1
|
Wang QY, Xu BY, Wang Y, Lin YM, Zheng LF, Liu G, Li DZ, Jiang CS, Wang W, Zeng XP. Sodium aescinate promotes apoptosis of pancreatic stellate cells and alleviates pancreatic fibrosis by inhibiting the PI3K/Akt/FOXO1 signaling pathways. Front Pharmacol 2025; 16:1554260. [PMID: 40331192 PMCID: PMC12052937 DOI: 10.3389/fphar.2025.1554260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
Chronic pancreatitis (CP) is an inflammatory disease of progressive pancreatic fibrosis, and pancreatic stellate cells (PSCs) are key cells involved in pancreatic fibrosis. To date, there are no clinical therapies available to reverse inflammatory damage or pancreatic fibrosis associated with CP. Sodium Aescinate (SA) is a natural mixture of triterpene saponins extracted from the dried and ripe fruits of horse chestnut tree. It has been shown to have anti-inflammatory and anti-edematous effects. This study aims to explore the therapeutic potential of SA in CP and the molecular mechanism of its modulation. Through in vivo animal models and experiments, we found that SA significantly alleviated pancreatic inflammation and fibrosis in caerulein-induced CP mice model. In addition, SA inhibited the proliferation, migration and activation of PSCs as well as promoted apoptosis of PSCs through a series of experiments on cells in vitro including CCK-8 assay, Western blotting, immunofluorescence staining, wound-healing assay, Transwell migration assays, flow cytometric analysis, etc. Further RNA sequencing and in vitro validation assays revealed that inhibition of the PI3K/AKT/FOXO1 signaling pathway was involved in the SA mediated promotion of PSCs apoptosis, thus alleviating pancreatic fibrosis. In conclusion, this study revealed that SA may have promising potential as therapeutic agent for the treatment of CP, and the PI3K/AKT/FOXO1 pathway is a potential therapeutic target for pancreatic inflammation and fibrosis.
Collapse
Affiliation(s)
- Qing-Yun Wang
- Department of Digestive Diseases, Dongfang Hospital of Xiamen University, School of Medicine, Xiamen University, Fuzhou, China
- Department of Digestive Diseases, 900th Hospital of PLA Joint Logistic Support Force, Fuzhou, China
- Department of Digestive Diseases, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Bai-Yan Xu
- Department of Digestive Diseases, Huian County Hospital, Quanzhou, China
| | - Yi Wang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan-Mei Lin
- Department of Digestive Diseases, Dongfang Hospital of Xiamen University, School of Medicine, Xiamen University, Fuzhou, China
- Department of Digestive Diseases, 900th Hospital of PLA Joint Logistic Support Force, Fuzhou, China
- Department of Digestive Diseases, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Lin-Fu Zheng
- Department of Digestive Diseases, Dongfang Hospital of Xiamen University, School of Medicine, Xiamen University, Fuzhou, China
- Department of Digestive Diseases, 900th Hospital of PLA Joint Logistic Support Force, Fuzhou, China
- Department of Digestive Diseases, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Gang Liu
- Department of Digestive Diseases, Dongfang Hospital of Xiamen University, School of Medicine, Xiamen University, Fuzhou, China
- Department of Digestive Diseases, 900th Hospital of PLA Joint Logistic Support Force, Fuzhou, China
- Department of Digestive Diseases, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Da-Zhou Li
- Department of Digestive Diseases, Dongfang Hospital of Xiamen University, School of Medicine, Xiamen University, Fuzhou, China
- Department of Digestive Diseases, 900th Hospital of PLA Joint Logistic Support Force, Fuzhou, China
- Department of Digestive Diseases, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Chuan-Shen Jiang
- Department of Digestive Diseases, Dongfang Hospital of Xiamen University, School of Medicine, Xiamen University, Fuzhou, China
- Department of Digestive Diseases, 900th Hospital of PLA Joint Logistic Support Force, Fuzhou, China
- Department of Digestive Diseases, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Wen Wang
- Department of Digestive Diseases, Dongfang Hospital of Xiamen University, School of Medicine, Xiamen University, Fuzhou, China
- Department of Digestive Diseases, 900th Hospital of PLA Joint Logistic Support Force, Fuzhou, China
- Department of Digestive Diseases, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Xiang-Peng Zeng
- Department of Digestive Diseases, Dongfang Hospital of Xiamen University, School of Medicine, Xiamen University, Fuzhou, China
- Department of Digestive Diseases, 900th Hospital of PLA Joint Logistic Support Force, Fuzhou, China
- Department of Digestive Diseases, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| |
Collapse
|
2
|
Sun Y, Zhang Y, Shi F, Li Y, Wang C, Yu F, Chen T, Dong X, Xu Y, Zhao Y, Wan P. Characterization and Role of Glucagon-Like Peptide 1 Receptor in the Lacrimal Gland: Novel Insights into Diabetic Dry Eye Pathogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:797-810. [PMID: 39725294 DOI: 10.1016/j.ajpath.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/20/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024]
Abstract
This study aimed to investigate the expression of glucagon-like peptide 1 receptor (GLP-1R) in the lacrimal gland and explore the effects of topical application of GLP-1R agonist on lacrimal gland function in a murine model of type 1 diabetes. Tear secretion was evaluated using phenol red threads, RNA sequencing was used to explore gene expression profiles associated with hyperglycemia-induced lacrimal gland injuries, and histologic analysis was conducted to evaluate the degree of damage. The expression of GLP-1R in the lacrimal gland was first identified, and a down-regulation trend associated with diabetes was observed. RNA-sequencing data from lacrimal gland tissues revealed that differentially expressed genes were enriched in inflammatory response pathways. Histologic analysis demonstrated persistent hyperglycemia-induced infiltration of inflammatory cells and progressive fibrosis in the lacrimal gland, resulting in atrophy and diminished tear secretion. Topical application of liraglutide effectively attenuated inflammation and alleviated fibrosis, thus promoting tear production in diabetic mice. Additionally, local intervention with liraglutide promoted autophagy degradation function in the lacrimal gland. This study represents the first validation of GLP-1R expression in the lacrimal gland and its down-regulation induced by diabetes. Additionally, these findings demonstrate that topical administration of liraglutide eye drops, a GLP-1R agonist, can effectively mitigate hyperglycemia-induced damage in the lacrimal gland while enhancing tear secretion.
