1
|
Khanra S, Singh S, Singh TG. Mechanistic exploration of ubiquitination-mediated pathways in cerebral ischemic injury. Mol Biol Rep 2024; 52:22. [PMID: 39607439 DOI: 10.1007/s11033-024-10123-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
The ubiquitin-proteasome system (UPS) plays a pivotal role in regulating protein homeostasis and cellular processes, including protein degradation, trafficking, DNA repair, and cell signaling. During cerebral ischemia, ischemic conditions profoundly disrupt UPS activity, leading to proteasomal dysfunction and the accumulation of abnormal proteins. This imbalance contributes to neuronal injury and cell death observed in ischemic stroke. The UPS is intricately linked to various signaling pathways crucial for neuronal survival, inflammation, and cellular stress response, such as NF-κB, TRIM, TRIP, JAK-STAT, PI3K/Akt, and ERK1/2. Alterations in the ubiquitination process can significantly impact the activation and regulation of these pathways, exacerbating ischemic brain injury. Therapeutic approaches targeting the UPS in cerebral ischemia aim to rebalance protein levels, reduce proteotoxic stress, and mitigate neuronal injury. Strategies include proteasome inhibition, targeting specific ubiquitin ligases and deubiquitinating enzymes, and modulating ubiquitination-mediated regulation of key signaling pathways implicated in ischemia-induced pathophysiology. Therefore, the present review discusses the molecular mechanisms underlying UPS dysfunction in ischemic stroke is crucial for developing effective therapeutic interventions. Modulating ubiquitination-mediated pathways through therapeutic interventions targeting specific UPS components holds significant promise for mitigating ischemic brain injury and promoting neuroprotection and functional recovery in patients with cerebral ischemia.
Collapse
Affiliation(s)
- Supriya Khanra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| |
Collapse
|
2
|
Wan H, He M, Cheng C, Yang K, Wu H, Cong P, Huang X, Zhang Q, Shi Y, Hu J, Tian L, Xiong L. Clec7a Worsens Long-Term Outcomes after Ischemic Stroke by Aggravating Microglia-Mediated Synapse Elimination. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403064. [PMID: 39088351 PMCID: PMC11423142 DOI: 10.1002/advs.202403064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/12/2024] [Indexed: 08/03/2024]
Abstract
Ischemic stroke (IS) is a leading cause of morbidity and mortality globally and triggers a series of reactions leading to primary and secondary brain injuries and permanent neurological deficits. Microglia in the central nervous system play dual roles in neuroprotection and responding to ischemic brain damage. Here, an IS model is employed to determine the involvement of microglia in phagocytosis at excitatory synapses. Additionally, the effects of pharmacological depletion of microglia are investigated on improving neurobehavioral outcomes and mitigating brain injury. RNA sequencing of microglia reveals an increase in phagocytosis-associated pathway activity and gene expression, and C-type lectin domain family 7 member A (Clec7a) is identified as a key regulator of this process. Manipulating microglial Clec7a expression can potentially regulate microglial phagocytosis of synapses, thereby preventing synaptic loss and improving neurobehavioral outcomes after IS. It is further demonstrat that microglial Clec7a interacts with neuronal myeloid differentiation protein 2 (MD2), a key molecule mediating poststroke neurological injury, and propose the novel hypothesis that MD2 is a ligand for microglial Clec7a. These findings suggest that microglial Clec7a plays a critical role in mediating synaptic phagocytosis in a mouse model of IS, suggesting that Clec7a may be a therapeutic target for IS.
Collapse
Affiliation(s)
- Hanxi Wan
- Shanghai Key Laboratory of Anesthesiology and Brain Functional ModulationTranslational Research Institute of Brain and Brain‐Like IntelligenceClinical Research Center for Anesthesiology and Perioperative MedicineDepartment of Anesthesiology and Perioperative MedicineShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghai200434China
| | - Mengfan He
- Shanghai Key Laboratory of Anesthesiology and Brain Functional ModulationTranslational Research Institute of Brain and Brain‐Like IntelligenceClinical Research Center for Anesthesiology and Perioperative MedicineDepartment of Anesthesiology and Perioperative MedicineShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghai200434China
| | - Chun Cheng
- Shanghai Key Laboratory of Anesthesiology and Brain Functional ModulationTranslational Research Institute of Brain and Brain‐Like IntelligenceClinical Research Center for Anesthesiology and Perioperative MedicineDepartment of Anesthesiology and Perioperative MedicineShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghai200434China
| | - Kexin Yang
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Huanghui Wu
- Shanghai Key Laboratory of Anesthesiology and Brain Functional ModulationTranslational Research Institute of Brain and Brain‐Like IntelligenceClinical Research Center for Anesthesiology and Perioperative MedicineDepartment of Anesthesiology and Perioperative MedicineShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghai200434China
| | - Peilin Cong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional ModulationTranslational Research Institute of Brain and Brain‐Like IntelligenceClinical Research Center for Anesthesiology and Perioperative MedicineDepartment of Anesthesiology and Perioperative MedicineShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghai200434China
| | - Xinwei Huang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional ModulationTranslational Research Institute of Brain and Brain‐Like IntelligenceClinical Research Center for Anesthesiology and Perioperative MedicineDepartment of Anesthesiology and Perioperative MedicineShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghai200434China
