1
|
Georgakopoulou A, Wang H, Kim J, Li C, Lieber A. In vivo HSC transduction in humanized mice mediated by novel capsid-modified HDAd vectors. Mol Ther Methods Clin Dev 2025; 33:101448. [PMID: 40231246 PMCID: PMC11995070 DOI: 10.1016/j.omtm.2025.101448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/11/2025] [Indexed: 04/16/2025]
Abstract
We developed an in vivo hematopoietic stem cell (HSC) gene therapy approach consisting of HSC mobilization and intravenous injection of helper dependent adenovirus (HDAd) vectors. While we have demonstrated safety and efficacy of the in vivo approach in CD46-transgenic mice and rhesus macaques, studies in mice with a humanized hematopoietic system could facilitate its potential clinical translation for the treatment of hemoglobinopathies and HIV. Using mild myelo-conditioning in NSGW41 mice and cryopreserved human CD34+ cells from healthy donors we achieved ∼10% human chimerism in peripheral blood. Engrafted primitive human CD45+/CD34+/CD90+-HSCs efficiently mobilized by different approaches involving AMD3100 in combination with granulocyte colony-stimulating factor G-CSF, truncated Groβ (tGroβ), or WU106/tGroβ. At the peak of mobilization, integrating HDAd-GFP vectors were injected intravenously followed by O6BG/BCNU in vivo selection. Long-term stable GFP expression was shown for HDAd5/35 and the new vector platforms HDAd6/3 and HDAd5/35_lam, a fiber/penton-modified vector. Two months post transduction, GFP marking in the periphery were 22.38% (8.17%), 41.12% (10.62%), and 32.15% (4.49%) for HDAd5/35, HDAd6/3, and HDAd5/35_lam, respectively. GFP levels in bone marrow were 33.53% (8.96%), 53.51% (6.95%), and 33.29% (5.21%) and in spleen 32.6% (9.25%), 33.75% (5.47%), and 20.79% (6.15%). Our study describes a new animal model for in vivo HSC transduction with HDAds, with implications for studies with other vectors.
Collapse
Affiliation(s)
- Aphrodite Georgakopoulou
- University of Washington, Department of Medicine, Division of Medical Genetics, Seattle, WA 98195, USA
| | - Hongjie Wang
- University of Washington, Department of Medicine, Division of Medical Genetics, Seattle, WA 98195, USA
| | - Jiho Kim
- PAI Life Sciences, Seattle, WA 98102, USA
| | - Chang Li
- University of Washington, Department of Medicine, Division of Medical Genetics, Seattle, WA 98195, USA
| | - André Lieber
- University of Washington, Department of Medicine, Division of Medical Genetics, Seattle, WA 98195, USA
| |
Collapse
|
2
|
Charlesworth CT, Homma S, Amaya AK, Dib C, Vaidyanathan S, Tan TK, Miyauchi M, Nakauchi Y, Suchy FP, Wang S, Igarashi KJ, Cromer MK, Dudek AM, Amorin A, Czechowicz A, Wilkinson AC, Nakauchi H. Highly efficient in vivo hematopoietic stem cell transduction using an optimized self-complementary adeno-associated virus. Mol Ther Methods Clin Dev 2025; 33:101438. [PMID: 40129926 PMCID: PMC11930595 DOI: 10.1016/j.omtm.2025.101438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 02/18/2025] [Indexed: 03/26/2025]
Abstract
In vivo gene therapy targeting hematopoietic stem cells (HSCs) holds significant therapeutic potential for treating hematological diseases. This study uses adeno-associated virus serotype 6 (AAV6) vectors and Cre recombination to systematically optimize the parameters for effective in vivo HSC transduction. We evaluated various genetic architectures and delivery methods of AAV6, establishing an optimized protocol that achieved functional recombination in more than two-thirds of immunophenotypic HSCs. Our findings highlight that second-strand synthesis is a critical limiting factor for transgene expression in HSCs, leading to significant under-detection of HSC transduction with single-stranded AAV6 vectors. We also demonstrate that HSCs in the bone marrow (BM) are readily accessible to transduction, with neither localized injection nor mobilization of HSCs into the bloodstream, enhancing transduction efficacy. Additionally, we observed a surprising preference for HSC transduction over other BM cells, regardless of the AAV6 delivery route. Together, these findings not only underscore the potential of AAV vectors for in vivo HSC gene therapy but also lay a foundation that can inform the development of both in vivo AAV-based HSC gene therapies and potentially in vivo HSC gene therapies that employ alternative delivery modalities.
Collapse
Affiliation(s)
- Carsten T. Charlesworth
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA 94305, USA
| | - Shota Homma
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA 94305, USA
- Department of Genetics, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA
| | - Anais K. Amaya
- Department of Pediatrics, Stanford University School of Medicine, 453 Quarry Road, Stanford, CA 94305, USA
| | - Carla Dib
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, 453 Quarry Road, Stanford, CA 94305, USA
| | - Sriram Vaidyanathan
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43215, USA
| | - Tze-Kai Tan
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA 94305, USA
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Masashi Miyauchi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA 94305, USA
- Department of Genetics, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA
| | - Yusuke Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA 94305, USA
- Department of Hematology, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, USA
| | - Fabian P. Suchy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA 94305, USA
- Department of Genetics, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA
| | - Sicong Wang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA 94305, USA
| | - Kyomi J. Igarashi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA 94305, USA
- Department of Genetics, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA
| | - M. Kyle Cromer
- Department of Surgery, University of California, San Francisco, 400 Parnassus Ave, San Francisco, CA 94143, USA
| | - Amanda M. Dudek
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, 453 Quarry Road, Stanford, CA 94305, USA
| | - Alvaro Amorin
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, 453 Quarry Road, Stanford, CA 94305, USA
| | - Agnieszka Czechowicz
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, 453 Quarry Road, Stanford, CA 94305, USA
| | - Adam C. Wilkinson
- Department of Haematology, Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA 94305, USA
- Department of Genetics, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA
- Stem Cell Therapy Laboratory, Institute of Integrated Research, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
3
|
Jacobs R, Singh P, Smith T, Arbuthnot P, Maepa MB. Prospects of viral vector-mediated delivery of sequences encoding anti-HBV designer endonucleases. Gene Ther 2025; 32:8-15. [PMID: 35606493 DOI: 10.1038/s41434-022-00342-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/09/2022]
Abstract
Available treatment for chronic hepatitis B virus (HBV) infection offers modest functional curative efficacy. The viral replicative intermediate comprising covalently closed circular DNA (cccDNA) is responsible for persistent chronic HBV infection. Hence, current efforts have focused on developing therapies that disable cccDNA. Employing gene editing tools has emerged as an attractive strategy, with the end goal of establishing permanently inactivated cccDNA. Although anti-HBV designer nucleases are effective in vivo, none has yet progressed to clinical trial. Lack of safe and efficient delivery systems remains the limiting factor. Several vectors may be used to deliver anti-HBV gene editor-encoding sequences, with viral vectors being at the forefront. Despite the challenges associated with packaging large gene editor-encoding sequences into viral vectors, advancement in the field is overcoming such limitations. Translation of viral vector-mediated gene editing against HBV to clinical application is within reach. This review discusses the prospects of delivering HBV targeted designer nucleases using viral vectors.
Collapse
Affiliation(s)
- Ridhwaanah Jacobs
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Prashika Singh
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tiffany Smith
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mohube Betty Maepa
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
4
|
Georgakopoulou A, Li C, Kiem HP, Lieber A. In vitro and in vivo expansion of CD33/HBG promoter-edited HSPCs with Mylotarg. Mol Ther Methods Clin Dev 2024; 32:101343. [PMID: 39429723 PMCID: PMC11490927 DOI: 10.1016/j.omtm.2024.101343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 09/18/2024] [Indexed: 10/22/2024]
Abstract
We developed an in vivo HSC gene therapy approach that consists of HSC mobilization and intravenous injection of HSC-tropic HDAd vectors. To achieve therapeutically relevant numbers of corrected cells, we incorporated in vivo expansion of transduced cells. We used an HDAd vector for a multiplex adenine base editing approach to (1) remove the region within CD33 that is recognized by gemtuzumab ozogamicin (GO) (Mylotarg), and (2) create therapeutic edits within the HBG1/2 promoters to reactivate γ-globin/HbF. In vitro studies with HDAd-transduced human CD34+ cells showed editing of both targeted sites and a 2- to 3-fold GO-mediated expansion of edited erythroid/myeloid progenitors. After erythroid in vitro differentiation, up to 40% of erythrocytes were HbF positive. For in vivo studies, mice were transplanted with human CD34+ cells. After engraftment, HSCs were mobilized with G-CSF/AMD3100 followed by an intravenous HDAd injection and GO-mediated in vivo selection. Two months later, editing in human cells within the bone marrow was significantly higher in GO-treated mice. The percentage of HbF+ human erythroid cells was 2.5-fold greater compared with untreated mice. These data indicate that in vivo GO selection can increase edited erythroid cells.
Collapse
Affiliation(s)
- Aphrodite Georgakopoulou
- University of Washington, Department of Medicine, Division of Medical Genetics, Seattle, WA 98195, USA
| | - Chang Li
- University of Washington, Department of Medicine, Division of Medical Genetics, Seattle, WA 98195, USA
| | | | - André Lieber
- University of Washington, Department of Medicine, Division of Medical Genetics, Seattle, WA 98195, USA
| |
Collapse
|
5
|
Klatt D, Sereni L, Liu B, Genovese P, Schambach A, Verhoeyen E, Williams DA, Brendel C. Engineered packaging cell line for the enhanced production of baboon-enveloped retroviral vectors. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102389. [PMID: 39679008 PMCID: PMC11638596 DOI: 10.1016/j.omtn.2024.102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/11/2024] [Indexed: 12/17/2024]
Abstract
The baboon endogenous retrovirus (BaEV) glycoprotein is superior to the commonly used vesicular stomatitis virus glycoprotein (VSVg) for retroviral gene transfer into resting hematopoietic stem cells and lymphocyte populations. The derivative BaEVRLess (lacking the R domain) produces higher viral titers compared with wild-type BaEV, but vector production is impaired by syncytia formation and cell death of the HEK293T cells due to the high fusogenic activity of the glycoprotein. This lowers viral titers, leads to increased batch-to-batch variability, and impedes the establishment of stable packaging cell lines essential for the economical production of viral supernatants. Here, we show that knockout of the entry receptor ASCT2 in HEK293T producer cells eliminates syncytia formation, resulting in a 2-fold increase in viral titers, reduced toxicity of viral supernatants, and enables the generation of stable packaging cell lines. In successive steps, we stably integrated BaEVRLess and α-retroviral a.Gag/Pol expression cassettes and isolated clones supporting titers up to 108 to 109 infectious particles/mL, a 10-fold increase in concentrated viral titers. The additional overexpression of CD47 and knockout of β2-microglobulin in the packaging cell line are tailored for future use in in vivo gene therapy applications by reducing non-specific uptake by macrophages and the immunogenicity of viral particles.
Collapse
Affiliation(s)
- Denise Klatt
- Gene Therapy Program, Dana Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA 02115, USA
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lucia Sereni
- Gene Therapy Program, Dana Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA 02115, USA
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Boya Liu
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Pietro Genovese
- Gene Therapy Program, Dana Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA 02115, USA
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Axel Schambach
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Els Verhoeyen
- Centre International de Recherche en Infectiologie (CIRI), Université Lyon, Université Claude Bernard Lyon 1, INSERM, U1111, CNRS, UMR 5308, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
- Université Côte d'Azur, INSERM U1065, Centre Méditerranéen de Médecine Moléculaire, 06200 Nice, France
| | - David A. Williams
- Gene Therapy Program, Dana Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA 02115, USA
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Christian Brendel
- Gene Therapy Program, Dana Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA 02115, USA
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
Lian X, Chatterjee S, Sun Y, Dilliard SA, Moore S, Xiao Y, Bian X, Yamada K, Sung YC, Levine RM, Mayberry K, John S, Liu X, Smith C, Johnson LT, Wang X, Zhang CC, Liu DR, Newby GA, Weiss MJ, Yen JS, Siegwart DJ. Bone-marrow-homing lipid nanoparticles for genome editing in diseased and malignant haematopoietic stem cells. NATURE NANOTECHNOLOGY 2024; 19:1409-1417. [PMID: 38783058 PMCID: PMC11757007 DOI: 10.1038/s41565-024-01680-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 04/15/2024] [Indexed: 05/25/2024]
Abstract
Therapeutic genome editing of haematopoietic stem cells (HSCs) would provide long-lasting treatments for multiple diseases. However, the in vivo delivery of genetic medicines to HSCs remains challenging, especially in diseased and malignant settings. Here we report on a series of bone-marrow-homing lipid nanoparticles that deliver mRNA to a broad group of at least 14 unique cell types in the bone marrow, including healthy and diseased HSCs, leukaemic stem cells, B cells, T cells, macrophages and leukaemia cells. CRISPR/Cas and base editing is achieved in a mouse model expressing human sickle cell disease phenotypes for potential foetal haemoglobin reactivation and conversion from sickle to non-sickle alleles. Bone-marrow-homing lipid nanoparticles were also able to achieve Cre-recombinase-mediated genetic deletion in bone-marrow-engrafted leukaemic stem cells and leukaemia cells. We show evidence that diverse cell types in the bone marrow niche can be edited using bone-marrow-homing lipid nanoparticles.
