1
|
Liu Y, Tian X, Jia C, Cheng X, Cui C, Li C, Yang S. The role of CXCL16 in atherosclerosis: from mechanisms to therapy. Front Immunol 2025; 16:1555438. [PMID: 40491927 PMCID: PMC12146295 DOI: 10.3389/fimmu.2025.1555438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 05/05/2025] [Indexed: 06/11/2025] Open
Abstract
Atherosclerosis (AS), as the primary pathological basis of cardiovascular and cerebrovascular diseases, is closely associated with chemokines in its occurrence and progression. CXCL16 establishes a new link between chemokines and AS. We briefly introduced the structural characteristics of CXCL16 and its specific receptor CXCR6, as well as related signaling pathways. Furthermore, the significant role of CXCL16 in the progression of AS was elaborated from the perspective of pathological mechanisms and signal pathways. Meanwhile, we objectively evaluated the potential arterial protective effects of CXCL16. Finally, we discussed various novel therapeutic strategies to alleviate AS by targeting the inhibition of CXCL16 and its regulatory pathways. This review systematically summarizes the multifaceted roles of CXCL16 in AS, providing theoretical foundations and research insights for the precise prevention and treatment of AS.
Collapse
Affiliation(s)
- Yue Liu
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xintao Tian
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Chunyan Jia
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xinrui Cheng
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Changxing Cui
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Cuiping Li
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shaonan Yang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
2
|
Kananivand M, Nouri F, Yousefi MH, Pajouhi A, Ghorbani H, Afkhami H, Razavi ZS. Mesenchymal stem cells and their exosomes: a novel approach to skin regeneration via signaling pathways activation. J Mol Histol 2025; 56:132. [PMID: 40208456 DOI: 10.1007/s10735-025-10394-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/06/2025] [Indexed: 04/11/2025]
Abstract
Accelerating wound healing is a crucial objective in surgical and regenerative medicine. The wound healing process involves three key stages: inflammation, cell proliferation, and tissue repair. Mesenchymal stem cells (MSCs) have demonstrated significant therapeutic potential in promoting tissue regeneration, particularly by enhancing epidermal cell migration and proliferation. However, the precise molecular mechanisms underlying MSC-mediated wound healing remain unclear. This review highlights the pivotal role of MSCs and their exosomes in wound repair, with a specific focus on critical signaling pathways, including PI3K/Akt, WNT/β-catenin, Notch, and MAPK. These pathways regulate essential cellular processes such as proliferation, differentiation, and angiogenesis. Moreover, in vitro and in vivo studies reveal that MSCs accelerate wound closure, enhance collagen deposition, and modulate immune responses, contributing to improved tissue regeneration. Understanding these mechanisms provides valuable insights into MSC-based therapeutic strategies for enhancing wound healing.
Collapse
Affiliation(s)
- Maryam Kananivand
- Medical Department, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Nouri
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University (SRBIAU), Tehran, Iran
| | - Mohammad Hasan Yousefi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Student Research Committee, Qom University of Medical Sciences, Qom, Iran
| | - Ali Pajouhi
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hakimeah Ghorbani
- Department of Sciences, Faculty of Biological Sciences, Tabriz University of Sciences, Tabriz, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran.
- Student Research Committee, Qom University of Medical Sciences, Qom, Iran.
| | - Zahra Sadat Razavi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Wei X, Mu H, Zhang Q, Zhang Z, Ru Y, Lai K, Ma Y, Lin Z, Tuxun R, Chen Z, Xiang AP, Li T. MSCs act as biopatches for blood-retinal barrier preservation to enhance functional recovery after retinal I/R. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102445. [PMID: 39967853 PMCID: PMC11834101 DOI: 10.1016/j.omtn.2024.102445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 12/30/2024] [Indexed: 02/20/2025]
Abstract
Retinal ischemia/reperfusion (I/R) is one of the most common pathologies of many vision-threatening diseases and is caused by blood-retinal barrier (BRB) breakdown and the resulting inflammatory infiltration. Targeting BRB is promising for retinal I/R treatment. Mesenchymal stromal cells (MSCs) are emerging as novel therapeutic strategies. Although intravitreal injection targets the retina, the restricted number of injected cells still requires the precise biodistribution of MSCs near the injury site. Here, we found that retinal I/R led to BRB breakdown, which induced protein and cell leakage from the circulation. Retinal cell death and diminished visual function were subsequently detected. Moreover, the expression of the chemokine CCL5 increased after retinal I/R, and CCL5 colocalized with the BRB. We then overexpressed CCR5 in human induced pluripotent stem cell-derived MSCs (iMSCs). In vivo, intravitreal-injected iMSCCCR5 preferentially migrated and directly integrated into the BRB, which preferably restored BRB integrity and eventually promoted retinal function recovery after retinal I/R. In summary, our work suggested that iMSCs act as biopatches for BRB preservation and that iMSC-based therapy is a promising therapeutic approach for retinal diseases related to I/R.
Collapse
Affiliation(s)
- Xiaoyue Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, China
| | - Hanyiqi Mu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qinmu Zhang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ziyuan Zhang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yifei Ru
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Kunbei Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, China
| | - Yuan Ma
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, China
| | - Zhuangling Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, China
| | - Rebiya Tuxun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, China
| | - Zitong Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Tao Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, China
| |
Collapse
|
4
|
Datta D, Colaco V, Bandi SP, Dhas N, Janardhanam LSL, Singh S, Vora LK. Stimuli-Responsive Self-Healing Ionic Gels: A Promising Approach for Dermal and Tissue Engineering Applications. ACS Biomater Sci Eng 2025; 11:1338-1372. [PMID: 39999055 PMCID: PMC11897956 DOI: 10.1021/acsbiomaterials.4c02264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
The rapid increase in the number of stimuli-responsive polymers, also known as smart polymers, has significantly advanced their applications in various fields. These polymers can respond to multiple stimuli, such as temperature, pH, solvent, ionic strength, light, and electrical and magnetic fields, making them highly valuable in both the academic and industrial sectors. Recent studies have focused on developing hydrogels with self-healing properties that can autonomously recover their structural integrity and mechanical properties after damage. These hydrogels, formed through dynamic covalent reactions, exhibit superior biocompatibility, mechanical strength, and responsiveness to stimuli, particularly pH changes. However, conventional hydrogels are limited by their weak and brittle nature. To address this, ionizable moieties within polyelectrolytes can be tuned to create ionically cross-linked hydrogels, leveraging natural polymers such as alginate, chitosan, hyaluronic acid, and cellulose. The integration of ionic liquids into these hydrogels enhances their mechanical properties and conductivity, positioning them as significant self-healing agents. This review focuses on the emerging field of stimuli-responsive ionic-based hydrogels and explores their potential in dermal applications and tissue engineering.
Collapse
Affiliation(s)
- Deepanjan Datta
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Viola Colaco
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sony Priyanka Bandi
- Department
of Pharmacy, Birla Institute of Technology
and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, Telangana, India
| | - Namdev Dhas
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Leela Sai Lokesh Janardhanam
- Department
of Pharmaceutical Sciences and Experimental Therapeutics, College
of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Sudarshan Singh
- Faculty
of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Office
of Research Administrations, Chiang Mai
University, Chiang
Mai 50200, Thailand
| | - Lalitkumar K. Vora
- School of
Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K.
| |
Collapse
|
5
|
Shetty SR, Debnath S, Majumdar K, Rajagopalan M, Ramaswamy A, Das A. Virtual screening, molecular dynamics simulations, and in vitro validation of EGFR inhibitors as breast cancer therapeutics. Bioorg Chem 2024; 153:107849. [PMID: 39368144 DOI: 10.1016/j.bioorg.2024.107849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
A high abundance of Epidermal Growth Factor Receptor (EGFR) in malignant cells makes them a prospective therapeutic target for basal breast tumors. Although EGFR inhibitors are in development as anticancer therapeutics, there exists limitations due to the dose-limiting cytotoxicity that limits their clinical utilization, thereby necessitating the advancement of effective inhibitors. In the present study, we have developed common pharmacophore hypotheses using 30 known EGFR inhibitors. The best pharmacophore hypothesis DHRRR_1 was utilized for virtual screening (VS) of the Phase database containing 4.3 × 106 fully prepared compounds. The top 1000 hits were further subjected to ADME filtration followed by structure-based VS and Molecular Dynamics (MD) simulation investigations. Based on pharmacophore hypothesis matching, XP glide score, interactions between ligands and active site residues, ADME properties, and MD simulations, the five best hits (SN-01 through SN-05) were preferred for in-vitro cytotoxicity studies. All the molecules except SN-02 exhibited cytotoxicity in Triple Negative Breast Cancer (TNBC) cells. These potential EGFR inhibitors effectively downregulated the EGF-induced proliferation, migration, in-vitro tumorigenic capability, and EGFR activation (pEGFR) in the TNBCs. Additionally, in combination with doxorubicin, the identified EGFR inhibitors significantly decreased the EGF-induced proliferation. SN-04, and SN-05 in the presence of a lower concentration of doxorubicin markedly increased the apoptotic markers expression in the TNBCs, an effect which was comparable to a higher concentration of doxorubicin treatment, alone. These observations suggest that both SN-04 and/or SN-05 can improve the efficacy of chemotherapeutic drug, doxorubicin at a lower concentration to avert the higher dose of chemotherapeutic-induced side effects during breast cancer treatment.
