1
|
Telkoparan-Akillilar P, Chichiarelli S, Tucci P, Saso L. Integration of MicroRNAs with nanomedicine: tumor targeting and therapeutic approaches. Front Cell Dev Biol 2025; 13:1569101. [PMID: 40260417 PMCID: PMC12009947 DOI: 10.3389/fcell.2025.1569101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/12/2025] [Indexed: 04/23/2025] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNA molecules that play a pivotal role in the post-transcriptional regulation of gene expression. Over the past decade, they have emerged as key regulators in cancer progression, influencing different cellular processes such as proliferation, apoptosis, metastasis, and immune evasion. Their unique ability to target multiple genes simultaneously makes miRNAs highly attractive as potential therapeutic agents in oncology. However, several challenges have hindered their direct clinical application, most notably their inherent instability in biological fluids, rapid degradation by nucleases, and inefficient delivery to specific tumor sites. Additionally, off-target effects and the potential for toxicity further complicate the therapeutic use of miRNAs. Nanomedicine offers a promising solution to these challenges by enabling the development of advanced platforms for the stable, safe, and targeted delivery of miRNAs. Nanoparticle-based delivery systems, such as liposomes, polymeric nanoparticles, and inorganic nanocarriers, can protect miRNAs from degradation, improve their bioavailability, and allow for precise tumor targeting through passive or active targeting mechanisms. These nanocarriers can also be engineered to release miRNAs in response to specific stimuli within the tumor microenvironment, enhancing therapeutic efficacy while minimizing side effects. This review will explore the integration of miRNAs with nanotechnology, focusing on various nanoparticle formulations and their roles in enhancing miRNA stability, specificity, and function in cancer treatment. In addition, we will discuss current advances in preclinical and clinical applications, highlight promising tumor-targeting strategies, and address the remaining challenges such as toxicity, immunogenicity, and scalability. Future research should focus on overcoming these barriers, ultimately paving the way for the widespread adoption of personalized miRNA-based nanomedicine in cancer therapy.
Collapse
Affiliation(s)
| | - Silvia Chichiarelli
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, Rome, Italy
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, La Sapienza University, Rome, Italy
| |
Collapse
|
2
|
Yang K, Chai S, Song H, Cao S, Gao F, Zhou C, Li L. Downregulation of ECRG4 by DNMT1 promotes EC growth via IRF3/IFN-γ/miR-29b/DNMT1/ECRG4 positive feedback loop. iScience 2025; 28:111614. [PMID: 39834855 PMCID: PMC11742825 DOI: 10.1016/j.isci.2024.111614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 10/10/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025] Open
Abstract
Esophageal carcinoma (EC) is one of the most common malignant tumors in the world. ECRG4 has been recently discovered to be downregulated in EC. However, the mechanism leading to reduced expression of ECRG4 in esophageal cancer remains obscure. Here, we found that ECRG4 expression was significantly downregulated in EC tissues and cell lines. ECRG4 overexpression led to a significant decrease in proliferation in vitro and in vivo. Mechanistically, ECRG4 can activate IRF3/IFN-γ pathway. IFN-γ can promote the expression of miR-29b. MiR-29b reduces the expression of DNMT1. DNMT1 may affect the expression of ECRG4 by affecting the methylation of ECRG4 promoter. These results reveal ECRG4/IRF3/IFN-γ/miR-29b/DNMT1 positive feedback loop in esophageal carcinoma cells, which may become a potential therapeutic target for esophageal carcinoma.
Collapse
Affiliation(s)
- Ke Yang
- Department of Oncology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, 450003 Henan, China
| | - Shuaining Chai
- Department of Oncology, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, 450003 Henan, China
| | - Helong Song
- Department of Oncology, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, 450003 Henan, China
| | - Sinan Cao
- Department of Oncology, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, 450003 Henan, China
| | - Fangmiao Gao
- Department of Oncology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, 450003 Henan, China
| | - Chenxuan Zhou
- Department of Oncology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, 450003 Henan, China
| | - Linwei Li
- Department of Oncology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, 450003 Henan, China
- Department of Oncology, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, 450003 Henan, China
| |
Collapse
|
3
|
Bernasconi R, Kuster GM. Non-coding RNAs and their potential exploitation in cancer therapy-related cardiotoxicity. Br J Pharmacol 2025; 182:296-315. [PMID: 38802331 DOI: 10.1111/bph.16416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/28/2024] [Accepted: 03/26/2024] [Indexed: 05/29/2024] Open
Abstract
Life expectancy in cancer patients has been extended in recent years, thanks to major breakthroughs in therapeutic developments. However, this also unmasked an increased incidence of cardiovascular diseases in cancer survivors, which is in part attributable to cancer therapy-related cardiovascular toxicity. Non-coding RNAs (ncRNAs) have received much appreciation due to their impact on gene expression. NcRNAs, which include microRNAs, long ncRNAs and circular RNAs, are non-protein-coding transcripts that are involved in the regulation of various biological processes, hence shaping cell identity and behaviour. They have also been implicated in disease development, including cardiovascular diseases, cancer and, more recently, cancer therapy-associated cardiotoxicity. This review outlines key features of cancer therapy-associated cardiotoxicity, what is known about the roles of ncRNAs in these processes and how ncRNAs could be exploited as therapeutic targets for cardioprotection. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Affiliation(s)
- Riccardo Bernasconi
- Myocardial Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Gabriela M Kuster
- Myocardial Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Cardiology, University Heart Center Basel, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
4
|
Zhang X, Cao J, Li X, Zhang Y, Yan W, Ding B, Hu J, Liu H, Chen X, Nie Y, Liu F, Lin N, Wang S. Comprehensive Analysis of the SUMO-related Signature: Implication for Diagnosis, Prognosis, and Immune Therapeutic Approaches in Cervical Cancer. Biochem Genet 2024; 62:4654-4678. [PMID: 38349439 DOI: 10.1007/s10528-024-10728-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/30/2024] [Indexed: 11/29/2024]
Abstract
SUMOylation, an important post-translational protein modification, plays a critical role in cancer development and immune processes. This study aimed to construct diagnostic and prognostic models for cervical cancer (CC) using SUMOylation-related genes (SRGs) and explore their implications for novel clinical therapies. We analyzed the expression profiles of SRGs in CC patients and identified 15 SRGs associated with CC occurrence. After the subsequent qPCR verification of 20 cases of cancer and adjacent tissues, 13 of the 15 SRGs were differentially expressed in cancer tissues. Additionally, we identified molecular markers associated with the prognosis and recurrence of CC patients, based on SRGs. Next, a SUMOScore, based on SRG expression patterns, was generated to stratify patients into different subgroups. The SUMOScore showed significant associations with the tumor microenvironment, immune function features, immune checkpoint expression, and immune evasion score in CC patients, highlighting the strong connection between SUMOylation factors and immune processes. In terms of immune therapy, our analysis identified specific chemotherapy drugs with higher sensitivity in the subgroups characterized by high and low SUMOScore, indicating potential treatment options. Furthermore, we conducted drug sensitivity analysis to evaluate the response of different patient subgroups to conventional chemotherapy drugs. Our findings revealed enrichment of immune-related pathways in the low-risk subgroup identified by the prognostic model. In conclusion, this study presents diagnostic and prognostic models based on SRGs, accompanied by a comprehensive index derived from SRGs expression patterns. These findings offer valuable insights for CC diagnosis, prognosis, treatment, and immune-related analysis.
Collapse
Affiliation(s)
- Xing Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Jian Cao
- Department of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China
| | - Xiuting Li
- School of Health Management and Basic Science, Jiangsu Health Vocational College, Nanjing, 210029, China
| | - Yan Zhang
- School of Medicine, Shihezi University, Xinjiang, 832003, China
| | - Wenjing Yan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Bo Ding
- Department of Gynecology and Obstetrics, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Jing Hu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Haohan Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Xue Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Yamei Nie
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Fengying Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Ning Lin
- Jiangsu Institute of Planned Parenthood Research, Nanjing, 210036, China.
| | - Shizhi Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China.
| |
Collapse
|
5
|
Jia X, Wang Y, Qiao Y, Jiang X, Li J. Nanomaterial-based regulation of redox metabolism for enhancing cancer therapy. Chem Soc Rev 2024; 53:11590-11656. [PMID: 39431683 DOI: 10.1039/d4cs00404c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Altered redox metabolism is one of the hallmarks of tumor cells, which not only contributes to tumor proliferation, metastasis, and immune evasion, but also has great relevance to therapeutic resistance. Therefore, regulation of redox metabolism of tumor cells has been proposed as an attractive therapeutic strategy to inhibit tumor growth and reverse therapeutic resistance. In this respect, nanomedicines have exhibited significant therapeutic advantages as intensively reported in recent studies. In this review, we would like to summarize the latest advances in nanomaterial-assisted strategies for redox metabolic regulation therapy, with a focus on the regulation of redox metabolism-related metabolite levels, enzyme activity, and signaling pathways. In the end, future expectations and challenges of such emerging strategies have been discussed, hoping to enlighten and promote their further development for meeting the various demands of advanced cancer therapies. It is highly expected that these therapeutic strategies based on redox metabolism regulation will play a more important role in the field of nanomedicine.