| | - Qian Zhang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional ModulationTranslational Research Institute of Brain and Brain‐Like IntelligenceClinical Research Center for Anesthesiology and Perioperative MedicineDepartment of Anesthesiology and Perioperative MedicineShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghai200434China
| | - Yufei Shi
- Shanghai Key Laboratory of Anesthesiology and Brain Functional ModulationTranslational Research Institute of Brain and Brain‐Like IntelligenceClinical Research Center for Anesthesiology and Perioperative MedicineDepartment of Anesthesiology and Perioperative MedicineShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghai200434China
| | - Ji Hu
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Li Tian
- Shanghai Key Laboratory of Anesthesiology and Brain Functional ModulationTranslational Research Institute of Brain and Brain‐Like IntelligenceClinical Research Center for Anesthesiology and Perioperative MedicineDepartment of Anesthesiology and Perioperative MedicineShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghai200434China
| | - Lize Xiong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional ModulationTranslational Research Institute of Brain and Brain‐Like IntelligenceClinical Research Center for Anesthesiology and Perioperative MedicineDepartment of Anesthesiology and Perioperative MedicineShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghai200434China
| |
Collapse
|
3
|
Huang J, Zhu Z, Schlüter D, Lambertsen KL, Song W, Wang X. Ubiquitous regulation of cerebrovascular diseases by ubiquitin-modifying enzymes. Clin Transl Med 2024; 14:e1719. [PMID: 38778460 PMCID: PMC11111633 DOI: 10.1002/ctm2.1719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
Cerebrovascular diseases (CVDs) are a major threat to global health. Elucidation of the molecular mechanisms underlying the pathology of CVDs is critical for the development of efficacious preventative and therapeutic approaches. Accumulating studies have highlighted the significance of ubiquitin-modifying enzymes (UMEs) in the regulation of CVDs. UMEs are a group of enzymes that orchestrate ubiquitination, a post-translational modification tightly involved in CVDs. Functionally, UMEs regulate multiple pathological processes in ischemic and hemorrhagic stroke, moyamoya disease, and atherosclerosis. Considering the important roles of UMEs in CVDs, they may become novel druggable targets for these diseases. Besides, techniques applying UMEs, such as proteolysis-targeting chimera and deubiquitinase-targeting chimera, may also revolutionize the therapy of CVDs in the future.
Collapse
Affiliation(s)
- Jingyong Huang
- Department of Vascular SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Zhenhu Zhu
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Dirk Schlüter
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical SchoolHannoverGermany
| | - Kate Lykke Lambertsen
- Department of Neurobiology ResearchInstitute of Molecular MedicineUniversity of Southern DenmarkOdense CDenmark
- BRIGDE—Brain Research—Inter‐Disciplinary Guided Excellence, Department of Clinical ResearchUniversity of Southern DenmarkOdense CDenmark
- Department of NeurologyOdense University HospitalOdense CDenmark
| | - Weihong Song
- Oujiang LaboratoryKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceZhejiang Provincial Clinical Research Center for Mental DisordersInstitute of AgingSchool of Mental HealthAffiliated Kangning HospitalThe Second Affiliated HospitalYuying Children's HospitalWenzhou Medical UniversityWenzhouChina
| | - Xu Wang
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
- Oujiang LaboratoryKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceZhejiang Provincial Clinical Research Center for Mental DisordersInstitute of AgingSchool of Mental HealthAffiliated Kangning HospitalThe Second Affiliated HospitalYuying Children's HospitalWenzhou Medical UniversityWenzhouChina
| |
Collapse
|
4
|
Lu E, Tang Y, Chen J, Al Mamun A, Feng Z, Cao L, Zhang X, Zhu Y, Mo T, Chun C, Zhang H, Du J, Jiang C, Xiao J. Stub1 ameliorates ER stress-induced neural cell apoptosis and promotes locomotor recovery through restoring autophagy flux after spinal cord injury. Exp Neurol 2023; 368:114495. [PMID: 37495008 DOI: 10.1016/j.expneurol.2023.114495] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/04/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
Endoplasmic reticulum (ER) stress-induced apoptosis and autophagy flux blockade significantly contribute to neuronal pathology of spinal cord injury (SCI). Yet, the molecular interplay between these two distinctive pathways in mediating the pathology of SCI remains largely unexplored. Currently, we aimed at exploring the crucial role of Stub1 in maintaining ER homeostasis and regulating autophagic flux after SCI. Our results demonstrate that Stub1 reduces ER stress induced neuronal apoptosis, promotes axonal regeneration, inhibits glial scar formation and fosters functional recovery by restoring autophagic flux following SCI. Stub1 enhances autophagic flux following SCI by alleviating the permeabilization of lysosomal membrane through activating TFEB. Importantly, we showed that Stub1 promotes the activation of TFEB by targeting HDAC2 for ubiquitination and degradation. Furthermore, the neuroprotective effect of Stub1 on SCI was abrogated by chloroquine administration, underscoring the essential role of Stub1-mediated enhancement of autophagic flux in its protective effects against SCI. Collectively, our data highlights the vital role of Stub1 in regulating ER stress and autophagy flux after SCI, and propose its potential as a promising target for neuroprotective interventions in SCI.
