1
|
Liu Q, Wang Y, Song M, Huang J, Shi J, Sun W, Ji X, Chang Y, Ma B, Zhang P, Yan Y, Zhang H. CCL20/CXCL5 Drives Crosstalk Between Anaplastic Thyroid Cancer Stem Cells and Tumor-Associated Macrophages to Promote Tumor Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2405399. [PMID: 40091357 PMCID: PMC12061268 DOI: 10.1002/advs.202405399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 02/26/2025] [Indexed: 03/19/2025]
Abstract
The dynamic interplay between tumor-associated macrophages (TAMs) and anaplastic thyroid cancer (ATC) shapes the tumor microenvironment and facilitates ATC progression. However, the mechanisms of communication between TAMs and anaplastic thyroid cancer stem cells (ATCSCs) remain largely unelucidated. Integrative analyses of single-cell RNA sequencing, cytokine/chemokine arrays, proteomics, and mRNA expression datasets are performed to reveal crosstalk between TAMs and ATCSCs and signaling pathways in ATCSCs. Subsequently, in vitro experiments are performed to validate the regulatory effects of key cytokines on ATCSC stemness. Last, xenogeneic orthotopic thyroid ATCSCs transplantation models are utilized to corroborate the regulatory effect of cytokines on stemness. CCL20 derived from THP-1-M2 activates the IRAK-1/NF-κB1/2 signaling pathway in ATCSCs, thereby positively regulating stemness characteristics and upregulating CXCL5 secretion. ATCSCs not only exhibit autocrine CXCL5 participation in the regulation of stemness but also demonstrate paracrine CXCL5 activity to recruit THP-1-Mφ and maintain the M2 phenotype. CCL20 and CXCL5 are involved in the crosstalk between TAMs and ATCSCs. The CCL20/CXCL5 axis plays a crucial role in the interaction between TAMs and ATCSCs, establishing a progressive tumor microenvironment.
Collapse
Affiliation(s)
- Qi Liu
- Department of Thyroid SurgeryThe First Hospital of China Medical UniversityShenyang110801P. R. China
| | - Yan Wang
- Department of PharmacologySchool of PharmacyChina Medical UniversityShenyang110122P. R. China
| | - Mingyuan Song
- Department of Thyroid SurgeryThe First Hospital of China Medical UniversityShenyang110801P. R. China
| | - Jiapeng Huang
- Department of Thyroid SurgeryThe First Hospital of China Medical UniversityShenyang110801P. R. China
| | - Jinyuan Shi
- Department of Thyroid SurgeryGeneral SurgeryQilu Hospital of Shandong UniversityJinan250012P. R. China
| | - Wei Sun
- Department of Thyroid SurgeryThe First Hospital of China Medical UniversityShenyang110801P. R. China
| | - Xiaoyu Ji
- Department of Thyroid SurgeryThe First Hospital of China Medical UniversityShenyang110801P. R. China
| | - Yuang Chang
- Department of Thyroid SurgeryThe First Hospital of China Medical UniversityShenyang110801P. R. China
| | - Bing Ma
- Department of Clinical Epidemiology and Evidence‐based MedicineThe First Hospital of China Medical UniversityShenyang110801P. R. China
| | - Ping Zhang
- Department of Thyroid SurgeryThe First Hospital of China Medical UniversityShenyang110801P. R. China
| | - Yuanyuan Yan
- Department of PharmacologySchool of PharmacyChina Medical UniversityShenyang110122P. R. China
| | - Hao Zhang
- Department of Thyroid SurgeryThe First Hospital of China Medical UniversityShenyang110801P. R. China
| |
Collapse
|
2
|
Luo Y, Wan F, Zhang Z, Qin Z, Ren Y. The Role of Chemokine (C-C Motif) Ligand 7 (CCL7) in Hepatocellular Carcinoma: Expression, Function, and Mechanisms. Cancer Med 2025; 14:e70701. [PMID: 40062588 PMCID: PMC11891931 DOI: 10.1002/cam4.70701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/20/2024] [Accepted: 01/09/2025] [Indexed: 05/13/2025] Open
Abstract
AIM AHepatocellular carcinoma (HCC) is a malignant neoplasm characterized by a poor prognosis, with its incidence rising globally. Chemokine (C-C motif) ligand 7 (CCL7), a chemokine protein, has been implicated in the progression of various cancers. Nonetheless, the specific role of CCL7 in HCC has yet to be elucidated. This study seeks to examine the expression and functional role of CCL7 in the context of HCC. MATERIALS & METHODS Western blot and immunohistochemistry were used to detect the expression of CCL7 in HCC tissues and cell lines. Cell Counting Kit 8 (CCK8) assay, clonogenic assay, and transwell assay were performed to examine the effects of CCL7 on SNU-878 cells. Immunofluorescence was used to analyze the expression of proteins associated with epithelial interstitial transformation (EMT). Western blot was used to detect the activation of the PI3K/AKT pathway. In vivo tumorigenesis experiments were performed to assess the role of CCL7 in HCC tumorigenesis. RESULTS The results showed that the expression of CCL7 was up-regulated in HCC tissues, and exogenous CCL7 promoted the proliferation, migration, invasion, and EMT of SNU-878 cells and VEGF secretion by SNU-878 cells. Furthermore, CCL7 stimulated the activation of the PI3K/AKT pathway. Further analysis revealed that CCL7 targeted CCR1 and CCR2 to enhance the growth, and metastasis of SNU-878 cells and VEGF secretion by SNU-878 cells. CCR1/CCR2 silencing prevented CCL7 from activating the PI3K/AKT signaling pathway in SNU-878 cells. Moreover, CCL7 facilitated HCC tumorigenesis and VEGF expression in vivo. CONCLUSION Our findings indicate that CCL7 plays a promoting role in HCC growth and tumorigenesis, potentially via targeting CCR1 and CCR2 and activating the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Yangkun Luo