Collapse
Affiliation(s)
- Xiaodan Jia
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yue Wang
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yue Qiao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Xiue Jiang
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Jinghong Li
- Beijing Institute of Life Science and Technology, Beijing 102206, P. R. China
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
6
|
Ni Q, Sang K, Zhou J, Pan C. Role of miR-93-5p and Its Opposing Effect of Ionizing Radiation in Non-Small Cell Lung Cancer. Anal Cell Pathol (Amst) 2024; 2024:4218464. [PMID: 39157415 PMCID: PMC11330335 DOI: 10.1155/2024/4218464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/09/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
Background Radiation therapy is an effective local therapy for lung cancer. However, the interaction between genes and radiotherapy is multifaceted and intricate. Therefore, we explored the role of miR-93-5p in the proliferation, apoptosis, and migration abilities of A549 cells. Simultaneously, we also investigated the interactions between miR-93-5p and ionizing radiation (IR). Methods Cell Counting Kit-8, transwell, and apoptotic assay were performed to measure the proliferation, migration, and apoptosis abilities. The expression levels of miR-93-5p and its target gene in lung cancer were predicted using starBase v3.0. Then, data were validated using qPCR and western blot. Results miR-93-5p significantly promoted the proliferation (P < 0.01) and migration abilities (P < 0.001) of A549 cells. Gasdermin E (GSDME) was identified to be a putative target of miR-93-5p and had a negative correlation with miR-93-5p (P < 0.001). Overexpression of miR-93-5p significantly decreased GSDME in A549 (P < 0.001). Interestingly, miR-93-5p decreased cell proliferation (P < 0.01) and cell migration (P < 0.01) and increased apoptosis (P < 0.01) in A549 cells after exposure to IR. Conclusions miR-93-5p is presumed to play an oncogenic role in lung cancer by enhancing A549 cell proliferation and migration. It can enhance the sensitivity of radiotherapy under IR conditions. We speculate that the miR-93-5p/GSDME pathway was inhibited, activating the GSDME-related pyroptosis pathway when the cells were exposed to IR. Therefore, miR-93-5p can overcome resistance to radiotherapy and improve the efficacy of radiotherapy.
Collapse
Affiliation(s)
- Qingtao Ni
- Department of OncologyJiangsu Taizhou People's Hospital, The Affiliated Taizhou People's Hospital of Nanjing Medical UniversityTaizhou School of Clinical MedicineNanjing Medical University, Taizhou 225300, China
| | - Kai Sang
- Department of General SurgeryJiangsu Taizhou People's Hospital, The Affiliated Taizhou People's Hospital of Nanjing Medical UniversityTaizhou School of Clinical MedicineNanjing Medical University, Taizhou 225300, China
| | - Jian Zhou
- Department of General SurgeryJiangsu Taizhou People's Hospital, The Affiliated Taizhou People's Hospital of Nanjing Medical UniversityTaizhou School of Clinical MedicineNanjing Medical University, Taizhou 225300, China
| | - Chi Pan
- Department of General SurgeryJiangsu Taizhou People's Hospital, The Affiliated Taizhou People's Hospital of Nanjing Medical UniversityTaizhou School of Clinical MedicineNanjing Medical University, Taizhou 225300, China
| |
Collapse
|
7
|
Masoumeh H, Tunay D, Demet ÖA, Samuray T, Hülya Y. Exploring of miR-155-5p, miR-181b-5p, and miR-454-3p Expressions in Circulating Cell-Free RNA: Insights from Peripheral Blood of Uveal Malignant Melanoma Patients. Biochem Genet 2024:10.1007/s10528-024-10849-8. [PMID: 38914847 DOI: 10.1007/s10528-024-10849-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/22/2024] [Indexed: 06/26/2024]
Abstract
The identification of novel non-invasive biomarkers is imperative for the early diagnosis and monitoring of malignant melanoma. The objective of this study is to examine the expression levels of miR-155-5p, miR-181b-5p, and miR-454-3p in circulating cell-free RNA obtained from plasma samples of the 72 uveal malignant melanoma patients and to compare these levels with those of 72 healthy controls. The analysis showed that the expression level of the miR-181b-5p has increased 9.25 fold, and expression level of miR-155-5p has increased 6.67 fold, and miR-454-3p expression level has increased 4.14 fold in the patient group compared with the levels in the healthy control group (p = 0.005). It was found that the high expression levels of the three miRNAs were statistically significant in patients compared with in the healthy control group. The statistical evaluations between miRNA expression levels and clinical data showed that miR-155-5p had significant association with radiation therapy (p = 0.040), and miR-454-3p showed a significant association with smoking and alcohol use respectively (p = 0.009, and p = 0.026). The significantly elevated expression levels of miR-181b-5p, miR-155-5p, and miR-454-3p in the circulating cell-free RNA of plasma from uveal melanoma patients, in comparison to those in the healthy control group, suggest the potential usefulness of these biomarkers for both early diagnosis and disease monitoring. However, more extensive and future studies are needed to use these molecules in early diagnosis and disease monitoring.
Collapse
Affiliation(s)
- Hassani Masoumeh
- Cancer Genetics Division, Oncology Institute, İstanbul University, Çapa-Fatih, 34093, Istanbul, Türkiye
| | - Doğan Tunay
- Cancer Genetics Division, Oncology Institute, İstanbul University, Çapa-Fatih, 34093, Istanbul, Türkiye
- Department of Medical Pathology, Faculty of Medicine, Istinye University, Cevizlibağ-Zeytinburnu, 34010, Istanbul, Türkiye
| | - Ödemiş Akdeniz Demet
- Cancer Genetics Division, Oncology Institute, İstanbul University, Çapa-Fatih, 34093, Istanbul, Türkiye
- Health Institutes of Türkiye, Türkiye Cancer Institute, Kadıköy, 34734, Istanbul, Türkiye
| | - Tuncer Samuray
- Department of Eye Diseases, Faculty of Medicine, İstanbul University, Çapa-Fatih, 34093, Istanbul, Türkiye
| | - Yazıcı Hülya
- Cancer Genetics Division, Oncology Institute, İstanbul University, Çapa-Fatih, 34093, Istanbul, Türkiye.
- Department of Medical Biology and Genetics, Faculty of Medicine, İstanbul Arel University, Merkez Efendi Mah, Eski Londra Asfalti.Cd., No 1/3, Cevizlibag, Zeytinburnu, 34010, Istanbul, Türkiye.
| |
Collapse
|
8
|
Liang M, Sheng L, Ke Y, Wu Z. The research progress on radiation resistance of cervical cancer. Front Oncol 2024; 14:1380448. [PMID: 38651153 PMCID: PMC11033433 DOI: 10.3389/fonc.2024.1380448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Cervical carcinoma is the most prevalent gynecology malignant tumor and ranks as the fourth most common cancer worldwide, thus posing a significant threat to the lives and health of women. Advanced and early-stage cervical carcinoma patients with high-risk factors require adjuvant treatment following surgery, with radiotherapy being the primary approach. However, the tolerance of cervical cancer to radiotherapy has become a major obstacle in its treatment. Recent studies have demonstrated that radiation resistance in cervical cancer is closely associated with DNA damage repair pathways, the tumor microenvironment, tumor stem cells, hypoxia, cell cycle arrest, and epigenetic mechanisms, among other factors. The development of tumor radiation resistance involves complex interactions between multiple genes, pathways, and mechanisms, wherein each factor interacts through one or more signaling pathways. This paper provides an overview of research progress on an understanding of the mechanism underlying radiation resistance in cervical cancer.