Collapse
Affiliation(s)
- Xizhen Lian
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sumanta Chatterjee
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yehui Sun
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sean A Dilliard
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stephen Moore
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yufen Xiao
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaoyan Bian
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kohki Yamada
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yun-Chieh Sung
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rachel M Levine
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Kalin Mayberry
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Samuel John
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaoye Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Caroline Smith
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lindsay T Johnson
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xu Wang
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Gregory A Newby
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Mitchell J Weiss
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Jonathan S Yen
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniel J Siegwart
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
7
|
Handgretinger R, Mezger M. An evaluation of exagamglogene autotemcel for the treatment of sickle cell disease and transfusion-dependent beta-thalassaemia. Expert Opin Biol Ther 2024; 24:883-888. [PMID: 39222044 DOI: 10.1080/14712598.2024.2399134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Sickle cell disease is the most common hereditary hemoglobinopathy followed by beta-thalassemia. Until recently, allogeneic stem cell transplantation was the only curative approach. Based on the Crispr-Cas9-technology enabling targeting specific genes of interest, fetal hemoglobin which is normally shut-off after birth can be switched on and sufficient levels can alleviate symptoms in sickle cell disease and avoid transfusions in beta-thalassemia. Two first-in-human clinical studies in sickle cell disease and beta-thalassemia aiming to increase the level of fetal hemoglobin by using Crispr-Cas9 to modify autologous hematopoietic stem cells in patients aged 12-35 years have proved safety and efficacy and have shown promising clinical outcomes. AREAS COVERED The paper summarizes the outcome of the results of the two recently published clinical studies and compares them with the other available curative approaches. EXPERT OPINION Based on the currently available safety and efficacy data of the two published clinical results on gene therapy with Crispr-Cas9 modified autologous stem cells (exagamglogene autotemcel), it can be anticipated that this approach will add significantly to the therapeutic options for patients with sickle cell disease and beta-thalassemia and can be considered for all patients above 12 years of age independent of a suitable allogeneic stem cell donor.
Collapse
Affiliation(s)
- Rupert Handgretinger
- Department of Hematology/Oncology, Children's University Hospital, Tübingen, Germany
- Department of Hematology, Abu Dhabi Stem Cell Center and Yas Clinic Khalifa City, Abu Dhabi, UAE
- George and Jennifer Yeo Endowed Chair in Pediatric Oncology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Markus Mezger
- Department of Hematology/Oncology, Children's University Hospital, Tübingen, Germany
| |
Collapse
|
8
|
Li C, Anderson AK, Ruminski P, Rettig M, Karpova D, Kiem HP, DiPersio JF, Lieber A. A simplified G-CSF-free procedure allows for in vivo HSC gene therapy of sickle cell disease in a mouse model. Blood Adv 2024; 8:4089-4101. [PMID: 38843380 PMCID: PMC11342186 DOI: 10.1182/bloodadvances.2024012757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 07/17/2024] Open
Abstract
ABSTRACT We have reported the direct repair of the sickle cell mutation in vivo in a disease model using vectorized prime editors after hematopoietic stem cell (HSC) mobilization with granulocyte colony-stimulating factor (G-CSF)/AMD3100. The use of G-CSF for HSC mobilization is a hurdle for the clinical translation of this approach. Here, we tested a G-CSF-free mobilization regimen using WU-106, an inhibitor of integrin α4β1, plus AMD3100 for in vivo HSC prime editing in sickle cell disease (SCD) mice. Mobilization with WU-106 + AMD3100 in SCD mice was rapid and efficient. In contrast to the G-CSF/AMD3100 approach, mobilization of activated granulocytes and elevation of the key proinflammatory cytokine interleukin-6 in the serum were minimal. The combination of WU-106 + AMD3100 mobilization and IV injection of the prime editing vector together with in vivo selection resulted in ∼23% correction of the SCD mutation in the bone marrow and peripheral blood cells of SCD mice. The treated mice demonstrated phenotypic correction, as reflected by normalized blood parameters and spleen size. Editing frequencies were significantly increased (29%) in secondary recipients, indicating the preferential mobilization/transduction of long-term repopulating HSCs. Using this approach, we found <1% undesired insertions/deletions and no detectable off-target editing at the top-scored potential sites. Our study shows that in vivo transduction to treat SCD can now be done within 2 hours involving only simple IV injections with a good safety profile. The same-day mobilization regimen makes in vivo HSC gene therapy more attractive for resource-poor settings, where SCD does the most damage.
Collapse
Affiliation(s)
- Chang Li
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Anna K. Anderson
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Peter Ruminski
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Michael Rettig
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Darja Karpova
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Hans-Peter Kiem
- Stem and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - John F. DiPersio
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - André Lieber
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
9
|
Palanki R, Riley JS, Bose SK, Luks V, Dave A, Kus N, White BM, Ricciardi AS, Swingle KL, Xue L, Sung D, Thatte AS, Safford HC, Chaluvadi VS, Carpenter M, Han EL, Maganti R, Hamilton AG, Mrksich K, Billingsley MB, Zoltick PW, Alameh MG, Weissman D, Mitchell MJ, Peranteau WH. In utero delivery of targeted ionizable lipid nanoparticles facilitates in vivo gene editing of hematopoietic stem cells. Proc Natl Acad Sci U S A 2024; 121:e2400783121. [PMID: 39078677 PMCID: PMC11317576 DOI: 10.1073/pnas.2400783121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/28/2024] [Indexed: 07/31/2024] Open
Abstract
Monogenic blood diseases are among the most common genetic disorders worldwide. These diseases result in significant pediatric and adult morbidity, and some can result in death prior to birth. Novel ex vivo hematopoietic stem cell (HSC) gene editing therapies hold tremendous promise to alter the therapeutic landscape but are not without potential limitations. In vivo gene editing therapies offer a potentially safer and more accessible treatment for these diseases but are hindered by a lack of delivery vectors targeting HSCs, which reside in the difficult-to-access bone marrow niche. Here, we propose that this biological barrier can be overcome by taking advantage of HSC residence in the easily accessible liver during fetal development. To facilitate the delivery of gene editing cargo to fetal HSCs, we developed an ionizable lipid nanoparticle (LNP) platform targeting the CD45 receptor on the surface of HSCs. After validating that targeted LNPs improved messenger ribonucleic acid (mRNA) delivery to hematopoietic lineage cells via a CD45-specific mechanism in vitro, we demonstrated that this platform mediated safe, potent, and long-term gene modulation of HSCs in vivo in multiple mouse models. We further optimized this LNP platform in vitro to encapsulate and deliver CRISPR-based nucleic acid cargos. Finally, we showed that optimized and targeted LNPs enhanced gene editing at a proof-of-concept locus in fetal HSCs after a single in utero intravenous injection. By targeting HSCs in vivo during fetal development, our Systematically optimized Targeted Editing Machinery (STEM) LNPs may provide a translatable strategy to treat monogenic blood diseases before birth.
Collapse
Affiliation(s)
- Rohan Palanki
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
- Center for Fetal Research, Division of General, Thoracic, and Fetal Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - John S. Riley
- Center for Fetal Research, Division of General, Thoracic, and Fetal Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Sourav K. Bose
- Center for Fetal Research, Division of General, Thoracic, and Fetal Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Valerie Luks
- Center for Fetal Research, Division of General, Thoracic, and Fetal Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Apeksha Dave
- Center for Fetal Research, Division of General, Thoracic, and Fetal Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Nicole Kus
- Center for Fetal Research, Division of General, Thoracic, and Fetal Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Brandon M. White
- Center for Fetal Research, Division of General, Thoracic, and Fetal Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Adele S. Ricciardi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
- Center for Fetal Research, Division of General, Thoracic, and Fetal Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Kelsey L. Swingle
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
| | - Lulu Xue
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
| | - Derek Sung
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Ajay S. Thatte
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
| | - Hannah C. Safford
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
| | - Venkata S. Chaluvadi
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Marco Carpenter
- Center for Fetal Research, Division of General, Thoracic, and Fetal Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Emily L. Han
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
| | - Rohin Maganti
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
- Center for Fetal Research, Division of General, Thoracic, and Fetal Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Alex G. Hamilton
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
| | - Kaitlin Mrksich
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
| | | | - Philip W. Zoltick
- Center for Fetal Research, Division of General, Thoracic, and Fetal Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Mohamad-Gabriel Alameh
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Drew Weissman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Michael J. Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
| | - William H. Peranteau
- Center for Fetal Research, Division of General, Thoracic, and Fetal Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA19104
| |
Collapse
|
10
|
Feng Q, Li Q, Zhou H, Wang Z, Lin C, Jiang Z, Liu T, Wang D. CRISPR technology in human diseases. MedComm (Beijing) 2024; 5:e672. [PMID: 39081515 PMCID: PMC11286548 DOI: 10.1002/mco2.672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Gene editing is a growing gene engineering technique that allows accurate editing of a broad spectrum of gene-regulated diseases to achieve curative treatment and also has the potential to be used as an adjunct to the conventional treatment of diseases. Gene editing technology, mainly based on clustered regularly interspaced palindromic repeats (CRISPR)-CRISPR-associated protein systems, which is capable of generating genetic modifications in somatic cells, provides a promising new strategy for gene therapy for a wide range of human diseases. Currently, gene editing technology shows great application prospects in a variety of human diseases, not only in therapeutic potential but also in the construction of animal models of human diseases. This paper describes the application of gene editing technology in hematological diseases, solid tumors, immune disorders, ophthalmological diseases, and metabolic diseases; focuses on the therapeutic strategies of gene editing technology in sickle cell disease; provides an overview of the role of gene editing technology in the construction of animal models of human diseases; and discusses the limitations of gene editing technology in the treatment of diseases, which is intended to provide an important reference for the applications of gene editing technology in the human disease.
Collapse
Affiliation(s)
- Qiang Feng
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
- Research and Development CentreBaicheng Medical CollegeBaichengChina
| | - Qirong Li
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Hengzong Zhou
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Zhan Wang
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Chao Lin
- School of Grain Science and TechnologyJilin Business and Technology CollegeChangchunChina
| | - Ziping Jiang
- Department of Hand and Foot SurgeryThe First Hospital of Jilin UniversityChangchunChina
| | - Tianjia Liu
- Research and Development CentreBaicheng Medical CollegeBaichengChina
| | - Dongxu Wang
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
- Department of Hand and Foot SurgeryThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
11
|
Alayoubi AM, Khawaji ZY, Mohammed MA, Mercier FE. CRISPR-Cas9 system: a novel and promising era of genotherapy for beta-hemoglobinopathies, hematological malignancy, and hemophilia. Ann Hematol 2024; 103:1805-1817. [PMID: 37736806 DOI: 10.1007/s00277-023-05457-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023]
Abstract
Gene therapy represents a significant potential to revolutionize the field of hematology with applications in correcting genetic mutations, generating cell lines and animal models, and improving the feasibility and efficacy of cancer immunotherapy. Compared to different genetic engineering tools, clustered regularly interspaced short palindromic repeats (CRISPR) CRISPR-associated protein 9 (Cas9) emerged as an effective and versatile genetic editor with the ability to precisely modify the genome. The applications of genetic engineering in various hematological disorders have shown encouraging results. Monogenic hematological disorders can conceivably be corrected with single gene modification. Through the use of CRISPR-CAS9, restoration of functional red blood cells and hemostasis factors were successfully attained in sickle cell anemia, beta-thalassemia, and hemophilia disorders. Our understanding of hemato-oncology has been advanced via CRIPSR-CAS9 technology. CRISPR-CAS9 aided to build a platform of mutated genes responsible for cell survival and proliferation in leukemia. Therapeutic application of CRISPR-CAS9 when combined with chimeric antigen receptor (CAR) T cell therapy in multiple myeloma and acute lymphoblastic leukemia was feasible with attenuation of CAR T cell therapy pitfalls. Our review outlines the latest literature on the utilization of CRISPR-Cas9 in the treatment of beta-hemoglobinopathies and hemophilia disorders. We present the strategies that were employed and the findings of preclinical and clinical trials. Also, the review will discuss gene engineering in the field of hemato-oncology as a proper tool to facilitate and overcome the drawbacks of chimeric antigen receptor T cell therapy (CAR-T).