Collapse
Affiliation(s)
- Ermei Lu
- Department of Arthroplasty, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317500, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, South Korea
| | - Yingdan Tang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiaojiao Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Abdullah Al Mamun
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhiyi Feng
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lin Cao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xie Zhang
- Department of Pharmacy, Ningbo Medical Treatment Center Li Huili Hospital, Ningbo, Zhejiang 315040, China
| | - Yunsen Zhu
- Department of Arthroplasty, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317500, China
| | - Tingting Mo
- Department of Arthroplasty, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317500, China
| | - ChangJu Chun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, South Korea
| | - Hongyu Zhang
- Department of Arthroplasty, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317500, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiqing Du
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Chang Jiang
- Department of Arthroplasty, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317500, China.
| | - Jian Xiao
- Department of Arthroplasty, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317500, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
5
|
Kim J, de Haro M, Al-Ramahi I, Garaicoechea LL, Jeong HH, Sonn JY, Tadros B, Liu Z, Botas J, Zoghbi HY. Evolutionarily conserved regulators of tau identify targets for new therapies. Neuron 2023; 111:824-838.e7. [PMID: 36610398 DOI: 10.1016/j.neuron.2022.12.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/29/2022] [Accepted: 12/08/2022] [Indexed: 01/09/2023]
Abstract
Tauopathies are neurodegenerative diseases that involve the pathological accumulation of tau proteins; in this family are Alzheimer disease, corticobasal degeneration, and chronic traumatic encephalopathy, among others. Hypothesizing that reducing this accumulation could mitigate pathogenesis, we performed a cross-species genetic screen targeting 6,600 potentially druggable genes in human cells and Drosophila. We found and validated 83 hits in cells and further validated 11 hits in the mouse brain. Three of these hits (USP7, RNF130, and RNF149) converge on the C terminus of Hsc70-interacting protein (CHIP) to regulate tau levels, highlighting the role of CHIP in maintaining tau proteostasis in the brain. Knockdown of each of these three genes in adult tauopathy mice reduced tau levels and rescued the disease phenotypes. This study thus identifies several points of intervention to reduce tau levels and demonstrates that reduction of tau levels via regulation of this pathway is a viable therapeutic strategy for Alzheimer disease and other tauopathies.
Collapse
Affiliation(s)
- Jiyoen Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Maria de Haro
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Center for Alzheimer's and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Hyun-Hwan Jeong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Jun Young Sonn
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Bakhos Tadros
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Zhandong Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Alzheimer's and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX 77030, USA
| | - Huda Yahya Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
6
|
Hahn KR, Kwon HJ, Yoon YS, Kim DW, Hwang IK. CHIP ameliorates neuronal damage in H 2O 2-induced oxidative stress in HT22 cells and gerbil ischemia. Sci Rep 2022; 12:20659. [PMID: 36450819 PMCID: PMC9712579 DOI: 10.1038/s41598-022-22766-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 10/19/2022] [Indexed: 12/03/2022] Open
Abstract
Carboxyl terminus of Hsc70-interacting protein (CHIP) is highly conserved and is linked to the connection between molecular chaperones and proteasomes to degrade chaperone-bound proteins. In this study, we synthesized the transactivator of transcription (Tat)-CHIP fusion protein for effective delivery into the brain and examined the effects of CHIP against oxidative stress in HT22 cells induced by hydrogen peroxide (H2O2) treatment and ischemic damage in gerbils by 5 min of occlusion of both common carotid arteries, to elucidate the possibility of using Tat-CHIP as a therapeutic agent against ischemic damage. Tat-CHIP was effectively delivered to HT22 hippocampal cells in a concentration- and time-dependent manner, and protein degradation was confirmed in HT22 cells. In addition, Tat-CHIP significantly ameliorated the oxidative damage induced by 200 μM H2O2 and decreased DNA fragmentation and reactive oxygen species formation. In addition, Tat-CHIP showed neuroprotective effects against ischemic damage in a dose-dependent manner and significant ameliorative effects against ischemia-induced glial activation, oxidative stress (hydroperoxide and malondialdehyde), pro-inflammatory cytokines (interleukin-1β, interleukin-6, and tumor necrosis factor-α) release, and glutathione and its redox enzymes (glutathione peroxidase and glutathione reductase) in the hippocampus. These results suggest that Tat-CHIP could be a therapeutic agent that can protect neurons from ischemic damage.