Collapse
Affiliation(s)
| | | | - Yumin Ke
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Zhuna Wu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
9
|
Liu L, Lin J, Deng S, Yu H, Xie N, Sun Y. A novel nomogram and risk stratification for early metastasis in cervical cancer after radical radiotherapy. Cancer Med 2023; 12:21798-21806. [PMID: 37994611 PMCID: PMC10757092 DOI: 10.1002/cam4.6745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023] Open
Abstract
OBJECT This study aimed to establish an effective risk nomogram to predict the early distant metastasis (EDM) probability of cervical cancer (CC) patients treated with radical radiotherapy to aid individualized clinical decision-making. METHODS A total of 489 patients with biopsy-confirmed CC between December 2018 and January 2021 were enrolled. Logistic regression with the stepwise backward method was used to identify independent risk factors. The nomogram efficacy was evaluated by using the area under the receiver operating characteristic curve (AUC), C-index by 1000 bootstrap replications, etc. Finally, patients were divided into high- and low-risk groups of EDM based on the cut-off value of nomogram points. RESULTS 36 (7.36%) CC patients had EDM, and 20 (55.6%) EDM had more than one metastatic site involved. Age below 51 (OR = 2.298, p < 0.001), tumor size larger than 4.5 cm (OR = 3.817, p < 0.001) and radiotherapy (OR = 3.319, p < 0.001) were independent risk factors of EDM. For the nomogram model, C-index was 0.701 (95% CI = 0.604-0.798), and 0.675 (95% CI = 0.578-0.760) after 1000 bootstrap resampling validations. The Hosmer-Lemeshow test demonstrated no overfitting (p = 0.924). According to the Kaplan-Meier curve of risk score, patients with high risk were more prone to get EDM (p < 0.001). CONCLUSION This is the first research to focus on EDM in CC patients. We have developed a robust scoring system to predict the risk of EDM in CC patients to screen out appropriate cases for consolidation therapy and more intensive follow-up.
Collapse
Affiliation(s)
- Linying Liu
- Department of GynecologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Jie Lin
- Department of GynecologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Sufang Deng
- Department of GynecologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Haijuan Yu
- Department of GynecologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Ning Xie
- Department of GynecologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Yang Sun
- Department of GynecologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| |
Collapse
|
10
|
Rezaee A, Ahmadpour S, Jafari A, Aghili S, Zadeh SST, Rajabi A, Raisi A, Hamblin MR, Mahjoubin-Tehran M, Derakhshan M. MicroRNAs, long non-coding RNAs, and circular RNAs and gynecological cancers: focus on metastasis. Front Oncol 2023; 13:1215194. [PMID: 37854681 PMCID: PMC10580988 DOI: 10.3389/fonc.2023.1215194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/28/2023] [Indexed: 10/20/2023] Open
Abstract
Gynecologic cancer is a significant cause of death in women worldwide, with cervical cancer, ovarian cancer, and endometrial cancer being among the most well-known types. The initiation and progression of gynecologic cancers involve a variety of biological functions, including angiogenesis and metastasis-given that death mostly occurs from metastatic tumors that have invaded the surrounding tissues. Therefore, understanding the molecular pathways underlying gynecologic cancer metastasis is critical for enhancing patient survival and outcomes. Recent research has revealed the contribution of numerous non-coding RNAs (ncRNAs) to metastasis and invasion of gynecologic cancer by affecting specific cellular pathways. This review focuses on three types of gynecologic cancer (ovarian, endometrial, and cervical) and three kinds of ncRNAs (long non-coding RNAs, microRNAs, and circular RNAs). We summarize the detailed role of non-coding RNAs in the different pathways and molecular interactions involved in the invasion and metastasis of these cancers.
Collapse
Affiliation(s)
- Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Ahmadpour
- Biotechnology Department, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Ameneh Jafari
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sarehnaz Aghili
- Department of Gynecology and Obstetrics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Arash Raisi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Maryam Mahjoubin-Tehran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Derakhshan
- Shahid Beheshti Fertility Clinic, Department of Gynecology and Obsteterics, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
11
|
Ghafouri-Fard S, Shoorei H, Noferesti L, Hussen BM, Moghadam MHB, Taheri M, Rashnoo F. Nanoparticle-mediated delivery of microRNAs-based therapies for treatment of disorders. Pathol Res Pract 2023; 248:154667. [PMID: 37422972 DOI: 10.1016/j.prp.2023.154667] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
miRNAs represent appropriate candidates for treatment of several disorders. However, safe and efficient delivery of these small-sized transcripts has been challenging. Nanoparticle-based delivery of miRNAs has been used for treatment of a variety of disorders, particularly cancers as well as ischemic stroke and pulmonary fibrosis. The wide range application of this type of therapy is based on the important roles of miRNAs in the regulation of cell behavior in physiological and pathological conditions. Besides, the ability of miRNAs to inhibit or increase expression of several genes gives them the superiority over mRNA or siRNA-based therapies. Preparation of nanoparticles for miRNA delivery is mainly achieved through using protocols originally developed for drugs or other types of biomolecules. In brief, nanoparticle-based delivery of miRNAs is regarded as a solution for overcoming all challenges in the therapeutic application of miRNAs. Herein, we provide an overview of studies which used nanoparticles as delivery systems for facilitation of miRNAs entry into target cells for the therapeutic purposes. However, our knowledge about miRNA-loaded nanoparticles is limited, and it is expected that numerous therapeutic possibilities will be revealed for miRNA-loaded nanoparticles in future.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran; Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Noferesti
- Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | | | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fariborz Rashnoo
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Freeman FE, Dosta P, Shanley LC, Ramirez Tamez N, Riojas Javelly CJ, Mahon OR, Kelly DJ, Artzi N. Localized Nanoparticle-Mediated Delivery of miR-29b Normalizes the Dysregulation of Bone Homeostasis Caused by Osteosarcoma whilst Simultaneously Inhibiting Tumor Growth. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207877. [PMID: 36994935 DOI: 10.1002/adma.202207877] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 03/06/2023] [Indexed: 06/09/2023]
Abstract
Patients diagnosed with osteosarcoma undergo extensive surgical intervention and chemotherapy resulting in dismal prognosis and compromised quality of life owing to poor bone regeneration, which is further compromised with chemotherapy delivery. This study aims to investigate if localized delivery of miR-29b-which is shown to promote bone formation by inducing osteoblast differentiation and also to suppress prostate and cervical tumor growth-can suppress osteosarcoma tumors whilst simultaneously normalizing the dysregulation of bone homeostasis caused by osteosarcoma. Thus, the therapeutic potential of microRNA (miR)-29b is studied to promote bone remodeling in an orthotopic model of osteosarcoma (rather than in bone defect models using healthy mice), and in the context of chemotherapy, that is clinically relevant. A formulation of miR-29b:nanoparticles are developed that are delivered via a hyaluronic-based hydrogel to enable local and sustained release of the therapy and to study the potential of attenuating tumor growth whilst normalizing bone homeostasis. It is found that when miR-29b is delivered along with systemic chemotherapy, compared to chemotherapy alone, the therapy provided a significant decrease in tumor burden, an increase in mouse survival, and a significant decrease in osteolysis thereby normalizing the dysregulation of bone lysis activity caused by the tumor.
Collapse
Affiliation(s)
- Fiona E Freeman
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, D02 PN40, Ireland
- Department of Mechanical, Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, D02 PN40, Ireland
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Medicine, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, D02 YN77, Ireland
- School of Mechanical and Materials Engineering, Engineering and Materials Science Centre, University College Dublin, Dublin, D04 V1W8, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Pere Dosta
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Medicine, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Lianne C Shanley
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, D02 PN40, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, D02 YN77, Ireland
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Natalia Ramirez Tamez
- Department of Medicine, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Cristobal J Riojas Javelly
- Department of Medicine, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Olwyn R Mahon
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, D02 PN40, Ireland
- School of Medicine, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, D02 PN40, Ireland
- Department of Mechanical, Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, D02 PN40, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, D02 YN77, Ireland
- Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Natalie Artzi
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Medicine, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
13
|
Kniazeva M, Zabegina L, Shalaev A, Smirnova O, Lavrinovich O, Berlev I, Malek A. NOVAprep-miR-Cervix: New Method for Evaluation of Cervical Dysplasia Severity Based on Analysis of Six miRNAs. Int J Mol Sci 2023; 24:ijms24119114. [PMID: 37298066 DOI: 10.3390/ijms24119114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Cervical cancer is one of the most common gynecological malignancies and it is preventable through the yearly diagnosis and management of pre-cancerous cervical disease. The profile of miRNA expression in cervical epithelium cells is altered with cervical dysplasia development and further progression. The NOVAprep-miR-CERVIX is a new approach for the assessment of cervical dysplasia through the analysis of six marker miRNAs. This study aims to evaluate theperformance and diagnostic potency of the new method. Cytological smears from 226 women (NILM, n.114; HSIL, n.112) were included in the study. A VPH test was performed with RealBest DNAHPV HR screen Kit, six marker miRNAs (miR-21, -29b, -145, -451a, -1246, -1290) were assayed using NOVAprep-miR-CERVIX kit. Obtained data were analyzed using the Delta Ct method and random forest machine learning algorithm. The results of the quantitative analysis of six microRNAs were expressed as a miR-CERVIX parameter, which ranged from 0 to 1, where "0" corresponded to the healthy cervical epithelium, while "1" corresponded to high-grade squamous intraepithelial dysplasia. The average value of miR-CERVIX differed in groups of NILM and HSIL samples (0.34 vs. 0.72; p < 0.000005). An estimation of miR-CERVIX allowed for the differentiation between healthy and pre-cancerous samples with sensitivity of 0.79 and specificity of 0.79, as well as to confirm HSIL with specificity of 0.98. Interestingly, the HSIL group included HPV(+) and HPV(-) samples, which were statistically significantly different in terms of miR-CERVIX value. Analysis of CC-associated miRNAs in material of cervical smear might serve as an additional method for the evaluation of cervical dysplasia severity.