Collapse
Affiliation(s)
- Abdulfatah M Alayoubi
- Department of Biochemistry and Molecular Medicine, College of Medicine, Taibah University, Madinah, Saudi Arabia
| | | | | | - François E Mercier
- Divisions of Experimental Medicine & Hematology, Department of Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
12
|
Liu Y, Cai M, Chen Y, Wu G, Li S, Chen Z. Validation for the function of protein C in mouse models. PeerJ 2024; 12:e17261. [PMID: 38680896 PMCID: PMC11055512 DOI: 10.7717/peerj.17261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/28/2024] [Indexed: 05/01/2024] Open
Abstract
Objectives Protein C (PC) is an anticoagulant that is encoded by the PROC gene. Validation for the function of PC was carried out in mouse models. Methods In this study, autosomal recessive PC deficiency (PCD) was selected as the target, and the specific mutation site was chromosome 2 2q13-q14, PROC c.1198G>A (p.Gly400Ser) which targets G399S (GGT to AGC) in mouse models. To investigate the role of hereditary PC in mice models, we used CRISPR/Cas9 gene editing technology to create a mouse model with a genetic PCD mutation. Results The two F0 generation positive mice produced using the CRISPR/Cas9 gene editing technique were chimeras, and the mice in F1 and F2 generations were heterozygous. There was no phenotype of spontaneous bleeding or thrombosis in the heterozygous mice, but some of them were blind. Blood routine results showed no significant difference between the heterozygous mice and wild-type mice (P > 0.05). Prothrombin time (PT), activated partial thromboplastin time (APTT), and thrombin time (TT) were prolonged in the heterozygous mice, while the level of fibrinogen content (FIB) decreased, suggesting secondary consumptive coagulation disease. The protein C activity of heterozygous mice was significantly lower than that of wild-type mice (P < 0.001), but there was no significant difference in protein C antigen levels (P > 0.05). H&E staining showed steatosis and hydrodegeneration in the liver of heterozygous mice. Necrosis and exfoliated epithelial cells could be observed in renal tubule lumen, forming cell or granular tubules. Hemosiderin deposition was found in the spleen along with splenic hemorrhage. Immunohistochemistry demonstrated significant fibrin deposition in the liver, spleen, and kidney of heterozygous mice. Conclusion In this study, heterozygotes of the mouse model with a PC mutation were obtained. The function of PC was then validated in a mouse model through genotype, phenotype, and PC function analysis.
Collapse
Affiliation(s)
- Ya Liu
- Zhanjiang Institute of Clinical Medicine, Central People’s Hospital of Zhanjiang, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Maoping Cai
- Zhanjiang Institute of Clinical Medicine, Central People’s Hospital of Zhanjiang, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yan Chen
- Zhanjiang Institute of Clinical Medicine, Central People’s Hospital of Zhanjiang, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Guocai Wu
- Department of Hematology, Central People’s Hospital of Zhanjiang, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Songyu Li
- Zhanjiang Institute of Clinical Medicine, Central People’s Hospital of Zhanjiang, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhanghui Chen
- Zhanjiang Institute of Clinical Medicine, Central People’s Hospital of Zhanjiang, Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
13
|
Yao J, Atasheva S, Wagner N, Di Paolo NC, Stewart PL, Shayakhmetov DM. Targeted, safe, and efficient gene delivery to human hematopoietic stem and progenitor cells in vivo using the engineered AVID adenovirus vector platform. Mol Ther 2024; 32:103-123. [PMID: 37919899 PMCID: PMC10787117 DOI: 10.1016/j.ymthe.2023.10.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/10/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023] Open
Abstract
Targeted delivery and cell-type-specific expression of gene-editing proteins in various cell types in vivo represent major challenges for all viral and non-viral delivery platforms developed to date. Here, we describe the development and analysis of artificial vectors for intravascular delivery (AVIDs), an engineered adenovirus-based gene delivery platform that allows for highly targeted, safe, and efficient gene delivery to human hematopoietic stem and progenitor cells (HSPCs) in vivo after intravenous vector administration. Due to a set of refined structural modifications, intravenous administration of AVIDs did not trigger cytokine storm, hepatotoxicity, or thrombocytopenia. Single intravenous administration of AVIDs to humanized mice, grafted with human CD34+ cells, led to up to 20% transduction of CD34+CD38-CD45RA- HSPC subsets in the bone marrow. Importantly, targeted in vivo transduction of CD34+CD38-CD45RA-CD90-CD49f+ subsets, highly enriched for human hematopoietic stem cells (HSCs), reached up to 19%, which represented a 1,900-fold selectivity in gene delivery to HSC-enriched over lineage-committed CD34-negative cell populations. Because the AVID platform allows for regulated, cell-type-specific expression of gene-editing technologies as well as expression of immunomodulatory proteins to ensure persistence of corrected HSCs in vivo, the HSC-targeted AVID platform may enable development of curative therapies through in vivo gene correction in human HSCs after a single intravenous administration.
Collapse
Affiliation(s)
- Jia Yao
- Lowance Center for Human Immunology, Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Svetlana Atasheva
- Lowance Center for Human Immunology, Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nicole Wagner
- Cleveland Center for Membrane and Structural Biology, Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nelson C Di Paolo
- AdCure Bio, LLC, Century Spring West, 6000 Lake Forrest Drive, Atlanta, GA 30328, USA
| | - Phoebe L Stewart
- Cleveland Center for Membrane and Structural Biology, Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Dmitry M Shayakhmetov
- Lowance Center for Human Immunology, Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA; Discovery and Developmental Therapeutics Program, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
14
|
Kamimura S, Smith M, Vogel S, Almeida LEF, Thein SL, Quezado ZMN. Mouse models of sickle cell disease: Imperfect and yet very informative. Blood Cells Mol Dis 2024; 104:102776. [PMID: 37391346 PMCID: PMC10725515 DOI: 10.1016/j.bcmd.2023.102776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/16/2023] [Indexed: 07/02/2023]
Abstract
The root cause of sickle cell disease (SCD) has been known for nearly a century, however, few therapies to treat the disease are available. Over several decades of work, with advances in gene editing technology and after several iterations of mice with differing genotype/phenotype relationships, researchers have developed humanized SCD mouse models. However, while a large body of preclinical studies has led to huge gains in basic science knowledge about SCD in mice, this knowledge has not led to the development of effective therapies to treat SCD-related complications in humans, thus leading to frustration with the paucity of translational progress in the SCD field. The use of mouse models to study human diseases is based on the genetic and phenotypic similarities between mouse and humans (face validity). The Berkeley and Townes SCD mice express only human globin chains and no mouse hemoglobin. With this genetic composition, these models present many phenotypic similarities, but also significant discrepancies that should be considered when interpreting preclinical studies results. Reviewing genetic and phenotypic similarities and discrepancies and examining studies that have translated to humans and those that have not, offer a better perspective of construct, face, and predictive validities of humanized SCD mouse models.
Collapse
Affiliation(s)
- Sayuri Kamimura
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Meghann Smith
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sebastian Vogel
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luis E F Almeida
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Swee Lay Thein
- Sickle Cell Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zenaide M N Quezado
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA; Sickle Cell Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
15
|
Leonard A, Tisdale JF. Gene therapy for sickle cell disease. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2023; 2023:542-547. [PMID: 38066927 PMCID: PMC10727030 DOI: 10.1182/hematology.2023000487] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Sickle cell disease (SCD) is potentially curable after allogeneic hematopoietic stem cell transplantation (HSCT) or autologous HSCT after ex vivo genetic modification. Autologous HSCT with gene therapy has the potential to overcome many of the limitations of allogeneic HSCT that include the lack of suitable donors, graft-versus-host disease, the need for immune suppression, and the potential for graft rejection. Significant progress in gene therapy for SCD has been made over the past several decades, now with a growing number of clinical trials investigating various gene addition and gene editing strategies. Available results from a small number of patients, some with relatively short follow-up, are promising as a potentially curative strategy, with current efforts focused on continuing to improve the efficacy, durability, and safety of gene therapies for the cure of SCD.
Collapse
Affiliation(s)
| | - John F Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
16
|
Zeng S, Lei S, Qu C, Wang Y, Teng S, Huang P. CRISPR/Cas-based gene editing in therapeutic strategies for beta-thalassemia. Hum Genet 2023; 142:1677-1703. [PMID: 37878144 DOI: 10.1007/s00439-023-02610-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023]
Abstract
Beta-thalassemia (β-thalassemia) is an autosomal recessive disorder caused by point mutations, insertions, and deletions in the HBB gene cluster, resulting in the underproduction of β-globin chains. The most severe type may demonstrate complications including massive hepatosplenomegaly, bone deformities, and severe growth retardation in children. Treatments for β-thalassemia include blood transfusion, splenectomy, and allogeneic hematopoietic stem cell transplantation (HSCT). However, long-term blood transfusions require regular iron removal therapy. For allogeneic HSCT, human lymphocyte antigen (HLA)-matched donors are rarely available, and acute graft-versus-host disease (GVHD) may occur after the transplantation. Thus, these conventional treatments are facing significant challenges. In recent years, with the advent and advancement of CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) gene editing technology, precise genome editing has achieved encouraging successes in basic and clinical studies for treating various genetic disorders, including β-thalassemia. Target gene-edited autogeneic HSCT helps patients avoid graft rejection and GVHD, making it a promising curative therapy for transfusion-dependent β-thalassemia (TDT). In this review, we introduce the development and mechanisms of CRISPR/Cas9. Recent advances on feasible strategies of CRISPR/Cas9 targeting three globin genes (HBB, HBG, and HBA) and targeting cell selections for β-thalassemia therapy are highlighted. Current CRISPR-based clinical trials in the treatment of β-thalassemia are summarized, which are focused on γ-globin reactivation and fetal hemoglobin reproduction in hematopoietic stem cells. Lastly, the applications of other promising CRISPR-based technologies, such as base editing and prime editing, in treating β-thalassemia and the limitations of the CRISPR/Cas system in therapeutic applications are discussed.
Collapse
Affiliation(s)
- Shujun Zeng
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, People's Republic of China
| | - Shuangyin Lei
- The Second Norman Bethune Clinical College of Jilin University, Changchun, Jilin, People's Republic of China
| | - Chao Qu
- The First Norman Bethune Clinical College of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yue Wang
- The Second Norman Bethune Clinical College of Jilin University, Changchun, Jilin, People's Republic of China
| | - Shuzhi Teng
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, People's Republic of China.
| | - Ping Huang
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, People's Republic of China.
| |
Collapse
|
17
|
Madigan V, Zhang F, Dahlman JE. Drug delivery systems for CRISPR-based genome editors. Nat Rev Drug Discov 2023; 22:875-894. [PMID: 37723222 DOI: 10.1038/s41573-023-00762-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 09/20/2023]
Abstract
CRISPR-based drugs can theoretically manipulate any genetic target. In practice, however, these drugs must enter the desired cell without eliciting an unwanted immune response, so a delivery system is often required. Here, we review drug delivery systems for CRISPR-based genome editors, focusing on adeno-associated viruses and lipid nanoparticles. After describing how these systems are engineered and their subsequent characterization in preclinical animal models, we highlight data from recent clinical trials. Preclinical targeting mediated by polymers, proteins, including virus-like particles, and other vehicles that may deliver CRISPR systems in the future is also discussed.