Collapse
Affiliation(s)
- Yan Sun
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yue Zhang
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fan Shi
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ye Li
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Congyao Wang
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fenfen Yu
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tingting Chen
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xia Dong
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuqi Xu
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Zhao
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Pengxia Wan
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
3
|
Aylar D, Karatug Kacar A. Studies on Treatment Within the Scope of Medical Biotechnology for Pancreatic Diseases. Mol Biotechnol 2025; 67:1321-1335. [PMID: 38627328 DOI: 10.1007/s12033-024-01142-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/14/2024] [Indexed: 03/22/2025]
Abstract
The pancreas is made of two compartments: the exocrine pancreas, a source of digestive enzymes, and the endocrine islets which produce vital hormones. Distinct diseases could arise in the pancreas such as diabetes, neuroendocrine tumors, pancreatitis, and pancreatic cancers. Various treatment methods are being researched against these diseases. Treatment with recombinant proteins, therapeutic antibodies, vaccination, gene therapy, tissue engineering, and stem cell treatment are treatment methods. Furthermore, biomarkers are important for both treatment and diagnosis. However, some of the treatment methods mentioned above have not yet been applied to some pancreatic diseases. This review provides insights into the latest advancements in diagnosis and treatment for pancreatic diseases within the scope of medical biotechnology. In addition, some methods that are not yet used for treatment purposes for pancreatic diseases but are used in other diseases that occur in different organs due to similar reasons have been investigated. In this context, possible diagnosis and treatment methods for pancreatic diseases are interpreted. The first aim of this review is to bring together and present the current diagnosis and treatment methods for pancreatic diseases. The second aim is to highlight methods that may have treatment potential by comparing pancreatic diseases that cannot be treated with similar diseases.
Collapse
Affiliation(s)
- Dilara Aylar
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Ayse Karatug Kacar
- Department of Biology, Faculty of Science, Istanbul University, Vezneciler, Istanbul, Turkey.
| |
Collapse
|
4
|
Wang H, Ciccocioppo R, Terai S, Shoeibi S, Carnevale G, De Marchi G, Tsuchiya A, Ishii S, Tonouchi T, Furuyama K, Yang Y, Mito M, Abe H, Di Tinco R, Cardinale V. Targeted animal models for preclinical assessment of cellular and gene therapies in pancreatic and liver diseases: regulatory and practical insights. Cytotherapy 2025; 27:259-278. [PMID: 39755978 DOI: 10.1016/j.jcyt.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 01/07/2025]
Abstract
Cellular and gene therapy (CGT) products have emerged as a popular approach in regenerative medicine, showing promise in treating various pancreatic and liver diseases in numerous clinical trials. Before these therapies can be tested in human clinical trials, it is essential to evaluate their safety and efficacy in relevant animal models. Such preclinical testing is often required to obtain regulatory approval for investigational new drugs. However, there is a lack of detailed guidance on selecting appropriate animal models for CGT therapies targeting specific pancreatic and liver conditions, such as pancreatitis and chronic liver diseases. In this review, the gastrointestinal committee for the International Society for Cell and Gene Therapy provides a summary of current recommendations for animal species and disease model selection, as outlined by the US Food and Drug Administration, with references to EU EMA and Japan PMDA. We discuss a range of small and large animal models, as well as humanized models, that are suitable for preclinical testing of CGT products aimed at treating pancreatic and liver diseases. For each model, we cover the associated pathophysiology, commonly used metrics for assessing disease status, the pros and limitations of the models, and the relevance of these models to human conditions. We also summarize the use and application of humanized mouse and other animal models in evaluating the safety and efficacy of CGT products. This review aims to provide comprehensive guidance for selecting appropriate animal species and models to help bridge the gap between the preclinical research and clinical trials using CGT therapies for specific pancreatic and liver diseases.
Collapse
Affiliation(s)
- Hongjun Wang
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, USA; Ralph H Johnson Veteran Medical Center, Charleston, South Carolina, USA.
| | - Rachele Ciccocioppo
- Department of Medicine, Gastroenterology Unit, Pancreas Institute, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Verona, Italy
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Sara Shoeibi
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia De Marchi
- Department of Medicine, Gastroenterology Unit, Pancreas Institute, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Verona, Italy
| | - Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Soichi Ishii
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takafumi Tonouchi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kaito Furuyama
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yuan Yang
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaki Mito
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hiroyuki Abe
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Rosanna Di Tinco
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Vincenzo Cardinale
- Department of Translational and Precision Medicine, University of Rome, Rome, Italy.
| |
Collapse
|
5
|
Shoeibi S, Green E, Wei H, Gou W, Strange C, Wang H. Immortalized mesenchymal stromal cells overexpressing alpha-1 antitrypsin protect acinar cells from apoptotic and ferroptotic cell death. J Cell Mol Med 2024; 28:e70093. [PMID: 39468387 PMCID: PMC11518823 DOI: 10.1111/jcmm.70093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 08/16/2024] [Accepted: 09/03/2024] [Indexed: 10/30/2024] Open
Abstract
Chronic pancreatitis (CP) is a progressive inflammatory disorder that impairs endocrine and exocrine function. Our previous work showed that mesenchymal stem/stromal cells (MSCs) and MSCs overexpressing alpha-1 antitrypsin (AAT-MSCs) could be therapeutic tools for CP. However, primary MSCs are predisposed to undergo senescence during culture expansion, which limits their therapeutic applications. We generated and characterized immortalized human MSCs (iMSCs) and AAT-MSCs (iAAT-MSCs) and tested their protective effect on 2,4,6-Trinitrobenzenesulfonic acid (TNBS)-induced acinar cell death in an in vitro cell culture system. Primary MSCs were immortalized by transduction with simian virus 40 large T antigen (SV40LT), and the resulting iMSC and iAAT-MSC lines were analysed for proliferation, senescence, phenotype and multi-differentiation potential. Subsequently, apoptosis and ferroptosis pathways were investigated by assessing changes before and after TNBS treatment. Coculture of iMSCs and iAAT-MSCs with acinar cell lines inhibited early cell death induced by TNBS, reduced ER stress and reversed TNBS-induced protein reduction at tight junctions. Additionally, iMSCs and iAAT-MSCs exerted such protection by regulating mitochondrial respiration, ATP content and ROS production in TNBS-induced acinar cells. Furthermore, iMSCs and iAAT-MSCs ameliorated TNBS-induced ferroptosis by modulating iron generation and ROS production and regulating the ferritin heavy chain 1 (FTH1)/protein disulfide isomerase (PDI)/glutathione peroxide 4 (GPX4) signalling pathways in acinar cells. These findings identify ferroptosis as an unrecognized mechanism that leads to TNBS-induced cell death and offer mechanistic insights relevant to using stem cell therapy to treat acinar cell death associated with CP.