Collapse
Affiliation(s)
- Margarita Kniazeva
- Subcellular Technology Lab., N.N. Petrov National Medical Research Center of Oncology, 197758 St. Petersburg, Russia
| | - Lidia Zabegina
- Subcellular Technology Lab., N.N. Petrov National Medical Research Center of Oncology, 197758 St. Petersburg, Russia
| | - Andrey Shalaev
- Subcellular Technology Lab., N.N. Petrov National Medical Research Center of Oncology, 197758 St. Petersburg, Russia
| | - Olga Smirnova
- Department of Gynecological Oncology, N.N. Petrov National Medical Research Center of Oncology, 197758 St. Petersburg, Russia
| | - Olga Lavrinovich
- Department of Gynecological Oncology, N.N. Petrov National Medical Research Center of Oncology, 197758 St. Petersburg, Russia
| | - Igor Berlev
- Department of Gynecological Oncology, N.N. Petrov National Medical Research Center of Oncology, 197758 St. Petersburg, Russia
| | - Anastasia Malek
- Subcellular Technology Lab., N.N. Petrov National Medical Research Center of Oncology, 197758 St. Petersburg, Russia
| |
Collapse
|
14
|
miRNAs role in cervical cancer pathogenesis and targeted therapy: Signaling pathways interplay. Pathol Res Pract 2023; 244:154386. [PMID: 36868096 DOI: 10.1016/j.prp.2023.154386] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023]
Abstract
Cervical cancer (CC) is the primary cause of cancer deaths in underdeveloped countries. The persistence of infection with high-risk human papillomavirus (HPV) is a significant contributor to the development of CC. However, few women with morphologic HPV infection develop invasive illnesses, suggesting other mechanisms contribute to cervical carcinogenesis. MicroRNAs (miRNAs, miRs) are small chain nucleic acids that can regulate wide networks of cellular events. They can inhibit or degrade their target protein-encoding genes. They had the power to regulate CC's invasion, pathophysiology, angiogenesis, apoptosis, proliferation, and cell cycle phases. Further research is required, even though novel methods have been developed for employing miRNAs in the diagnosis, and treatment of CC. We'll go through some of the new findings about miRNAs and their function in CC below. The function of miRNAs in the development of CC and its treatment is one of these. Clinical uses of miRNAs in the analysis, prediction, and management of CC are also covered.
Collapse
|
15
|
Li J, Sun J, Liu Z, Zeng Z, Ouyang S, Zhang Z, Ma M, Kang W. The Roles of Non-Coding RNAs in Radiotherapy of Gastrointestinal Carcinoma. Front Cell Dev Biol 2022; 10:862563. [PMID: 35517505 PMCID: PMC9065280 DOI: 10.3389/fcell.2022.862563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/22/2022] [Indexed: 12/19/2022] Open
Abstract
Radiotherapy (RT), or radiation therapy, has been widely used in clinical practice for the treatment of local advanced gastrointestinal carcinoma. RT causes DNA double-strand breaks leading to cell cytotoxicity and indirectly damages tumor cells by activating downstream genes. Non-coding RNA (including microRNAs, long non-coding RNAs (ncRNAs), and circular RNAs) is a type of RNA that does not encode a protein. As the field of ncRNAs increasingly expands, new complex roles have gradually emerged for ncRNAs in RT. It has been shown that ncRNAs can act as radiosensitivity regulators in gastrointestinal carcinoma by affecting DNA damage repair, cell cycle arrest, irradiation-induced apoptosis, cell autophagy, stemness, EMT, and cell pyroptosis. Here, we review the complex roles of ncRNAs in RT and gastrointestinal carcinoma. We also discuss the potential clinical significance and predictive value of ncRNAs in response to RT for guiding the individualized treatment of patients. This review can serve as a guide for the application of ncRNAs as radiosensitivity enhancers, radioresistance inducers, and predictors of response in RT of gastrointestinal carcinoma.
Collapse
|
16
|
Guo Y, Chen J, Zhang X, Fang M, Xu M, Zhang L, Rao E, Xin Y. Recombinant Human Adenovirus-p53 Therapy for the Treatment of Cervical Cancer: A Meta-Analysis. Front Oncol 2021; 11:748681. [PMID: 34733786 PMCID: PMC8558497 DOI: 10.3389/fonc.2021.748681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives To evaluate the clinical curative effects and toxicity of recombinant human adenovirus-p53 injection (rAd-p53) plus chemotherapy (CT), radiotherapy (RT), or concurrent chemoradiotherapy (CRT) for the treatment of cervical cancer. Methods We identified 14 eligible studies in the PubMed, Web of Science, Cochrane Library, Embase, CNKI, Wangfangdate, CBM, and VIP databases from their inception to May 2021 and performed meta-analyses using RevMan version 5.3. Results This analysis included 14 studies involving 737 patients. The results of the meta-analysis results showed significantly improved complete remission (odds ratio [OR] = 2.54, 95% confidence interval [CI]: 1.74-3.70, p < 0.00001), partial remission (OR = 1.56, 95% CI: 1.14-2.14, p = 0.006), and object response (OR = 4.47, 95% CI: 3.02-6.60, p < 0.00001) rates in the rAd-p53 combination therapy group compared to those in the CT/RT/CRT group. The results of subgroup analyses of CT/RT/CRT were consistent with the overall results. Regarding the incidence of adverse reactions, only the occurrence rate of fever (OR = 18.21, 95% CI: 10.54-31.47, p < 0.00001) in the rAd-p53 combination group was higher than that in the CT/RT/CRT group. No other significant differences were observed in other adverse reactions. Conclusion RAd-p53 combined with CT/RT/CRT for the treatment of cervical cancer showed significant advantages in efficacy and safety compared to those in the CT/RT/CRT group. Therefore, rAd-p53 has great potential as an effective therapy for cervical cancer. Systematic Review Registration https://inplasy.com/inplasy-2021-5-0058/.
Collapse
Affiliation(s)
- Yaru Guo
- Department of Radiation, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jiuzhou Chen
- Department of Radiation, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiwen Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Miao Fang
- Department of Radiation, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Mingna Xu
- Department of Radiation, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Longzhen Zhang
- Department of Radiation, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Enyu Rao
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Yong Xin
- Department of Radiation, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
17
|
Zhang W, Wu Q, Liu Y, Wang X, Ma C, Zhu W. LncRNA HOTAIR promotes chemoresistance by facilitating epithelial to mesenchymal transition through miR-29b/PTEN/PI3K signaling in cervical cancer. Cells Tissues Organs 2021; 211:16-29. [PMID: 34571508 DOI: 10.1159/000519844] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/23/2021] [Indexed: 12/09/2022] Open
Affiliation(s)
- Wenying Zhang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Gynecology, Shanghai Changning Maternity and Infant Health Hospital, Shanghai, China
| | - Qiongwei Wu
- Department of Gynecology, Shanghai Changning Maternity and Infant Health Hospital, Shanghai, China
| | - Yu Liu
- Department of Gynecology, Shanghai Changning Maternity and Infant Health Hospital, Shanghai, China
| | - Xujie Wang
- Department of Gynecology, Shanghai Changning Maternity and Infant Health Hospital, Shanghai, China
| | - Chengbin Ma
- Department of Gynecology, Shanghai Changning Maternity and Infant Health Hospital, Shanghai, China
| | - Weipei Zhu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
18
|
Li K, Zhou P, Li S, Zheng S, Wang D. MicroRNA-29b reduces myocardial ischemia-reperfusion injury in rats via down-regulating PTEN and activating the Akt/eNOS signaling pathway. J Thromb Thrombolysis 2021; 53:123-135. [PMID: 34370169 DOI: 10.1007/s11239-021-02535-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/16/2021] [Indexed: 01/20/2023]
Abstract
Reperfusion may cause injuries to the myocardium in ischemia situation, which is called ischemia/reperfusion (I/R) injury. The study aimed to explore the roles of microRNA-29b (miR-29b) in myocardial I/R injury. Myocardial I/R injury rat model was established. Differentially expressed miRNAs between the model rats and the sham-operated rats were analyzed. miR-29b expression in myocardial tissues was measured. Gain-of-function of miR-29b was performed, and then the morphological changes, infarct size, myocardial function, oxidative stress, and the cell apoptosis in myocardial tissues were detected. The target relation between miR-29b and PTEN was detected through bio-information prediction and dual luciferase reporter gene assay. Activation of Akt/eNOS signaling was detected. H9C2 cells were subjected to hypoxia/reoxygenation treatment to perform in vitro experiments. I/R rats presented severe inflammatory infiltration, increased infarct size and cell apoptosis, increased oxidative stress and decreased myocardial function. miR-29b was downregulated in I/R rats, and up-regulation of miR-29b reversed the above changes. miR-29b directly bound to PTEN, and overexpression of miR-29b reduced PTEN expression level and increased the protein levels of p-Akt/Akt and p-eNOS/eNOS. In vivo results were confirmed in in vitro experiments. This study provided evidence that miR-29b could alleviate the myocardial I/R injury in vivo and in vitro by inhibiting PTEN expression and activating the Akt/eNOS signaling pathway.