Collapse
Affiliation(s)
- Victoria Madigan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
18
|
Lieber A, Kiem HP. Prospects and challenges of in vivo hematopoietic stem cell genome editing for hemoglobinopathies. Mol Ther 2023; 31:2823-2825. [PMID: 37729905 PMCID: PMC10556215 DOI: 10.1016/j.ymthe.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023] Open
Affiliation(s)
| | - Hans-Peter Kiem
- University of Washington, Seattle, WA, USA; Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
19
|
Klatt D, Brendel C, Bauer DE. Swapping the serotype: A novel helper-dependent adenoviral vector platform for in vivo HSC gene therapy. Mol Ther Methods Clin Dev 2023; 30:14-15. [PMID: 37332392 PMCID: PMC10275946 DOI: 10.1016/j.omtm.2023.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Affiliation(s)
- Denise Klatt
- Dana Farber/Boston Children’s Cancer and Blood Disorder Center, Harvard Medical School, Boston, MA, USA
| | - Christian Brendel
- Dana Farber/Boston Children’s Cancer and Blood Disorder Center, Harvard Medical School, Boston, MA, USA
| | - Daniel E. Bauer
- Dana Farber/Boston Children’s Cancer and Blood Disorder Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
Ally M, Balandya E. Current challenges and new approaches to implementing optimal management of sickle cell disease in sub-Saharan Africa. Semin Hematol 2023; 60:192-199. [PMID: 37730472 PMCID: PMC10909340 DOI: 10.1053/j.seminhematol.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/01/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023]
Abstract
Sickle cell disease (SCD) is the most common life-threatening monogenic disorder in the world. The disease is highly prevalent in malaria endemic areas with over 75% of patients residing in Sub-Saharan Africa (SSA). It is estimated that, without proper care, up to 90% of children with SCD will not celebrate their fifth birthday. Early identification and enrolment into comprehensive care has been shown to reduce the morbidity and mortality related with SCD complications. However, due to resource constraints, the SSA is yet to implement universal newborn screening programs for SCD. Furthermore, care for patients with SCD in the region is hampered by the shortage of qualified healthcare workers, lack of guidelines for the clinical management of SCD, limited infrastructure for inpatient and outpatient care, and limited access to blood and disease modifying drugs such as Hydroxyurea which contribute to poor clinical outcomes. Curative options such as bone marrow transplant and gene therapy are expensive and not available in many SSA countries. In addressing these challenges, various initiatives are ongoing in SSA which aim to enhance awareness on SCD, improve patient identification and retention to care, harmonize the standards of care for SCD, improve the skills of healthcare workers and conduct research on pertinent areas in SCD in the SSA context. Fortifying these measures is paramount to improving the outcomes of SCD in SSA.
Collapse
Affiliation(s)
- Mwashungi Ally
- Sickle Pan African Research Consortium, Tanzania site Sickle Cell Program Department of Hematology and Blood Transfusion, Muhimbili University of Health and Allied Sciences Dar es Salaam Tanzania.
| | - Emmanuel Balandya
- Sickle Pan African Research Consortium, Tanzania site Sickle Cell Program Department of Hematology and Blood Transfusion, Muhimbili University of Health and Allied Sciences Dar es Salaam Tanzania
| |
Collapse
|
21
|
Wang C, Wang S, Kang DD, Dong Y. Biomaterials for in situ cell therapy. BMEMAT 2023; 1:e12039. [PMID: 39574564 PMCID: PMC11581612 DOI: 10.1002/bmm2.12039] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/11/2023] [Indexed: 11/24/2024]
Abstract
Cell therapy has revolutionized the treatment of various diseases, such as cancers, genetic disorders, and autoimmune diseases. Currently, most cell therapy products rely on ex vivo cell engineering, which requires sophisticated manufacturing processes and poses safety concerns. The implementation of in situ cell therapy holds the potential to overcome the current limitations of cell therapy and provides a broad range of applications and clinical feasibility in the future. A variety of biomaterials have been developed to improve the function and target delivery to specific cell types due to their excellent biocompatibility, tunable properties, and other functionalities, which provide a reliable method to achieve in vivo modulation of cell reprogramming. In this article, we summarize recent advances in biomaterials for in situ cell therapy including T cells, macrophages, dendritic cells, and stem cells reprogramming leveraging lipid nanoparticles, polymers, inorganic materials, and other biomaterials. Finally, we discuss the current challenges and future perspectives of biomaterials for in situ cell therapy.
Collapse
Affiliation(s)
- Chang Wang
- Department of Oncological Sciences, Icahn Genomics Institute, Precision Immunology Institute, Tisch Cancer Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Siyu Wang
- Department of Oncological Sciences, Icahn Genomics Institute, Precision Immunology Institute, Tisch Cancer Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Diana D. Kang
- Department of Oncological Sciences, Icahn Genomics Institute, Precision Immunology Institute, Tisch Cancer Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Yizhou Dong
- Department of Oncological Sciences, Icahn Genomics Institute, Precision Immunology Institute, Tisch Cancer Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
22
|
Piel FB, Rees DC, DeBaun MR, Nnodu O, Ranque B, Thompson AA, Ware RE, Abboud MR, Abraham A, Ambrose EE, Andemariam B, Colah R, Colombatti R, Conran N, Costa FF, Cronin RM, de Montalembert M, Elion J, Esrick E, Greenway AL, Idris IM, Issom DZ, Jain D, Jordan LC, Kaplan ZS, King AA, Lloyd-Puryear M, Oppong SA, Sharma A, Sung L, Tshilolo L, Wilkie DJ, Ohene-Frempong K. Defining global strategies to improve outcomes in sickle cell disease: a Lancet Haematology Commission. Lancet Haematol 2023; 10:e633-e686. [PMID: 37451304 PMCID: PMC11459696 DOI: 10.1016/s2352-3026(23)00096-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 07/18/2023]
Abstract
All over the world, people with sickle cell disease (an inherited condition) have premature deaths and preventable severe chronic complications, which considerably affect their quality of life, career progression, and financial status. In addition, these people are often affected by stigmatisation or structural racism, which can contribute to stress and poor mental health. Inequalities affecting people with sickle cell disease are also reflected in the distribution of the disease—mainly in sub-Saharan Africa, India, and the Caribbean—whereas interventions, clinical trials, and funding are mostly available in North America, Europe, and the Middle East. Although some of these characteristics also affect people with other genetic diseases, the fate of people with sickle cell disease seems to be particularly unfair. Simple, effective interventions to reduce the mortality and morbidity associated with sickle cell disease are available. The main obstacle preventing better outcomes in this condition, which is a neglected disease, is associated with inequalities impacting the patient populations. The aim of this Commission is to highlight the problems associated with sickle cell disease and to identify achievable goals to improve outcomes both in the short and long term. The ambition for the management of people with sickle cell disease is that curative treatments become available to every person with the condition. Although this would have seemed unrealistic a decade ago, developments in gene therapy make this potentially achievable, albeit in the distant future. Until these curative technologies are fully developed and become widely available, health-care professionals (with the support of policy makers, funders, etc) should make sure that a minimum standard of care (including screening, prophylaxis against infection, acute medical care, safe blood transfusion, and hydroxyurea) is available to all patients. In considering what needs to be achieved to reduce the global burden of sickle cell disease and improve the quality of life of patients, this Commission focuses on five key areas: the epidemiology of sickle cell disease (Section 1 ); screening and prevention (Section 2 ); established and emerging treatments for the management of the disease (Section 3 ); cellular therapies with curative potential (Section 4 ); and training and education needs (Section 5 ). As clinicians, researchers, and patients, our objective to reduce the global burden of sickle cell disease aligns with wider public health aims to reduce inequalities, improve health for all, and develop personalised treatment options. We have observed in the past few years some long-awaited momentum following the development of innovative point-of-care testing devices, new approved drugs, and emerging curative options. Reducing the burden of sickle cell disease will require substantial financial and political commitment, but it will impact the lives of millions of patients and families worldwide and the lessons learned in achieving this goal would unarguably benefit society as a whole.
Collapse
Affiliation(s)
- Frédéric B Piel
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK.
| | - David C Rees
- Department of Paediatric Haematology, King's College London, King's College Hospital, London, UK
| | - Michael R DeBaun
- Department of Pediatrics, Vanderbilt-Meharry Center of Excellence for Sickle Cell Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Obiageli Nnodu
- Department of Haematology and Blood Transfusion, College of Health Sciences and Centre of Excellence for Sickle Cell Disease Research and Training, University of Abuja, Abuja, Nigeria
| | - Brigitte Ranque
- Department of Internal Medicine, Georges Pompidou European Hospital, Assistance Publique-Hopitaux de Paris Centre, University of Paris Cité, Paris, France
| | - Alexis A Thompson
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Russell E Ware
- Division of Hematology and Global Health Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Miguel R Abboud
- Department of Pediatrics and Adolescent Medicine, and Sickle Cell Program, American University of Beirut, Beirut, Lebanon
| | - Allistair Abraham
- Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC, USA
| | - Emmanuela E Ambrose
- Department of Paediatrics and Child Health, Bugando Medical Centre, Mwanza, Tanzania
| | - Biree Andemariam
- New England Sickle Cell Institute, University of Connecticut Health, Connecticut, USA
| | - Roshan Colah
- Department of Haematogenetics, Indian Council of Medical Research National Institute of Immunohaematology, Mumbai, India
| | - Raffaella Colombatti
- Pediatric Oncology Hematology Unit, Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Nicola Conran
- Department of Clinical Medicine, School of Medical Sciences, Center of Hematology and Hemotherapy (Hemocentro), University of Campinas-UNICAMP, Campinas, Brazil
| | - Fernando F Costa
- Department of Clinical Medicine, School of Medical Sciences, Center of Hematology and Hemotherapy (Hemocentro), University of Campinas-UNICAMP, Campinas, Brazil
| | - Robert M Cronin
- Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Mariane de Montalembert
- Department of Pediatrics, Necker-Enfants Malades Hospital, Assistance Publique-Hopitaux de Paris Centre, Paris, France
| | - Jacques Elion
- Paris Cité University and University of the Antilles, Inserm, BIGR, Paris, France
| | - Erica Esrick
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Anthea L Greenway
- Department Clinical Haematology, Royal Children's Hospital, Parkville and Department Haematology, Monash Health, Clayton, VIC, Australia
| | - Ibrahim M Idris
- Department of Hematology, Aminu Kano Teaching Hospital/Bayero University Kano, Kano, Nigeria
| | - David-Zacharie Issom
- Department of Business Information Systems, School of Management, HES-SO University of Applied Sciences and Arts of Western Switzerland, Geneva, Switzerland
| | - Dipty Jain
- Department of Paediatrics, Government Medical College, Nagpur, India
| | - Lori C Jordan
- Department of Pediatrics, Division of Pediatric Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zane S Kaplan
- Department of Clinical Haematology, Monash Health and Monash University, Melbourne, VIC, Australia
| | - Allison A King
- Departments of Pediatrics and Internal Medicine, Divisions of Pediatric Hematology and Oncology and Hematology, Washington University School of Medicine, St Louis, MO, USA
| | - Michele Lloyd-Puryear
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Samuel A Oppong
- Department of Obstetrics and Gynecology, University of Ghana Medical School, Accra, Ghana
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Lillian Sung
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Leon Tshilolo
- Institute of Biomedical Research/CEFA Monkole Hospital Centre and Official University of Mbuji-Mayi, Mbuji-Mayi, Democratic Republic of the Congo
| | - Diana J Wilkie
- Department of Biobehavioral Nursing Science, College of Nursing, University of Florida, Gainesville, FL, USA
| | - Kwaku Ohene-Frempong
- Division of Hematology, Children's Hospital of Philadelphia, Pennsylvania, USA; Sickle Cell Foundation of Ghana, Kumasi, Ghana
| |
Collapse
|
23
|
Lundstrom K. Viral vectors engineered for gene therapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 379:1-41. [PMID: 37541721 DOI: 10.1016/bs.ircmb.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Gene therapy has seen major progress in recent years. Viral vectors have made a significant contribution through efficient engineering for improved delivery and safety. A large variety of indications such as cancer, cardiovascular, metabolic, hematological, neurological, muscular, ophthalmological, infectious diseases, and immunodeficiency have been targeted. Viral vectors based on adenoviruses, adeno-associated viruses, herpes simplex viruses, retroviruses including lentiviruses, alphaviruses, flaviviruses, measles viruses, rhabdoviruses, Newcastle disease virus, poxviruses, picornaviruses, reoviruses, and polyomaviruses have been used. Proof-of-concept has been demonstrated for different indications in animal models. Therapeutic efficacy has also been achieved in clinical trials. Several viral vector-based drugs have been approved for the treatment of cancer, and hematological, metabolic, and neurological diseases. Moreover, viral vector-based vaccines have been approved against COVID-19 and Ebola virus disease.
Collapse
|
24
|
Wagner N, Shayakhmetov DM, Stewart PL. Structural Model for Factor X Inhibition of IgM and Complement-Mediated Neutralization of Adenovirus. Viruses 2023; 15:1343. [PMID: 37376642 PMCID: PMC10305487 DOI: 10.3390/v15061343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Adenovirus has strong therapeutic potential as an oncolytic virus and gene therapy vector. However, injecting human species C serotype 5 adenovirus, HAdv-C5, into the bloodstream leads to numerous interactions with plasma proteins that affect viral tropism and biodistribution, and can lead to potent immune responses and viral neutralization. The HAdv/factor X (FX) interaction facilitates highly efficient liver transduction and protects virus particles from complement-mediated neutralization after intravenous delivery. Ablating the FX interaction site on the HAdv-C5 capsid leaves the virus susceptible to neutralization by natural IgM followed by activation of the complement cascade and covalent binding of complement components C4b and C3b to the viral capsid. Here we present structural models for IgM and complement components C1, C4b, and C3b in complex with HAdv-C5. Molecular dynamics simulations indicate that when C3b binds near the vertex, multiple stabilizing interactions can be formed between C3b, penton base, and fiber. These interactions may stabilize the vertex region of the capsid and prevent release of the virally encoded membrane lytic factor, protein VI, which is packaged inside of the viral capsid, thus effectively neutralizing the virus. In a situation where FX and IgM are competing for binding to the capsid, IgM may not be able to form a bent conformation in which most of its Fab arms interact with the capsid. Our structural modeling of the competitive interaction of FX and IgM with HAdv-C5 allows us to propose a mechanistic model for FX inhibition of IgM-mediated virus neutralization. According to this model, although IgM may bind to the capsid, in the presence of FX it will likely retain a planar conformation and thus be unable to promote activation of the complement cascade at the virus surface.
