integrative cell therapy with comprehensive regenerative benefits after stroke.SIGNIFICANCE STATEMENT Neural network reconnection is critical for repairing damaged brain. Strategies that promote this repair are expected to improve functional outcomes. This study pioneers the generation and application of an optochemogenetics approach in stem cell transplantation therapy after stroke for optimal neural repair and functional recovery. Using induced pluripotent stem cell-derived neural progenitor cells (iPS-NPCs) expressing the novel optochemogenetic probe luminopsin (LMO3), and intranasally delivered luciferase substrate coelenterazine, we show enhanced regenerative properties of LMO3-iPS-NPCs in vitro and after transplantation into the ischemic brain of different genders and ages. The noninvasive repeated coelenterazine stimulation of transplanted cells is feasible for clinical applications. The synergetic effects of the combinatorial cell therapy may have significant impacts on regenerative approach for treatments of CNS injuries.
Collapse
|
40
|
Vahidinia Z, Azami Tameh A, Nejati M, Beyer C, Talaei SA, Etehadi Moghadam S, Atlasi MA. The protective effect of bone marrow mesenchymal stem cells in a rat model of ischemic stroke via reducing the C-Jun N-terminal kinase expression. Pathol Res Pract 2019; 215:152519. [PMID: 31272760 DOI: 10.1016/j.prp.2019.152519] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/03/2019] [Accepted: 06/26/2019] [Indexed: 01/09/2023]
Abstract
Ischemic stroke is the main cause of disability and mortality worldwide. Apoptosis and inflammation have an important role in ischemic brain injury. Mesenchymal stem cells (MSCs) have protective effects on stroke treatment due to anti-inflammatory properties. The inhibition of the C-Jun N-terminal kinase (JNK) pathway may be one of the molecular mechanisms of the neuroprotective effect of MSCs in ischemic brain injury. Twenty-eight male Wistar rats were divided randomly into 3 groups. Except the sham group, others subjected to transient middle cerebral artery occlusion (tMCAO). Bone marrow MSCs or saline were injected 3 h after tMCAO. Sensorimotor behavioral tests were performed 24 and 72 h after ischemia and reperfusion (I/R). The rats were sacrificed 72 h after I/R and infarct volume was measured by TTC staining. The number of apoptotic neurons and astrocytes in the peri-infarct area was assessed by TUNEL assay. The morphology of cells was checked by Nissl staining, and the expression of p-JNK was detected by immunohistochemistry and Western blot. Behavioral scores were improved and infarct volume was reduced by MSCs 24 h and 72 h after tMCAO. TUNEL assay showed that neuronal apoptosis and astroglial activity in the penumbra region were reduced by MSCs. Also, Nissl staining showed lower neuronal apoptosis in BMSCs-treated rats compared to controls. JNK phosphorylation which was profoundly induced by ischemia was significantly decreased after MSCs treatment. We concluded that anti-apoptotic and anti-inflammatory effects of MSCs therapy after brain ischemia may be associated with the down-regulation of p-JNK.
Collapse
Affiliation(s)
- Zeinab Vahidinia
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran; Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Azami Tameh
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Majid Nejati
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| | - Cordian Beyer
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | | | | | - Mohammad Ali Atlasi
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
41
|
Pang CY, Yang KL, Fu CH, Sun LY, Chen SY, Liao CH. G-CSF enhances the therapeutic potency of stem cells transplantation in spinal cord-injured rats. Regen Med 2019; 14:571-583. [DOI: 10.2217/rme-2018-0104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aim: The therapeutic effects of human wisdom teeth-derived neuronal stem cell (tNSC) cotreatment with granulocyte-colony-stimulating factor (G-CSF) were evaluated for contusion-induced spinal cord injury in rats. Materials & methods: 7 days after contusion, tNSCs were transplanted to the injury site and followed by G-CSF cotreatment for 5 days. Behavioral deficits were evaluated by the Basso, Beattie and Bresnahan test. The injury site was collected for immunohistochemistry analysis. Results: The Basso, Beattie and Bresnahan test significantly improved in the cotreated group compared with the tNSCs or G-CSF single treatment groups. However, inflammation indices did not differ among the three groups. In vitro experiment demonstrated that tNSCs express both G-CSF and its relevant receptor. G-CSF enhanced tNSC proliferation and neurotrophins secretion in vitro. Conclusion: This study demonstrated that G-CSF enhances neurotrophins secretion of tNSCs, and might help improving functional recovery from spinal cord injury in rats if they were given together.