Collapse
Affiliation(s)
- Kyu Ri Hahn
- grid.31501.360000 0004 0470 5905Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826 South Korea
| | - Hyun Jung Kwon
- grid.411733.30000 0004 0532 811XDepartment of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457 South Korea ,grid.256753.00000 0004 0470 5964Department of Biomedical Sciences, and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, 24252 South Korea
| | - Yeo Sung Yoon
- grid.31501.360000 0004 0470 5905Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826 South Korea
| | - Dae Won Kim
- grid.411733.30000 0004 0532 811XDepartment of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457 South Korea
| | - In Koo Hwang
- grid.31501.360000 0004 0470 5905Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826 South Korea
| |
Collapse
|
7
|
Mao R, Zong N, Hu Y, Chen Y, Xu Y. Neuronal Death Mechanisms and Therapeutic Strategy in Ischemic Stroke. Neurosci Bull 2022; 38:1229-1247. [PMID: 35513682 PMCID: PMC9554175 DOI: 10.1007/s12264-022-00859-0] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/18/2022] [Indexed: 12/17/2022] Open
Abstract
Ischemic stroke caused by intracranial vascular occlusion has become increasingly prevalent with considerable mortality and disability, which gravely burdens the global economy. Current relatively effective clinical treatments are limited to intravenous alteplase and thrombectomy. Even so, patients still benefit little due to the short therapeutic window and the risk of ischemia/reperfusion injury. It is therefore urgent to figure out the neuronal death mechanisms following ischemic stroke in order to develop new neuroprotective strategies. Regarding the pathogenesis, multiple pathological events trigger the activation of cell death pathways. Particular attention should be devoted to excitotoxicity, oxidative stress, and inflammatory responses. Thus, in this article, we first review the principal mechanisms underlying neuronal death mediated by these significant events, such as intrinsic and extrinsic apoptosis, ferroptosis, parthanatos, pyroptosis, necroptosis, and autophagic cell death. Then, we further discuss the possibility of interventions targeting these pathological events and summarize the present pharmacological achievements.
Collapse
Affiliation(s)
- Rui Mao
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Ningning Zong
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Yujie Hu
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Ying Chen
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Yun Xu
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China.
- The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, 210008, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China.
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, 210008, China.
- Nanjing Neurology Clinic Medical Center, Nanjing, 210008, China.
| |
Collapse
|
8
|
Yao D, Zhang S, Hu Z, Luo H, Mao C, Fan Y, Tang M, Liu F, Shen S, Fan L, Li M, Shi J, Li J, Ma D, Xu Y, Shi C. CHIP ameliorates cerebral ischemia-reperfusion injury by attenuating necroptosis and inflammation. Aging (Albany NY) 2021; 13:25564-25577. [PMID: 34905731 PMCID: PMC8714161 DOI: 10.18632/aging.203774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/24/2021] [Indexed: 01/01/2023]
Abstract
Blood reperfusion of ischemic cerebral tissue may cause cerebral ischemia-reperfusion (CIR) injury. Necroptosis and inflammation have been demonstrated to be involved in the disease-related process of CIR injury. The E3 ubiquitin ligase carboxyl terminus of Hsp70-interacting protein (CHIP) can modulate multiple cellular signaling processes, including necroptosis and inflammation. Numerous studies have demonstrated the neuroprotective effects of CHIP on multiple central nervous system (CNS) diseases. However, the effects of CHIP on CIR injury have not been fully explored. We hypothesize that CHIP can exert neuroprotective effects by attenuating necroptosis and inflammation during CIR injury. In the present study, adult wild-type (WT) C57BL/6 mice and CHIP knock-in (KI) mice with a C57BL/6 background and CHIP overexpression in neural tissue underwent middle cerebral artery occlusion (MCAO) surgery to simulate CIR onset. Our data indicated that CHIP expression in the peri-infarct tissue was markedly increased after MCAO surgery. Compared with WT mice, CHIP KI mice significantly improved neurological deficit scores, decreased cerebral infarct volume, and attenuated brain edema and neuronal damage. Meanwhile, CHIP overexpression attenuated necroptosis and inflammation induced by MCAO surgery. These findings indicated that overexpression of CHIP might exert neuroprotective effects by attenuating necroptosis and inflammation during CIR injury, and increasing CHIP levels may be a potential strategy in cerebrovascular disease therapy.