Collapse
Affiliation(s)
- Nicole Wagner
- Cleveland Center for Membrane and Structural Biology, Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Dmitry M. Shayakhmetov
- Lowance Center for Human Immunology, Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Discovery and Developmental Therapeutics Program, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Phoebe L. Stewart
- Cleveland Center for Membrane and Structural Biology, Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA;
| |
Collapse
|
25
|
Ma L, Yang S, Peng Q, Zhang J, Zhang J. CRISPR/Cas9-based gene-editing technology for sickle cell disease. Gene 2023; 874:147480. [PMID: 37182559 DOI: 10.1016/j.gene.2023.147480] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
Sickle cell disease (SCD) is the most common monogenic hematologic disorder and is essentially congenital hemolytic anemia caused by an inherited point mutation in the β-globin on chromosome 11. Although the genetic basis of SCD was revealed as early as 1957, treatment options for SCD have been very limited to date. Hematopoietic stem cell transplantation (HSCT) was thought to hold promise as a cure for SCD, but the available donors were still only 15% useful. Gene therapy has advanced rapidly into the 21st century with the promise of a cure for SCD, and gene editing strategies based on the cluster-based regularly interspaced short palindromic repeat sequence (CRISPR)/Cas9 system have revolutionized the field of gene therapy by precisely targeting genes. In this paper, we review the pathogenesis and therapeutic approaches of SCD, briefly summarize the delivery strategies of CRISPR/Cas9, and finally discuss in depth the current status, application barriers, and solution directions of CRISPR/Cas9 in SCD. Through the review in this paper, we hope to provide some references for gene therapy in SCD.
Collapse
Affiliation(s)
- Liangliang Ma
- Department of Hematology, Meishan City People's Hospital, Meishan City, Sichuan Province 620000, China
| | - Shanglun Yang
- Department of Hematology, Meishan City People's Hospital, Meishan City, Sichuan Province 620000, China
| | - Qianya Peng
- Department of Hematology, Meishan City People's Hospital, Meishan City, Sichuan Province 620000, China
| | - Jingping Zhang
- Department of Hematology, Meishan City People's Hospital, Meishan City, Sichuan Province 620000, China
| | - Jing Zhang
- Department of Hematology, Meishan City People's Hospital, Meishan City, Sichuan Province 620000, China.
| |
Collapse
|
26
|
Ferrari S, Valeri E, Conti A, Scala S, Aprile A, Di Micco R, Kajaste-Rudnitski A, Montini E, Ferrari G, Aiuti A, Naldini L. Genetic engineering meets hematopoietic stem cell biology for next-generation gene therapy. Cell Stem Cell 2023; 30:549-570. [PMID: 37146580 DOI: 10.1016/j.stem.2023.04.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 05/07/2023]
Abstract
The growing clinical success of hematopoietic stem/progenitor cell (HSPC) gene therapy (GT) relies on the development of viral vectors as portable "Trojan horses" for safe and efficient gene transfer. The recent advent of novel technologies enabling site-specific gene editing is broadening the scope and means of GT, paving the way to more precise genetic engineering and expanding the spectrum of diseases amenable to HSPC-GT. Here, we provide an overview of state-of-the-art and prospective developments of the HSPC-GT field, highlighting how advances in biological characterization and manipulation of HSPCs will enable the design of the next generation of these transforming therapeutics.
Collapse
Affiliation(s)
- Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Erika Valeri
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Anastasia Conti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Serena Scala
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Annamaria Aprile
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Raffaella Di Micco
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Anna Kajaste-Rudnitski
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Giuliana Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy.
| |
Collapse
|
27
|
Li C, Georgakopoulou A, Newby GA, Chen PJ, Everette KA, Paschoudi K, Vlachaki E, Gil S, Anderson AK, Koob T, Huang L, Wang H, Kiem HP, Liu DR, Yannaki E, Lieber A. In vivo HSC prime editing rescues sickle cell disease in a mouse model. Blood 2023; 141:2085-2099. [PMID: 36800642 PMCID: PMC10163316 DOI: 10.1182/blood.2022018252] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 02/19/2023] Open
Abstract
Sickle cell disease (SCD) is a monogenic disease caused by a nucleotide mutation in the β-globin gene. Current gene therapy studies are mainly focused on lentiviral vector-mediated gene addition or CRISPR/Cas9-mediated fetal globin reactivation, leaving the root cause unfixed. We developed a vectorized prime editing system that can directly repair the SCD mutation in hematopoietic stem cells (HSCs) in vivo in a SCD mouse model (CD46/Townes mice). Our approach involved a single intravenous injection of a nonintegrating, prime editor-expressing viral vector into mobilized CD46/Townes mice and low-dose drug selection in vivo. This procedure resulted in the correction of ∼40% of βS alleles in HSCs. On average, 43% of sickle hemoglobin was replaced by adult hemoglobin, thereby greatly mitigating the SCD phenotypes. Transplantation in secondary recipients demonstrated that long-term repopulating HSCs were edited. Highly efficient target site editing was achieved with minimal generation of insertions and deletions and no detectable off-target editing. Because of its simplicity and portability, our in vivo prime editing approach has the potential for application in resource-poor countries where SCD is prevalent.
Collapse
Affiliation(s)
- Chang Li
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Aphrodite Georgakopoulou
- Gene and Cell Therapy Center, Hematology Department, George Papanicolaou Hospital, Thessaloniki, Greece
| | - Gregory A. Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA
| | - Peter J. Chen
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA
| | - Kelcee A. Everette
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA
| | - Kiriaki Paschoudi
- Gene and Cell Therapy Center, Hematology Department, George Papanicolaou Hospital, Thessaloniki, Greece
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Efthymia Vlachaki
- Hematological Laboratory, Second Department of Internal Medicine, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece
| | - Sucheol Gil
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Anna K. Anderson
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Theodore Koob
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Lishan Huang
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Hongjie Wang
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Hans-Peter Kiem
- Stem and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - David R. Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA
| | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematology Department, George Papanicolaou Hospital, Thessaloniki, Greece
| | - André Lieber
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
- Department of Pathology, University of Washington, Seattle, WA
| |
Collapse
|
28
|
Shi D, Toyonaga S, Anderson DG. In Vivo RNA Delivery to Hematopoietic Stem and Progenitor Cells via Targeted Lipid Nanoparticles. NANO LETTERS 2023; 23:2938-2944. [PMID: 36988645 PMCID: PMC10103292 DOI: 10.1021/acs.nanolett.3c00304] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/23/2023] [Indexed: 05/22/2023]
Abstract
Ex vivo autologous hematopoietic stem cell (HSC) gene therapy has provided new therapies for the treatment of hematological disorders. However, these therapies have several limitations owing to the manufacturing complexities and toxicity resulting from required conditioning regimens. Here, we developed a c-kit (CD117) antibody-targeted lipid nanoparticle (LNP) that, following a single intravenous injection, can deliver RNA (both siRNA and mRNA) to HSCs in vivo in rodents. This targeted delivery system does not require stem cell harvest, culture, or mobilization of HSCs to facilitate delivery. We also show that delivery of Cre recombinase mRNA at a dose of 1 mg kg-1 can facilitate gene editing to almost all (∼90%) hematopoietic stem and progenitor cells (HSPCs) in vivo, and edited cells retain their stemness and functionality to generate high levels of edited mature immune cells.
Collapse
Affiliation(s)
- Dennis Shi
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- David
H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sho Toyonaga
- David
H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- FUJIFILM
Pharmaceuticals U.S.A., Inc., Cambridge, Massachusetts 02142, United States
| | - Daniel G. Anderson
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- David
H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Harvard-Massachusetts
Institute of Technology, Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Institute
for Medical Engineering and Science, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
29
|
Li C, Anderson AK, Wang H, Gil S, Kim J, Huang L, Germond A, Baldessari A, Nelson V, Bar KJ, Peterson CW, Bui J, Kiem HP, Lieber A. Stable HIV decoy receptor expression after in vivo HSC transduction in mice and NHPs: Safety and efficacy in protection from SHIV. Mol Ther 2023; 31:1059-1073. [PMID: 36760126 PMCID: PMC10124088 DOI: 10.1016/j.ymthe.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/15/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
We aim to develop an in vivo hematopoietic stem cell (HSC) gene therapy approach for persistent control/protection of HIV-1 infection based on the stable expression of a secreted decoy protein for HIV receptors CD4 and CCR5 (eCD4-Ig) from blood cells. HSCs in mice and a rhesus macaque were mobilized from the bone marrow and transduced by an intravenous injection of HSC-tropic, integrating HDAd5/35++ vectors expressing rhesus eCD4-Ig. In vivo HSC transduction/selection resulted in stable serum eCD4-Ig levels of ∼100 μg/mL (mice) and >20 μg/mL (rhesus) with half maximal inhibitory concentrations (IC50s) of 1 μg/mL measured by an HIV neutralization assay. After simian-human-immunodeficiency virus D (SHIV.D) challenge of rhesus macaques injected with HDAd-eCD4-Ig or a control HDAd5/35++ vector, peak plasma viral load levels were ∼50-fold lower in the eCD4-Ig-expressing animal. Furthermore, the viral load was lower in tissues with the highest eCD4-Ig expression, specifically the spleen and lymph nodes. SHIV.D challenge triggered a selective expansion of transduced CD4+CCR5+ cells, thereby increasing serum eCD4-Ig levels. The latter, however, broke immune tolerance and triggered anti-eCD4-Ig antibody responses, which could have contributed to the inability to eliminate SHIV.D. Our data will guide us in the improvement of the in vivo approach. Clearly, our conclusions need to be validated in larger animal cohorts.
Collapse
Affiliation(s)
- Chang Li
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA.
| | - Anna Kate Anderson
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | - Hongjie Wang
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | - Sucheol Gil
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | - Jiho Kim
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | - Lishan Huang
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | - Audrey Germond
- Washington National Primate Research Center, Division of Regenerative Medicine and Gene Therapy, Seattle, WA 98195, USA
| | - Audrey Baldessari
- Washington National Primate Research Center, Division of Regenerative Medicine and Gene Therapy, Seattle, WA 98195, USA
| | - Veronica Nelson
- Stem and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Katharine J Bar
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher W Peterson
- Stem and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Washington National Primate Research Center, Division of Regenerative Medicine and Gene Therapy, Seattle, WA 98195, USA
| | - John Bui
- Stem and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Medicine, Division of Allergy and Infection Diseases, University of Washington, Seattle, WA 98195, USA
| | - Hans-Peter Kiem
- Stem and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Washington National Primate Research Center, Division of Regenerative Medicine and Gene Therapy, Seattle, WA 98195, USA; Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, WA 98195, USA
| | - André Lieber
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA; Washington National Primate Research Center, Division of Regenerative Medicine and Gene Therapy, Seattle, WA 98195, USA.
| |
Collapse
|
30
|
Lahr WS, Sipe CJ, Skeate JG, Webber BR, Moriarity BS. CRISPR-Cas9 base editors and their current role in human therapeutics. Cytotherapy 2023; 25:270-276. [PMID: 36635153 PMCID: PMC10887149 DOI: 10.1016/j.jcyt.2022.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 11/16/2022] [Accepted: 11/30/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Consistent progress has been made to create more efficient and useful CRISPR-Cas9-based molecular toolsfor genomic modification. METHODS This review focuses on recent articles that have employed base editors (BEs) for both clinical and research purposes. RESULTS CRISPR-Cas9 BEs are a useful system because of their highefficiency and broad applicability to gene correction and disruption. In addition, base editing has beensuggested as a safer approach than other CRISPR-Cas9-based systems, as it limits double-strand breaksduring multiplex gene knockout and does not require a toxic DNA donor molecule for genetic correction. CONCLUSION As such, numerous industry and academic groups are currently developing base editing strategies withclinical applications in cancer immunotherapy and gene therapy, which this review will discuss, with a focuson current and future applications of in vivo BE delivery.