Collapse
Affiliation(s)
- Swathi R Shetty
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500007 TS, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sudhan Debnath
- Maharaja Bir Bikram College, Agartala, Tripura, India; Department of Chemistry, Netaji Subhash Mahavidyalaya, Udaipur, Tripura, India
| | | | - Muthukumaran Rajagopalan
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605014, INDIA
| | - Amutha Ramaswamy
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605014, INDIA
| | - Amitava Das
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500007 TS, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
6
|
Du F, Zhang S, Li S, Zhou S, Zeng D, Zhang J, Yu S. Controlled release of mesenchymal stem cell-derived nanovesicles through glucose- and reactive oxygen species-responsive hydrogels accelerates diabetic wound healing. J Control Release 2024; 376:985-998. [PMID: 39505216 DOI: 10.1016/j.jconrel.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
Wound healing is often impaired in patients with diabetes. Mesenchymal stem cells (MSCs) and MSCs-derived nanovesicles (MNVs) hold promise as therapeutic agents for managing diabetic wounds. However, efficient delivery and controlled release of MNVs within these wounds are essential for maximizing therapeutic effectiveness. In this study, we developed a dual-responsive hydrogel designed to respond to elevated levels of glucose and reactive oxygen species. This hydrogel combines polyvinyl alcohol with phenylboronic acid-grafted chitosan, referred to as PBA-CP, while MNVs were produced by shearing MSCs through membranes with varying pore sizes. The composite PBA-CP/MNVs hydrogel significantly accelerated wound healing in a diabetic wound model by promoting epithelialization, dermal reconstruction, hair follicle formation, and angiogenesis. MNVs were readily taken up by keratinocytes, fibroblasts, and endothelial cells, stimulating their proliferation and migration. Altogether, the chitosan-based PBA-CP/MNVs composite hydrogel presents a promising therapeutic strategy for diabetic wound treatment.
Collapse
Affiliation(s)
- Fangzhou Du
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| | - Shumang Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| | - Shikai Li
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shaocong Zhou
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Dongao Zeng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jingzhong Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China; Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Shuang Yu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China; Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
7
|
Xu Y, Chang L, Chen Y, Dan Z, Zhou L, Tang J, Deng L, Tang G, Li C. USP26 Combats Age-Related Declines in Self-Renewal and Multipotent Differentiation of BMSC by Maintaining Mitochondrial Homeostasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406428. [PMID: 39377219 PMCID: PMC11600297 DOI: 10.1002/advs.202406428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/24/2024] [Indexed: 10/09/2024]
Abstract
Age-related declines in self-renewal and multipotency of bone marrow mesenchymal stem cells (BMSCs) limit their applications in tissue engineering and clinical therapy. Thus, understanding the mechanisms behind BMSC senescence is crucial for maintaining the rejuvenation and multipotent differentiation capabilities of BMSCs. This study reveals that impaired USP26 expression in BMSCs leads to mitochondrial dysfunction, ultimately resulting in aging and age-related declines in the self-renewal and multipotency of BMSCs. Specifically, decreased USP26 expression results in decreased protein levels of Sirtuin 2 due to its ubiquitination degradation, which leads to mitochondrial dysfunction in BMSCs and ultimately resulting in aging and age-related declines in self-renewal and multilineage differentiation potentials. Additionally, decreased USP26 expression in aging BMSCs is a result of dampened hypoxia-inducible factor 1α (HIF-1α) expression. HIF-1α facilitates USP26 transcriptional expression by increasing USP26 promoter activity through binding to the -191 - -198 bp and -262 - -269 bp regions on the USP26 promoter. Therefore, the identification of USP26 as being correlated with aging and age-related declines in self-renewal and multipotency of BMSCs, along with understanding its expression and action mechanisms, suggests that USP26 represents a novel therapeutic target for combating aging and age-related declines in the self-renewal and multipotent differentiation of BMSCs.
Collapse
Affiliation(s)
- Yiming Xu
- Department of OrthopedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025China
| | - Leilei Chang
- Department of OrthopedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025China
| | - Yong Chen
- Department of OrthopedicsKunshan Hospital of Chinese MedicineAffiliated Hospital of Yangzhou UniversitySuzhouJiangsu Province215300China
- Institute of Traumatology and OrthopedicsKunshan Hospital of Chinese MedicineAffiliated Hospital of Yangzhou UniversitySuzhouJiangsu Province215300China
| | - Zhou Dan
- Department of OrthopedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025China
| | - Li Zhou
- Department of OrthopedicsKunshan Hospital of Chinese MedicineAffiliated Hospital of Yangzhou UniversitySuzhouJiangsu Province215300China
- Institute of Traumatology and OrthopedicsKunshan Hospital of Chinese MedicineAffiliated Hospital of Yangzhou UniversitySuzhouJiangsu Province215300China
| | - Jiyuan Tang
- Department of OrthopedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025China
| | - Lianfu Deng
- Department of OrthopedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025China
| | - Guoqing Tang
- Department of OrthopedicsKunshan Hospital of Chinese MedicineAffiliated Hospital of Yangzhou UniversitySuzhouJiangsu Province215300China
- Institute of Traumatology and OrthopedicsKunshan Hospital of Chinese MedicineAffiliated Hospital of Yangzhou UniversitySuzhouJiangsu Province215300China
| | - Changwei Li
- Department of OrthopedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025China
| |
Collapse
|
8
|
Zhang H, Xiao X, Wang L, Shi X, Fu N, Wang S, Zhao RC. Human adipose and umbilical cord mesenchymal stem cell-derived extracellular vesicles mitigate photoaging via TIMP1/Notch1. Signal Transduct Target Ther 2024; 9:294. [PMID: 39472581 PMCID: PMC11522688 DOI: 10.1038/s41392-024-01993-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 11/02/2024] Open
Abstract
UVB radiation induces oxidative stress, DNA damage, and inflammation, leading to skin wrinkling, compromised barrier function, and an increased risk of carcinogenesis. Addressing or preventing photoaging may offer a promising therapeutic avenue for these conditions. Recent research indicated that mesenchymal stem cells (MSCs) exhibit significant therapeutic potential for various skin diseases. Given that extracellular vesicles (EV) can deliver diverse cargo to recipient cells and elicit similar therapeutic effects, we investigated the roles and underlying mechanisms of both adipose-derived MSC-derived EV (AMSC-EV) and umbilical cord-derived MSC-derived EV (HUMSC-EV) in photoaging. Our findings indicated that in vivo, treatment with AMSC-EV and HUMSC-EV resulted in improvements in wrinkles and skin hydration while also mitigating skin inflammation and thickness alterations in both the epidermis and dermis. Additionally, in vitro studies using human keratinocytes (HaCaTs), human dermal fibroblast cells (HDFs), and T-Skin models revealed that AMSC-EV and HUMSC-EV attenuated senescence, reduced levels of reactive oxygen species (ROS) and DNA damage, and alleviated inflammation induced by UVB. Furthermore, EV treatment enhanced cell viability and migration capacity in the epidermis and promoted extracellular matrix (ECM) remodeling in the dermis in photoaged cell models. Mechanistically, proteomics results showed that TIMP1 was highly expressed in both AMSC-EV and HUMSC-EV and could exert similar effects as MSC-EV. In addition, we found that EV and TIMP1 could inhibit Notch1 and downstream targets Hes1, P16, P21, and P53. Collectively, our data suggests that both AMSC-EV and HUMSC-EV attenuate skin photoaging through TIMP1/Notch1.
Collapse
Affiliation(s)
- Huan Zhang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xian Xiao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Liping Wang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xianhao Shi
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Nan Fu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Shihua Wang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
- Department of Cell Biology, School of Life Sciences, Shanghai University, Shanghai, China.
| |
Collapse
|
9
|
Wu S, Zhou Z, Li Y, Jiang J. Advancements in diabetic foot ulcer research: Focus on mesenchymal stem cells and their exosomes. Heliyon 2024; 10:e37031. [PMID: 39286219 PMCID: PMC11403009 DOI: 10.1016/j.heliyon.2024.e37031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/11/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Diabetes represents a widely acknowledged global public health concern. Diabetic foot ulcer (DFU) stands as one of the most severe complications of diabetes, its occurrence imposing a substantial economic burden on patients, profoundly impacting their quality of life. Despite the deepening comprehension regarding the pathophysiology and cellular as well as molecular responses of DFU, the current therapeutic arsenal falls short of efficacy, failing to offer a comprehensive remedy for deep-seated chronic wounds and microvascular occlusions. Conventional treatments merely afford symptomatic alleviation or retard the disease's advancement, devoid of the capacity to effectuate further restitution of compromised vasculature and nerves. An escalating body of research underscores the prominence of mesenchymal stem cells (MSCs) owing to their paracrine attributes and anti-inflammatory prowess, rendering them a focal point in the realm of chronic wound healing. Presently, MSCs have been validated as a highly promising cellular therapeutic approach for DFU, capable of effectuating cellular repair, epithelialization, granulation tissue formation, and neovascularization by means of targeted differentiation, angiogenesis promotion, immunomodulation, and paracrine activities, thereby fostering wound healing. The secretome of MSCs comprises cytokines, growth factors, chemokines, alongside exosomes harboring mRNA, proteins, and microRNAs, possessing immunomodulatory and regenerative properties. The present study provides a systematic exposition on the etiology of DFU and elucidates the intricate molecular mechanisms and diverse functionalities of MSCs in the context of DFU treatment, thereby furnishing pioneering perspectives aimed at harnessing the therapeutic potential of MSCs for DFU management and advancing wound healing processes.
Collapse
Affiliation(s)
- ShuHui Wu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - ZhongSheng Zhou
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Shan Y, Zhang M, Tao E, Wang J, Wei N, Lu Y, Liu Q, Hao K, Zhou F, Wang G. Pharmacokinetic characteristics of mesenchymal stem cells in translational challenges. Signal Transduct Target Ther 2024; 9:242. [PMID: 39271680 PMCID: PMC11399464 DOI: 10.1038/s41392-024-01936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 09/15/2024] Open
Abstract
Over the past two decades, mesenchymal stem/stromal cell (MSC) therapy has made substantial strides, transitioning from experimental clinical applications to commercial products. MSC therapies hold considerable promise for treating refractory and critical conditions such as acute graft-versus-host disease, amyotrophic lateral sclerosis, and acute respiratory distress syndrome. Despite recent successes in clinical and commercial applications, MSC therapy still faces challenges when used as a commercial product. Current detection methods have limitations, leaving the dynamic biodistribution, persistence in injured tissues, and ultimate fate of MSCs in patients unclear. Clarifying the relationship between the pharmacokinetic characteristics of MSCs and their therapeutic effects is crucial for patient stratification and the formulation of precise therapeutic regimens. Moreover, the development of advanced imaging and tracking technologies is essential to address these clinical challenges. This review provides a comprehensive analysis of the kinetic properties, key regulatory molecules, different fates, and detection methods relevant to MSCs and discusses concerns in evaluating MSC druggability from the perspective of integrating pharmacokinetics and efficacy. A better understanding of these challenges could improve MSC clinical efficacy and speed up the introduction of MSC therapy products to the market.