Collapse
Affiliation(s)
- Sara Shoeibi
- Department of SurgeryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Erica Green
- Department of SurgeryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Hua Wei
- Department of SurgeryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Wenyu Gou
- Department of SurgeryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Charlie Strange
- Department of MedicineMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Hongjun Wang
- Department of SurgeryMedical University of South CarolinaCharlestonSouth CarolinaUSA
- Ralph H. Johnson Veterans Affairs Medical CenterCharlestonSouth CarolinaUSA
| |
Collapse
|
6
|
Chen F, Li C, Liu J, Dong Y, Chen J, Zhou Q. Crosslinked modified decellularized rabbit conjunctival stroma for reconstruction of tissue-engineered conjunctiva in vitro. Biomed Mater 2023; 19:015001. [PMID: 37917998 DOI: 10.1088/1748-605x/ad08e0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 11/01/2023] [Indexed: 11/04/2023]
Abstract
Conjunctival reconstruction is an essential part of ocular surface restoration, especially in severe conjunctival disorders. Decellularized conjunctival tissues have been used in tissue engineering. In this study, we investigated the feasibility of constructing tissue-engineered conjunctiva using stem cell (human amniotic epithelial cells, hAECs), and cross-linked modified decellularized rabbit conjunctival stroma (DRCS-Asp-hEGF), and decellularized rabbit conjunctiva stroma (DRCS). With phospholipase A2 and sodium dodecyl, DRCS were nearly DNA-free, structurally intact and showed no cytotoxic effectsin vitro, as confirmed by DNA quantification, histology, and immunofluorescence. The results of Fourier transform infrared, Alcian blue staining and human epidermal growth factor (hEGF) release assays showed that DRCS-Asp-hEGF was successfully prepared via crosslinking with aspartic acid (Asp) and modified by hEGF at pH 7.7. The hAECs were positive for octamer-binding transcription factor-4 and ABCG2 cell markers. The hAECs were directly placed on the DRCS and DRCS-Asp-hEGF for five days respectively. Tissue-engineered conjunctiva was constructedin vitrofor five days, and the fluorescence staining results showed that hAECs grew in monolayers on DRCS-Asp-hEGF and DRCS. Flow cytometry results showed that compared with DRCS, the number of apoptotic cells stained in DRCS-Asp-hEGF was small, 86.70 ± 0.79% of the cells survived, and 87.59 ± 1.43% of the cells were in the G1 phase of DNA synthesis. Electron microscopy results showed that desmosome junction structures, which were similar to the native conjunctival tissue, were formed between cells and the matrix in the DRCS-Asp-hEGF.
Collapse
Affiliation(s)
- Fangyuan Chen
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, People's Republic of China
| | - Chaoqun Li
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, People's Republic of China
| | - Jingwen Liu
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, People's Republic of China
| | - Yuying Dong
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, People's Republic of China
| | - Jian Chen
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, People's Republic of China
| | - Qing Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, People's Republic of China
| |
Collapse
|
7
|
Yin H, Zhang Z, Zhang D, Peng L, Xia C, Yang X, Wang X, Li Z, Chang J, Huang H. A new method for treating chronic pancreatitis and preventing fibrosis using bioactive calcium silicate ion solution. J Mater Chem B 2023; 11:9163-9178. [PMID: 37642526 DOI: 10.1039/d3tb01287e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Chronic pancreatitis (CP) is a multifactorial fibroinflammatory syndrome. At present, there is no effective way to treat it clinically. In this study, we proposed a new approach by application of a highly active calcium silicate ion solution derived from calcium silicate (CS) bioceramics, which effectively inhibited the development of CP. This bioceramic derived bioactive ionic solution mainly regulated pancreatic acinar cells (PACs), macrophages and pancreatic stellate cells (PSCs) by SiO32- ions to inhibit inflammation and fibrosis and promote acinar regeneration. The possible mechanism of the therapeutic effect of CS ion solution mainly includes the inhibition of PAC apoptosis by down-regulating the c-caspase3 signal pathway and promotion of the regeneration of PACs by up-regulating the WNT/β-catenin signaling pathway. In addition, the CS ion solution also effectively down-regulated the NF-κB signaling pathway to reduce macrophage infiltration and PAC inflammatory factor secretion, thereby reducing PSC mediated pancreatic fibrosis. This bioceramics-based ion solution provides a new idea for disease treatment using biomaterials, which may have the potential for the development of new therapy for CP.
Collapse
Affiliation(s)
- Hua Yin
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, People's Republic of China.
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Ningxia, 750004, People's Republic of China
| | - Zhaowenbin Zhang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| | - Deyu Zhang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, People's Republic of China.
| | - Lisi Peng
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, People's Republic of China.
| | - Chuanchao Xia
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, People's Republic of China.
| | - Xiaoli Yang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, People's Republic of China.
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Ningxia, 750004, People's Republic of China
| | - Xinyue Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, People's Republic of China.
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, People's Republic of China.
| | - Jiang Chang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| | - Haojie Huang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, People's Republic of China.
| |
Collapse
|
8
|
Shoeibi S, Green E, Wei H, Gou W, Strange C, Wang H. Immortalized Mesenchymal Stromal Cells Overexpressing Alpha-1 Antitrypsin Protect Acinar Cells from Apoptotic and Ferroptotic Cell Death. RESEARCH SQUARE 2023:rs.3.rs-2961444. [PMID: 37609340 PMCID: PMC10441457 DOI: 10.21203/rs.3.rs-2961444/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Chronic pancreatitis (CP) is a progressive inflammatory disorder that impairs endocrine and exocrine function. Our previous work suggests that mesenchymal stem/stromal cells (MSCs) and MSCs overexpressing alpha-1 antitrypsin (AAT-MSCs) could be therapeutic tools for CP treatment in mouse models. However, primary MSCs have a predisposition to undergo senescence during culture expansion which limits their therapeutic applications. Here we generated and characterized immortalized human MSCs (iMSCs) and AAT-MSCs (iAAT-MSCs) and tested their protective effect on 2,4,6-Trinitrobenzenesulfonic acid (TNBS) -induced acinar cell death in an in vitro cell culture system. Primary MSCs were immortalized by transduction with simian virus 40 large T antigen (SV40LT), and the resulting iMSC and iAAT-MSC lines were analyzed for proliferation, senescence, phenotype, and multi-differentiation potential. Subsequently, the impact of these cells on TNBS-induced cell death was measured and compared. Both apoptosis and ferroptosis pathways were investigated by assessing changes of critical factors before and after cell treatment. Coculture of iMSCs and iAAT-MSCs with acinar cell lines inhibited early apoptosis induced by TNBS, reduced ER stress, and reversed TNBS-induced protein reduction at tight junctions. Additionally, iMSCs and iAAT-MSCs exerted such protection by regulating mitochondrial respiration, ATP content, and ROS production in TNBS-induced acinar cells. Furthermore, iMSCs and iAAT-MSCs ameliorated ferroptosis by regulating the ferritin heavy chain 1 (FTH1)/protein disulfide isomerase (PDI)/glutathione peroxide 4 (GPX4) signaling pathways and by modulating ROS function and iron generation in acinar cells. These findings identified ferroptosis as one of the mechanisms that leads to TNBS-induced cell death and offer mechanistic insights relevant to using stem cell therapy for the treatment of CP.