Collapse
Affiliation(s)
- Walker S. Lahr
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Christopher J. Sipe
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Joseph G. Skeate
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Beau R. Webber
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Branden S. Moriarity
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
31
|
Charlesworth CT, Hsu I, Wilkinson AC, Nakauchi H. Immunological barriers to haematopoietic stem cell gene therapy. Nat Rev Immunol 2022; 22:719-733. [PMID: 35301483 PMCID: PMC8929255 DOI: 10.1038/s41577-022-00698-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2022] [Indexed: 12/12/2022]
Abstract
Cell and gene therapies using haematopoietic stem cells (HSCs) epitomize the transformative potential of regenerative medicine. Recent clinical successes for gene therapies involving autologous HSC transplantation (HSCT) demonstrate the potential of genetic engineering in this stem cell type for curing disease. With recent advances in CRISPR gene-editing technologies, methodologies for the ex vivo expansion of HSCs and non-genotoxic conditioning protocols, the range of clinical indications for HSC-based gene therapies is expected to significantly expand. However, substantial immunological challenges need to be overcome. These include pre-existing immunity to gene-therapy reagents, immune responses to neoantigens introduced into HSCs by genetic engineering, and unique challenges associated with next-generation and off-the-shelf HSC products. By synthesizing these factors in this Review, we hope to encourage more research to address the immunological issues associated with current and next-generation HSC-based gene therapies to help realize the full potential of this field.
Collapse
Affiliation(s)
- Carsten T Charlesworth
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ian Hsu
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Adam C Wilkinson
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
32
|
Li C, Georgakopoulou A, Newby GA, Everette KA, Nizamis E, Paschoudi K, Vlachaki E, Gil S, Anderson AK, Koob T, Huang L, Wang H, Kiem HP, Liu DR, Yannaki E, Lieber A. In vivo base editing by a single i.v. vector injection for treatment of hemoglobinopathies. JCI Insight 2022; 7:e162939. [PMID: 36006707 PMCID: PMC9675455 DOI: 10.1172/jci.insight.162939] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
Individuals with β-thalassemia or sickle cell disease and hereditary persistence of fetal hemoglobin (HPFH) possessing 30% fetal hemoglobin (HbF) appear to be symptom free. Here, we used a nonintegrating HDAd5/35++ vector expressing a highly efficient and accurate version of an adenine base editor (ABE8e) to install, in vivo, a -113 A>G HPFH mutation in the γ-globin promoters in healthy CD46/β-YAC mice carrying the human β-globin locus. Our in vivo hematopoietic stem cell (HSC) editing/selection strategy involves only s.c. and i.v. injections and does not require myeloablation and HSC transplantation. In vivo HSC base editing in CD46/β-YAC mice resulted in > 60% -113 A>G conversion, with 30% γ-globin of β-globin expressed in 70% of erythrocytes. Importantly, no off-target editing at sites predicted by CIRCLE-Seq or in silico was detected. Furthermore, no critical alterations in the transcriptome of in vivo edited mice were found by RNA-Seq. In vitro, in HSCs from β-thalassemia and patients with sickle cell disease, transduction with the base editor vector mediated efficient -113 A>G conversion and reactivation of γ-globin expression with subsequent phenotypic correction of erythroid cells. Because our in vivo base editing strategy is safe and technically simple, it has the potential for clinical application in developing countries where hemoglobinopathies are prevalent.
Collapse
Affiliation(s)
- Chang Li
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, Washington, USA
| | - Aphrodite Georgakopoulou
- Gene and Cell Therapy Center, Hematology Department, George Papanicolaou Hospital, Thessaloniki, Greece
| | - Gregory A. Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Chemistry and Chemical Biology and
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Kelcee A. Everette
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Chemistry and Chemical Biology and
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Evangelos Nizamis
- Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
| | - Kiriaki Paschoudi
- Gene and Cell Therapy Center, Hematology Department, George Papanicolaou Hospital, Thessaloniki, Greece
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Efthymia Vlachaki
- Hematological Laboratory, Second Department of Internal Medicine, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece
| | - Sucheol Gil
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, Washington, USA
| | - Anna K. Anderson
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, Washington, USA
| | - Theodore Koob
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, Washington, USA
| | - Lishan Huang
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, Washington, USA
| | - Hongjie Wang
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, Washington, USA
| | - Hans-Peter Kiem
- Stem and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - David R. Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Chemistry and Chemical Biology and
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematology Department, George Papanicolaou Hospital, Thessaloniki, Greece
| | - André Lieber
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, Washington, USA
- Department of Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
33
|
Araújo NM, Rubio IGS, Toneto NPA, Morale MG, Tamura RE. The use of adenoviral vectors in gene therapy and vaccine approaches. Genet Mol Biol 2022; 45:e20220079. [PMID: 36206378 PMCID: PMC9543183 DOI: 10.1590/1678-4685-gmb-2022-0079] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022] Open
Abstract
Adenovirus was first identified in the 1950s and since then this pathogenic group
of viruses has been explored and transformed into a genetic transfer vehicle.
Modification or deletion of few genes are necessary to transform it into a
conditionally or non-replicative vector, creating a versatile tool capable of
transducing different tissues and inducing high levels of transgene expression.
In the early years of vector development, the application in monogenic diseases
faced several hurdles, including short-term gene expression and even a fatality.
On the other hand, an adenoviral delivery strategy for treatment of cancer was
the first approved gene therapy product. There is an increasing interest in
expressing transgenes with therapeutic potential targeting the cancer hallmarks,
inhibiting metastasis, inducing cancer cell death or modulating the immune
system to attack the tumor cells. Replicative adenovirus as vaccines may be even
older and date to a few years of its discovery, application of non-replicative
adenovirus for vaccination against different microorganisms has been
investigated, but only recently, it demonstrated its full potential being one of
the leading vaccination tools for COVID-19. This is not a new vector nor a new
technology, but the result of decades of careful and intense work in this
field.
Collapse
Affiliation(s)
- Natália Meneses Araújo
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil.
| | - Ileana Gabriela Sanchez Rubio
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil. ,Universidade Federal de São Paulo, Laboratório de Ciências
Moleculares da Tireóide, Diadema, SP, Brazil.
| | | | - Mirian Galliote Morale
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil. ,Universidade Federal de São Paulo, Laboratório de Ciências
Moleculares da Tireóide, Diadema, SP, Brazil.
| | - Rodrigo Esaki Tamura
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil.
| |
Collapse
|
34
|
Wang H, Germond A, Li C, Gil S, Kim J, Kiem HP, Lieber A. In vivo HSC transduction in rhesus macaques with an HDAd5/3+ vector targeting desmoglein 2 and transiently overexpressing cxcr4. Blood Adv 2022; 6:4360-4372. [PMID: 35679480 PMCID: PMC9636333 DOI: 10.1182/bloodadvances.2022007975] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/01/2022] [Indexed: 11/20/2022] Open
Abstract
We developed a new in vivo hematopoietic stem cell (HSC) gene therapy approach that involves only IV injections and does not require myeloablation/conditioning and HSC transplantation. In this approach, HSCs are mobilized from the bone marrow into the peripheral bloodstream and transduced with IV injected helper-dependent adenovirus (HDAd) vectors. A fraction of transduced HSCs returns to the bone marrow and persists there long term. Here, we report desmoglein 2 (DSG2) as a new receptor that can be used for in vivo HSC transduction. HDAd5/3+ vectors were developed that use DSG2 as a high-affinity attachment receptor, and in vivo HSC transduction and safety after IV injection of an HDAd5/3+ vector expressing green fluorescent protein (GFP) in granulocyte colony-stimulating factor/AMD3100 (plerixafor)-mobilized rhesus macaques were studied. Unlike previously used CD46-targeting HDAd5/35++ vectors, HDAd5/3+ virions were not sequestered by rhesus erythrocytes and therefore mediated ∼10-fold higher GFP marking rates in primitive HSCs (CD34+/CD45RA-/CD90+ cells) in the bone marrow at day 7 after vector injection. To further increase the return of in vivo transduced, mobilized HSCs to the bone marrow, we transiently expressed cxcr4 in mobilized HSCs from the HDAd5/3+ vector. In vivo transduction with an HDAd5/3+GFP/cxcr4 vector at a low dose of 0.4 × 1012 viral particles/kg resulted in up to 7% of GFP-positive CD34+/CD45RA-/CD90+ cells in the bone marrow. This transduction rate is a solid basis for in vivo base or prime editing in combination with natural or drug-induced expansion of edited HSCs. Furthermore, our study provides new insights into HSC biology and trafficking after mobilization in nonhuman primates.
Collapse
Affiliation(s)
- Hongjie Wang
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Audrey Germond
- Washington National Primate Research Center, Seattle, WA
| | - Chang Li
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Sucheol Gil
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Jiho Kim
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
- PAI Life Sciences, Seattle, WA
| | - Hans-Peter Kiem
- Stem and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA
- Division of Medical Oncology, Department of Medicine
| | - André Lieber
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| |
Collapse
|
35
|
Waldron E, Tanhehco YC. Under the Hood: The Molecular Biology Driving Gene Therapy for the Treatment of Sickle Cell Disease. Transfus Apher Sci 2022; 61:103566. [DOI: 10.1016/j.transci.2022.103566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Sipe CJ, Kluesner MG, Bingea SP, Lahr WS, Andrew AA, Wang M, DeFeo AP, Hinkel TL, Laoharawee K, Wagner JE, MacMillan ML, Vercellotti GM, Tolar J, Osborn MJ, McIvor RS, Webber BR, Moriarity BS. Correction of Fanconi Anemia Mutations Using Digital Genome Engineering. Int J Mol Sci 2022; 23:8416. [PMID: 35955545 PMCID: PMC9369391 DOI: 10.3390/ijms23158416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022] Open
Abstract
Fanconi anemia (FA) is a rare genetic disease in which genes essential for DNA repair are mutated. Both the interstrand crosslink (ICL) and double-strand break (DSB) repair pathways are disrupted in FA, leading to patient bone marrow failure (BMF) and cancer predisposition. The only curative therapy for the hematological manifestations of FA is an allogeneic hematopoietic cell transplant (HCT); however, many (>70%) patients lack a suitable human leukocyte antigen (HLA)-matched donor, often resulting in increased rates of graft-versus-host disease (GvHD) and, potentially, the exacerbation of cancer risk. Successful engraftment of gene-corrected autologous hematopoietic stem cells (HSC) circumvents the need for an allogeneic HCT and has been achieved in other genetic diseases using targeted nucleases to induce site specific DSBs and the correction of mutated genes through homology-directed repair (HDR). However, this process is extremely inefficient in FA cells, as they are inherently deficient in DNA repair. Here, we demonstrate the correction of FANCA mutations in primary patient cells using ‘digital’ genome editing with the cytosine and adenine base editors (BEs). These Cas9-based tools allow for C:G > T:A or A:T > C:G base transitions without the induction of a toxic DSB or the need for a DNA donor molecule. These genetic corrections or conservative codon substitution strategies lead to phenotypic rescue as illustrated by a resistance to the alkylating crosslinking agent Mitomycin C (MMC). Further, FANCA protein expression was restored, and an intact FA pathway was demonstrated by downstream FANCD2 monoubiquitination induction. This BE digital correction strategy will enable the use of gene-corrected FA patient hematopoietic stem and progenitor cells (HSPCs) for autologous HCT, obviating the risks associated with allogeneic HCT and DSB induction during autologous HSC gene therapy.