Collapse
Affiliation(s)
- Yunlong Shan
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Mengying Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Enxiang Tao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jing Wang
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Ning Wei
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Yi Lu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Qing Liu
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Kun Hao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Fang Zhou
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
11
|
Zhao J, Li T, Yue Y, Li X, Xie Z, Zhang H, Tian X. Advancements in employing two-dimensional nanomaterials for enhancing skin wound healing: a review of current practice. J Nanobiotechnology 2024; 22:520. [PMID: 39210430 PMCID: PMC11363430 DOI: 10.1186/s12951-024-02803-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
The two-dimensional nanomaterials are characterized by their ultra-thin structure, diverse chemical functional groups, and remarkable anisotropic properties. Since its discovery in 2004, graphene has attracted significant scientific interest due to its potential applications in various fields, including electronics, energy systems, and biomedicine. In medicine, graphene is used for designing smart drug delivery systems, especially for antibiotics, and biosensing. Skin trauma is a prevalent dermatological condition that increasingly contributes to morbidities and mortalities, thus representing a significant health burden. During tissue damage, rapid skin repair is crucial to prevent blood loss and infection. Therefore, drugs used for skin trauma must possess antimicrobial and anti-inflammatory properties. Two-dimensional (2D) nanomaterials possess remarkable physical, chemical, optical, and biological characteristics due to their uniform shape, increased surface area, and surface charge. Graphene and its derivatives, transition-metal dichalcogenides (TMDs), black phosphorous (BP), hexagonal boron nitride (h-BN), MXene, and metal-organic frameworks (MOFs) are among the commonly used 2D nanomaterials. Moreover, they exhibit antibacterial and anti-inflammatory properties. This review presents a comprehensive discussion of the clinical approaches employed for wound healing treatment and explores the applications of commonly used 2D nanomaterials to enhance wound healing outcomes.
Collapse
Affiliation(s)
- Jiaqi Zhao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Tianjiao Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Yajuan Yue
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Xina Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Zhongjian Xie
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518000, China
| | - Han Zhang
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518000, China.
| | - Xing Tian
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China.
| |
Collapse
|
12
|
Wu J, Feng Y, Wang Y, He X, Chen Z, Lan D, Wu X, Wen J, Tsung A, Wang X, Ma J, Wu Y. MG53 binding to CAV3 facilitates activation of eNOS/NO signaling pathway to enhance the therapeutic benefits of bone marrow-derived mesenchymal stem cells in diabetic wound healing. Int Immunopharmacol 2024; 136:112410. [PMID: 38843641 DOI: 10.1016/j.intimp.2024.112410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/24/2024] [Accepted: 06/02/2024] [Indexed: 06/17/2024]
Abstract
Impaired wound healing in diabetes results from a complex interplay of factors that disrupt epithelialization and wound closure. MG53, a tripartite motif (TRIM) family protein, plays a key role in repairing cell membrane damage and facilitating tissue regeneration. In this study, bone marrow-derived mesenchymal stem cells (BMSCs) were transduced with lentiviral vectors overexpressing MG53 to investigate their efficacy in diabetic wound healing. Using a db/db mouse wound model, we observed that BMSCs-MG53 significantly enhanced diabetic wound healing. This improvement was associated with marked increase in re-epithelialization and vascularization. BMSCs-MG53 promoted recruitment and survival of BMSCs, as evidenced by an increase in MG53/Ki67-positive BMSCs and their improved response to scratch wounding. The combination therapy also promoted angiogenesis in diabetic wound tissues by upregulating the expression of angiogenic growth factors. MG53 overexpression accelerated the differentiation of BMSCs into endothelial cells, manifested as the formation of mature vascular network structure and a remarkable increase in DiI-Ac-LDL uptake. Our mechanistic investigation revealed that MG53 binds to caveolin-3 (CAV3) and subsequently increases phosphorylation of eNOS, thereby activating eNOS/NO signaling. Notably, CAV3 knockdown reversed the promoting effects of MG53 on BMSCs endothelial differentiation. Overall, our findings support the notion that MG53 binds to CAV3, activates eNOS/NO signaling pathway, and accelerates the therapeutic effect of BMSCs in the context of diabetic wound healing. These insights hold promise for the development of innovative strategies for treating diabetic-related impairments in wound healing.
Collapse
Affiliation(s)
- Junwei Wu
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yiyuan Feng
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiangfei He
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zheyu Chen
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dongyang Lan
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinchao Wu
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jianguo Wen
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Allan Tsung
- Division of Surgical Sciences, Department of Surgery, University of Virginia, VA, USA
| | - Xinxin Wang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Jianjie Ma
- Division of Surgical Sciences, Department of Surgery, University of Virginia, VA, USA.
| | - Yudong Wu
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
13
|
Choudhury S, Madhu Krishna M, Sen D, Ghosh S, Basak P, Das A. 3D Porous Polymer Scaffold-Conjugated KGF-Mimetic Peptide Promotes Functional Skin Regeneration in Chronic Diabetic Wounds. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37418-37434. [PMID: 38980153 DOI: 10.1021/acsami.4c02633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The re-epithelialization process gets severely dysregulated in chronic nonhealing diabetic foot ulcers/wounds. Keratinocyte growth factor (KGF or FGF-7) is the major modulator of the re-epithelialization process, which regulates the physiological phenotypes of cutaneous keratinocytes. The existing therapeutic strategies of growth factor administration have several limitations. To overcome these, we have designed a KGF-mimetic peptide (KGFp, 13mer) based on the receptor interaction sites in murine KGF. KGFp enhanced migration and transdifferentiation of mouse bone marrow-derived MSCs toward keratinocyte-like cells (KLCs). A significant increase in the expression of skin-specific markers Bnc1 (28.5-fold), Ck5 (14.6-fold), Ck14 (26.1-fold), Ck10 (187.7-fold), and epithelial markers EpCam (23.3-fold) and Cdh1 (64.2-fold) was associated with the activation of ERK1/2 and STAT3 molecular signaling in the KLCs. Further, to enhance the stability of KGFp in the wound microenvironment, it was conjugated to biocompatible 3D porous polymer scaffolds without compromising its active binding sites followed by chemical characterization using Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, dynamic mechanical analysis, and thermogravimetry. In vitro evaluation of the KGFp-conjugated 3D polymer scaffolds revealed its potential for transdifferentiation of MSCs into KLCs. Transplantation of allogeneic MSCGFP using KGFp-conjugated 3D polymer scaffolds in chronic nonhealing type 2 diabetic wounds (db/db transgenic, 50-52 weeks old male mice) significantly enhanced re-epithelialization-mediated wound closure rate (79.3%) as compared to the control groups (Untransplanted -22.4%, MSCGFP-3D polymer scaffold -38.5%). Thus, KGFp-conjugated 3D porous polymer scaffolds drive the fate of the MSCs toward keratinocytes that may serve as potential stem cell delivery platform technology for tissue engineering and transplantation.
Collapse
Affiliation(s)
- Subholakshmi Choudhury
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Mangali Madhu Krishna
- Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
- Department of Polymers and Functional Materials, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India
| | - Debanjan Sen
- BCDA College of Pharmacy and Technology, Hridaypur, Kolkata 700127, West Bengal, India
| | - Subhash Ghosh
- Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
- Department of Organic Synthesis and Process Chemistry, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India
| | - Pratyay Basak
- Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
- Department of Polymers and Functional Materials, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India
| | - Amitava Das
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
14
|
Chawla S, Choudhury S, Das A. Bioengineered MSC GFPCxcr2-Mmp13 Transplantation Alleviates Hepatic Fibrosis by Regulating Mammalian Target of Rapamycin Signaling. Antioxid Redox Signal 2024; 41:110-137. [PMID: 38183635 DOI: 10.1089/ars.2023.0390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2024]
Abstract
Aims: Hepatic fibrosis is the pathological change during chronic liver diseases (CLD) that turns into cirrhosis if not reversed timely. Allogenic mesenchymal stem cell (MSC) therapy is an alternative to liver transplantation for CLD. However, poor engraftment of the transplanted MSCs limits their therapeutic efficacy. MSCs express chemokine receptors that regulate their physiology. We observed several-fold increased expressions of Cxcl3 and decreased expression of Mmp13 in the fibrotic liver. Therefore, we bioengineered MSCs with stable overexpression of Cxcr2 (CXCL3-cognate receptor) and Mmp13, collagenase (MSCGFPCxcr2-Mmp13). Results: The CXCL3/CXCR2 axis significantly increased migration through the activation of AKT/ERK/mTOR signaling. These bioengineered MSCs transdifferentiated into hepatocyte-like cells (MSCGFPCxcr2-Mmp13-HLCs) that endured the drug-/hepatotoxicant-induced toxicity by significantly increasing the antioxidants-Nrf2 and Sod2, while decreasing the apoptosis-Cyt C, Casp3, Casp9, and drug-metabolizing enzyme-Cyp1A1, Cyp1A2, Cyp2E1 markers. Therapeutic transplantation of MSCGFPCxcr2-Mmp13 abrogated AAP-/CCl4-induced hepatic fibrosis in mice by CXCR2-mediated targeted engraftment and MMP-13-mediated reduction in collagen. Mechanistically, induction of CXCL3/CXCR2 axis-activated mTOR-p70S6K signaling led to increased targeted engraftment and modulation of the oxidative stress by increasing the expression and activity of nuclear Nrf2 and SOD2 expression in the regenerated hepatic tissues. A marked change in the fate of transplanted MSCGFPCxcr2-Mmp13 toward hepatocyte lineage demonstrated by co-immunostaining of GFP/HNF4α along with reduced COL1α1 facilitated the regeneration of the fibrotic liver. Innovation and Conclusions: Our study suggests the therapeutic role of allogenic Cxcr2/Mmp13-bioengineered MSC transplantation decreases the hepatic oxidative stress as an effective translational therapy for hepatic fibrosis mitigation-mediated liver regeneration.