Collapse
Affiliation(s)
- Dabao Yao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Haiyang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Yu Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Mibo Tang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Fen Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Si Shen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Liyuan Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Mengjie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Jingjing Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Jiadi Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Dongrui Ma
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou 450000, Henan, China
| |
Collapse
|
9
|
Jha RM, Raikwar SP, Mihaljevic S, Casabella AM, Catapano JS, Rani A, Desai S, Gerzanich V, Simard JM. Emerging therapeutic targets for cerebral edema. Expert Opin Ther Targets 2021; 25:917-938. [PMID: 34844502 PMCID: PMC9196113 DOI: 10.1080/14728222.2021.2010045] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/20/2021] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Cerebral edema is a key contributor to death and disability in several forms of brain injury. Current treatment options are limited, reactive, and associated with significant morbidity. Targeted therapies are emerging based on a growing understanding of the molecular underpinnings of cerebral edema. AREAS COVERED We review the pathophysiology and relationships between different cerebral edema subtypes to provide a foundation for emerging therapies. Mechanisms for promising molecular targets are discussed, with an emphasis on those advancing in clinical trials, including ion and water channels (AQP4, SUR1-TRPM4) and other proteins/lipids involved in edema signaling pathways (AVP, COX2, VEGF, and S1P). Research on novel treatment modalities for cerebral edema [including recombinant proteins and gene therapies] is presented and finally, insights on reducing secondary injury and improving clinical outcome are offered. EXPERT OPINION Targeted molecular strategies to minimize or prevent cerebral edema are promising. Inhibition of SUR1-TRPM4 (glyburide/glibenclamide) and VEGF (bevacizumab) are currently closest to translation based on advances in clinical trials. However, the latter, tested in glioblastoma multiforme, has not demonstrated survival benefit. Research on recombinant proteins and gene therapies for cerebral edema is in its infancy, but early results are encouraging. These newer modalities may facilitate our understanding of the pathobiology underlying cerebral edema.
Collapse
Affiliation(s)
- Ruchira M. Jha
- Department of Neurology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Sudhanshu P. Raikwar
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Sandra Mihaljevic
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | | | - Joshua S. Catapano
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Anupama Rani
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Shashvat Desai
- Department of Neurology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore MD, USA
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore MD, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore MD, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore MD, USA
| |
Collapse
|
10
|
Liu Y, Li YP, Xiao LM, Chen LK, Zheng SY, Zeng EM, Xu CH. Extracellular vesicles derived from M2 microglia reduce ischemic brain injury through microRNA-135a-5p/TXNIP/NLRP3 axis. J Transl Med 2021; 101:837-850. [PMID: 33875790 DOI: 10.1038/s41374-021-00545-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/22/2022] Open
Abstract
Accumulating evidences have suggested that extracellular vesicles (EVs) are crucial players in the pathogenesis of ischemic brain injury. This study was designed to explore the specific functions of M2 phenotype microglia-derived EVs in ischemic brain injury progression. The expression of microRNA-135a-5p (miR-135a-5p) in M2 microglia-derived EVs was determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), followed by the identification of expression relationship among miR-135a-5p, thioredoxin-interacting protein (TXNIP), and nod-like receptor protein 3 (NLRP3) by dual luciferase reporter gene assay. After construction of an oxygen-glucose deprivation/reperfusion (OGD/R) cell model, the effects of miR-135a-5p on the biological characteristics of HT-22 cells were assessed by cell counting kit 8 (CCK-8) assay and flow cytometry. Finally, a mouse model of transient middle cerebral artery occlusion (tMCAO) was established and cerebral infarction volume was determined by triphenyltetrazolium chloride (TTC) staining and the expression of IL-18 and IL-1β in the brain tissue was determined by enzyme-linked immunosorbent assay (ELISA). We found that M2 microglia-derived EVs had high expression of miR-135a-5p, and that miR-135a-5p in M2 microglia-derived EVs negatively regulated the expression of NLRP3 via TXNIP. Overexpression of miR-135a-5p promoted the proliferation but inhibited the apoptosis of neuronal cells, and inhibited the expression of autophagy-related proteins. M2 microglia-derived EVs delivered miR-135a-5p into neuronal cells to inhibit TXNIP expression, which further inhibited the activation of NLRP3 inflammasome, thereby reducing neuronal autophagy and ischemic brain injury. Hence, M2 microglia-derived EVs are novel therapeutic targets for ischemic brain injury treatment.
Collapse
Affiliation(s)
- Yue Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - You-Ping Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Li-Min Xiao
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Li-Ke Chen
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Su-Yue Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Er-Ming Zeng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Chun-Hua Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, PR China.
| |
Collapse
|
11
|
CHIP as a therapeutic target for neurological diseases. Cell Death Dis 2020; 11:727. [PMID: 32908122 PMCID: PMC7481199 DOI: 10.1038/s41419-020-02953-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/16/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
Abstract
Carboxy-terminus of Hsc70-interacting protein (CHIP) functions both as a molecular co-chaperone and ubiquitin E3 ligase playing a critical role in modulating the degradation of numerous chaperone-bound proteins. To date, it has been implicated in the regulation of numerous biological functions, including misfolded-protein refolding, autophagy, immunity, and necroptosis. Moreover, the ubiquitous expression of CHIP in the central nervous system suggests that it may be implicated in a wide range of functions in neurological diseases. Several recent studies of our laboratory and other groups have highlighted the beneficial role of CHIP in the pathogenesis of several neurological diseases. The objective of this review is to discuss the possible molecular mechanisms that contribute to the pathogenesis of neurological diseases in which CHIP has a pivotal role, such as stroke, intracerebral hemorrhage, Alzheimer's disease, Parkinson's disease, and polyglutamine diseases; furthermore, CHIP mutations could also cause neurodegenerative diseases. Based on the available literature, CHIP overexpression could serve as a promising therapeutic target for several neurological diseases.