Collapse
Affiliation(s)
- Christopher J. Sipe
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.S.); (M.G.K.); (S.P.B.); (W.S.L.); (A.A.A.); (M.W.); (A.P.D.); (T.L.H.); (K.L.); (J.E.W.); (M.L.M.); (J.T.); (M.J.O.); (R.S.M.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mitchell G. Kluesner
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.S.); (M.G.K.); (S.P.B.); (W.S.L.); (A.A.A.); (M.W.); (A.P.D.); (T.L.H.); (K.L.); (J.E.W.); (M.L.M.); (J.T.); (M.J.O.); (R.S.M.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Samuel P. Bingea
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.S.); (M.G.K.); (S.P.B.); (W.S.L.); (A.A.A.); (M.W.); (A.P.D.); (T.L.H.); (K.L.); (J.E.W.); (M.L.M.); (J.T.); (M.J.O.); (R.S.M.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Walker S. Lahr
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.S.); (M.G.K.); (S.P.B.); (W.S.L.); (A.A.A.); (M.W.); (A.P.D.); (T.L.H.); (K.L.); (J.E.W.); (M.L.M.); (J.T.); (M.J.O.); (R.S.M.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Aneesha A. Andrew
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.S.); (M.G.K.); (S.P.B.); (W.S.L.); (A.A.A.); (M.W.); (A.P.D.); (T.L.H.); (K.L.); (J.E.W.); (M.L.M.); (J.T.); (M.J.O.); (R.S.M.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Minjing Wang
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.S.); (M.G.K.); (S.P.B.); (W.S.L.); (A.A.A.); (M.W.); (A.P.D.); (T.L.H.); (K.L.); (J.E.W.); (M.L.M.); (J.T.); (M.J.O.); (R.S.M.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Anthony P. DeFeo
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.S.); (M.G.K.); (S.P.B.); (W.S.L.); (A.A.A.); (M.W.); (A.P.D.); (T.L.H.); (K.L.); (J.E.W.); (M.L.M.); (J.T.); (M.J.O.); (R.S.M.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Timothy L. Hinkel
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.S.); (M.G.K.); (S.P.B.); (W.S.L.); (A.A.A.); (M.W.); (A.P.D.); (T.L.H.); (K.L.); (J.E.W.); (M.L.M.); (J.T.); (M.J.O.); (R.S.M.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kanut Laoharawee
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.S.); (M.G.K.); (S.P.B.); (W.S.L.); (A.A.A.); (M.W.); (A.P.D.); (T.L.H.); (K.L.); (J.E.W.); (M.L.M.); (J.T.); (M.J.O.); (R.S.M.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - John E. Wagner
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.S.); (M.G.K.); (S.P.B.); (W.S.L.); (A.A.A.); (M.W.); (A.P.D.); (T.L.H.); (K.L.); (J.E.W.); (M.L.M.); (J.T.); (M.J.O.); (R.S.M.)
- Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | - Margaret L. MacMillan
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.S.); (M.G.K.); (S.P.B.); (W.S.L.); (A.A.A.); (M.W.); (A.P.D.); (T.L.H.); (K.L.); (J.E.W.); (M.L.M.); (J.T.); (M.J.O.); (R.S.M.)
- Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gregory M. Vercellotti
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Jakub Tolar
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.S.); (M.G.K.); (S.P.B.); (W.S.L.); (A.A.A.); (M.W.); (A.P.D.); (T.L.H.); (K.L.); (J.E.W.); (M.L.M.); (J.T.); (M.J.O.); (R.S.M.)
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mark J. Osborn
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.S.); (M.G.K.); (S.P.B.); (W.S.L.); (A.A.A.); (M.W.); (A.P.D.); (T.L.H.); (K.L.); (J.E.W.); (M.L.M.); (J.T.); (M.J.O.); (R.S.M.)
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA;
| | - R. Scott McIvor
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.S.); (M.G.K.); (S.P.B.); (W.S.L.); (A.A.A.); (M.W.); (A.P.D.); (T.L.H.); (K.L.); (J.E.W.); (M.L.M.); (J.T.); (M.J.O.); (R.S.M.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Beau R. Webber
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.S.); (M.G.K.); (S.P.B.); (W.S.L.); (A.A.A.); (M.W.); (A.P.D.); (T.L.H.); (K.L.); (J.E.W.); (M.L.M.); (J.T.); (M.J.O.); (R.S.M.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Branden S. Moriarity
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.S.); (M.G.K.); (S.P.B.); (W.S.L.); (A.A.A.); (M.W.); (A.P.D.); (T.L.H.); (K.L.); (J.E.W.); (M.L.M.); (J.T.); (M.J.O.); (R.S.M.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
37
|
Leonard A, Tisdale JF, Bonner M. Gene Therapy for Hemoglobinopathies. Hematol Oncol Clin North Am 2022; 36:769-795. [DOI: 10.1016/j.hoc.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
38
|
Safe and efficient in vivo hematopoietic stem cell transduction in nonhuman primates using HDAd5/35++ vectors. MOLECULAR THERAPY - METHODS & CLINICAL DEVELOPMENT 2022; 24:127-141. [PMID: 35036470 PMCID: PMC8741415 DOI: 10.1016/j.omtm.2021.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/04/2021] [Indexed: 12/11/2022]
Abstract
We tested a new in vivo hematopoietic stem cell (HSC) transduction/selection approach in rhesus macaques using HSC-tropic, integrating, helper-dependent adenovirus vectors (HDAd5/35++) designed for the expression of human γ-globin in red blood cells (RBCs) to treat hemoglobinopathies. We show that HDAd5/35++ vectors preferentially transduce HSCs in vivo after intravenous injection into granulocyte colony-stimulating factor (G-CSF)/AMD3100-mobilized animals and that transduced cells return to the bone marrow and spleen. The approach was well tolerated, and the activation of proinflammatory cytokines that are usually associated with intravenous adenovirus vector injection was successfully blunted by pre-treatment with dexamethasone in combination with interleukin (IL)-1 and IL-6 receptor blockers. Using our MGMTP140K-based in vivo selection approach, γ-globin+ RBCs increased in all animals with levels up to 90%. After selection, the percentage of γ-globin+ RBCs declined, most likely due to an immune response against human transgene products. Our biodistribution data indicate that γ-globin+ RBCs in the periphery were mostly derived from mobilized HSCs that homed to the spleen. Integration site analysis revealed a polyclonal pattern and no genotoxicity related to transgene integrations. This is the first proof-of-concept study in nonhuman primates to show that in vivo HSC gene therapy could be feasible in humans without the need for high-dose chemotherapy conditioning and HSC transplantation.
Collapse
|
39
|
El-Kharrag R, Berckmueller KE, Madhu R, Cui M, Campoy G, Mack HM, Wolf CB, Perez AM, Humbert O, Kiem HP, Radtke S. Efficient polymer nanoparticle-mediated delivery of gene editing reagents into human hematopoietic stem and progenitor cells. Mol Ther 2022; 30:2186-2198. [DOI: 10.1016/j.ymthe.2022.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/12/2022] [Accepted: 02/25/2022] [Indexed: 10/19/2022] Open
|
40
|
Demirci S, Leonard A, Essawi K, Tisdale JF. CRISPR-Cas9 to induce fetal hemoglobin for the treatment of sickle cell disease. Mol Ther Methods Clin Dev 2021; 23:276-285. [PMID: 34729375 PMCID: PMC8526756 DOI: 10.1016/j.omtm.2021.09.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Genome editing is potentially a curative technique available to all individuals with β-hemoglobinopathies, including sickle cell disease (SCD). Fetal hemoglobin (HbF) inhibits sickle hemoglobin (HbS) polymerization, and it is well described that naturally occurring hereditary persistence of HbF (HPFH) alleviates disease symptoms; therefore, reawakening of developmentally silenced HbF in adult red blood cells (RBCs) has long been of interest as a therapeutic strategy. Recent advances in genome editing platforms, particularly with the use of CRISPR-Cas9, have paved the way for efficient HbF induction through the creation of artificial HPFH mutations, editing of transcriptional HbF silencers, and modulating epigenetic intermediates that govern HbF expression. Clinical trials investigating BCL11A enhancer editing in patients with β-hemoglobinopathies have demonstrated promising results, although follow-up is short and the number of patients treated to date is low. While practical, economic, and clinical challenges of genome editing are well recognized by the scientific community, potential solutions to overcome these hurdles are in development. Here, we review the recent progress and obstacles yet to be overcome for the most effective and feasible HbF reactivation practice using CRISPR-Cas9 genome editing as a curative strategy for patients with SCD.
Collapse
Affiliation(s)
- Selami Demirci
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20814, USA
| | - Alexis Leonard
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20814, USA
| | - Khaled Essawi
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20814, USA
- Department of Medical Laboratory Science, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - John F. Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20814, USA
| |
Collapse
|
41
|
Genome editing in large animal models. Mol Ther 2021; 29:3140-3152. [PMID: 34601132 DOI: 10.1016/j.ymthe.2021.09.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/26/2021] [Accepted: 09/26/2021] [Indexed: 12/21/2022] Open
Abstract
Although genome editing technologies have the potential to revolutionize the way we treat human diseases, barriers to successful clinical implementation remain. Increasingly, preclinical large animal models are being used to overcome these barriers. In particular, the immunogenicity and long-term safety of novel gene editing therapeutics must be evaluated rigorously. However, short-lived small animal models, such as mice and rats, cannot address secondary pathologies that may arise years after a gene editing treatment. Likewise, immunodeficient mouse models by definition lack the ability to quantify the host immune response to a novel transgene or gene-edited locus. Large animal models, including dogs, pigs, and non-human primates (NHPs), bear greater resemblance to human anatomy, immunology, and lifespan and can be studied over longer timescales with clinical dosing regimens that are more relevant to humans. These models allow for larger scale and repeated blood and tissue sampling, enabling greater depth of study and focus on rare cellular subsets. Here, we review current progress in the development and evaluation of novel genome editing therapies in large animal models, focusing on applications in human immunodeficiency virus 1 (HIV-1) infection, cancer, and genetic diseases including hemoglobinopathies, Duchenne muscular dystrophy (DMD), hypercholesterolemia, and inherited retinal diseases.
Collapse
|
42
|
Lee BC, Lozano RJ, Dunbar CE. Understanding and overcoming adverse consequences of genome editing on hematopoietic stem and progenitor cells. Mol Ther 2021; 29:3205-3218. [PMID: 34509667 DOI: 10.1016/j.ymthe.2021.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/25/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Hematopoietic stem and progenitor cell (HSPC) gene therapies have recently moved beyond gene-addition approaches to encompass targeted genome modification or correction, based on the development of zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR-Cas technologies. Advances in ex vivo HSPC manipulation techniques have greatly improved HSPC susceptibility to genetic modification. Targeted gene-editing techniques enable precise modifications at desired genomic sites. Numerous preclinical studies have already demonstrated the therapeutic potential of gene therapies based on targeted editing. However, several significant hurdles related to adverse consequences of gene editing on HSPC function and genomic integrity remain before broad clinical potential can be realized. This review summarizes the status of HSPC gene editing, focusing on efficiency, genomic integrity, and long-term engraftment ability related to available genetic editing platforms and HSPC delivery methods. The response of long-term engrafting HSPCs to nuclease-mediated DNA breaks, with activation of p53, is a significant challenge, as are activation of innate and adaptive immune responses to editing components. Lastly, we propose alternative strategies that can overcome current hurdles to HSPC editing at various stages from cell collection to transplantation to facilitate successful clinical applications.
Collapse
Affiliation(s)
- Byung-Chul Lee
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard J Lozano
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cynthia E Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
43
|
Lederer CW, Genovese P, Miccio A, Philipsen S. Editorial: Mutation-Specific Gene Editing for Blood Disorders. Front Genome Ed 2021; 3:761771. [PMID: 34713270 PMCID: PMC8525395 DOI: 10.3389/fgeed.2021.761771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/14/2021] [Indexed: 11/23/2022] Open
Affiliation(s)
- Carsten Werner Lederer
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Pietro Genovese
- Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Annarita Miccio
- Université de Paris, Imagine Institute, Laboratory of Chromatin and Gene Regulation During Development, INSERM UMR, Paris, France
| | - Sjaak Philipsen
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
44
|
Psatha N, Georgakopoulou A, Li C, Nandakumar V, Georgolopoulos G, Acosta R, Paschoudi K, Nelson J, Chee D, Athanasiadou A, Kouvatsi A, Funnell APW, Lieber A, Yannaki E, Papayannopoulou T. Enhanced HbF reactivation by multiplex mutagenesis of thalassemic CD34+ cells in vitro and in vivo. Blood 2021; 138:1540-1553. [PMID: 34086867 PMCID: PMC8554647 DOI: 10.1182/blood.2020010020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/27/2021] [Indexed: 11/20/2022] Open
Abstract
Thalassemia or sickle cell patients with hereditary persistence of fetal hemoglobin (HbF) have an ameliorated clinical phenotype and, in some cases, can achieve transfusion independence. Inactivation via genome editing of γ-globin developmental suppressors, such as BCL11A or LRF/ZBTB7A, or of their binding sites, have been shown to significantly increase expression of endogenous HbF. To broaden the therapeutic window beyond a single-editing approach, we have explored combinations of cis- and trans-editing targets to enhance HbF reactivation. Multiplex mutagenesis in adult CD34+ cells was well tolerated and did not lead to any detectable defect in the cells' proliferation and differentiation, either in vitro or in vivo. The combination of 1 trans and 1 cis mutation resulted in high editing retention in vivo, coupled with almost pancellular HbF expression in NBSGW mice. The greater in vivo performance of this combination was also recapitulated using a novel helper-dependent adenoviral-CRISPR vector (HD-Ad-dualCRISPR) in CD34+ cells from β-thalassemia patients transplanted to NBSGW mice. A pronounced increase in HbF expression was observed in human red blood cells in mice with established predominant β0/β0-thalassemic hemopoiesis after in vivo injection of the HD-Ad-dualCRISPR vector. Collectively, our data suggest that the combination of cis and trans fetal globin reactivation mutations has the potential to significantly increase HbF both totally and on a per cell basis over single editing and could thus provide significant clinical benefit to patients with severe β-globin phenotype.