Collapse
Affiliation(s)
| | | | | | - Wenyu Gou
- Medical University of South Carolina
| | | | | |
Collapse
|
9
|
Abuarqoub D, Adwan S, Zaza R, Wehaibi S, Aslam N, Jafar H, Qinnah N, Awidi A. Effective Generation of Functional Pancreatic β Cells from Human-Derived Dental Stem Cells of Apical Papilla and Bone-Marrow-Derived Stem Cells: A Comparative Study. Pharmaceuticals (Basel) 2023; 16:ph16050649. [PMID: 37242432 DOI: 10.3390/ph16050649] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/02/2023] [Accepted: 04/14/2023] [Indexed: 05/28/2023] Open
Abstract
Diabetes Mellitus Type 1 is an autoimmune disease that occurs due to the destruction of insulin-producing cells (β cells), resulting in hyperglycemia. Therefore, diabetic patients depend on insulin treatment for the rest of their lives. Stem cells are considered a promising cellular therapy to replace the nonfunctional beta cells with functional and mature beta cells. Hence, in this study, we aimed to examine the potential of dental stem cells of apical papilla (SCAP) to differentiate into functional islet cell aggregates (ICAs), compared to the ICA generated from bone-marrow-derived stem cells (BM-MSCs). Our strategy was to induce the differentiation of SCAP and BM-MSCs into a definitive endoderm. The success of endodermal differentiation was determined by measuring the expression of definitive endodermal markers, FOXA2 and SOX-17, by flow cytometry. Next, the maturity and functionality of the differentiated cells were evaluated by measuring the amount of insulin and C-peptide secreted by the derived ICAs using ELISA. Additionally, the expression of mature beta cell markers-insulin, C-peptide, glucagon and PDX-1-was detected through confocal microscopy, while the staining of the mature islet-like clusters was detected by using diphenythiocarbazone (DTZ). Our results have shown that both SCAP and BM-MSCs were sequentially committed to a definitive pancreatic endoderm and β-cell-like cells by upregulating the expression of FOXA2 and SOX17 significantly (**** p < 0.0000 and *** p = 0.0001), respectively. Moreover, the identity of ICAs was confirmed by DTZ-positive staining, as well as by the expression of C-peptide, Pdx-1, insulin and glucagon at day 14. It was noted that at day 14, differentiated ICAs released insulin and C-peptides in a significant manner (* p < 0.01, *** p = 0.0001), respectively, exhibiting in vitro functionality. Our results demonstrated for the first time that SCAP could be differentiated into pancreatic cell lineage in a similar manner to BM-MSCs, suggesting a new unambiguous and nonconventional source of stem cells that could be used for stem cell therapy to treat diabetes.
Collapse
Affiliation(s)
- Duaa Abuarqoub
- Department of Pharmacology and Biomedical Sciences, University of Petra, Amman 11196, Jordan
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Sofia Adwan
- Department of Medical Laboratories, Faculty of Health Sciences, American University of Madaba, Madaba 11821, Jordan
| | - Rand Zaza
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Suha Wehaibi
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Nazneen Aslam
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Hanan Jafar
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
- School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Nidal Qinnah
- Department of Pharmacology and Biomedical Sciences, University of Petra, Amman 11196, Jordan
- University of Petra Pharmaceutical Center (UPP), University of Petra, Amman 11196, Jordan
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
- School of Medicine, The University of Jordan, Amman 11942, Jordan
- Department of Internal Medicine, Jordan University Hospital, Amman 11942, Jordan
| |
Collapse
|
10
|
Li BQ, Liu XY, Mao T, Zheng TH, Zhang P, Zhang Q, Zhang Y, Li XY. The research progress of anti-inflammatory and anti-fibrosis treatment of chronic pancreatitis. Front Oncol 2022; 12:1050274. [PMID: 36505827 PMCID: PMC9730810 DOI: 10.3389/fonc.2022.1050274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
Chronic pancreatitis (CP) is a chronic progressive inflammatory disease of the pancreas, caused by multiple factors and accompanied by irreversible impairment of pancreatic internal and external secretory functions. Pathologically, atrophy of the pancreatic acini, tissue fibrosis or calcification, focal edema, inflammation, and necrosis are observed. Clinical manifestations include recurrent or persistent abdominal pain, diarrhea, emaciation, and diabetes. In addition, CP is prone to develop into pancreatic cancer(PC) due to persistent inflammation and fibrosis. The disease course is prolonged and the clinical prognosis is poor. Currently, clinical treatment of CP is still based on symptomatic treatment and there is a lack of effective etiological treatment. Encouragingly, experiments have shown that a variety of active substances have great potential in the etiological treatment of chronic pancreatitis. In this paper, we will review the pathogenesis of CP, as well as the research progress on anti-inflammatory and anti-fibrotic therapies, which will provide new ideas for the development of subsequent clinical studies and formulation of effective treatment programs, and help prevent CP from developing into pancreatic cancer and reduce the prevalence of PC as much as possible.
Collapse
|
11
|
Zhao X, Zhang Y, Zuo X, Wang S, Dong X. Knockdown of Adra2a Increases Secretion of Growth Factors and Wound Healing Ability in Diabetic Adipose-Derived Stem Cells. Stem Cells Int 2022; 2022:5704628. [PMID: 36420091 PMCID: PMC9678456 DOI: 10.1155/2022/5704628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 08/04/2024] Open
Abstract
Studies showed that compared to normal adipose-derived stem cells (ASCs), ASCs from type 2 diabetic (T2D) mice were less effective in treating diabetic cutaneous wounds. However, the mechanisms remain unclear. Our transcriptomic profiling comparison showed that the expression of α2A-adrenergic receptor (Adra2a) was significantly increased in ASCs from T2D mice (T2D ASCs). Therefore, the purpose of this study was to investigate whether the elevated Adra2a is involved in the diminished wound-healing capabilities of T2D ASCs. RNA-seq was used to compare the transcriptomic profiles of T2D and normal ASCs. The differential genes were verified by real-time RT-qPCR. Clonidine was used to active Adra2a, and lentivirus-mediated RNAi was used to knockdown Adra2a. The secretion and expression of growth factors were detected by enzyme-linked immunosorbent assay (ELISA) and real-time RT-qPCR, respectively. The cAMP and PKA activity were also detected. Wound healing abilities of various ASCs were assessed in T2D mouse excisional wound models. The results showed Adra2a agonist clonidine decreased the expression and secretion of growth factors, cAMP content, and activity of PKA in ASCs, while Adra2a knockdown T2D ASCs showed the opposite effects. Adra2a knockdown T2D ASCs also showed increased wound-healing capabilities compared to untreated T2D ASCs. Altogether, T2D increased Adra2a expression, which may subsequently decrease the expression and secretion of growth factors and eventually diminish the wound-healing capabilities of T2D ASCs. Adra2a knockdown can restore the secretion of growth factors in T2D ASCs and then accelerate the wound healing, which may provide a new possibility in the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Xiangyuan Zhao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Yong Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Xinzhen Zuo
- College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Shubai Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Xiao Dong
- College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| |
Collapse
|
12
|
Robinson AM, Stavely R, Miller S, Eri R, Nurgali K. Mesenchymal stem cell treatment for enteric neuropathy in the Winnie mouse model of spontaneous chronic colitis. Cell Tissue Res 2022; 389:41-70. [PMID: 35536444 DOI: 10.1007/s00441-022-03633-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 04/26/2022] [Indexed: 11/30/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic gut inflammation with periods of acute flares and remission. Beneficial effects of a single dose of mesenchymal stem cell (MSC)-based treatment have been demonstrated in acute models of colitis. No studies investigated therapeutic effects of MSCs for the attenuation of enteric neuropathy in a chronic model of colitis. The short and long-term effects of MSC treatment in modulating inflammation and damage to the enteric nervous system (ENS) were studied in the Winnie mouse model of spontaneous chronic colitis highly representative of human IBD. Winnie mice received a single dose of either 1 × 106 human bone marrow-derived MSCs or 100µL PBS by intracolonic enema. C57BL/6 mice received 100µL PBS. Colon tissues were collected at 3 and 60 days post MSC administration to evaluate the short-term and long-term effects of MSCs on inflammation and enteric neuropathy by histological and immunohistochemical analyses. In a separate set of experiments, multiple treatments with 4 × 106 and 2 × 106 MSCs were performed and tissue collected at 3 days post treatment. Chronic intestinal inflammation in Winnie mice was associated with persistent diarrhea, perianal bleeding, morphological changes, and immune cell infiltration in the colon. Significant changes to the ENS, including impairment of cholinergic, noradrenergic and sensory innervation, and myenteric neuronal loss were prominent in Winnie mice. Treatment with a single dose of bone marrow-derived MSCs was ineffective in attenuating chronic inflammation and enteric neuropathy in Winnie.