Collapse
Affiliation(s)
- Shilpa Chawla
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Subholakshmi Choudhury
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Amitava Das
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
15
|
Aljamal D, Iyengar PS, Nguyen TT. Translational Challenges in Drug Therapy and Delivery Systems for Treating Chronic Lower Extremity Wounds. Pharmaceutics 2024; 16:750. [PMID: 38931872 PMCID: PMC11207742 DOI: 10.3390/pharmaceutics16060750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Despite several promising preclinical studies performed over the past two decades, there remains a paucity of market-approved drugs to treat chronic lower extremity wounds in humans. This translational gap challenges our understanding of human chronic lower extremity wounds and the design of wound treatments. Current targeted drug treatments and delivery systems for lower extremity wounds rely heavily on preclinical animal models meant to mimic human chronic wounds. However, there are several key differences between animal preclinical wound models and the human chronic wound microenvironment, which can impact the design of targeted drug treatments and delivery systems. To explore these differences, this review delves into recent new drug technologies and delivery systems designed to address the chronic wound microenvironment. It also highlights preclinical models used to test drug treatments specific for the wound microenvironments of lower extremity diabetic, venous, ischemic, and burn wounds. We further discuss key differences between preclinical wound models and human chronic wounds that may impact successful translational drug treatment design.
Collapse
Affiliation(s)
- Danny Aljamal
- Chan School of Medicine, University of Massachusetts, Worcester, MA 01655, USA; (D.A.); (P.S.I.)
| | - Priya S. Iyengar
- Chan School of Medicine, University of Massachusetts, Worcester, MA 01655, USA; (D.A.); (P.S.I.)
| | - Tammy T. Nguyen
- Division of Vascular and Endovascular Surgery, Department of Surgery, University of Massachusetts, Worcester, MA 01655, USA
- Diabetes Center of Excellence, University of Massachusetts, Worcester, MA 01655, USA
| |
Collapse
|
16
|
Choudhury S, Dhoke NR, Chawla S, Das A. Bioengineered MSC Cxcr2 transdifferentiated keratinocyte-like cell-derived organoid potentiates skin regeneration through ERK1/2 and STAT3 signaling in diabetic wound. Cell Mol Life Sci 2024; 81:172. [PMID: 38597972 PMCID: PMC11006766 DOI: 10.1007/s00018-023-05057-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 04/11/2024]
Abstract
Skin regeneration is severely compromised in diabetic foot ulcers. Allogeneic mesenchymal stem cell (MSC) transplantation is limited due to the poor engraftment, mitogenic, and differentiation potential in the harsh wound microenvironment. Thus, to improve the efficacy of cell therapy, the chemokine receptor Cxcr2 was overexpressed in MSCs (MSCCxcr2). CXCL2/CXCR2 axis induction led to the enhanced proliferation of MSCs through the activation of STAT3 and ERK1/2 signaling. Transcriptional upregulation of FGFR2IIIb (KGF Receptor) promoter by the activated STAT3 and ERK1/2 suggested trans-differentiation of MSCs into keratinocytes. These stable MSCCxcr2 in 2D and 3D (spheroid) cell cultures efficiently transdifferentiated into keratinocyte-like cells (KLCs). An in vivo therapeutic potential of MSCCxcr2 transplantation and its keratinocyte-specific cell fate was observed by accelerated skin tissue regeneration in an excisional splinting wound healing murine model of streptozotocin-induced type 1 diabetes. Finally, 3D skin organoids generated using MSCCxcr2-derived KLCs upon grafting in a relatively avascular and non-healing wounds of type 2 diabetic db/db transgenic old mice resulted in a significant enhancement in the rate of wound closure by increased epithelialization (epidermal layer) and endothelialization (dermal layer). Our findings emphasize the therapeutic role of the CXCL2/CXCR2 axis in inducing trans-differentiation of the MSCs toward KLCs through the activation of ERK1/2 and STAT3 signaling and enhanced skin regeneration potential of 3D organoids grafting in chronic diabetic wounds.
Collapse
Affiliation(s)
- Subholakshmi Choudhury
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad, 500007, TS, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Neha R Dhoke
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad, 500007, TS, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shilpa Chawla
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad, 500007, TS, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Amitava Das
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad, 500007, TS, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
17
|
Kar T, Dugam P, Shivhare S, Shetty SR, Choudhury S, Sen D, Deb B, Majumdar S, Debnath S, Das A. Epidermal growth factor receptor inhibition potentiates chemotherapeutics-mediated sensitization of metastatic breast cancer stem cells. Cancer Rep (Hoboken) 2024; 7:e2049. [PMID: 38522013 PMCID: PMC10961089 DOI: 10.1002/cnr2.2049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/19/2024] [Accepted: 03/05/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Metastasis has been a cause of the poor prognosis and cancer relapse of triple-negative breast cancer (TNBC) patients. The metastatic nature of TNBC is contributed by the breast cancer stem cells (CSCs) which have been implicated in tumorigenesis. Higher expression of epidermal growth factor receptor (EGFR) in breast CSCs has been used as a molecular target for breast cancer therapeutics. Thus, it necessitates the design and generation of efficacious EGFR inhibitors to target the downstream signaling associated with the cellular proliferation and tumorigenesis of breast cancer. AIM To generate efficacious EGFR inhibitors that can potentiate the chemotherapeutic-mediated mitigation of breast cancer tumorigenesis. METHODS AND RESULTS We identified small molecule EGFR inhibitors using molecular docking studies. In-vitro screening of the compounds was undertaken to identify the cytotoxicity profile of the small-molecule EGFR inhibitors followed by evaluation of the non-cytotoxic compounds in modulating the doxorubicin-induced migration, in-vitro tumorigenesis potential, and their effect on the pro-apoptotic genes' and protein markers' expression in TNBC cells. Compound 1e potentiated the doxorubicin-mediated inhibitory effect on proliferation, migration, in-vitro tumorigenesis capacity, and induction of apoptosis in MDA-MB-231 cells, and in the sorted CD24+-breast cancer cells and CD24-/CD44+-breast CSC populations. Orthotopic xenotransplantation of the breast CSCs-induced tumors in C57BL/6J mice was significantly inhibited by the low dose of Doxorubicin in the presence of compound 1e as depicted by molecular and immunohistochemical analysis. CONCLUSION Thus, the study suggests that EGFR inhibition-mediated sensitization of the aggressive and metastatic breast CSCs in TNBCs toward chemotherapeutics may reduce the relapse of the disease.
Collapse
Affiliation(s)
- Trisha Kar
- Department of Applied BiologyCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Technology (CSIR‐IICT)HyderabadTelanganaIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Prachi Dugam
- Department of Applied BiologyCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Technology (CSIR‐IICT)HyderabadTelanganaIndia
| | - Surbhi Shivhare
- Department of Applied BiologyCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Technology (CSIR‐IICT)HyderabadTelanganaIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Swathi R. Shetty
- Department of Applied BiologyCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Technology (CSIR‐IICT)HyderabadTelanganaIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Subholakshmi Choudhury
- Department of Applied BiologyCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Technology (CSIR‐IICT)HyderabadTelanganaIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Debanjan Sen
- Department of Pharmaceutical ChemistryBCDA College of Pharmacy and TechnologyKolkataWest BengalIndia
| | - Barnali Deb
- Department of ChemistryTripura UniversityAgartalaTripuraIndia
| | - Swapan Majumdar
- Department of ChemistryTripura UniversityAgartalaTripuraIndia
| | - Sudhan Debnath
- Department of ChemistryNetaji Subhash MahavidyalayaUdaipurTripuraIndia
| | - Amitava Das
- Department of Applied BiologyCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Technology (CSIR‐IICT)HyderabadTelanganaIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| |
Collapse
|
18
|
Mekala S, Sukumar G, Chawla S, Geesala R, Prashanth J, Reddy BJM, Mainkar P, Das A. Therapeutic Potential of Benzimidazoisoquinoline Derivatives in Alleviating Murine Hepatic Fibrosis. Chem Biodivers 2024; 21:e202301429. [PMID: 38221801 DOI: 10.1002/cbdv.202301429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Short Title: Benzimidazoisoquinoline derivatives as potent antifibrotics Hepatic fibrosis is a pathological condition of liver disease with an increasing number of cases worldwide. Therapeutic strategies are warranted to target the activated hepatic stellate cells (HSCs), the collagen-producing cells, an effective strategy for controlling the disease progression. Benzimidazoisoquinoline derivatives were synthesized as hybrid molecules by the combination of benzimidazoles and isoquinolines to evaluate their anti-fibrotic potential using an in-vitro and in-vivo model of hepatic fibrosis. A small library of benzimidazoisoquinoline derivatives (1-17 and 18-21) was synthesized from 2-aryl benzimidazole and acetylene functionalities through C-H and N-H activation. Compounds (10 and its recently synthesized derivatives 18-21) depicted a significant decrease in PDGF-BB and/or TGFβ-induced proliferation (1.7-1.9 -fold), migration (3.5-5.0 -fold), and fibrosis-related gene expressions in HSCs. These compounds could revert the hepatic damage caused by chronic exposure to hepatotoxicants, ethanol, and/or carbon tetrachloride as evident from the histological, biochemical, and molecular analysis. Anti-fibrotic effect of the compounds was supported by the decrease in the malondialdehyde level, collagen deposition, and gene expression levels of fibrosis-related markers such as α-SMA, COL1α1, PDGFRβ, and TGFRIIβ in the preclinical models of hepatic fibrosis. In conclusion, the synthesized benzimidazoisoquinoline derivatives (compounds 18, 19, 20, and 21) possess anti-fibrotic therapeutic potential against liver fibrosis.