Collapse
Affiliation(s)
- Cheng-Yoong Pang
- Department of Medical Research, Hualien Tzu Chi Hospital, Hualien, Taiwan 970
- Cardiovascular & Metabolomics Research Center, Hualien Tzu Chi Hospital, Hualien, Taiwan 970
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan 970
| | - Kuo-Liang Yang
- Buddhist Tzu Chi Stem Cells Center, Hualien Tzu Chi Hospital, Hualien, Taiwan 970
- Tzu Chi Cord Blood Bank, Hualien Tzu Chi Hospital, Hualien, Taiwan 970
| | - Chin-Hua Fu
- Department of Neurology, Taichung Tzu Chi Hospital, Taichung, Taiwan 427
| | - Li-Yi Sun
- Department of Medical Research, Hualien Tzu Chi Hospital, Hualien, Taiwan 970
- Gene & Stem Cell Production Center, Hualien Tzu Chi Hospital, Hualien, Taiwan 970
| | - Shin-Yuan Chen
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Hualien, Taiwan 970
| | - Chia-Hsin Liao
- Department of Medical Research, Hualien Tzu Chi Hospital, Hualien, Taiwan 970
- Department of Nature Science, Holistic Education Center, Tzu Chi University of Science & Technology, Hualien, Taiwan 970
| |
Collapse
|
42
|
Nguyen H, Zarriello S, Coats A, Nelson C, Kingsbury C, Gorsky A, Rajani M, Neal EG, Borlongan CV. Stem cell therapy for neurological disorders: A focus on aging. Neurobiol Dis 2019; 126:85-104. [PMID: 30219376 PMCID: PMC6650276 DOI: 10.1016/j.nbd.2018.09.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/04/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023] Open
Abstract
Age-related neurological disorders continue to pose a significant societal and economic burden. Aging is a complex phenomenon that affects many aspects of the human body. Specifically, aging can have detrimental effects on the progression of brain diseases and endogenous stem cells. Stem cell therapies possess promising potential to mitigate the neurological symptoms of such diseases. However, aging presents a major obstacle for maximum efficacy of these treatments. In this review, we discuss current preclinical and clinical literature to highlight the interactions between aging, stem cell therapy, and the progression of major neurological disease states such as Parkinson's disease, Huntington's disease, stroke, traumatic brain injury, amyotrophic lateral sclerosis, multiple sclerosis, and multiple system atrophy. We raise important questions to guide future research and advance novel treatment options.
Collapse
Affiliation(s)
- Hung Nguyen
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Sydney Zarriello
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Alexandreya Coats
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Cannon Nelson
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Chase Kingsbury
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Anna Gorsky
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Mira Rajani
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Elliot G Neal
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA.
| |
Collapse
|
43
|
Vaes JEG, Vink MA, de Theije CGM, Hoebeek FE, Benders MJNL, Nijboer CHA. The Potential of Stem Cell Therapy to Repair White Matter Injury in Preterm Infants: Lessons Learned From Experimental Models. Front Physiol 2019; 10:540. [PMID: 31143126 PMCID: PMC6521595 DOI: 10.3389/fphys.2019.00540] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/17/2019] [Indexed: 12/12/2022] Open
Abstract
Diffuse white matter injury (dWMI) is a major cause of morbidity in the extremely preterm born infant leading to life-long neurological impairments, including deficits in cognitive, motor, sensory, psychological, and behavioral functioning. At present, no treatment options are clinically available to combat dWMI and therefore exploration of novel strategies is urgently needed. In recent years, the pathophysiology underlying dWMI has slowly started to be unraveled, pointing towards the disturbed maturation of oligodendrocytes (OLs) as a key mechanism. Immature OL precursor cells in the developing brain are believed to be highly sensitive to perinatal inflammation and cerebral oxygen fluctuations, leading to impaired OL differentiation and eventually myelination failure. OL lineage development under normal and pathological circumstances and the process of (re)myelination have been studied extensively over the years, often in the context of other adult and pediatric white matter pathologies such as stroke and multiple sclerosis (MS). Various studies have proposed stem cell-based therapeutic strategies to boost white matter regeneration as a potential strategy against a wide range of neurological diseases. In this review we will discuss experimental studies focusing on mesenchymal stem cell (MSC) therapy to reduce white matter injury (WMI) in multiple adult and neonatal neurological diseases. What lessons have been learned from these previous studies and how can we translate this knowledge to application of MSCs for the injured white matter in the preterm infant? A perspective on the current state of stem cell therapy will be given and we will discuss different important considerations of MSCs including cellular sources, timing of treatment and administration routes. Furthermore, we reflect on optimization strategies that could potentially reinforce stem cell therapy, including preconditioning and genetic engineering of stem cells or using cell-free stem cell products, to optimize cell-based strategy for vulnerable preterm infants in the near future.