Collapse
|
12
|
Simões-Pires EN, Ferreira ST, Linden R. Roles of glutamate receptors in a novel in vitro model of early, comorbid cerebrovascular, and Alzheimer's diseases. J Neurochem 2020; 156:539-552. [PMID: 32683713 DOI: 10.1111/jnc.15129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 11/28/2022]
Abstract
Systemic multimorbidity is highly prevalent in the elderly and, remarkably, coexisting neuropathological markers of Alzheimer's (AD) and cerebrovascular (CVD) diseases are found at autopsy in most brains of patients clinically diagnosed as AD. Little is known on neurodegeneration peculiar to comorbidities, especially at early stages when pathogenesis may propagate at subclinical levels. We developed a novel in vitro model of comorbid CVD/AD in organotypic hippocampal cultures, by combining oxygen-glucose deprivation (OGD) and exposure to amyloid-Aβ oligomers (AβOs), both applied at levels subtoxic to neurons when used in isolation. We focused on synaptic proteins and the roles of glutamate receptors, which have been implicated in many basic and clinical approaches to either CVD or AD. Subtoxic insults by OGD and AβOs synergized to reduce levels of synaptophysin (SYP) and PSD-95 without cell death, while effects of antagonists of either metabotropic or ionotropic glutamate receptors were distinct from reports in models of isolated CVD or AD. In particular, modulation of glutamate receptors differentially impacted SYP and PSD-95, and antagonists of a single receptor subtype had distinct effects when either isolated or combined. Our findings highlight the complexity of CVD/AD comorbidity, help understand variable responses to glutamate receptor antagonists in patients diagnosed with AD and may contribute to future development of therapeutics based on investigation of the pattern of progressive comorbidity.
Collapse
Affiliation(s)
| | - Sergio T Ferreira
- Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, Brazil.,Instituto de Bioquímica Médica Leopoldo de Meis, UFRJ, Rio de Janeiro, Brazil
| | - Rafael Linden
- Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Kwon HJ, Kim DS, Kim W, Jung HY, Yu YH, Ju YI, Park DK, Hwang IK, Kim DW, Yoo DY. Tat-Cannabinoid Receptor Interacting Protein Reduces Ischemia-Induced Neuronal Damage and Its Possible Relationship with 14-3-3η. Cells 2020; 9:cells9081827. [PMID: 32756411 PMCID: PMC7465282 DOI: 10.3390/cells9081827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/20/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
Cannabinoid receptor-interacting protein 1a (CRIP1a) binds to the C-terminal domain of cannabinoid 1 receptor (CB1R) and regulates CB1R activities. In this study, we made Tat-CRIP1a fusion proteins to enhance CRIP1a penetration into neurons and brain and to evaluate the function of CRIP1a in neuroprotection following oxidative stress in HT22 hippocampal cells and transient forebrain ischemia in gerbils. Purified exogenous Tat-CRIP1a was penetrated into HT22 cells in a time and concentration-dependent manner and prevented H2O2-induced reactive oxygen species formation, DNA fragmentation, and cell damage. Tat-CRIP1a fusion protein also ameliorated the reduction of 14-3-3η expression by H2O2 treatment in HT22 cells. Ischemia–reperfusion damage caused motor hyperactivity in the open field test of gerbils; however, the treatment of Tat-CRIP1a significantly reduced hyperactivity 1 day after ischemia. Four days after ischemia, the administration of Tat-CRIP1a restored the loss of pyramidal neurons and decreased reactive astrocytosis and microgliosis induced by ischemic damage in the hippocampal cornu Ammonis (CA)1 region. Ischemic damage decreased 14-3-3η expression in all hippocampal sub-regions 4 days after ischemia; however, the treatment of Tat-CRIP1 ameliorated the reduction of 14-3-3η expression. These results suggest that Tat-CRIP1a attenuates neuronal damage and hyperactivity induced by ischemic damage, and it restores normal expression levels of 14-3-3η protein in the hippocampus.
Collapse
Affiliation(s)
- Hyun Jung Kwon
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Korea;
| | - Duk-Soo Kim
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-Si 31151, Korea; (D.-S.K.); (Y.H.Y.); (Y.I.J.); (D.-K.P.)
| | - Woosuk Kim
- Department of Biomedical Sciences and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea;
| | - Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (H.Y.J.); (I.K.H.)
| | - Yeon Hee Yu
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-Si 31151, Korea; (D.-S.K.); (Y.H.Y.); (Y.I.J.); (D.-K.P.)
| | - Young In Ju
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-Si 31151, Korea; (D.-S.K.); (Y.H.Y.); (Y.I.J.); (D.-K.P.)
| | - Dae-Kyoon Park
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-Si 31151, Korea; (D.-S.K.); (Y.H.Y.); (Y.I.J.); (D.-K.P.)
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (H.Y.J.); (I.K.H.)
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Korea;
- Correspondence: (D.W.K.); (D.Y.Y.); Tel.: +82-33-640-2229 (D.W.K.); +82-41-570-2472 (D.Y.Y.)
| | - Dae Young Yoo
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-Si 31151, Korea; (D.-S.K.); (Y.H.Y.); (Y.I.J.); (D.-K.P.)