Collapse
Affiliation(s)
- Sowmya Mekala
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500 007, INDIA
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, INDIA
| | - Genji Sukumar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500007, INDIA
- Department of Chemistry, Adikavi Nannaya University, Rajamahendravaram, AP-533 296, INDIA
| | - Shilpa Chawla
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500 007, INDIA
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, INDIA
| | - Ramasatyaveni Geesala
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500 007, INDIA
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, INDIA
| | - Jupally Prashanth
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, INDIA
- Centre for X-ray Crystallography, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500 007, INDIA
| | - B Jagan Mohan Reddy
- Department of Chemistry, Adikavi Nannaya University, Rajamahendravaram, AP-533 296, INDIA
| | - Prathama Mainkar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, INDIA
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500007, INDIA
| | - Amitava Das
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500 007, INDIA
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, INDIA
| |
Collapse
|
19
|
Li DY, Li YM, Lv DY, Deng T, Zeng X, You L, Pang QY, Li Y, Zhu BM. Enhanced interaction between genome-edited mesenchymal stem cells and platelets improves wound healing in mice. J Tissue Eng 2024; 15:20417314241268917. [PMID: 39329066 PMCID: PMC11425747 DOI: 10.1177/20417314241268917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/26/2024] [Indexed: 09/28/2024] Open
Abstract
Impaired wound healing poses a significant burden on the healthcare system and patients. Stem cell therapy has demonstrated promising potential in the treatment of wounds. However, its clinical application is hindered by the low efficiency of cell homing. In this study, we successfully integrated P-selectin glycoprotein ligand-1 (PSGL-1) into the genome of human adipose-derived mesenchymal stem cells (ADSCs) using a Cas9-AAV6-based genome editing tool platform. Our findings revealed that PSGL-1 knock-in enhanced the binding of ADSCs to platelets and their adhesion to the injured site. Moreover, the intravenous infusion of PSGL-1 -engineered ADSCs (KI-ADSCs) significantly improved the homing efficiency and residence rate at the site of skin lesions in mice. Mechanistically, PSGL-1 knock-in promotes the release of some therapeutic cytokines by activating the canonical WNT/β-catenin signaling pathway and accelerates the healing of wounds by promoting angiogenesis, re-epithelialization, and granulation tissue formation at the wound site. This study provides a novel strategy to simultaneously address the problem of poor migration and adhesion of mesenchymal stem cells (MSCs).
Collapse
Affiliation(s)
- De-Yong Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu-Meng Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dan-Yi Lv
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tian Deng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Zeng
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Lu You
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiu-Yu Pang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Li
- Core Facilities of West China Hospital, Sichuan University, Chengdu, China
| | - Bing-Mei Zhu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
20
|
Dhanjal DS, Singh R, Sharma V, Nepovimova E, Adam V, Kuca K, Chopra C. Advances in Genetic Reprogramming: Prospects from Developmental Biology to Regenerative Medicine. Curr Med Chem 2024; 31:1646-1690. [PMID: 37138422 DOI: 10.2174/0929867330666230503144619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 05/05/2023]
Abstract
The foundations of cell reprogramming were laid by Yamanaka and co-workers, who showed that somatic cells can be reprogrammed into pluripotent cells (induced pluripotency). Since this discovery, the field of regenerative medicine has seen advancements. For example, because they can differentiate into multiple cell types, pluripotent stem cells are considered vital components in regenerative medicine aimed at the functional restoration of damaged tissue. Despite years of research, both replacement and restoration of failed organs/ tissues have remained elusive scientific feats. However, with the inception of cell engineering and nuclear reprogramming, useful solutions have been identified to counter the need for compatible and sustainable organs. By combining the science underlying genetic engineering and nuclear reprogramming with regenerative medicine, scientists have engineered cells to make gene and stem cell therapies applicable and effective. These approaches have enabled the targeting of various pathways to reprogramme cells, i.e., make them behave in beneficial ways in a patient-specific manner. Technological advancements have clearly supported the concept and realization of regenerative medicine. Genetic engineering is used for tissue engineering and nuclear reprogramming and has led to advances in regenerative medicine. Targeted therapies and replacement of traumatized , damaged, or aged organs can be realized through genetic engineering. Furthermore, the success of these therapies has been validated through thousands of clinical trials. Scientists are currently evaluating induced tissue-specific stem cells (iTSCs), which may lead to tumour-free applications of pluripotency induction. In this review, we present state-of-the-art genetic engineering that has been used in regenerative medicine. We also focus on ways that genetic engineering and nuclear reprogramming have transformed regenerative medicine and have become unique therapeutic niches.
Collapse
Affiliation(s)
- Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Varun Sharma
- Head of Bioinformatic Division, NMC Genetics India Pvt. Ltd., Gurugram, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ 613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, 50005, Czech Republic
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
21
|
Hosseinkhani H, Domb AJ, Sharifzadeh G, Nahum V. Gene Therapy for Regenerative Medicine. Pharmaceutics 2023; 15:856. [PMID: 36986717 PMCID: PMC10057434 DOI: 10.3390/pharmaceutics15030856] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The development of biological methods over the past decade has stimulated great interest in the possibility to regenerate human tissues. Advances in stem cell research, gene therapy, and tissue engineering have accelerated the technology in tissue and organ regeneration. However, despite significant progress in this area, there are still several technical issues that must be addressed, especially in the clinical use of gene therapy. The aims of gene therapy include utilising cells to produce a suitable protein, silencing over-producing proteins, and genetically modifying and repairing cell functions that may affect disease conditions. While most current gene therapy clinical trials are based on cell- and viral-mediated approaches, non-viral gene transfection agents are emerging as potentially safe and effective in the treatment of a wide variety of genetic and acquired diseases. Gene therapy based on viral vectors may induce pathogenicity and immunogenicity. Therefore, significant efforts are being invested in non-viral vectors to enhance their efficiency to a level comparable to the viral vector. Non-viral technologies consist of plasmid-based expression systems containing a gene encoding, a therapeutic protein, and synthetic gene delivery systems. One possible approach to enhance non-viral vector ability or to be an alternative to viral vectors would be to use tissue engineering technology for regenerative medicine therapy. This review provides a critical view of gene therapy with a major focus on the development of regenerative medicine technologies to control the in vivo location and function of administered genes.
Collapse
Affiliation(s)
- Hossein Hosseinkhani
- Innovation Center for Advanced Technology, Matrix, Inc., New York, NY 10019, USA
| | - Abraham J. Domb
- The Center for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Ghorbanali Sharifzadeh
- Department of Polymer Engineering, School of Chemical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Victoria Nahum
- The Center for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
22
|
Liu Y, Zhang M, Liao Y, Chen H, Su D, Tao Y, Li J, Luo K, Wu L, Zhang X, Yang R. Human umbilical cord mesenchymal stem cell-derived exosomes promote murine skin wound healing by neutrophil and macrophage modulations revealed by single-cell RNA sequencing. Front Immunol 2023; 14:1142088. [PMID: 36999022 PMCID: PMC10044346 DOI: 10.3389/fimmu.2023.1142088] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
IntroductionFull-thickness skin wound healing remains a serious undertaking for patients. While stem cell-derived exosomes have been proposed as a potential therapeutic approach, the underlying mechanism of action has yet to be fully elucidated. The current study aimed to investigate the impact of exosomes derived from human umbilical cord mesenchymal stem cells (hucMSC-Exosomes) on the single-cell transcriptome of neutrophils and macrophages in the context of wound healing.MethodsUtilizing single-cell RNA sequencing, the transcriptomic diversity of neutrophils and macrophages was analyzed in order to predict the cellular fate of these immune cells under the influence of hucMSC-Exosomes and to identify alterations of ligand-receptor interactions that may influence the wound microenvironment. The validity of the findings obtained from this analysis was subsequently corroborated by immunofluorescence, ELISA, and qRT-PCR. Neutrophil origins were characterized based on RNA velocity profiles.ResultsThe expression of RETNLG and SLC2A3 was associated with migrating neutrophils, while BCL2A1B was linked to proliferating neutrophils. The hucMSC-Exosomes group exhibited significantly higher levels of M1 macrophages (215 vs 76, p < 0.00001), M2 macrophages (1231 vs 670, p < 0.00001), and neutrophils (930 vs 157, p < 0.00001) when compared to control group. Additionally, it was observed that hucMSC-Exosomes elicit alterations in the differentiation trajectories of macrophages towards more anti-inflammatory phenotypes, concomitant with changes in ligand-receptor interactions, thereby facilitating healing.DiscussionThis study has revealed the transcriptomic heterogeneity of neutrophils and macrophages in the context of skin wound repair following hucMSC-Exosomes interventions, providing a deeper understanding of cellular responses to hucMSC-Exosomes, a rising target of wound healing intervention.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Medical School of Chinese People’s Liberation Army, Beijing, China
- Department of Dermatology, the Seventh Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Mingwang Zhang
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yong Liao
- Department of Dermatology, the Seventh Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Hongbo Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, China
| | - Dandan Su
- School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, China
| | - Yuandong Tao
- Department of Pediatric Urology, the Seventh Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Jiangbo Li
- Bioinformatics Center of Academy of Military Medical Sciences, Beijing, China
| | - Kai Luo
- Biomedical Treatment Center, the Seventh Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Lihua Wu
- Biomedical Treatment Center, the Seventh Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Xingyue Zhang
- Department of Dermatology, the Seventh Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Rongya Yang
- Department of Dermatology, the Seventh Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- *Correspondence: Rongya Yang,
| |
Collapse
|
23
|
Du F, Liu M, Wang J, Hu L, Zeng D, Zhou S, Zhang L, Wang M, Xu X, Li C, Zhang J, Yu S. Metformin coordinates with mesenchymal cells to promote VEGF-mediated angiogenesis in diabetic wound healing through Akt/mTOR activation. Metabolism 2023; 140:155398. [PMID: 36627079 DOI: 10.1016/j.metabol.2023.155398] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/16/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Cell therapy with mesenchymal stem cells (MSCs) and biomaterials holds great potential for the treatment of diabetic ulceration; however, the underlying mechanism as well as its compatibility with the first-line anti-diabetic drug, metformin (MTF), has not been well elucidated. METHODS MSCs derived from the umbilical cord were labeled with fluorescent proteins, followed by transplantation in a fibrin scaffold (MSCs/FG) onto the STZ-induced diabetic wound in a C57BL6/J mouse model. MTF was administered by oral gavage at a dose of 250 mg/kg/day. The wound healing rate, epithelization, angiogenesis, and underlying mechanism were evaluated in MSCs/FG- and MTF-treated diabetic wounds. Moreover, the dose-dependent effects of MTF and involvement of the Akt/mTOR pathway were analyzed in keratinocyte and fibroblast cultures. RESULTS MSCs/FG significantly promoted angiogenesis in diabetic wound healing without signs of differentiation or integration. The recruitment of fibroblasts and keratinocytes by MSCs/FG promotes migration and vascular endothelial growth factor (VEGF) expression in an Akt/mTOR-dependent manner. MTF, which is generally considered a mTOR inhibitor, displayed dose-dependent effects on MSC-unregulated Akt/mTOR and VEGF expression. Oral administration of MTF at an anti-diabetic dosage synergistically acted with MSCs/FG to promote Akt/mTOR activation, VEGF expression, and subsequent angiogenesis in diabetic wounds; however, it reduced the survival of MSCs. CONCLUSIONS Our study identifies that MTF coordinates with mesenchymal cells to promote Akt/mTOR activation and VEGF-mediated angiogenesis during diabetic wound healing. These findings offer new insights into MSCs engraftment in FG scaffolds for diabetic wound healing and provide support for the promotion of MSCs therapy in patients prescribed with MTF.