Collapse
Affiliation(s)
| | - Aphrodite Georgakopoulou
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Gene and Cell Therapy Center, Hematology Department-Hematopoietic Cell Transplantation Unit, George Papanikolaou Hospital, Thessaloniki, Greece; and
| | - Chang Li
- Division of Medical Genetics and
| | | | | | - Reyes Acosta
- Altius Institute for Biomedical Sciences, Seattle, WA
| | - Kiriaki Paschoudi
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Gene and Cell Therapy Center, Hematology Department-Hematopoietic Cell Transplantation Unit, George Papanikolaou Hospital, Thessaloniki, Greece; and
| | - Jemma Nelson
- Altius Institute for Biomedical Sciences, Seattle, WA
| | - Daniel Chee
- Altius Institute for Biomedical Sciences, Seattle, WA
| | - Anastasia Athanasiadou
- Gene and Cell Therapy Center, Hematology Department-Hematopoietic Cell Transplantation Unit, George Papanikolaou Hospital, Thessaloniki, Greece; and
| | - Anastasia Kouvatsi
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematology Department-Hematopoietic Cell Transplantation Unit, George Papanikolaou Hospital, Thessaloniki, Greece; and
- Division of Hematology, University of Washington, Seattle, WA
| | | |
Collapse
|
45
|
Yannaki E, Psatha N, Papadopoulou A, Athanasopoulos T, Gravanis A, Roubelakis MG, Tsirigotis P, Anagnostopoulos A, Anagnou NP, Vassilopoulos G. Success Stories and Challenges Ahead in Hematopoietic Stem Cell Gene Therapy: Hemoglobinopathies as Disease Models. Hum Gene Ther 2021; 32:1120-1137. [PMID: 34662232 DOI: 10.1089/hum.2021.196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gene therapy is a relatively novel field that amounts to around four decades of continuous growth with its good and bad moments. Currently, the field has entered the clinical arena with the ambition to fulfil its promises for a permanent fix of incurable genetic disorders. Hemoglobinopathies as target diseases and hematopoietic stem cells (HSCs) as target cells of genetic interventions had a major share in the research effort toward efficiently implementing gene therapy. Dissection of HSC biology and improvements in gene transfer and gene expression technologies evolved in an almost synchronous manner to a point where the two fields seem to be functionally intercalated. In this review, we focus specifically on the development of gene therapy for hemoglobin disorders and look at both gene addition and gene correction strategies that may dominate the field of HSC-directed gene therapy in the near future and transform the therapeutic landscape for genetic diseases.
Collapse
Affiliation(s)
- Evangelia Yannaki
- Hematology Department-HCT Unit, Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Nikoletta Psatha
- Altius Institute for Biomedical Sciences, Seattle, Washington, USA
| | - Anastasia Papadopoulou
- Hematology Department-HCT Unit, Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Takis Athanasopoulos
- Cell and Gene Therapy (CGT), Medicinal Science and Technology (MST), GlaxoSmithKline (GSK), Medicines Research Centre, Stevenage, United Kingdom
| | - Achilleas Gravanis
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, Greece
| | - Maria G Roubelakis
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece and Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Panagiotis Tsirigotis
- 2nd Department of Internal Medicine, ATTIKO General University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Achilles Anagnostopoulos
- Hematology Department-HCT Unit, Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
| | | | - George Vassilopoulos
- BRFAA, Cell and Gene Therapy Lab, Athens, Greece.,Department of Hematology, UHL, University of Thessaly Medical School, Athens, Greece
| |
Collapse
|
46
|
Hematopoietic Stem Cell Mobilization: Current Collection Approaches, Stem Cell Heterogeneity, and a Proposed New Method for Stem Cell Transplant Conditioning. Stem Cell Rev Rep 2021; 17:1939-1953. [PMID: 34661830 DOI: 10.1007/s12015-021-10272-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 10/20/2022]
Abstract
Hematopoietic stem cells naturally traffic out of their bone marrow niches into the peripheral blood. This natural trafficking process can be enhanced with numerous pharmacologic agents - a process termed "mobilization" - and the mobilized stem cells can be collected for transplantation. We review the current state of mobilization with an update on recent clinical trials and new biologic mechanisms regulating stem cell trafficking. We propose that hematopoietic mobilization can be used to answer questions regarding hematopoietic stem cell heterogeneity, can be used for non-toxic conditioning of patients receiving stem cell transplants, and can enhance gene editing and gene therapy strategies to cure genetic diseases.
Collapse
|
47
|
Koniali L, Lederer CW, Kleanthous M. Therapy Development by Genome Editing of Hematopoietic Stem Cells. Cells 2021; 10:1492. [PMID: 34198536 PMCID: PMC8231983 DOI: 10.3390/cells10061492] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Accessibility of hematopoietic stem cells (HSCs) for the manipulation and repopulation of the blood and immune systems has placed them at the forefront of cell and gene therapy development. Recent advances in genome-editing tools, in particular for clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) and CRISPR/Cas-derived editing systems, have transformed the gene therapy landscape. Their versatility and the ability to edit genomic sequences and facilitate gene disruption, correction or insertion, have broadened the spectrum of potential gene therapy targets and accelerated the development of potential curative therapies for many rare diseases treatable by transplantation or modification of HSCs. Ongoing developments seek to address efficiency and precision of HSC modification, tolerability of treatment and the distribution and affordability of corresponding therapies. Here, we give an overview of recent progress in the field of HSC genome editing as treatment for inherited disorders and summarize the most significant findings from corresponding preclinical and clinical studies. With emphasis on HSC-based therapies, we also discuss technical hurdles that need to be overcome en route to clinical translation of genome editing and indicate advances that may facilitate routine application beyond the most common disorders.
Collapse
Affiliation(s)
- Lola Koniali
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (L.K.); (M.K.)
| | - Carsten W. Lederer
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (L.K.); (M.K.)
- Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| | - Marina Kleanthous
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (L.K.); (M.K.)
- Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| |
Collapse
|
48
|
Garg H, Tatiossian KJ, Peppel K, Kato GJ, Herzog E. Gene therapy as the new frontier for Sickle Cell Disease. Curr Med Chem 2021; 29:453-466. [PMID: 34047257 DOI: 10.2174/0929867328666210527092456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/28/2021] [Accepted: 04/11/2021] [Indexed: 11/22/2022]
Abstract
Sickle Cell Disease (SCD) is one of the most common monogenic disorders caused by a point mutation in the β-globin gene. This mutation results in polymerization of hemoglobin (Hb) under reduced oxygenation conditions, causing rigid sickle-shaped RBCs and hemolytic anemia. This clearly defined fundamental molecular mechanism makes SCD a prototypical target for precision therapy. Both the mutant β-globin protein and its downstream pathophysiology are pharmacological targets of intensive research. SCD also is a disease well-suited for biological interventions like gene therapy. Recent advances in hematopoietic stem cell (HSC) transplantation and gene therapy platforms, like Lentiviral vectors and gene editing strategies, expand the potentially curative options for patients with SCD. This review discusses the recent advances in precision therapy for SCD and the preclinical and clinical advances in autologous HSC gene therapy for SCD.
Collapse
Affiliation(s)
- Himanshu Garg
- CSL Behring, 1020 1St Ave, King of Prussia, PA 19406, United States
| | | | - Karsten Peppel
- CSL Behring, 1020 1St Ave, King of Prussia, PA 19406, United States
| | - Gregory J Kato
- CSL Behring, 1020 1St Ave, King of Prussia, PA 19406, United States
| | - Eva Herzog
- CSL Behring, 1020 1St Ave, King of Prussia, PA 19406, United States
| |
Collapse
|
49
|
Li C, Goncalves KA, Raskó T, Pande A, Gil S, Liu Z, Izsvák Z, Papayannopoulou T, Davis JC, Kiem HP, Lieber A. Single-dose MGTA-145/plerixafor leads to efficient mobilization and in vivo transduction of HSCs with thalassemia correction in mice. Blood Adv 2021; 5:1239-1249. [PMID: 33646305 PMCID: PMC7948287 DOI: 10.1182/bloodadvances.2020003714] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/12/2021] [Indexed: 02/08/2023] Open
Abstract
We have developed an in vivo hemopoietic stem cell (HSC) gene therapy approach without the need for myelosuppressive conditioning and autologous HSC transplantation. It involves HSC mobilization and IV injection of a helper-dependent adenovirus HDAd5/35++ vector system. The current mobilization regimen consists of granulocyte colony-stimulating factor (G-CSF) injections over a 4-day period, followed by the administration of plerixafor/AMD3100. We tested a simpler, 2-hour, G-CSF-free mobilization regimen using truncated GRO-β (MGTA-145; a CXCR2 agonist) and plerixafor in the context of in vivo HSC transduction in mice. The MGTA-145+plerixafor combination resulted in robust mobilization of HSCs. Importantly, compared with G-CSF+plerixafor, MGTA-145+plerixafor led to significantly less leukocytosis and no elevation of serum interleukin-6 levels and was thus likely to be less toxic. With both mobilization regimens, after in vivo selection with O6-benzylguanine (O6BG)/BCNU, stable GFP marking was achieved in >90% of peripheral blood mononuclear cells. Genome-wide analysis showed random, multiclonal vector integration. In vivo HSC transduction after mobilization with MGTA-145+plerixafor in a mouse model for thalassemia resulted in >95% human γ-globin+ erythrocytes at a level of 36% of mouse β-globin. Phenotypic analyses showed a complete correction of thalassemia. The γ-globin marking percentage and level were maintained in secondary recipients, further demonstrating that MGTA145+plerixafor mobilizes long-term repopulating HSCs. Our study indicates that brief exposure to MGTA-145+plerixafor may be advantageous as a mobilization regimen for in vivo HSC gene therapy applications across diseases, including thalassemia and sickle cell disease.
Collapse
Affiliation(s)
- Chang Li
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | | | - Tamás Raskó
- AG "Mobile DNA Lab," Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Amit Pande
- AG "Mobile DNA Lab," Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Sucheol Gil
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Zhinan Liu
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Zsuzsanna Izsvák
- AG "Mobile DNA Lab," Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | | | | | - Hans-Peter Kiem
- Fred Hutchinson Cancer Research Center, Seattle, WA; and
- Division of Medical Oncology, Department of Medicine, and
- Department of Pathology, University of Washington, Seattle, WA
| | - André Lieber
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
- Department of Pathology, University of Washington, Seattle, WA
| |
Collapse
|
50
|
Dasgupta I, Flotte TR, Keeler AM. CRISPR/Cas-Dependent and Nuclease-Free In Vivo Therapeutic Gene Editing. Hum Gene Ther 2021; 32:275-293. [PMID: 33750221 PMCID: PMC7987363 DOI: 10.1089/hum.2021.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/27/2021] [Indexed: 12/19/2022] Open
Abstract
Precise gene manipulation by gene editing approaches facilitates the potential to cure several debilitating genetic disorders. Gene modification stimulated by engineered nucleases induces a double-stranded break (DSB) in the target genomic locus, thereby activating DNA repair mechanisms. DSBs triggered by nucleases are repaired either by the nonhomologous end-joining or the homology-directed repair pathway, enabling efficient gene editing. While there are several ongoing ex vivo genome editing clinical trials, current research underscores the therapeutic potential of CRISPR/Cas-based (clustered regularly interspaced short palindrome repeats-associated Cas nuclease) in vivo gene editing. In this review, we provide an overview of the CRISPR/Cas-mediated in vivo genome therapy applications and explore their prospective clinical translatability to treat human monogenic disorders. In addition, we discuss the various challenges associated with in vivo genome editing technologies and strategies used to circumvent them. Despite the robust and precise nuclease-mediated gene editing, a promoterless, nuclease-independent gene targeting strategy has been utilized to evade the drawbacks of the nuclease-dependent system, such as off-target effects, immunogenicity, and cytotoxicity. Thus, the rapidly evolving paradigm of gene editing technologies will continue to foster the progress of gene therapy applications.
Collapse
Affiliation(s)
- Ishani Dasgupta
- Department of Pediatrics, Horae Gene Therapy Center, University of Massachusetts, Worcester, Massachusetts, USA
| | - Terence R. Flotte
- Department of Pediatrics, Horae Gene Therapy Center, University of Massachusetts, Worcester, Massachusetts, USA
| | - Allison M. Keeler
- Department of Pediatrics, Horae Gene Therapy Center, University of Massachusetts, Worcester, Massachusetts, USA
| |
Collapse
|