Collapse
Affiliation(s)
- Ainsley M Robinson
- Institute for Health and Sport, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia
| | - Rhian Stavely
- Institute for Health and Sport, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia.,Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Sarah Miller
- Institute for Health and Sport, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia
| | - Rajaraman Eri
- University of Tasmania, School of Health Sciences, Launceston, TAS, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia. .,Department of Medicine Western Health, The University of Melbourne, Melbourne, VIC, Australia. .,Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia.
| |
Collapse
|
13
|
Yuan X, Li L, Liu H, Luo J, Zhao Y, Pan C, Zhang X, Chen Y, Gou M. Strategies for improving adipose-derived stem cells for tissue regeneration. BURNS & TRAUMA 2022; 10:tkac028. [PMID: 35992369 PMCID: PMC9382096 DOI: 10.1093/burnst/tkac028] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/27/2022] [Indexed: 11/13/2022]
Abstract
Abstract
Adipose-derived stem cells (ADSCs) have promising applications in tissue regeneration. Currently, there are only a few ADSC products that have been approved for clinical use. The clinical application of ADSCs still faces many challenges. Here, we review emerging strategies to improve the therapeutic efficacy of ADSCs in tissue regeneration. First, a great quantity of cells is often needed for the stem cell therapies, which requires the advanced cell expansion technologies. In addition cell-derived products are also required for the development of ‘cell-free’ therapies to overcome the drawbacks of cell-based therapies. Second, it is necessary to strengthen the regenerative functions of ADSCs, including viability, differentiation and paracrine ability, for the tissue repair and regeneration required for different physiological and pathophysiological conditions. Third, poor delivery efficiency also restricts the therapeutic effect of ADSCs. Effective methods to improve cell delivery include alleviating harsh microenvironments, enhancing targeting ability and prolonging cell retention. Moreover, we also point out some critical issues about the sources, effectiveness and safety of ADSCs. With these advanced strategies to improve the therapeutic efficacy of ADSCs, ADSC-based treatment holds great promise for clinical applications in tissue regeneration.
Collapse
Affiliation(s)
- Xin Yuan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University , Chengdu, 610041, China
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University , Chengdu, 610041, China
| | - Li Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University , Chengdu, 610041, China
| | - Haofan Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University , Chengdu, 610041, China
| | - Jing Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University , Chengdu, 610041, China
| | - Yongchao Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University , Chengdu, 610041, China
| | - Cheng Pan
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University , Chengdu, 610041, China
| | - Xue Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University , Chengdu, 610041, China
| | - Yuwen Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University , Chengdu, 610041, China
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University , Chengdu, 610041, China
| |
Collapse
|
14
|
A Novel Cellular Therapy to Treat Pancreatic Pain in Experimental Chronic Pancreatitis Using Human Alpha-1 Antitrypsin Overexpressing Mesenchymal Stromal Cells. Biomedicines 2021; 9:biomedicines9111695. [PMID: 34829924 PMCID: PMC8615652 DOI: 10.3390/biomedicines9111695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 01/13/2023] Open
Abstract
Chronic pancreatitis (CP) is characterized by pancreatic inflammation, fibrosis, and abdominal pain that is challenging to treat. Mesenchymal stromal cells (MSCs) overexpressing human alpha-1 antitrypsin (hAAT-MSCs) showed improved mobility and protective functions over native MSCs in nonobese diabetic mice. We investigated whether hAAT-MSCs could mitigate CP and its associated pain using trinitrobenzene sulfonic acid (TNBS)-induced CP mouse models. CP mice were given native human MSCs or hAAT-MSCs (0.5 × 106 cells/mouse, i.v., n = 6–8/group). The index of visceral pain was measured by graduated von Frey filaments. Pancreatic morphology and pancreatic mast cell count were analyzed by morphological stains. Nociceptor transient receptor potential vanilloid 1 (TRPV1) expression in dorsal root ganglia (DRG) was determined by immunohistochemistry. hAAT-MSC-treated CP mice best preserved pancreatic morphology and histology. MSC or hAAT-MSC infusion reduced abdominal pain sensitivities. hAAT-MSC therapy also suppressed TRPV1 expression in DRG and reduced pancreatic mast cell density induced by TNBS. Overall, hAAT-MSCs reduced pain and mitigated pancreatic inflammation in CP equal to MSCs with a trend toward a higher pancreatic weight and better pain relief in the hAAT-MSC group compared to the MSC group. Both MSCs and hAAT-MSCs might be used as a novel therapeutic tool for CP-related pain.