Collapse
Affiliation(s)
- Kunsheng Li
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu Province, People's Republic of China
| | - Pengyu Zhou
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 515000, Guangdong Province, People's Republic of China
| | - Shiliang Li
- Department of Cardiac Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Shaoyi Zheng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 515000, Guangdong Province, People's Republic of China.
| | - Dongjin Wang
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu Province, People's Republic of China.
| |
Collapse
|
19
|
MicroRNA-29b regulates the radiosensitivity of esophageal squamous cell carcinoma by regulating the BTG2-mediated cell cycle. Strahlenther Onkol 2021; 197:829-835. [PMID: 34232332 DOI: 10.1007/s00066-021-01790-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/20/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND Many patients with esophageal squamous cell carcinoma (ESCC) are inoperable due to old age or advanced stage; thus, radio- and chemotherapy are considered the standard treatments for these patients. However, due to the radiation resistance of tumor cells that may arise during radiotherapy, results are still not satisfactory. The authors' previous studies found that microRNA can affect radiosensitivity, and further microRNA research was conducted to improve the radiosensitivity of ESCC. METHODS Cells were treated with silent miR-29b (si-miR-29b). Thereafter,proliferation, colony formation, cell cycle, and apoptosis were determined. The luciferase reporting assay was used to confirm the direct interaction between miR-29b and BTG2. Serum samples and clinical follow-up data of 75 elderly or advanced ESCC patients who could not tolerate surgery were collected. RESULTS The expression level of miR-29 in ESCC serum was closely correlated to radiosensitivity (χ2 =8.36, p < 0.05) and correlated with overall survival (OS; hazard ratio [HR] 0.47, 95% confidence interval [CI] 0.24-0.90). Function assays demonstrated that the number of cell clones increased after radiometry radiation, and the cell cycle was blocked in the G0/G1 phase (from 37.2 to 56.9%) in the si-miR-29b transfection group. Expression of BTG2 was upregulated and expression of cyclin D1 was downregulated (p < 0.05). Transfection of si-BTG2 can reverse this result and restore the expression level of cyclin D1 (p < 0.05). The target gene BTG2 of miR-29b was predicted using a bioinformatics tool and confirmed by dual-luciferase reporter assay. CONCLUSION Silencing of miR-29b in ESCC cells can increase expression of BTG2 and decrease the level of intracellular cyclin D1, resulting in cell cycle arrest and accumulation in the G0/G1 phase. Because G0/G1-phase cells are insensitive to radiotherapy, the sensitivity of radiotherapy is reduced.
Collapse
|
20
|
Pan C, Sun G, Sha M, Wang P, Gu Y, Ni Q. Investigation of miR-93-5p and its effect on the radiosensitivity of breast cancer. Cell Cycle 2021; 20:1173-1180. [PMID: 34024254 PMCID: PMC8265785 DOI: 10.1080/15384101.2021.1930356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Accumulating evidence suggests that intrinsic resistance to radiotherapy reduces the survival of patients with cancer. The present study investigated whether miR-93-5p affects proliferation, migration, apoptosis, and radiosensitivity of breast cancer (BC) cells. MDA-MB-468, MCF-7, and MDA-MB-231 BC cells were incubated with hsa-miR-93-5p mimics, hsa-miR-93-5p inhibitor, and negative control RNA with or without exposure to ionizing radiation to determine cell proliferation, migration, and apoptosis using the Cell Counting Kit-8 assay, wound healing assay and apoptotic assay, respectively. Overexpression of miR-93-5p inhibited the migratory abilities (P = 0.001) and decreased the cell proliferation (P = 0.049) of MCF-7 cells. In MCF-7 cells, a significant increase in apoptosis was detected after treatment with miR-93-5p compared with the negative control (P = 0.001) and miR-93-5p inhibitor (P = 0.004). In MDA-MB-468 cells, the proportion of apoptotic cells increased following exposure to ionizing radiation (P = 0.001). The percentage of apoptotic MDA-MB-231 cells in the miR-93-5p group was significantly increase compared with that determined in the negative control (P = 0.044) and hsa-miR-93-5p inhibitor (P = 0.046) groups. In conclusion, our findings showed that miR-93-5p reduces BC cell proliferation and migratory capacity, and increases the ratio of apoptotic cells. Overexpression of miR-93-5p could increase radiosensitivity in BC cells by increasing apoptosis. This evidence provides new insight into the treatment of BC and identifies miR-93-5p as a potential therapeutic target.
Collapse
Affiliation(s)
- Chi Pan
- Department of General Surgery, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital), Taizhou, China
| | - Guangzhi Sun
- Department of Oncology, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital), Taizhou, China
| | - Min Sha
- Department of Central Laboratory, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital), Taizhou, China
| | - Peng Wang
- Department of Oncology, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital), Taizhou, China
| | - Yawen Gu
- Department of Oncology, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital), Taizhou, China
| | - Qingtao Ni
- Department of Oncology, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital), Taizhou, China
| |
Collapse
|
21
|
Guo J, Tang T, Li J, Yang Y, Quan Y, Zhang L, Huang W, Zhou M. Overexpression of MicroRNA 142-5p Suppresses the Progression of Cervical Cancer through Targeting Phosphoinositol-3-Kinase Adaptor Protein 1 Expression. Mol Cell Biol 2021; 41:e0036320. [PMID: 33288643 PMCID: PMC8316050 DOI: 10.1128/mcb.00363-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/22/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022] Open
Abstract
The aim of current study was to explore the mechanism of microRNA 142-5p (miR-142-5p) in cervical cancer through mediating the phosphoinositol-3-kinase adaptor protein 1 (PIK3AP1)/PI3K/AKT axis. To this end, reverse transcription-quantitative PCR (RT-qPCR) and Western blot analysis results revealed that miR-142-5p was poorly expressed, whereas PIK3AP1 was highly expressed, in cervical cancer tissues and cells. Furthermore, miR-142-5p was hypermethylated in cervical cancer, as reflected by methylation-specific PCR (MS-PCR) and chromatin immunoprecipitation (ChIP) assessment of enrichment of DNMT1/DNMT3a/DNMT3b in the promoter region of miR-142-5p. A target binding relationship between miR-142-5p and PIK3AP1 was established, showing that miR-142-5p targeted and inhibited the expression of PIK3AP1. Loss- and gain-of-function assays were conducted to determine the roles of miR-142-5p and PIK3AP1 in cervical cancer cells. CCK-8, flow cytometry, and Transwell assay results revealed that overexpression of miR-142-5p in cervical cancer cells downregulated PIK3AP1 and inhibited the PI3K/AKT signaling pathway, leading to reduced proliferation, migration, and invasion capacity of cervical cancer cells but enhanced apoptosis. Collectively, epigenetic regulation of miR-142-5p targeted PIK3AP1 to inactivate the PI3K/AKT signaling pathway, thus suppressing development of cervical cancer, which presents new targets for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Junliang Guo
- Department of Obstetrics and Gynaecology, Centre for Reproductive Medicine, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, People’s Republic of China
| | - Tian Tang
- Department of Obstetrics and Gynaecology, Centre for Reproductive Medicine, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, People’s Republic of China
| | - Jinhong Li
- Department of Obstetrics and Gynaecology, Centre for Reproductive Medicine, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, People’s Republic of China
| | - Yihong Yang
- Department of Obstetrics and Gynaecology, Centre for Reproductive Medicine, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, People’s Republic of China
| | - Yi Quan
- Department of Obstetrics and Gynaecology, Centre for Reproductive Medicine, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, People’s Republic of China
| | - Long Zhang
- Department of Obstetrics and Gynaecology, Centre for Reproductive Medicine, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, People’s Republic of China