Collapse
Affiliation(s)
- Fangzhou Du
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Mengmeng Liu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Jingwen Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Lvzhong Hu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Dongao Zeng
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Shaocong Zhou
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Lixing Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Meijia Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Xi Xu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Chenglong Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Jingzhong Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China; Xuzhou Medical University, Xuzhou, Jiangsu, China; Zhengzhou Zhongke Academy of Biomedical Engineering and Technology, Zhengzhou, Henan, China.
| | - Shuang Yu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China; Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
24
|
Chen J, Qin S, Liu S, Zhong K, Jing Y, Wu X, Peng F, Li D, Peng C. Targeting matrix metalloproteases in diabetic wound healing. Front Immunol 2023; 14:1089001. [PMID: 36875064 PMCID: PMC9981633 DOI: 10.3389/fimmu.2023.1089001] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
Chronic inflammation participates in the progression of multiple chronic diseases, including obesity, diabetes mellitus (DM), and DM related complications. Diabetic ulcer, characterized by chronic wounds that are recalcitrant to healing, is a serious complication of DM tremendously affecting the quality of life of patients and imposing a costly medical burden on society. Matrix metalloproteases (MMPs) are a family of zinc endopeptidases with the capacity of degrading all the components of the extracellular matrix, which play a pivotal part in healing process under various conditions including DM. During diabetic wound healing, the dynamic changes of MMPs in the serum, skin tissues, and wound fluid of patients are in connection with the degree of wound recovery, suggesting that MMPs can function as essential biomarkers for the diagnosis of diabetic ulcer. MMPs participate in various biological processes relevant to diabetic ulcer, such as ECM secretion, granulation tissue configuration, angiogenesis, collagen growth, re-epithelization, inflammatory response, as well as oxidative stress, thus, seeking and developing agents targeting MMPs has emerged as a potential way to treat diabetic ulcer. Natural products especially flavonoids, polysaccharides, alkaloids, polypeptides, and estrogens extracted from herbs, vegetables, as well as animals that have been extensively illustrated to treat diabetic ulcer through targeting MMPs-mediated signaling pathways, are discussed in this review and may contribute to the development of functional foods or drug candidates for diabetic ulcer therapy. This review highlights the regulation of MMPs in diabetic wound healing, and the potential therapeutic ability of natural products for diabetic wound healing by targeting MMPs.
Collapse
Affiliation(s)
- Junren Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Siqi Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shengmeng Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kexin Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiqi Jing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuan Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Fu Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Pharmacology, Sichuan University, Chengdu, China
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
25
|
Isoda Y, Tanaka T, Suzuki H, Asano T, Yoshikawa T, Kitamura K, Kudo Y, Ejima R, Ozawa K, Kaneko MK, Kato Y. Epitope Mapping Using the Cell-Based 2 × Alanine Substitution Method About the Anti-mouse CXCR6 Monoclonal Antibody, Cx 6Mab-1. Monoclon Antib Immunodiagn Immunother 2023; 42:22-26. [PMID: 36383116 DOI: 10.1089/mab.2022.0029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
An anti-mouse CXC chemokine receptor 6 (mCXCR6) monoclonal antibody (mAb), Cx6Mab-1, was developed recently. Cx6Mab-1 is applicable for flow cytometry, Western blotting, and enzyme-linked immunosorbent assay. The purpose of this study is to determine the binding epitope of Cx6Mab-1 using 2 × alanine mutated mCXCR6. Analysis of flow cytometry revealed that Cx6Mab-1 did not recognize S8A-A9G, L10A-Y11A, D12A-G13A, and H14A-Y15A mutants of mCXCR6. The results clearly indicate that the binding epitope of Cx6Mab-1 includes Ser8, Ala9, Leu10, Tyr11, Asp12, Gly13, His14, and Tyr15 of mCXCR6. The successful determination of the Cx6Mab-1 epitope might contribute to the pathophysiological investigation of mCXCR6.
Collapse
Affiliation(s)
- Yu Isoda
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Takeo Yoshikawa
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kaishi Kitamura
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yuma Kudo
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ryo Ejima
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kazuki Ozawa
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
26
|
Huerta CT, Voza FA, Ortiz YY, Liu ZJ, Velazquez OC. Mesenchymal stem cell-based therapy for non-healing wounds due to chronic limb-threatening ischemia: A review of preclinical and clinical studies. Front Cardiovasc Med 2023; 10:1113982. [PMID: 36818343 PMCID: PMC9930203 DOI: 10.3389/fcvm.2023.1113982] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
Progressive peripheral arterial disease (PAD) can result in chronic limb-threatening ischemia (CLTI) characterized by clinical complications including rest pain, gangrene and tissue loss. These complications can propagate even more precipitously in the setting of common concomitant diseases in patients with CLTI such as diabetes mellitus (DM). CLTI ulcers are cutaneous, non-healing wounds that persist due to the reduced perfusion and dysfunctional neovascularization associated with severe PAD. Existing therapies for CLTI are primarily limited to anatomic revascularization and medical management of contributing factors such as atherosclerosis and glycemic control. However, many patients fail these treatment strategies and are considered "no-option," thereby requiring extremity amputation, particularly if non-healing wounds become infected or fulminant gangrene develops. Given the high economic burden imposed on patients, decreased quality of life, and poor survival of no-option CLTI patients, regenerative therapies aimed at neovascularization to improve wound healing and limb salvage hold significant promise. Cell-based therapy, specifically utilizing mesenchymal stem/stromal cells (MSCs), is one such regenerative strategy to stimulate therapeutic angiogenesis and tissue regeneration. Although previous reviews have focused primarily on revascularization outcomes after MSC treatments of CLTI with less attention given to their effects on wound healing, here we review advances in pre-clinical and clinical studies related to specific effects of MSC-based therapeutics upon ischemic non-healing wounds associated with CLTI.
Collapse
Affiliation(s)
- Carlos Theodore Huerta
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Francesca A. Voza
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Yulexi Y. Ortiz
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Zhao-Jun Liu
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States,Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL, United States,*Correspondence: Omaida C. Velazquez, ; Zhao-Jun Liu,
| | - Omaida C. Velazquez
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States,Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL, United States,*Correspondence: Omaida C. Velazquez, ; Zhao-Jun Liu,
| |
Collapse
|
27
|
Ji Z, Wang J, Yang S, Tao S, Shen C, Wei H, Li Q, Jin P. Graphene oxide accelerates diabetic wound repair by inhibiting apoptosis of Ad-MSCs via Linc00324/miR-7977/STK4 pathway. FASEB J 2022; 36:e22623. [PMID: 36269304 DOI: 10.1096/fj.202201079rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/24/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022]
Abstract
Many studies have shown that graphene oxide (GO) promotes proliferation and differentiation of a variety of stem cells. However, its effect on adipose-derived mesenchymal stem cell (Ad-MSCs) apoptosis is still unclear. Apoptosis is a significant factor affecting stem cell-based treatment of diabetic wounds. Therefore, we explored the effect of GO on Ad-MSC apoptosis and diabetic wound healing. In this study, qRT-PCR was used to detect Ad-MSC expression of LncRNAs, miRNAs, and mRNAs under high-glucose environment. RNA immunoprecipitation (RIP), RNA pull-down, and luciferase assays were used to detect interactions of specific lncRNAs, miRNAs, and mRNAs. The effects of GO on Ad-MSC apoptosis were explored by flow cytometry, TUNEL assay, and Western blot. A diabetic wound model was used to explore the function of Linc00324 on Ad-MSC reparative properties in vivo. As a result, GO inhibited high glucose-induced apoptosis in Ad-MSCs, and Linc00324 contributed to the anti-apoptotic effect of GO. RIP and RNA pull-down confirmed that Linc00324 directly interacted with miR-7977, functioning as a miRNA sponge to regulate expression of the miR-7977 target gene STK4 (MST1) and downstream signaling pathways. In addition, GO reduced the apoptosis of Ad-MSCs in wounds and promoted wound healing. Taken together, these findings suggest GO may be a superior auxiliary material for Ad-MSCs to facilitate diabetic wound healing via the Linc00324/miR-7977/STK4 pathway.