Collapse
|
15
|
Tousian H, Razavi BM, Hosseinzadeh H. In search of elixir: Pharmacological agents against stem cell senescence. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:868-880. [PMID: 34712416 PMCID: PMC8528253 DOI: 10.22038/ijbms.2021.51917.11773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 03/02/2021] [Indexed: 12/13/2022]
Abstract
Stem cell senescence causes different complications. In addition to the aging phenomenon, stem cell senescence has been investigated in various concepts such as cancer, adverse drug effects, and as a limiting factor in cell therapy. This manuscript examines protective medicines and supplements which are capable of hindering stem cell senescence. We searched the databases such as EMBASE, PubMed, and Web of Science with the keywords "stem cell," "progenitor cell," "satellite," "senescence" and excluded the keywords "cancer," "tumor," "malignancy" and "carcinoma" until June 2020. Among these results, we chose 47 relevant studies. Our investigation indicates that most of these studies examined endothelial progenitor cells, hematopoietic stem cells, mesenchymal stem cells, adipose-derived stem cells, and a few others were about less-discussed types of stem cells such as cardiac stem cells, myeloblasts, and induced pluripotent stem cells. From another aspect, 17β-Estradiol, melatonin, metformin, rapamycin, coenzyme Q10, N-acetyl cysteine, and vitamin C were the most studied agents, while the main protective mechanism was through telomerase activity enhancement or oxidative damage ablation. Although many of these studies are in vitro, they are still worthwhile. Stem cell senescence in the in vitro expansion stage is an essential concern in clinical procedures of cell therapy. Moreover, in vitro studies are the first step for further in vivo and clinical studies. It is noteworthy to mention the fact that these protective agents have been used in the clinical setting for various purposes for a long time. Given that, we only need to examine their systemic anti-senescence effects and effective dosages.
Collapse
Affiliation(s)
- Hourieh Tousian
- Vice-chancellery of Food and Drug,Shahroud University of Medical Sciences, Shahroud, Iran
| | - Bibi Marjan Razavi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Kong L, Xu X, Zhang H, Zhou Y, Huang H, Chen B, Zhou Z. Human umbilical cord-derived mesenchymal stem cells improve chronic pancreatitis in rats via the AKT-mTOR-S6K1 signaling pathway. Bioengineered 2021; 12:1986-1996. [PMID: 34047671 PMCID: PMC8806739 DOI: 10.1080/21655979.2021.1928441] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic pancreatitis (CP) is a progressive inflammatory disease. In clinical treatment, many patients cannot get a timely diagnosis and effective treatment due to the lack of early diagnosis indicators. Mesenchymal stem cells have immunomodulatory and anti-inflammatory effects, and have broad application prospects in treating auto-immune diseases and inflammatory diseases. This study aimed to clarify the mechanisms of human umbilical cord mesenchymal stem cells (HUCMSCs) in the treatment of CP. The rats were randomly divided into four groups, with six rats in each group: control group, CP group, CP + HUCMSCs-treated group I, and CP + HUCMSCs-treated group II. We evaluated the levels of inflammatory factors, fibrosis and apoptosis markers, detected the protein expression levels of AKT-mTOR-S6K1 and assessed histological changes of the pancreas. The results showed that HUCMSCs not only inhibited the secretion of inflammatory cytokines and activation of pancreatic stellate cells but also suppressed the apoptosis of acinar cells. Further investigation revealed that HUCMSCs noticeably suppressed the AKT-mTOR-S6K1 pathway in the pancreatic tissue of DBTC-induced CP. In addition, the therapeutic effect of HUCMSCs injected into the inferior vena cava and left gastric artery in the CP model was also observed, thus providing the basis for the clinical application of intervention measures.
Collapse
Affiliation(s)
- Lijun Kong
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangxiang Xu
- Ophthalmology Department, The Yiling Hospital of Yichang, Yichang, Hubei, China
| | - Hewei Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Zhou
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongjian Huang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bicheng Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhenxu Zhou
- Department of Hernia and Abdominal Wall Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
17
|
Ma Z, Zhou J, Yang T, Xie W, Song G, Song Z, Chen J. Mesenchymal stromal cell therapy for pancreatitis: Progress and challenges. Med Res Rev 2021; 41:2474-2488. [PMID: 33840113 DOI: 10.1002/med.21801] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/17/2020] [Accepted: 03/23/2021] [Indexed: 12/15/2022]
Abstract
Pancreatitis is a common gastrointestinal disease with no effective therapeutic options, particularly for cases of severe acute and chronic pancreatitis (CP). Mesenchymal stromal cells (MSCs) are multipotent cells with diverse biological properties, including directional migration, paracrine, immunosuppressive, and antiinflammatory effects, which are considered an ideal candidate cell type for repairing tissue damage caused by various pathogenies. Several researchers have reported significant therapeutic efficacy of MSCs in animal models of acute and CP. However, the specific underlying mechanisms are yet to be clarified and clinical application of MSCs as pancreatitis therapy has rarely been reported. This review mainly focuses on the potential and challenges in clinical application of MSCs for treatment of acute and CP, along with discussion of the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Zhilong Ma
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jia Zhou
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tingsong Yang
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wangcheng Xie
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guodong Song
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhenshun Song
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ji Chen
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Sun X, Gao Y, Chen H, Yang N, Zhang Y, Liu Q, Jiang Y, Jin S. From hair to pancreas: transplanted hair follicle mesenchymal stem cells express pancreatic progenitor cell markers in a rat model of acute pancreatitis. Am J Transl Res 2021; 13:1389-1399. [PMID: 33841664 PMCID: PMC8014427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Acute pancreatitis (AP) is commonly accompanied by intense pain and is associated with high mortality rates. However, the effectiveness of existing therapeutic approaches remains unsatisfactory. Stem cell therapy, which can promote the regeneration of damaged tissue and alleviate systemic inflammatory responses, has brought new possibility for patients suffering from AP. In particular, hair follicle-derived mesenchymal stem cells (HF-MSCs) are proposed as a suitable cell source for treating pancreatic diseases, but further research on their effectiveness, safety, and underlying mechanisms is warranted for clinical implementation. In this work, the therapeutic potential of HF-MSC transplantation was studied in an L-arginine-induced AP rat model. HF-MSCs were extracted from infant Sprague-Dawley (SD) rats, expanded in vitro, and detected by flow cytometry. HF-MSCs were labeled by PKH67 and transplanted into rats with AP via tail vein injection. Serum specimens were collected at 24 h, 48 h, and 72 h after transplantation, and the levels of amylase, lipase, and anti-inflammatory factors, namely interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), were analyzed. Pancreas samples were collected and assayed by immunofluorescence and immunohistochemistry 1 week after transplantation to monitor the differentiation of HF-MSCs and the functional recovery of the damaged pancreas. Intravenously delivered rat HF-MSCs spontaneously homed to the damaged pancreas and expressed pancreatic progenitor cell markers, relieved inflammation, and boosted pancreatic regeneration. These findings indicate that HF-MSC transplantation is a potentially effective treatment for AP.