| | - Wei Huang
- Department of Obstetrics and Gynaecology, Centre for Reproductive Medicine, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, People’s Republic of China
| | - Muchuan Zhou
- Department of Anesthesia, Sichuan Integrative Medicine Hospital, Sichuan Academy of Chinese Medicine Science, Chengdu, People’s Republic of China
| |
Collapse
|
22
|
Mendaza S, Fernández-Irigoyen J, Santamaría E, Arozarena I, Guerrero-Setas D, Zudaire T, Guarch R, Vidal A, Salas JS, Matias-Guiu X, Ausín K, Gil C, Hernández-Alcoceba R, Martín-Sánchez E. Understanding the Molecular Mechanism of miR-877-3p Could Provide Potential Biomarkers and Therapeutic Targets in Squamous Cell Carcinoma of the Cervix. Cancers (Basel) 2021; 13:cancers13071739. [PMID: 33917510 PMCID: PMC8038805 DOI: 10.3390/cancers13071739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
No therapeutic targets and molecular biomarkers are available in cervical cancer (CC) management. In other cancer types, micro-RNA-877-3p (miR-877-3p) has been associated with events relevant for CC development. Thus, we aimed to determine miR-877-3p role in CC. miR-877-3p levels were examined by quantitative-PCR in 117 cervical lesions and tumors. Effects on CC cell proliferation, migration, and invasion were evaluated upon anti-miR-877-3p transfection. miR-877-3p dependent molecular mechanism was comprehensively explored by proteomics, dual-luciferase reporter assay, western blot, and immunohistochemistry. Cervical tumors expressed higher miR-877-3p levels than benign lesions. miR-877-3p promoted CC cell migration and invasion, at least partly by modulating cytoskeletal protein folding through the chaperonin-containing T-complex protein 1 complex. Notably, miR-877-3p silencing synergized with paclitaxel. Interestingly, miR-877-3p downregulated the levels of an in silico-predicted target, ZNF177, whose expression and subcellular location significantly distinguished high-grade squamous intraepithelial lesions (HSILs) and squamous cell carcinomas of the cervix (SCCCs). Cytoplasmic ZNF177 was significantly associated with worse progression-free survival in SCCC. Our results suggest that: (i) miR-877-3p is a potential therapeutic target whose inhibition improves paclitaxel effects; (ii) the expression and location of its target ZNF177 could be diagnostic biomarkers between HSIL and SCCC; and (iii) cytoplasmic ZNF177 is a poor-prognosis biomarker in SCCC.
Collapse
Affiliation(s)
- Saioa Mendaza
- Molecular Pathology of Cancer Group, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain; (S.M.); (D.G.-S.)
| | - Joaquín Fernández-Irigoyen
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain; (J.F.-I.); (E.S.); (K.A.)
| | - Enrique Santamaría
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain; (J.F.-I.); (E.S.); (K.A.)
| | - Imanol Arozarena
- Cancer Cell Signalling Group, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain;
| | - David Guerrero-Setas
- Molecular Pathology of Cancer Group, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain; (S.M.); (D.G.-S.)
- Department of Pathology, Complejo Hospitalario de Navarra (CHN), Irunlarrea 3, 31008 Pamplona, Spain; (T.Z.); (R.G.)
| | - Tamara Zudaire
- Department of Pathology, Complejo Hospitalario de Navarra (CHN), Irunlarrea 3, 31008 Pamplona, Spain; (T.Z.); (R.G.)
| | - Rosa Guarch
- Department of Pathology, Complejo Hospitalario de Navarra (CHN), Irunlarrea 3, 31008 Pamplona, Spain; (T.Z.); (R.G.)
| | - August Vidal
- Department of Pathology, Hospital Universitari de Bellvitge, IDIBELL, Carrer de la Feixa Llarga, 08907 L’Hospitalet de Llobregat, Spain; (A.V.); (X.M.-G.)
- CIBERONC, Centro de Investigación Biomédica en Red—Cáncer, 28029 Madrid, Spain
| | - José-Santos Salas
- Department of Pathology, Complejo Asistencial Universitario, Altos de Nava, 24071 León, Spain;
| | - Xavier Matias-Guiu
- Department of Pathology, Hospital Universitari de Bellvitge, IDIBELL, Carrer de la Feixa Llarga, 08907 L’Hospitalet de Llobregat, Spain; (A.V.); (X.M.-G.)
- CIBERONC, Centro de Investigación Biomédica en Red—Cáncer, 28029 Madrid, Spain
- Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova, University of Lleida, Alcalde Rovira Roure 80, 25198 Lleida, Spain
| | - Karina Ausín
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain; (J.F.-I.); (E.S.); (K.A.)
| | - Carmen Gil
- Microbial Pathogenesis Group, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain;
| | - Rubén Hernández-Alcoceba
- Gene Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pío XII 55, 31008 Pamplona, Spain;
| | - Esperanza Martín-Sánchez
- Molecular Pathology of Cancer Group, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain; (S.M.); (D.G.-S.)
- Correspondence:
| |
Collapse
|
23
|
Ebahimzadeh K, Shoorei H, Mousavinejad SA, Anamag FT, Dinger ME, Taheri M, Ghafouri-Fard S. Emerging role of non-coding RNAs in response of cancer cells to radiotherapy. Pathol Res Pract 2020; 218:153327. [PMID: 33422780 DOI: 10.1016/j.prp.2020.153327] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 01/03/2023]
Abstract
Radiotherapy is an effective method for treatment of a large proportion of human cancers. Yet, the efficacy of this method is precluded by the induction of radioresistance in tumor cells and the radiation-associated injury of normal cells surrounding the field of radiation. These restrictions necessitate the introduction of modalities for either radiosensitization of cancer cells or protection of normal cells against adverse effects of radiation. Non-coding RNAs (ncRNAs) have essential roles in the determination of radiosensitivity. Moreover, ncRNAs can modulate radiation-induced side effects in normal cells. Several microRNAs (miRNAs) such as miR-620, miR-21 and miR-96-5p confer radioresistance, while other miRNAs including miR-340/ 429 confer radiosensitivity. The expression levels of a number of miRNAs are associated with radiation-induced complications such as lung fibrosis or oral mucositis. The expression patterns of several long non-coding RNAs (lncRNAs) such as MALAT1, LINC00630, HOTAIR, UCA1 and TINCR are associated with response to radiotherapy. Taken together, lncRNAs and miRNAs contribute both in modulation of response of cancer cells to radiotherapy and in protection of normal cells from the associated side effects. The current review provides an overview of the roles of these transcripts in these aspects.
Collapse
Affiliation(s)
- Kaveh Ebahimzadeh
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Seyed Ali Mousavinejad
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Kim EH, Kim JY, Kim MS, Vares G, Ohno T, Takahashi A, Uzawa A, Seo SJ, Sai S. Molecular mechanisms underlying the enhancement of carbon ion beam radiosensitivity of osteosarcoma cells by miR-29b. Am J Cancer Res 2020; 10:4357-4371. [PMID: 33415004 PMCID: PMC7783744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023] Open
Abstract
Carbon ion radiotherapy (CIRT) is more effective than conventional photon beam radiotherapy in treating osteosarcoma (OSA); however, the outcomes of CIRT alone are still unsatisfactory. In this study, we aimed to investigate whether miR-29b acts as a radiosensitizer for CIRT. The OSA cell lines U2OS and KHOS were treated with carbon ion beam alone, γ-ray irradiation alone, or in combination with an miR-29b mimic. OSA cell death as well as invasive and migratory abilities were analyzed through viability, colony formation, Transwell, and apoptosis assays. miR-29 expression was downregulated in OSA tissues compared to that in normal tissues and was associated with metastasis and relapse in patients with OSA. Further, miR-29b was found to directly target the transcription factor Sp1 and suppress the activation of the phosphatase and tensin homolog (PTEN)-AKT pathway. Conversely, Sp1 was found to attenuate the inhibitory effects of miR-29b in OSA cells. When used in combination with miR-29b mimic, carbon ion beam markedly inhibited invasion, migration, and proliferation of OSA cells and promoted apoptosis by inhibiting AKT phosphorylation in a Sp1/PTEN-mediated manner. Taken together, miR-29b mimic improved the radiosensitivity of OSA cells via the PTEN-AKT-Sp1 signaling pathway, presenting a novel strategy for the development of carbon ion beam combination therapy.