Collapse
Affiliation(s)
- Zhe Ji
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, P.R. China
| | - Jian Wang
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, P.R. China
| | - Shuai Yang
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, P.R. China
| | - Shengjun Tao
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, P.R. China
| | - Caiqi Shen
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, P.R. China
| | - Hanxiao Wei
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, P.R. China
| | - Qiang Li
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, P.R. China
| | - Peisheng Jin
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, P.R. China.,Jiangsu Center for the Collaboration and Innovation of Cancer, Xuzhou Medical University, Xuzhou, P.R. China.,Jiangsu Cancer Biotherapy Institute, Xuzhou Medical University, Xuzhou, P.R. China
| |
Collapse
|
28
|
Mastrogiacomo M, Nardini M, Collina MC, Di Campli C, Filaci G, Cancedda R, Odorisio T. Innovative Cell and Platelet Rich Plasma Therapies for Diabetic Foot Ulcer Treatment: The Allogeneic Approach. Front Bioeng Biotechnol 2022; 10:869408. [PMID: 35586557 PMCID: PMC9108368 DOI: 10.3389/fbioe.2022.869408] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/14/2022] [Indexed: 12/15/2022] Open
Abstract
Cutaneous chronic wounds are a major global health burden in continuous growth, because of population aging and the higher incidence of chronic diseases, such as diabetes. Different treatments have been proposed: biological, surgical, and physical. However, most of these treatments are palliative and none of them can be considered fully satisfactory. During a spontaneous wound healing, endogenous regeneration mechanisms and resident cell activity are triggered by the released platelet content. Activated stem and progenitor cells are key factors for ulcer healing, and they can be either recruited to the wound site from the tissue itself (resident cells) or from elsewhere. Transplant of skin substitutes, and of stem cells derived from tissues such as bone marrow or adipose tissue, together with platelet-rich plasma (PRP) treatments have been proposed as therapeutic options, and they represent the today most promising tools to promote ulcer healing in diabetes. Although stem cells can directly participate to skin repair, they primarily contribute to the tissue remodeling by releasing biomolecules and microvesicles able to stimulate the endogenous regeneration mechanisms. Stem cells and PRP can be obtained from patients as autologous preparations. However, in the diabetic condition, poor cell number, reduced cell activity or impaired PRP efficacy may limit their use. Administration of allogeneic preparations from healthy and/or younger donors is regarded with increasing interest to overcome such limitation. This review summarizes the results obtained when these innovative treatments were adopted in preclinical animal models of diabetes and in diabetic patients, with a focus on allogeneic preparations.
Collapse
Affiliation(s)
- Maddalena Mastrogiacomo
- Dipartimento di Medicina Interna e Specialità Mediche (DIMI), Università degli Studi di Genova, Genova, Italy
- *Correspondence: Maddalena Mastrogiacomo,
| | - Marta Nardini
- Dipartimento di Medicina Interna e Specialità Mediche (DIMI), Università degli Studi di Genova, Genova, Italy
| | - Maria Chiara Collina
- Unità Operativa Semplice Piede Diabetico e Ulcere Cutanee, IDI-IRCCS, Roma, Italy
| | - Cristiana Di Campli
- Unità Operativa Semplice Piede Diabetico e Ulcere Cutanee, IDI-IRCCS, Roma, Italy
| | - Gilberto Filaci
- Dipartimento di Medicina Interna e Specialità Mediche (DIMI), Università degli Studi di Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Ranieri Cancedda
- Emeritus Professor, Università degli Studi di Genova, Genova, Italy
| | - Teresa Odorisio
- Laboratorio di Biologia Molecolare e Cellulare, IDI-IRCCS, Roma, Italy
| |
Collapse
|
29
|
Lee SC, Lee YJ, Choi I, Kim M, Sung JS. CXCL16/CXCR6 Axis in Adipocytes Differentiated from Human Adipose Derived Mesenchymal Stem Cells Regulates Macrophage Polarization. Cells 2021; 10:cells10123410. [PMID: 34943917 PMCID: PMC8699853 DOI: 10.3390/cells10123410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
Adipocytes interact with adipose tissue macrophages (ATMs) that exist as a form of M2 macrophage in healthy adipose tissue and are polarized into M1 macrophages upon cellular stress. ATMs regulate adipose tissue inflammation by secreting cytokines, adipokines, and chemokines. CXC-motif receptor 6 (CXCR6) is the chemokine receptor and interactions with its specific ligand CXC-motif chemokine ligand 16 (CXCL16) modulate the migratory capacities of human adipose-derived mesenchymal stem cells (hADMSCs). CXCR6 is highly expressed on differentiated adipocytes that are non-migratory cells. To evaluate the underlying mechanisms of CXCR6 in adipocytes, THP-1 human monocytes that can be polarized into M1 or M2 macrophages were co-cultured with adipocytes. As results, expression levels of the M1 polarization-inducing factor were decreased, while those of the M2 polarization-inducing factor were significantly increased in differentiated adipocytes in a co-cultured environment with additional CXCL16 treatment. After CXCL16 treatment, the anti-inflammatory factors, including p38 MAPK ad ERK1/2, were upregulated, while the pro-inflammatory pathway mediated by Akt and NF-κB was downregulated in adipocytes in a co-cultured environment. These results revealed that the CXCL16/CXCR6 axis in adipocytes regulates M1 or M2 polarization and displays an immunosuppressive effect by modulating pro-inflammatory or anti-inflammatory pathways. Our results may provide an insight into a potential target as a regulator of the immune response via the CXCL16/CXCR6 axis in adipocytes.
Collapse
Affiliation(s)
- Seung-Cheol Lee
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Korea; (S.-C.L.); (Y.-J.L.); (M.K.)
| | - Yoo-Jung Lee
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Korea; (S.-C.L.); (Y.-J.L.); (M.K.)
| | - Inho Choi
- Department of Pharmaceutical Engineering, Hoseo University, Asan 31499, Korea;
| | - Min Kim
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Korea; (S.-C.L.); (Y.-J.L.); (M.K.)
| | - Jung-Suk Sung
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Korea; (S.-C.L.); (Y.-J.L.); (M.K.)
- Correspondence: ; Tel.: +82-31-961-5132; Fax: +82-31-961-5108
| |
Collapse
|
30
|
Otsuka T, Kan HM, Laurencin CT. Regenerative Engineering Approaches to Scar-Free Skin Regeneration. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00229-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Tang Y, Li J, Wang W, Chen B, Chen J, Shen Z, Hou J, Mei Y, Liu S, Zhang L, Li Z, Lu S. Platelet extracellular vesicles enhance the proangiogenic potential of adipose-derived stem cells in vivo and in vitro. Stem Cell Res Ther 2021; 12:497. [PMID: 34503551 PMCID: PMC8427862 DOI: 10.1186/s13287-021-02561-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Adipose-derived mesenchymal stem cells (ADSC)-based therapy is an outstanding treatment strategy for ischaemic disease. However, the therapeutic efficacy of this strategy is not ideal due to the poor paracrine function and low survival rate of ADSCs in target regions. Platelet extracellular vesicles (PEVs) are nanoparticles derived from activated platelets that can participate in communication between cells. Accumulating evidence indicates that PEVs can regulate the biological functions of several cell lines. In the present study, we aimed to investigate whether PEVs can modulate the proangiogenic potential of ADSCs in vitro and in vivo. METHODS PEVs were identified using scanning electron microscope (SEM), flow cytometry (FCM) and nanoparticle tracking analysis (NTA). The CCK8 assay was performed to detect proliferation of cells. Transwell and wound healing assays were performed to verify migration capacity of cells. AnnexinV-FITC/PI apoptosis kit and live/dead assay were performed to assess ADSCs apoptosis under Cocl2-induced hypoxia condition. The underlying mechanisms by which PEVs affected ADSCs were explored using real time-PCR(RT-PCR) and Western blot. In addition, matrigel plug assays were conducted and mouse hindlimb ischaemic models were established to investigate the proangiogenic potential of PEV-treated ADSCs in vivo. RESULTS We demonstrated that ADSC could internalize PEVs, which lead to a series of biological reactions. In vitro, dose-dependent effects of PEVs on ADSC proliferation, migration and antiapoptotic capacity were observed. Western blotting results suggested that multiple proteins such as ERK, AKT, FAK, Src and PLCγ1 kinase may contribute to these changes. Furthermore, PEVs induced upregulation of several growth factors expression in ADSCs and amplified the proliferation, migration and tube formation of HUVECs induced by ADSC conditioned medium (CM). In in vivo experiments, compared with control ADSCs, the injection of PEV-treated ADSCs resulted in more vascularization in matrigel plugs, attenuated tissue degeneration and increased blood flow and capillary density in ischaemic hindlimb tissues. CONCLUSION Our data demonstrated that PEVs could enhance the proangiogenic potential of ADSCs in mouse hindlimb ischaemia. The major mechanisms of this effect included the promotion of ADSC proliferation, migration, anti-apoptosis ability and paracrine secretion.
Collapse
Affiliation(s)
- Yanan Tang
- Vascular Surgery Department, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Jiayan Li
- Vascular Surgery Department, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Weiyi Wang
- Vascular Surgery Department, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Bingyi Chen
- Vascular Surgery Department, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Jinxing Chen
- Vascular Surgery Department, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Zekun Shen
- Vascular Surgery Department, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Jiaxuan Hou
- Vascular Surgery Department, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Yifan Mei
- Vascular Surgery Department, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Shuang Liu
- Vascular Surgery Department, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Liwei Zhang
- Vascular Surgery Department, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Zongjin Li
- Nankai University School of Medicine, 94 Weijin Road, Tianjin, 300071, China.
| | - Shaoying Lu
- Vascular Surgery Department, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
32
|
Kuang S, He F, Liu G, Sun X, Dai J, Chi A, Tang Y, Li Z, Gao Y, Deng C, Lin Z, Xiao H, Zhang M. CCR2-engineered mesenchymal stromal cells accelerate diabetic wound healing by restoring immunological homeostasis. Biomaterials 2021; 275:120963. [PMID: 34153785 DOI: 10.1016/j.biomaterials.2021.120963] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 05/30/2021] [Accepted: 06/06/2021] [Indexed: 02/06/2023]
Abstract
Impaired wound healing presents great health risks to patients. While encouraging, the current clinical successes of mesenchymal stromal cell (MSC)-based therapies for tissue repair have been limited. Genetic engineering could endow MSCs with more robust regenerative capacities. Here, we identified that C-C motif chemokine receptor 2 (CCR2) overexpression enhanced the targeted migration and immunoregulatory potential of MSCs in response to C-C motif chemokine ligand 2 (CCL2) in vitro. Intravenously infusion of CCR2-engineered MSCs (MSCsCCR2) exhibited improved homing efficiencies to injured sites and lungs of diabetic mice. Accordingly, MSCCCR2 infusion inhibited monocyte infiltration, reshaped macrophage inflammatory properties, prompted the accumulation of regulatory T cells (Treg cells) in injured sites, and reshaped systemic immune responses via the lung and spleen in mouse diabetic wound models. In summary, CCR2-engineered MSCs restore immunological homeostasis to accelerate diabetic wound healing via their improved homing and immunoregulatory potentials in response to CCL2. Therefore, these findings provide a novel strategy to explore genetically engineered MSCs as tools to facilitate tissue repair in diabetic wounds.