Collapse
Affiliation(s)
- Xiaoli Sun
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical UniversityHarbin 150086, P. R. China
| | - Yang Gao
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical UniversityHarbin 150086, P. R. China
| | - Haoyuan Chen
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical UniversityHarbin 150086, P. R. China
| | - Ningning Yang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical UniversityHarbin 150086, P. R. China
| | - Yichi Zhang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical UniversityHarbin 150086, P. R. China
| | - Qi Liu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical UniversityHarbin 150086, P. R. China
| | - Yanan Jiang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical UniversityHarbin 150081, P. R. China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical SciencesHarbin 150086, P. R. China
| | - Shizhu Jin
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical UniversityHarbin 150086, P. R. China
| |
Collapse
|
19
|
Gou W, Swaby L, Wolfe AM, Lancaster WP, Morgan KA, Wang H. A Mouse Model for Chronic Pancreatitis via Bile Duct TNBS Infusion. J Vis Exp 2021:10.3791/62080. [PMID: 33720138 PMCID: PMC8601589 DOI: 10.3791/62080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Chronic pancreatitis (CP) is a complex disease involving pancreatic inflammation and fibrosis, glandular atrophy, abdominal pain and other symptoms. Several rodent models have been developed to study CP, of which the bile duct 2,4,6 -trinitrobenzene sulfonic acid (TNBS) infusion model replicates the features of neuropathic pain seen in CP. However, bile duct drug infusion in mice is technically challenging. This protocol demonstrates the procedure of bile duct TNBS infusion for generation of a CP mouse model. TNBS was infused into the pancreas through the ampulla of Vater in the duodenum. This protocol optimized drug volume, surgical techniques, and drug handling during the procedure. TNBS-treated mice showed features of CP as reflected by bodyweight and pancreas weight reductions, changes in pain-associated behaviors, and abnormal pancreatic morphology. With these improvements, mortality associated with TNBS injection was minimal. This procedure is not only critical in generating pancreatic disease models but is also useful in local pancreatic drug delivery.
Collapse
Affiliation(s)
- Wenyu Gou
- Department of Surgery, Medical University of South Carolina
| | - Lindsay Swaby
- Department of Surgery, Medical University of South Carolina
| | | | - William P Lancaster
- Department of Surgery, Medical University of South Carolina; Ralph H. Johnson Veterans Affairs Medical Center
| | | | - Hongjun Wang
- Department of Surgery, Medical University of South Carolina; Ralph H. Johnson Veterans Affairs Medical Center;
| |
Collapse
|
20
|
Cao Y, Lv Q, Li Y. Astragaloside IV Improves Tibial Defect in Rats and Promotes Proliferation and Osteogenic Differentiation of hBMSCs through MiR-124-3p.1/STAT3 Axis. JOURNAL OF NATURAL PRODUCTS 2021; 84:287-297. [PMID: 33464097 DOI: 10.1021/acs.jnatprod.0c00975] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Astragaloside IV (AST-IV) facilitates the proliferation and migration of osteoblast-like cells. We sought to explore the effect and potential mechanism of AST-IV on regeneration of tibial defects. To reveal the effect of AST-IV on regeneration of tibial defects in rat, HE staining and microcomputed tomography (μCT) were performed on tibial bone. The binding relationship between miR-124-3p.1 and STAT3 was analyzed by TargetScan V7.2 and a dual-luciferase reporter assay. Human bone marrow mesenchymal stromal/stem cells (hBMSCs) were identified by morphological observation and flow-cytometric analysis. To reveal the effect and mechanism of AST-IV on phenotypes of hBMSCs, hBMSCs were treated with AST-IV, miR-124-3p.1 mimic, and pcDNA-STAT3, and cell viability, cell cycle, ALP activity, and calcium deposition of hBMSCs in vitro were determined by MTT, flow-cytometric analysis, ELISA, and Alizarin red staining, respectively. The expressions of osteoblast marker molecules (RUNX2, OCN, Smad4), miR-124-3p.1, and STAT3 were indicated by RT-qPCR and Western blot. AST-IV decreased miR-124-3p.1 expression, increased STAT3 expression in tibial bone defects, and promoted regeneration of tibial bone defects in a concentration-dependent manner. The hBMSCs appeared spindle-shaped and were positive for CD105, but negative for CD34. MiR-124-3p.1 negatively regulated STAT3 expression in hBMSCs under osteogenic conditions. AST-IV promoted viability, cell cycle, ALP activity, and osteogenic differentiation of hBMSCs along with increased expressions of osteoblast marker molecules, which was partially reversed by miR-124-3p.1 overexpression. However, the effect of miR-124-3p.1 overexpression on hBMSCs was also partially reversed by STAT3 overexpression. AST-IV improves tibial defects in rats and promotes proliferation and osteogenic differentiation of hBMSCs through the miR-124-3p.1/STAT3 axis.
Collapse
Affiliation(s)
- Yujing Cao
- Emergency Trauma Center, Henan Province Hospital of TCM, Jinshui District, Zhengzhou, Henan 450002, China
| | - Qiuxia Lv
- Department of Anorectal, Henan Province Hospital of TCM, Jinshui District, Zhengzhou, Henan 450002, China
| | - Yang Li
- Emergency Trauma Center, Henan Province Hospital of TCM, Jinshui District, Zhengzhou, Henan 450002, China
| |
Collapse
|
21
|
Moustafa EM, Moawed FSM, Abdel-Hamid GR. Icariin Promote Stem Cells Regeneration and Repair Acinar Cells in L-arginine / Radiation -Inducing Chronic Pancreatitis in Rats. Dose Response 2020; 18:1559325820970810. [PMID: 33192204 PMCID: PMC7607780 DOI: 10.1177/1559325820970810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
Objective: Chronic Pancreatitis (CP) is a multifactorial disease. It was characterized by severe inflammation and acinar cell destruction. Thus, the present study was initiated to evaluating the ability of bone marrow-based mesenchymal stem cell (MSCs) combined with Icariin to restore and regenerate acinar cells in the pancreas of rats suffering chronic pancreatitis. Methods: Chronic pancreatitis was induced in rats via both L-arginine plus radiation, repeated L-arginine injection (2.5g/Kg body-weight, 1, 4,7,10,13,16,19 days), then, on day 21, rats were exposed to a single dose of gamma-radiation (6 Gy), which exacerbate injury of pancreatic acinar cells. One day after irradiation, rats were treated with either MSCs (1 × 107 /rat, once, tail vein injection) labeled PKH26 fluorescent linker dye and/or Icariin (100 mg/Kg, daily, orally) for 8 weeks. Results: Icariin promotes MSCs proliferation boosting its productivity in vitro. MSCs, and/or icariin treatments has regulated molecular factors TGF-β/PDGF and promoted the regeneration of pancreatic tissues by releasing PDX-1 and MafA involved in the recruitment of stem/progenitor cell in the tissue, and confirmed by histopathological examination. Moreover, a significant decrease in IL-8 and TNF-α cytokines with significant amelioration of myeloperoxidase activity were noted. As well as, reduction in MCP-1 and collagen type-1 levels along with Hedgehog signaling down-regulating expression in such cells, Patched-1, Smoothened, and GLi-1. Conclusion: The potent bioactive therapeutic Icariin combined with MSCs induces a significantly greater improvement, compared to each therapy alone.