- Correspondence: (D.W.K.); (D.Y.Y.); Tel.: +82-33-640-2229 (D.W.K.); +82-41-570-2472 (D.Y.Y.)
| |
Collapse
|
14
|
The Role of Ubiquitin-Proteasome Pathway and Autophagy-Lysosome Pathway in Cerebral Ischemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5457049. [PMID: 32089771 PMCID: PMC7016479 DOI: 10.1155/2020/5457049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/24/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022]
Abstract
The ubiquitin-proteasome pathway and autophagy-lysosome pathway are two major routes for clearance of aberrant cellular components to maintain protein homeostasis and normal cellular functions. Accumulating evidence shows that these two pathways are impaired during cerebral ischemia, which contributes to ischemic-induced neuronal necrosis and apoptosis. This review aims to critically discuss current knowledge and controversies on these two pathways in response to cerebral ischemic stress. We also discuss molecular mechanisms underlying the impairments of these protein degradation pathways and how such impairments lead to neuronal damage after cerebral ischemia. Further, we review the recent advance on the understanding of the involvement of these two pathways in the pathological process during many therapeutic approaches against cerebral ischemia. Despite recent advances, the exact role and molecular mechanisms of these two pathways following cerebral ischemia are complex and not completely understood, of which better understanding will provide avenues to develop novel therapeutic strategies for ischemic stroke.
Collapse
|
15
|
Madrigal SC, McNeil Z, Sanchez-Hodge R, Shi CH, Patterson C, Scaglione KM, Schisler JC. Changes in protein function underlie the disease spectrum in patients with CHIP mutations. J Biol Chem 2019; 294:19236-19245. [PMID: 31619515 PMCID: PMC6916485 DOI: 10.1074/jbc.ra119.011173] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Indexed: 12/19/2022] Open
Abstract
Monogenetic disorders that cause cerebellar ataxia are characterized by defects in gait and atrophy of the cerebellum; however, patients often suffer from a spectrum of disease, complicating treatment options. Spinocerebellar ataxia autosomal recessive 16 (SCAR16) is caused by coding mutations in STUB1, a gene that encodes the multifunctional enzyme CHIP (C terminus of HSC70-interacting protein). The disease spectrum of SCAR16 includes a varying age of disease onset, cognitive dysfunction, increased tendon reflex, and hypogonadism. Although SCAR16 mutations span the multiple functional domains of CHIP, it is unclear whether the location of the mutation and the change in the biochemical properties of CHIP contributes to the clinical spectrum of SCAR16. In this study, we examined relationships between the clinical phenotypes of SCAR16 patients and the changes in biophysical, biochemical, and functional properties of the corresponding mutated protein. We found that the severity of ataxia did not correlate with age of onset; however, cognitive dysfunction, increased tendon reflex, and ancestry were able to predict 54% of the variation in ataxia severity. We further identified domain-specific relationships between biochemical changes in CHIP and clinical phenotypes and specific biochemical activities that associate selectively with either increased tendon reflex or cognitive dysfunction, suggesting that specific changes to CHIP-HSC70 dynamics contribute to the clinical spectrum of SCAR16. Finally, linear models of SCAR16 as a function of the biochemical properties of CHIP support the concept that further inhibiting mutant CHIP activity lessens disease severity and may be useful in the design of patient-specific targeted approaches to treat SCAR16.
Collapse
Affiliation(s)
- Sabrina C Madrigal
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Zipporah McNeil
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Rebekah Sanchez-Hodge
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Chang-He Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Cam Patterson
- University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | | | - Jonathan C Schisler
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Pharmacology and Department of Pathology and Lab Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
16
|
Zhu F, Wang Y, Xu Z, Qu H, Zhang H, Niu L, Xue H, Jing D, He H. Novel adeno‑associated virus‑based genetic vaccines encoding hepatitis C virus E2 glycoprotein elicit humoral immune responses in mice. Mol Med Rep 2018; 19:1016-1023. [PMID: 30569131 PMCID: PMC6323296 DOI: 10.3892/mmr.2018.9739] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/20/2018] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) infection remains a major public health issue despite the introduction of several direct-acting antiviral agents (DAAs), with some 185 million individuals infected with HCV worldwide. There is an urgent need for an effective prophylactic HCV vaccine. In the present study, we constructed genetic vaccines based on novel recombinant adeno-associated viral (rAAV) vectors (AAV2/8 or AAV2/rh32.33) that express the envelope glycoprotein E2 from the HCV genotype 1b. Expression of HCV E2 protein in 293 cells was confirmed by western blot analysis. rAAV2/8.HCV E2 vaccine or rAAV2/rh32.33.HCV E2 vaccine was intramuscularly injected into C57BL/6 mice. HCV E2-specific antigen was produced, and long-lasting specific antibody responses remained detectable XVI weeks following immunization. In addition, the rAAV2/rh32.33 vaccine induced higher antigen-specific antibody levels than the rAAV2/8 vaccine or AAV plasmid. Moreover, both AAV vaccines induced neutralizing antibodies against HCV genotypes 1a and 1b. Finally, it is worth mentioning that neutralizing antibody levels directed against AAV2/rh32.33 were lower than those against AAV2/8 in both mouse and human serum. These results demonstrate that AAV vectors, especially the AAVrh32.33, have particularly favorable immunogenicity for development into an effective HCV vaccine.