Collapse
Affiliation(s)
- Josine E G Vaes
- NIDOD Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Marit A Vink
- NIDOD Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Caroline G M de Theije
- NIDOD Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Freek E Hoebeek
- NIDOD Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Manon J N L Benders
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Cora H A Nijboer
- NIDOD Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
44
|
Kaviarasi S, Yuba E, Harada A, Krishnan UM. Emerging paradigms in nanotechnology for imaging and treatment of cerebral ischemia. J Control Release 2019; 300:22-45. [DOI: 10.1016/j.jconrel.2019.02.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 02/07/2023]
|
45
|
Qian J, Wang L, Li Q, Sha D, Wang J, Zhang J, Xu P, Fan G. Ultrasound-targeted microbubble enhances migration and therapeutic efficacy of marrow mesenchymal stem cell on rat middle cerebral artery occlusion stroke model. J Cell Biochem 2018; 120:3315-3322. [PMID: 30537289 DOI: 10.1002/jcb.27600] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/08/2018] [Indexed: 01/10/2023]
Abstract
To investigate the role of ultrasound-targeted microbubbles in the homing effect of bone marrow-derived mesenchymal stem cells (BMSCs) and in the therapeutic efficacy of BMSCs on the ischemic stroke. A middle cerebral artery occlusion (MCAO) model was induced by plug wire preparation. Seventy-two hours after MCAO, the treatment of BMSCs with ultrasound-targeted microbubble was assessed via modified neurological severity score (mNSS), infarct volumes, and cerebral edema. In addition, immunofluorescence was performed to analyze the homing effect of BMSCs with ultrasound-targeted microbubble. We find that BMSCs with ultrasound-targeted microbubble (BMMSCs with ultrasound-targeted microbubble [USMM] group) could significantly ameliorate mNSS, infarct volumes, and cerebral edema of MCAO compared with phosphate buffer saline group, BMSCs alone group (BMSC group), and BMSCs with Ultrasound group (Ultrasound group). Immunofluorescence analysis demonstrated that ultrasound-targeted microbubbles promoted the accumulation of BMSCs in rat MCAO brains. Our findings demonstrated that ultrasound-targeted microbubble could be an effective approach for the accumulation of BMSCs on ischemic stroke, and further improved the therapeutic efficacy of BMSCs on MCAO.
Collapse
Affiliation(s)
- Jian Qian
- Department of Emergency Medicine, Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Luna Wang
- Department of Emergency Medicine, Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Qiming Li
- Department of Emergency Medicine, Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Dujuan Sha
- Department of Emergency Medicine, Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Jun Wang
- Department of Emergency Medicine, Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Jun Zhang
- Department of Emergency Medicine, Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Peng Xu
- Department of Emergency Medicine, Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Guofeng Fan
- Department of Emergency Medicine, Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| |
Collapse
|
46
|
Lu JH, Peng BY, Chang CC, Dubey NK, Lo WC, Cheng HC, Wang JR, Wei HJ, Deng WP. Tumor-Targeted Immunotherapy by Using Primary Adipose-Derived Stem Cells and an Antigen-Specific Protein Vaccine. Cancers (Basel) 2018; 10:E446. [PMID: 30445793 PMCID: PMC6266266 DOI: 10.3390/cancers10110446] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer is a leading cause of mortality and a major public health problem worldwide. For biological therapy against cancer, we previously developed a unique immunotherapeutic platform by combining mesenchymal stem cells with an antigen-specific protein vaccine. However, this system possesses a few limitations, such as improperly immortalized mesenchymal stem cells (MSCs) along with transfected oncogenic antigens in them. To overcome the limitations of this platform for future clinical application, we freshly prepared primary adipose-derived stem cells (ADSCs) and modified the E7' antigen (E7') as a non-oncogenic protein. Either subcutaneously co-inoculated with cancer cells or systemically administered after tumor growth, ADSC labeled with enhanced green fluorescent protein (eGFP) and combined with modified E7' (ADSC-E7'-eGFP) cells showed significant antitumor activity when combined with the protein vaccine in both colon and lung cancer in mice. Specifically, this combined therapy inhibited tumor through inducing cell apoptosis. The significantly reduced endothelial cell markers, CD31 and vascular endothelial growth factor (VEGF), indicated strongly inhibited tumor angiogenesis. The activated immune system was demonstrated through the response of CD4+ T and natural killer (NK) cells, and a notable antitumor activity might be contributed by CD8+ T cells. Conclusively, these evidences imply that this promising immunotherapeutic platform might be a potential candidate for the future clinical application against cancer.