Collapse
Affiliation(s)
- Eun Ho Kim
- Department of Biochemistry, School of Medicine, Daegu Catholic UniversityNam-gu, Daegu 42472, South Korea
| | - Jeong Yub Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical SciencesSeoul 01812, Republic of Korea
| | - Mi-Sook Kim
- Department of Radiation Oncology, Korea Institute of Radiological and Medical SciencesSeoul 139-706, South Korea
| | - Guillaume Vares
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University (OIST)Japan
| | - Tatsuya Ohno
- Gunma University Heavy Ion Medical Center3-39-22 Showa-machi, Maebashi 371-8511, Gunma, Japan
| | - Akihisa Takahashi
- Gunma University Heavy Ion Medical Center3-39-22 Showa-machi, Maebashi 371-8511, Gunma, Japan
| | - Akiko Uzawa
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and TechnologyChiba, Japan
| | - Seung-Jun Seo
- Department of Biochemistry, School of Medicine, Daegu Catholic UniversityNam-gu, Daegu 42472, South Korea
| | - Sei Sai
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and TechnologyChiba, Japan
| |
Collapse
|
25
|
Mao A, Tang J, Tang D, Wang F, Liao S, Yuan H, Tian C, Sun C, Si J, Zhang H, Xia X. MicroRNA-29b-3p enhances radiosensitivity through modulating WISP1-mediated mitochondrial apoptosis in prostate cancer cells. J Cancer 2020; 11:6356-6364. [PMID: 33033519 PMCID: PMC7532503 DOI: 10.7150/jca.48216] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/26/2020] [Indexed: 12/18/2022] Open
Abstract
Radiotherapy is frequently applied for clinically localized prostate cancer while its efficacy could be significantly hindered by radioresistance. MicroRNAs (miRNAs) are important regulators in mediating cellular responses to ionizing radiation (IR), and strongly associate with radiosensitivity in many cancers. In this study, enhancement of radiosensitivity by miR-29b-3p was demonstrated in prostate cancer cell line LNCaP in vitro. Results showed that miR-29b-3p expression was significantly upregulated in response to IR from both X-rays and carbon ion irradiations. Knockdown of miR-29b-3p resulted in radioresistance while overexpression of miR-29b-3p led to increased radiosensitivity (showing reduced cell viability, suppressed cell proliferation and decreased colony formation). In addition, miR-29b-3p was found to directly target Wnt1-inducible-signaling protein 1 (WISP1). Inhibition of WISP1 facilitated the mitochondrial apoptosis pathway through suppressing Bcl-XL expression while activating caspase-3 and poly (ADP-ribose) polymerase (PARP). The results indicated that miR-29b-3p was a radiosensitizing miRNAs and could enhance radiosensitivity of LNCaP cells by targeting WISP1. These findings suggested a novel treatment to overcome radioresistance in prostate cancer patients, especially those with higher levels of the WISP1 expression.
Collapse
Affiliation(s)
- Aihong Mao
- Gansu Provincial Academic Institute for Medical Research, Lanzhou, China.,Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Jinzhou Tang
- Gansu Provincial Academic Institute for Medical Research, Lanzhou, China
| | - Deping Tang
- School of Chemical & Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
| | - Fang Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Shiqi Liao
- Gansu Provincial Academic Institute for Medical Research, Lanzhou, China
| | - Hongxia Yuan
- Gansu Provincial Academic Institute for Medical Research, Lanzhou, China
| | - Caiping Tian
- Gansu Provincial Academic Institute for Medical Research, Lanzhou, China
| | - Chao Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Jing Si
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Hong Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Xiaojun Xia
- Gansu Provincial Academic Institute for Medical Research, Lanzhou, China.,Gansu Provincial Cancer Hospital, Lanzhou, China
| |
Collapse
|
26
|
He B, Zhao Z, Cai Q, Zhang Y, Zhang P, Shi S, Xie H, Peng X, Yin W, Tao Y, Wang X. miRNA-based biomarkers, therapies, and resistance in Cancer. Int J Biol Sci 2020; 16:2628-2647. [PMID: 32792861 PMCID: PMC7415433 DOI: 10.7150/ijbs.47203] [Citation(s) in RCA: 367] [Impact Index Per Article: 73.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 07/04/2020] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs), small non-coding RNAs (ncRNAs) of about 22 nucleotides in size, play important roles in gene regulation, and their dysregulation is implicated in human diseases including cancer. A variety of miRNAs could take roles in the cancer progression, participate in the process of tumor immune, and function with miRNA sponges. During the last two decades, the connection between miRNAs and various cancers has been widely researched. Based on evidence about miRNA, numerous potential cancer biomarkers for the diagnosis and prognosis have been put forward, providing a new perspective on cancer screening. Besides, there are several miRNA-based therapies among different cancers being conducted, advanced treatments such as the combination of synergistic strategies and the use of complementary miRNAs provide significant clinical benefits to cancer patients potentially. Furthermore, it is demonstrated that many miRNAs are engaged in the resistance of cancer therapies with their complex underlying regulatory mechanisms, whose comprehensive cognition can help clinicians and improve patient prognosis. With the belief that studies about miRNAs in human cancer would have great clinical implications, we attempt to summarize the current situation and potential development prospects in this review.
Collapse
Affiliation(s)
- Boxue He
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zhenyu Zhao
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Qidong Cai
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yuqian Zhang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Pengfei Zhang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Shuai Shi
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Hui Xie
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiong Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Wei Yin
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yongguang Tao
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078 China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078 China
| | - Xiang Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
27
|
Tian Y, Tang L, Yi P, Pan Q, Han Y, Shi Y, Rao S, Tan S, Xia L, Lin J, Oyang L, Tang Y, Liang J, Luo X, Liao Q, Wang H, Zhou Y. MiRNAs in Radiotherapy Resistance of Nasopharyngeal Carcinoma. J Cancer 2020; 11:3976-3985. [PMID: 32328201 PMCID: PMC7171507 DOI: 10.7150/jca.42734] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common malignant tumors of the head and neck in Southeast Asia and southern China. Although the comprehensive treatment based on intensity-modulated radiation therapy improves outcomes, the five-year survival rate of NPC patients is low, and the recurrence remains high. Radiotherapy resistance is the main cause of poor prognosis in NPC patients. MicroRNAs (miRNAs) are a class of endogenous non-coding RNAs regulating various biological functions in eukaryotes. These miRNAs can regulate the development and progression of nasopharyngeal carcinoma by affecting the proliferation, apoptosis, movement, invasion and metastasis of NPC cells. The abnormal expression of miRNAs is closely related to radiotherapy sensitivity and prognosis of NPC patients, which can affect the transmission of related signaling pathways by regulating the expression of tumor suppressor genes and / or oncogenes, and therefore participate in radiotherapy resistance in nasopharyngeal carcinoma. Here, we review the mechanisms by which miRNAs may be involved in the radiotherapy resistance of nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Yutong Tian
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Lu Tang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Pin Yi
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Qing Pan
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Yaqian Han
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Yingrui Shi
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Shan Rao
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Shiming Tan
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Longzheng Xia
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Jinguan Lin
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Linda Oyang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Yanyan Tang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Jiaxin Liang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Xia Luo
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Qianjin Liao
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Hui Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Yujuan Zhou
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| |
Collapse
|
28
|
Kim EH, Kim MS, Takahashi A, Suzuki M, Vares G, Uzawa A, Fujimori A, Ohno T, Sai S. Carbon-Ion Beam Irradiation Alone or in Combination with Zoledronic acid Effectively Kills Osteosarcoma Cells. Cancers (Basel) 2020; 12:cancers12030698. [PMID: 32187978 PMCID: PMC7140041 DOI: 10.3390/cancers12030698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 12/11/2022] Open
Abstract
Osteosarcoma (OSA) is the most common malignant bone tumor in children and adolescents. The overall five-year survival rate for all bone cancers is below 70%; however, when the cancer has spread beyond the bone, it is about 15–30%. Herein, we evaluated the effects of carbon-ion beam irradiation alone or in combination with zoledronic acid (ZOL) on OSA cells. Carbon-ion beam irradiation in combination with ZOL significantly inhibited OSA cell proliferation by arresting cell cycle progression and initiating KHOS and U2OS cell apoptosis, compared to treatments with carbon-ion beam irradiation, X-ray irradiation, and ZOL alone. Moreover, we observed that this combination greatly inhibited OSA cell motility and invasion, accompanied by the suppression of the Pi3K/Akt and MAPK signaling pathways, which are related to cell proliferation and survival, compared to individual treatments with carbon-ion beam or X-ray irradiation, or ZOL. Furthermore, ZOL treatment upregulated microRNA (miR)-29b expression; the combination with a miR-29b mimic further decreased OSA cell viability via activation of the caspase 3 pathway. Thus, ZOL-mediated enhancement of carbon-ion beam radiosensitivity may occur via miR-29b upregulation; co-treatment with the miR-29b mimic further decreased OSA cell survival. These findings suggest that the carbon-ion beam irradiation in combination with ZOL has high potential to increase OSA cell death.