Collapse
Affiliation(s)
| | - Fatma S M Moawed
- Department of Health Radiation Research, National Center for Radiation Research & Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | | |
Collapse
|
22
|
Chela H, Romana BS, Madabattula M, Albarrak AA, Yousef MH, Samiullah S, Tahan V. Stem cell therapy: a potential for the perils of pancreatitis. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2020; 31:415-424. [PMID: 32721912 PMCID: PMC7433995 DOI: 10.5152/tjg.2020.19143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 09/01/2019] [Indexed: 12/17/2022]
Abstract
Acute and chronic pancreatitis carry a significant disease burden and there is no definite treatment that exists for either. They are associated with local and systemic inflammation and lead to numerous complications. Stem cell therapy has been explored for other disease processes and is a topic of research that has gained momentum with regards to implications for acute and chronic pancreatitis. They not only carry the potential to aid in regeneration but also prevent pancreatic injury as well as injury of other organs and hence the resultant complications. Stem cells appear to have immunomodulatory properties and clinical potential as evidenced by numerous studies in animal models. This review article discusses the types of stem cells commonly used and the properties that show promise in the field of pancreatitis.
Collapse
Affiliation(s)
- Harleen Chela
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri, USA
| | - Bhupinder S Romana
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri, USA
| | - Markandeya Madabattula
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri, USA
| | - Abdulmajeed A Albarrak
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri, USA
| | - Mohamad H Yousef
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri, USA
| | - Sami Samiullah
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri, USA
| | - Veysel Tahan
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
23
|
Abdolmohammadi K, Mahmoudi T, Nojehdehi S, Tayebi L, Hashemi SM, Noorbakhsh F, Abdollahi A, Soleimani M, Nikbin B, Nicknam MH. Effect of Hypoxia Preconditioned Adipose-Derived Mesenchymal Stem Cell Conditioned Medium on Cerulein-Induced Acute Pancreatitis in Mice. Adv Pharm Bull 2020; 10:297-306. [PMID: 32373500 PMCID: PMC7191232 DOI: 10.34172/apb.2020.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/11/2022] Open
Abstract
Purpose: Acute pancreatitis (AP) is an inflammatory disorder distinguished by tissue injury and inflammation of the pancreas. Using paracrine potential of mesenchymal stem cells (MSCs) provides a useful clinical approach in treating inflammatory diseases. We investigated the therapeutic effects of adipose-derived MSC conditioned medium (CM) and hypoxia preconditioned adipose-derived MSC conditioned medium (HCM) in cerulein-induced AP in mice. Methods: AP was induced in C57BL/6 mice by intraperitoneal injection of cerulein (75 μg/ kg/h × 7 times). One hour following the last injection of cerulein, mice were treated with intraperitoneal injection of CM and HCM (500 µL/mice/30 min × 3 times). Twelve hours following the treatment, serum levels of amylase and lipase were measured. In addition, pancreas pathological changes, immunohistochemical examinations for evaluation of IL-6 expression and pancreatic myeloperoxidase (MPO) enzyme activity were analyzed. Results: The in vitro results of the morphological, differentiation and immunophenotyping analyses confirmed that hypoxia preconditioned MSCs (HP-MSCs) conserve MSCs characteristics after preconditioning. However, HP-MSCs significantly expressed high mRNA level of hypoxia inducible factor 1-α and higher level of total protein. The in vivo findings of the current study showed that CM and HCM significantly reduced the amylase & lipase activity, the severity of pancreas tissue injury and the expression of IL-6 and MPO enzyme activity compared with the AP group. However, no significant difference between CM and HCM groups was demonstrated. Conclusion: Use of CM and HCM can attenuate cerulein-induced AP and decrease inflammation in the pancreas tissue in AP mice.
Collapse
Affiliation(s)
- Kamal Abdolmohammadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Mahmoudi
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Seyed Mahmoud Hashemi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Abdollahi
- Department of Pathology, School of Medicine, Imam Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.,Breast Disease Research Center (BDRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Behrouz Nikbin
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Nicknam
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Zhang Y, Yue D, Cheng L, Huang A, Tong N, Cheng P. Vitamin A-coupled liposomes carrying TLR4-silencing shRNA induce apoptosis of pancreatic stellate cells and resolution of pancreatic fibrosis. J Mol Med (Berl) 2018; 96:445-458. [PMID: 29589070 DOI: 10.1007/s00109-018-1629-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 02/05/2018] [Accepted: 02/12/2018] [Indexed: 02/05/2023]
Abstract
UNLABELLED Chronic pancreatitis leads to irreversible damage in pancreatic endocrine and exocrine functions. However, there is no clinically available antifibrotic drug. Pancreatic stellate cells (PSCs) can be activated by Toll-like receptor 4 (TLR4) responses to its ligands and they contribute to the formation of pancreatic fibrosis. Silencing the expression of TLR4 in PSCs by RNAi may be a novel therapeutic strategy for the treatment of pancreatic fibrosis. In addition, PSCs have a remarkable capacity for vitamin A uptake most likely through cellular retinol binding protein (CRBP). In our study, to ensure the efficient delivery of RNAi therapeutic agents to PSCs, VitA-coupled liposomes (VA-lips) were used as drug carriers to deliver plasmids expressing TLR4-specific short hairpin RNA (shRNA) to treat pancreatic fibrosis. Our study demonstrated that silencing the expression of TLR4 could induce mitochondrial apoptosis in aPSCs and might be an effective therapeutic strategy for the treatment of pancreatic fibrosis. KEY MESSAGES VA-lip-shRNA-TLR4 recovers pancreatic tissue damage. VA-lip-shRNA-TLR4 resolution of pancreatic fibrosis. VA-lip-shRNA-TLR4 accelerates ECM degradation and inhibits ECM synthesis. Silencing TLR4 induces aPSCs mitochondrial apoptosis. Silencing TLR4 inhibits the activation of NF-κB.
Collapse
Affiliation(s)
- Yuwei Zhang
- Department of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, No.37 Guo Xue Xiang, Chengdu, 610041, China
| | - Dan Yue
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, No.17 Section 3 People's South Road, Chengdu, 610041, China
| | - Liuliu Cheng
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, No.17 Section 3 People's South Road, Chengdu, 610041, China
| | - Anliang Huang
- Department of Pathology, West China Second Hospital, Sichuan University, No.20 Section 3 People's South Road, Chengdu, 610041, China
| | - Nanwei Tong
- Department of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, No.37 Guo Xue Xiang, Chengdu, 610041, China
| | - Ping Cheng
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, No.17 Section 3 People's South Road, Chengdu, 610041, China.
| |
Collapse
|
25
|
Ben Nasr M, Frumento D, Fiorina P. Adipose Stem Cell Therapy for Chronic Pancreatitis. Mol Ther 2017; 25:2438-2439. [PMID: 29055621 DOI: 10.1016/j.ymthe.2017.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Moufida Ben Nasr
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; International Center for T1D, Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy
| | - Davide Frumento
- International Center for T1D, Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy
| | - Paolo Fiorina
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; International Center for T1D, Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy; Division of Endocrinology, ASST Sacco Fatebenefratelli-Sacco, Milan, Italy.
| |
Collapse
|