Collapse
Affiliation(s)
- Shuhong Kuang
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| | - Feng He
- Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Guihua Liu
- Reproductive Centre, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Xiangzhou Sun
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jian Dai
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Ani Chi
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yali Tang
- Core Lab Plat for Medical Science, Zhongshan Medical School, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhuoran Li
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| | - Yong Gao
- Reproductive Medicine Center, The Key Laboratory for Reproductive Medicine of Guangdong Province, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Chunhua Deng
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 51008, China
| | - Zhengmei Lin
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China.
| | - Haipeng Xiao
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| | - Min Zhang
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
33
|
Yeeravalli R, Kaushik K, Das A. TWIST1-mediated transcriptional activation of PDGFRβ in breast cancer stem cells promotes tumorigenesis and metastasis. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166141. [PMID: 33845139 DOI: 10.1016/j.bbadis.2021.166141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/05/2021] [Accepted: 03/30/2021] [Indexed: 12/26/2022]
Abstract
Triple-negative breast cancer (TNBC) patients often exhibit poor prognosis and breast cancer relapse due to metastasis. This results in secondary tumor generation at distant-unrelated organs that account for the majority of breast cancer-related deaths. Although breast cancer stem cells (CSCs) have been attributed to metastasis, a mechanistic understanding is essential for developing therapeutic interventions to combat breast cancer relapse. Breast CSCs are generated due to Epithelial-to-mesenchymal transition (EMT), regulated by transcription factors (EMT-TF) that are implicated in tumorigenesis and metastasis. However, the underlying mechanisms mediating these processes remain elusive. In the present study, we have reported that TWIST1, an EMT-TF, exhibits positive transcriptional regulation on PDGFRβ promoter, thus identifying PDGFRβ as one of the downstream targets of EMT regulation in breast CSCs. Breast cancer cells overexpressing PDGFRβ exhibited a significant increase in physiological and molecular properties comparable to that of breast CSCs, while molecular silencing of PDGFRβ in breast CSCs perturbed these phenomena. Mechanistically, PDGFRβ overexpression induced the activation of FAK and Src leading to cell migration and invasion. Orthotopic xenograft transplantation of stable breast cancer cells and CSCs with PDGFRβ overexpression in nude mice led to a significant increase in tumorigenesis, and metastasis to lung and liver as depicted by the significant increase in human gene-specific PDGFRβ and CD44 expression, and colocalization along with an expression of human-specific Alu sequences which were perturbed with stable silencing of PDGFRβ in breast CSCs. Thus, PDGFRβ plays a crucial role in inducing breast cancer tumorigenesis and metastasis that can be a plausible therapeutic target to treat TNBC patients.
Collapse
Affiliation(s)
- Ragini Yeeravalli
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500 007, TS, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India
| | - Komal Kaushik
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500 007, TS, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India
| | - Amitava Das
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500 007, TS, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India.
| |
Collapse
|
34
|
Advances in generation of three-dimensional skin equivalents: pre-clinical studies to clinical therapies. Cytotherapy 2020; 23:1-9. [PMID: 33189572 DOI: 10.1016/j.jcyt.2020.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/30/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022]
Abstract
The inability of two-dimensional cell culture systems to adequately map the structure and function of complex organs like skin necessitates the development of three-dimensional (3D) skin models. A diverse range of 3D skin equivalents have been developed over the last few decades for studying complex properties of skin as well as for drug discovery and clinical applications for skin regeneration in chronic wounds, such as diabetic foot ulcers, where the normal mechanism of wound healing is compromised. These 3D skin substitutes also serve as a suitable alternative to animal models in industrial applications and fundamental research. With the emergence of tissue engineering, new scaffolds and matrices have been integrated into 3D cell culture systems, along with gene therapy approaches, to increase the efficacy of transplanted cells in skin regeneration. This review summarizes recent approaches to the development of skin equivalents as well as different models for studying skin diseases and properties and current therapeutic applications of skin substitutes.
Collapse
|
35
|
Xia Y, Chen J, Ding J, Zhang J, Chen H. IGF1- and BM-MSC-incorporating collagen-chitosan scaffolds promote wound healing and hair follicle regeneration. Am J Transl Res 2020; 12:6264-6276. [PMID: 33194028 PMCID: PMC7653568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
Full-thickness skin injury affects millions of people worldwide each year. Although bone marrow-derived mesenchymal stem cells (BM-MSCs) have been shown to promote cutaneous wound healing, they cannot functionally promote wound healing with the recovery of appendages such as hair follicles. We previously found that growth factor plus BM-MSCs could effectively promote wound healing and hair follicle regeneration. In the present study, we grafted insulin-like growth factor 1 (IGF1), a multifunctional cell growth factor, and BM-MSCs into a collagen-chitosan scaffold to investigate their effects on functional wound healing. Using scanning electron microscopy, histological staining, and quantitative analysis, we found that IGF1- and BM-MSC-incorporating collagen-chitosan scaffolds promote cutaneous wound healing with effective regeneration of hair follicles in a rat full-thickness skin injury model. In addition, IGF1/BM-MSCs inhibit inflammatory cytokines during wound healing. In vitro, we found that IGF1 promotes the proliferation and migration of BM-MSCs via the IGFR-mediated ERK1/2 signaling pathway. Collectively, in this study, we first demonstrated that IGF1 enhances BM-MSC-mediated wound healing as well as hair follicle regeneration. Our data suggest that the topical application of IGF1 and BM-MSCs incorporated in collagen-chitosan scaffolds can be used as a feasible and effective therapeutic approach to improve functional cutaneous wound healing.
Collapse
Affiliation(s)
- Ying Xia
- Medical Cosmetology Department, Plastic Surgery, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine)Shaoxing 312000, Zhejiang Province, P. R. China
| | - Jianshe Chen
- Department of Dermatology, The First Affiliated Hospital, Xiamen UniversityXiamen 361000, Fujian Province, P. R. China
| | - Juan Ding
- Medical Cosmetology Department, Plastic Surgery, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine)Shaoxing 312000, Zhejiang Province, P. R. China
| | - Jianqing Zhang
- Medical Cosmetology Department, Plastic Surgery, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine)Shaoxing 312000, Zhejiang Province, P. R. China
| | - Hong Chen
- Medical Cosmetology Department, Plastic Surgery, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine)Shaoxing 312000, Zhejiang Province, P. R. China
| |
Collapse
|
36
|
Cheng S, Xi Z, Chen G, Liu K, Ma R, Zhou C. Extracellular vesicle-carried microRNA-27b derived from mesenchymal stem cells accelerates cutaneous wound healing via E3 ubiquitin ligase ITCH. J Cell Mol Med 2020; 24:11254-11271. [PMID: 32845084 PMCID: PMC7576224 DOI: 10.1111/jcmm.15692] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/07/2020] [Accepted: 07/12/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been highlighted as promising candidate cells in relation to cutaneous wound healing. The current study aimed to investigate whether MSC-derived extracellular vesicles (EVs) could transfer microRNA-27b (miR-27b) to influence cutaneous wound healing. The miR-27b expression was examined in the established cutaneous wound mouse model, and its correlation with the wound healing rate was evaluated by Pearson's correlation analysis. The identified human umbilical cord MSC-derived EVs were co-cultured with human immortal keratinocyte line HaCaT and human skin fibroblasts (HSFs). The mice with cutaneous wound received injections of MSC-derived EVs. The effects of EVs or miR-27b loaded on wound healing and cellular functions were analysed via gain- and loss-of-function approaches in the co-culture system. Dual-luciferase reporter gene assay was employed to verify the relationship between miR-27b and Itchy E3 ubiquitin protein ligase (ITCH). Rescue experiments were conducted to investigate the underlying mechanisms associated with the ITCH/JUNB/inositol-requiring enzyme 1α (IRE1α) axis. miR-27b was down-regulated in the mouse model, with its expression found to be positively correlated with the wound healing rate. Abundant miR-27b was detected in the MSC-derived EVs, while EV-transferred miR-27b improved cutaneous wound healing in mice and improved proliferation and migration of HaCaT cells and HSFs in vitro. As a target of miR-27b, ITCH was found to repress cell proliferation and migration. ITCH enhanced the JUNB ubiquitination and degradation, ultimately inhibiting JUNB and IRE1α expressions and restraining wound healing. Collectively, MSC-derived EVs transferring miR-27b can promote cutaneous wound healing via ITCH/JUNB/IRE1α signalling, providing insight with clinical implications.
Collapse
Affiliation(s)
- Shihuan Cheng
- Department of Rehabilitation, the First Hospital of Jilin University, Changchun, China
| | - Zhiyu Xi
- Department of Vascular Surgery, the First Hospital of Jilin University (Eastern Division), Changchun, China
| | - Guang Chen
- Department of Vascular Surgery, the First Hospital of Jilin University (Eastern Division), Changchun, China
| | - Kai Liu
- Department of Vascular Surgery, the First Hospital of Jilin University (Eastern Division), Changchun, China
| | - Renshi Ma
- Department of Vascular Surgery, the First Hospital of Jilin University (Eastern Division), Changchun, China
| | - Chen Zhou
- Personnel Department, the First Hospital of Jilin University, Changchun, China
| |
Collapse
|