Collapse
Affiliation(s)
- Eun Ho Kim
- Department of Biochemistry, School of Medicine, Daegu Catholic University, Nam-gu, Daegu 42472, Korea
- Correspondence: (E.H.K.); (S.S.); Tel.: +82-53-650-4480 (E.H.K.); +81-43-206-3231 (S.S.)
| | - Mi-Sook Kim
- Department of Radiation Oncology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Korea;
| | - Akihisa Takahashi
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi 371-8511, Gunma, Japan;
| | - Masao Suzuki
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (M.S.); (A.U.); (A.F.)
| | - Guillaume Vares
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son 904-0495, Okinawa, Japan;
| | - Akiko Uzawa
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (M.S.); (A.U.); (A.F.)
| | - Akira Fujimori
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (M.S.); (A.U.); (A.F.)
| | - Tatsuya Ohno
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi 371-8511, Gunma, Japan;
| | - Sei Sai
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (M.S.); (A.U.); (A.F.)
- Correspondence: (E.H.K.); (S.S.); Tel.: +82-53-650-4480 (E.H.K.); +81-43-206-3231 (S.S.)
| |
Collapse
|
29
|
Chen H, Yao X, Di X, Zhang Y, Zhu H, Liu S, Chen T, Yu D, Sun X. MiR-450a-5p inhibits autophagy and enhances radiosensitivity by targeting dual-specificity phosphatase 10 in esophageal squamous cell carcinoma. Cancer Lett 2020; 483:114-126. [PMID: 32014456 DOI: 10.1016/j.canlet.2020.01.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023]
Abstract
Radioresistance reduces the success of therapy for patients with ESCC. Enhancing our understanding of the cardinal principles of radioresistance may improve the response of patients to irradiation. MicroRNAs perform a key role in posttranscriptional regulation, which is linked with the response of tumors to irradiation. Here, we successfully constructed a radioresistant cell line model, ECA109R, from parental esophageal cancer cell line ECA109. We used RNA-Seq analysis and qRT-PCR to compare the miRNA expression profiles of the ECA109 and ECA109R cell lines. The results revealed that miR-450a-5p was downregulated in the radioresistant cells. Functional analysis indicated that miR-450a-5p increases cellular radiosensitivity and suppresses autophagy in ESCC cells. We utilized a luciferase reporter assay to identify the target gene, DUSP10, as an indispensable regulator of the p38 and SAPK/JNK signaling pathways. Upregulation or downregulation of DUSP10 expression could reverse the effects of miR-450a-5p overexpression or inhibition. Tumor xenograft experiments verified that miR-450a-5p overexpression could increase sensitivity to radiation therapy in vivo. In general, our findings indicate that miR-450a-5p is a latent radiosensitizer and may represent a potential novel therapeutic target for radioresistance in ESCC.
Collapse
Affiliation(s)
- Hui Chen
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Xijuan Yao
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Xiaoke Di
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Yixuan Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Hongcheng Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Shu Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Tingting Chen
- Department of Oncology, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, Yangzhou, 225001, China
| | - Dingyue Yu
- Department of Radiotherapy, The Dongfang Hospital of LianYungang, Lianyungang, Jiangsu Province, 222000, China
| | - Xinchen Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China.
| |
Collapse
|
30
|
Nakamura M, Hayashi M, Konishi H, Nunode M, Ashihara K, Sasaki H, Terai Y, Ohmichi M. MicroRNA-22 enhances radiosensitivity in cervical cancer cell lines via direct inhibition of c-Myc binding protein, and the subsequent reduction in hTERT expression. Oncol Lett 2020; 19:2213-2222. [PMID: 32194719 PMCID: PMC7038919 DOI: 10.3892/ol.2020.11344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/19/2019] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRs) influence the expression of their target genes post-transcriptionally and serve an important role in multiple cellular processes. The downregulation of miR-22 is associated with a poor prognosis in cervical cancer. However, the mechanisms underlying miR-22-mediated gene regulation and its function are yet to be elucidated. In the present study, the effect of miR-22 expression on the radiosensitivity of cervical cancer was investigated. First, miR-22 was either up- or downregulated to evaluate the regulation of the MYC-binding protein (MYCBP) in four cervical cancer cell lines (C-4I, SKG-II and SiHa). Notably, MYCBP expression was inversely associated with miR-22 induction. A dual-luciferase reporter gene assay revealed that miR-22 directly targets the MYCBP 3'-untranslated region. Subsequently, the level of human telomerase reverse transcriptase component (hTERT; an E-box-containing c-Myc target gene) was analyzed after the up- or downregulation of miR-22. Notably, miR-22-mediated repression of MYCBP reduced hTERT expression. In addition, the influence of miR-22 on radiosensitivity in C-4I, SKG-II and SiHa cells was examined using a clonogenic assay and in mouse xenograft models. Upregulation of miR-22 was associated with increased radiosensitivity. Furthermore, lentiviral transduction of miR-22 reduced the Ki-67 index while increasing the TUNEL index in xenograft tissue. The current findings indicate the potential utility of miR-22 in radiotherapy for cervical cancer.
Collapse
Affiliation(s)
- Mayumi Nakamura
- Department of Obstetrics and Gynecology, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Masami Hayashi
- Department of Obstetrics and Gynecology, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Hiromi Konishi
- Department of Obstetrics and Gynecology, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Misa Nunode
- Department of Obstetrics and Gynecology, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Keisuke Ashihara
- Department of Obstetrics and Gynecology, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Hiroshi Sasaki
- Department of Obstetrics and Gynecology, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Yoshito Terai
- Department of Obstetrics and Gynecology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Masahide Ohmichi
- Department of Obstetrics and Gynecology, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| |
Collapse
|
31
|
Noguchi S, Ogusu R, Wada Y, Matsuyama S, Mori T. PTEN, A Target of Microrna-374b, Contributes to the Radiosensitivity of Canine Oral Melanoma Cells. Int J Mol Sci 2019; 20:E4631. [PMID: 31540513 PMCID: PMC6770036 DOI: 10.3390/ijms20184631] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 01/11/2023] Open
Abstract
Canine oral malignant melanoma (CoMM) is often treated by radiation therapy in veterinary medicine. However, not all cases are successfully managed by this treatment. For improved efficacy of radiation therapy, biomarkers predicting the radiosensitivity of melanoma cells need to be explored. Here, we, first, developed the radioresistant CoMM cell line, KMeC/R. We found that the expression level of phosphatase and tensin homolog (PTEN) of KMeC/R cells was significantly downregulated compared with KMeC cells. Overexpression of PTEN successfully restored the radiosensitivity of KMeC/R cells, and silencing of PTEN significantly increased the radioresistance of the CoMM cells tested. Next, we focused on microRNAs (miRNAs) to explore the mechanisms of downregulation of PTEN in KMeC/R cells. miR-374b was upregulated in KMeC/R cells compared with that in KMeC cells and in the irradiated CoMM cells tested. Furthermore, miR-374b directly targeted PTEN based on the luciferase activity assay. Moreover, the extrinsic miR-374b significantly increased the radioresistance of KMeC cells. In addition, the expression level of PTEN was significantly downregulated and that of miR-374b tended to be upregulated in recurrent CoMM tissues after radiation therapy compared with the pre-treatment tissues. Thus, the current study suggested that the miR-374b/PTEN signaling pathway possibly plays an important role in CoMM radiosensitivity.
Collapse
Affiliation(s)
- Shunsuke Noguchi
- Laboratory of Veterinary Radiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano-shi, Osaka 598-8531, Japan.
| | - Ryo Ogusu
- Laboratory of Veterinary Radiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano-shi, Osaka 598-8531, Japan.
| | - Yusuke Wada
- Veterinary Medical Center, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano-shi, Osaka 598-8531, Japan.
| | - Satoshi Matsuyama
- Laboratory of Veterinary Radiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano-shi, Osaka 598-8531, Japan.
| | - Takashi Mori
- Laboratory of Veterinary Clinical Oncology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1112, Japan.
| |
Collapse
|