Collapse
Affiliation(s)
- Fengqin Zhu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Yibo Wang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Zhen Xu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Haiyang Qu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Hairong Zhang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Lingling Niu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Honglu Xue
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Dehuai Jing
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Heng He
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| |
Collapse
|
17
|
Anisomycin prevents OGD-induced necroptosis by regulating the E3 ligase CHIP. Sci Rep 2018; 8:6379. [PMID: 29686306 PMCID: PMC5913227 DOI: 10.1038/s41598-018-24414-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 03/23/2018] [Indexed: 01/02/2023] Open
Abstract
Necroptosis is an essential pathophysiological process in cerebral ischemia-related diseases. Therefore, targeting necroptosis may prevent cell death and provide a much-needed therapy. Ansiomycin is an inhibitor of protein synthesis which can also activate c-Jun N-terminal kinases. The present study demonstrated that anisomycin attenuated necroptosis by upregulating CHIP (carboxyl terminus of Hsc70-interacting protein) leading to the reduced levels of receptor-interacting protein kinase 1 (RIPK1) and receptor-interacting protein kinase 3 (RIPK3) proteins in two in vitro models of cerebral ischemia. Further exploration in this research revealed that losing neither the co-chaperone nor the ubiquitin E3 ligase function of CHIP could abolish its ability to reduce necroptosis. Collectively, this study identifies a novel means of preventing necroptosis in two in vitro models of cerebral ischemia injury through activating the expression of CHIP, and it may provide a potential target for the further study of the disease.
Collapse
|
18
|
Mao Y, Pei N, Chen X, Chen H, Yan R, Bai N, Li A, Li J, Zhang Y, Du H, Chen B, Sumners C, Wang X, Wang S, Li H. Angiotensin 1-7 Overexpression Mediated by a Capsid-optimized AAV8 Vector Leads to Significant Growth Inhibition of Hepatocellular Carcinoma In vivo. Int J Biol Sci 2018; 14:57-68. [PMID: 29483825 PMCID: PMC5821049 DOI: 10.7150/ijbs.22235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/14/2017] [Indexed: 12/19/2022] Open
Abstract
Background: Angiotensin-(1-7) [Ang-(1-7)] has been identified to inhibit the growth of many types of tumor cells both in vitro and in vivo. However, the rapid degradation of Ang-(1-7) in vivo limits its clinical application. Adeno-associated virus (AAV) serotype-8 is a remarkable vector for long-term in vivo gene delivery. Method: This study was designed to investigate the effects of AAV-mediated Ang-(1-7) overexpression on hepatocellular carcinoma. We first generated three different tyrosine (Y) to phenylalanine (F) mutants of AAV8 (Y447F, Y703F, Y708F) and evaluated their in vivo transduction efficiencies. Results: The data indicated that the Y703F mutant elicited a significant enhancement of liver gene delivery when compared with wild-type AAV8 (wtAAV8). The anti-tumor effect of Ang-(1-7) mediated by this optimized vector was evaluated in H22 hepatoma-bearing mice. Our results demonstrated that AAV-Ang-(1-7) persistently inhibited the growth of hepatocellular carcinoma by significantly downregulating angiogenesis. This was confirmed by observed decreases in the levels of the proangiogenic factors VEGF and PIGF. Conclusion: Collectively, these data suggest that Ang-(1-7) overexpression mediated by the optimized vector may be an effective alternative for hepatocellular carcinoma therapy due to its long-term and significant anti-tumor activity.
Collapse
Affiliation(s)
- Yingying Mao
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Nana Pei
- Department of Clinical Pathology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Xinglu Chen
- Clinical Laboratory,The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Huiying Chen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Renhe Yan
- Guangzhou Bioneeds Biotechnology CO., LTD, Guangzhou, Guangdong, China
| | - Na Bai
- Deparement of Nuclear Medicine, People's Hospital of Yuxi City, Yuxi, Yunnan, China
| | - Andrew Li
- Department of Biomedical Engineering, The Johns University School of Medicine, Baltimore, USA
| | - Jinlong Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanling Zhang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongyan Du
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Baihong Chen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Colin Sumners
- Departments of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - Xuejun Wang
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
- ✉ Corresponding authors: ; ;
| | - Shengqi Wang
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
- ✉ Corresponding authors: ; ;
| | - Hongwei Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
- ✉ Corresponding authors: ; ;
| |
Collapse
|
19
|
Hochrainer K. Protein Modifications with Ubiquitin as Response to Cerebral Ischemia-Reperfusion Injury. Transl Stroke Res 2017; 9:157-173. [DOI: 10.1007/s12975-017-0567-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/11/2017] [Accepted: 08/17/2017] [Indexed: 12/12/2022]
|