Collapse
Affiliation(s)
- Jui-Hua Lu
- Graduate Institute of Biomedical Materials and Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan.
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Bou-Yue Peng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Department of Dentistry, Taipei Medical University Hospital, Taipei 110, Taiwan.
| | - Chun-Chao Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 110i, Taiwan.
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University School of Medicine, Taipei 110, Taiwan.
| | - Navneet Kumar Dubey
- Ceramics and Biomaterials Research Group, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
| | - Wen-Cheng Lo
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei 110, Taiwan.
- Division of Neurosurgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsin-Chung Cheng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Joseph R Wang
- Department of Periodontics, College of Dental Medicine, Columbia University, New York 10032, USA.
| | - Hong-Jian Wei
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan.
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Win-Ping Deng
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan.
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Graduate Institute of Basic Medicine, Fu Jen Catholic University, New Taipei City 110, Taiwan.
| |
Collapse
|
47
|
How to Make the Mesenchymal Stem Cells Therapy More Targeted, More Accurate, and More Efficient? J Craniofac Surg 2018; 30:957-958. [PMID: 30394966 DOI: 10.1097/scs.0000000000004822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
48
|
Therapeutic Potential of Human Turbinate-Derived Mesenchymal Stem Cells in Experimental Acute Ischemic Stroke. Int Neurourol J 2018; 22:S131-138. [PMID: 30396262 PMCID: PMC6234729 DOI: 10.5213/inj.1836220.110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/08/2018] [Indexed: 12/24/2022] Open
Abstract
Purpose Mesenchymal stem cells (MSCs) have demonstrated great promises for the treatment of ischemic stroke. Previously, we identified a new source of MSCs located in the inferior turbinate. We investigated therapeutic potentials of human turbinate- derived mesenchymal stem cells (hTMSCs) in ischemic stroke. Methods Ischemic stroke was induced by the intraluminal occlusion of middle cerebral artery (MCAo) for 50 minutes in rats. At one day after MCAo, hTMSCs, adipose tissue-derived MSCs (AdMSCs), or phosphate buffered saline (PBS) were transplanted into the striatum. Functional recovery was assessed by repeating behavioral tests including modified neurologic severity score and corner test. At 14 days after MCAo, brains were stained with hematoxylin and eosin (H&E) for measuring infarct volume. The survival of grafted MSCs was evaluated by immunohistochemistry to human nuclei (hNU). Immunohistochemistry with anti-doublecortin (anti-DCX) was performed to assess hippocampal neurogenesis. Results Transplantation of hTMSCs following MCAo showed improvements of neurologic function, which was comparable with that of AdMSCs. H&E staining showed no difference in infarct volume among 3 groups. Regarding the survival of grafted MSCs, the number of hNU-expressing cells was not different between hTMSCs- and AdMSCs-treated groups. Finally, hTMSCs increased the number of subgranular DCX-positive cells compared to PBS-treated controls, without affecting hilar ectopic migration of newborn neurons. Conclusions hTMSCs could improve functional recovery following ischemic stroke, of which efficacy was similar to AdMSCs. Although hTMSCs showed comparable infarct size and survival of grafted MSCs, transplantation of hTMSCs could upregulate subgranular neurogenesis with no impact on ectopically migrating newborn neurons.
Collapse
|
49
|
Nito C, Sowa K, Nakajima M, Sakamoto Y, Suda S, Nishiyama Y, Nakamura-Takahashi A, Nitahara-Kasahara Y, Ueda M, Okada T, Kimura K. Transplantation of human dental pulp stem cells ameliorates brain damage following acute cerebral ischemia. Biomed Pharmacother 2018; 108:1005-1014. [PMID: 30372800 DOI: 10.1016/j.biopha.2018.09.084] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 09/15/2018] [Accepted: 09/15/2018] [Indexed: 02/06/2023] Open
Abstract
AIMS Numerous experimental studies have shown that cellular therapy, including human dental pulp stem cells (DPSCs), is an attractive strategy for ischemic brain injury. Herein, we examined the effects of intravenous DPSC administration after transient middle cerebral artery occlusion in rats. METHODS Male Sprague-Dawley rats received a transient 90 min middle cerebral artery occlusion. DPSCs (1 × 106 cells) or vehicle were administered via the femoral vein at 0 h or 3 h after ischemia-reperfusion. PKH26, a red fluorescent cell linker, was used to track the transplanted cells in the brain. Infarct volume, neurological deficits, and immunological analyses were performed at 24 h and 72 h after reperfusion. RESULTS PKH26-positive cells were observed more frequently in the ipsilateral than the contralateral hemisphere. DPSCs transplanted at 0 h after reperfusion significantly reduced infarct volume and reversed motor deficits at 24 h and 72 h recovery. DPSCs transplanted at 3 h after reperfusion also significantly reduced infarct volume and improved motor function compared with vehicle groups at 24 h and 72 h recovery. Further, DPSC transplantation significantly inhibited microglial activation and pro-inflammatory cytokine expression compared with controls at 72 h after reperfusion. Moreover, DPSCs attenuated neuronal degeneration in the cortical ischemic boundary area. CONCLUSIONS Systemic delivery of human DPSCs after reperfusion reduced ischemic damage and improved functional recovery in a rodent ischemia model, with a clinically relevant therapeutic window. The neuroprotective action of DPSCs may relate to the modulation of neuroinflammation during the acute phase of stroke.
Collapse
Affiliation(s)
- Chikako Nito
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, 113-8603, Japan.
| | - Kota Sowa
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, 113-8603, Japan; Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, 113-8603, Japan
| | - Masataka Nakajima
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, 113-8603, Japan; Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, 113-8603, Japan
| | - Yuki Sakamoto
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, 113-8603, Japan; Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, 113-8603, Japan
| | - Satoshi Suda
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, 113-8603, Japan
| | - Yasuhiro Nishiyama
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, 113-8603, Japan
| | - Aki Nakamura-Takahashi
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, 113-8603, Japan; Department of Pharmacology, Tokyo Dental College, Tokyo, 101-0061, Japan
| | - Yuko Nitahara-Kasahara
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, 113-8603, Japan; Department of Cell and Gene Therapy, Graduate School of Medicine, Nippon Medical School, Tokyo, 113-8603, Japan
| | - Masayuki Ueda
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, 113-8603, Japan
| | - Takashi Okada
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, 113-8603, Japan; Department of Cell and Gene Therapy, Graduate School of Medicine, Nippon Medical School, Tokyo, 113-8603, Japan
| | - Kazumi Kimura
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, 113-8603, Japan
| |
Collapse
|
50
|
Wang F, Tang H, Zhu J, Zhang JH. Transplanting Mesenchymal Stem Cells for Treatment of Ischemic Stroke. Cell Transplant 2018; 27:1825-1834. [PMID: 30251564 PMCID: PMC6300770 DOI: 10.1177/0963689718795424] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Stroke is a major disease that leads to high mortality and morbidity. Given the ageing population and the potential risk factors, the prevalence of stroke and socioeconomic burden associated with stroke are expected to increase. During the past decade, both prophylactic and therapeutic strategies for stroke have made significant progress. However, current therapies still cannot adequately improve the outcomes of stroke and may not apply to all patients. One of the significant advances in modern medicine is cell-derived neurovascular regeneration and neuronal repair. Progress in stem cell biology has greatly contributed to ameliorating stroke-related brain injuries in preclinical studies and demonstrated clinical potential in stroke treatment. Mesenchymal stem cells (MSCs) have the differentiating potential of chondrocytes, adipocytes, and osteoblasts, and they have the ability to transdifferentiate into endothelial cells, glial cells, and neurons. Due to their great plasticity, MSCs have drawn much attention from the scientific community. This review will focus on MSCs, stem cells widely utilized in current medical research, and evaluate their effect and potential of improving outcomes in ischemic stroke.
Collapse
Affiliation(s)
- Fan Wang
- 1 Department of Neurosurgery, Fudan University Huashan Hospital, National Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,2 Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Hailiang Tang
- 1 Department of Neurosurgery, Fudan University Huashan Hospital, National Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianhong Zhu
- 1 Department of Neurosurgery, Fudan University Huashan Hospital, National Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - John H Zhang
- 3 Center for Neuroscience Research, Loma Linda University School of Medicine, CA, USA
| |
Collapse
|