- Department of RadiologyAffiliated Hospital of North Sichuan Medical CollegeNanchongSichuanChina
- Department of RadiologySichuan Province Orthopedic HospitalChengduSichuanChina
| | - Fei Wan
- Department of RadiologyAffiliated Hospital of North Sichuan Medical CollegeNanchongSichuanChina
| | - Zhao Zhang
- Department of Hepatobiliary SurgeryAffiliated Hospital of North Sichuan Medical CollegeNanchongSichuanChina
| | - Zujun Qin
- Department of PathologyAffiliated Hospital of North Sichuan Medical CollegeNanchongSichuanChina
| | - Yongjun Ren
- Department of Hepatobiliary SurgeryAffiliated Hospital of North Sichuan Medical CollegeNanchongSichuanChina
| |
Collapse
|
3
|
Yue F, Zhao Y, Lv Y, Li S, Wang W, Li Y, Wang S, Wang C. Anti-Tumor Effects of Sheep Umbilical Cord Mesenchymal Stem Cells on Melanoma Cells. Int J Mol Sci 2025; 26:426. [PMID: 39796281 PMCID: PMC11720557 DOI: 10.3390/ijms26010426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 01/13/2025] Open
Abstract
Melanoma is among the most common malignancies and has recently exhibited increased resistance to treatments, resulting in a more aggressive disease course. Mesenchymal stem cells (MSCs) secrete cytokines both in vivo and in vitro, which regulate tumor cell signaling pathways and the tumor microenvironment, thereby influencing tumor progression. This study investigates the anti-melanogenesis effects of sheep umbilical cord mesenchymal stem cells (SUCMSCs) to assess their potential application in melanoma treatment. Our findings indicate that, in vitro, SUCMSCs reduce melanin content and tyrosinase activity, inhibit melanoma cell viability, proliferation, migration, and invasion, and promote melanoma cell apoptosis. Subsequent in vivo experiments confirmed that SUCMSCs effectively suppress tumor growth, and histological analysis via HE staining revealed notable differences. Additionally, transcriptome sequencing analysis indicated that the anti-tumor effects were primarily mediated through autophagy, apoptosis, and the TGF-β and NF-κB signaling pathways. The RT-qPCR validation results aligned with the transcriptome data. In summary, SUCMSCs exert anti-melanogenesis effects through the interaction of multiple signaling pathways and cytokines, demonstrating significant potential for melanoma treatment.
Collapse
Affiliation(s)
- Fengjiao Yue
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (F.Y.); (Y.Z.); (Y.L.); (S.L.); (W.W.); (Y.L.)
| | - Yuqing Zhao
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (F.Y.); (Y.Z.); (Y.L.); (S.L.); (W.W.); (Y.L.)
| | - Yiting Lv
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (F.Y.); (Y.Z.); (Y.L.); (S.L.); (W.W.); (Y.L.)
| | - Songmei Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (F.Y.); (Y.Z.); (Y.L.); (S.L.); (W.W.); (Y.L.)
| | - Weihai Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (F.Y.); (Y.Z.); (Y.L.); (S.L.); (W.W.); (Y.L.)
| | - Yajun Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (F.Y.); (Y.Z.); (Y.L.); (S.L.); (W.W.); (Y.L.)
| | - Shujie Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Chunsheng Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (F.Y.); (Y.Z.); (Y.L.); (S.L.); (W.W.); (Y.L.)
| |
Collapse
|
4
|
Li P, Xue Y. Dysregulation of lysine acetylation in the pathogenesis of digestive tract cancers and its clinical applications. Front Cell Dev Biol 2024; 12:1447939. [PMID: 39391349 PMCID: PMC11464462 DOI: 10.3389/fcell.2024.1447939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
Recent advances in high-resolution mass spectrometry-based proteomics have improved our understanding of lysine acetylation in proteins, including histones and non-histone proteins. Lysine acetylation, a reversible post-translational modification, is catalyzed by lysine acetyltransferases (KATs) and lysine deacetylases (KDACs). Proteins comprising evolutionarily conserved bromodomains (BRDs) recognize these acetylated lysine residues and consequently activate transcription. Lysine acetylation regulates almost all cellular processes, including transcription, cell cycle progression, and metabolic functions. Studies have reported the aberrant expression, translocation, and mutation of genes encoding lysine acetylation regulators in various cancers, including digestive tract cancers. These dysregulated lysine acetylation regulators contribute to the pathogenesis of digestive system cancers by modulating the expression and activity of cancer-related genes or pathways. Several inhibitors targeting KATs, KDACs, and BRDs are currently in preclinical trials and have demonstrated anti-cancer effects. Digestive tract cancers, including encompass esophageal, gastric, colorectal, liver, and pancreatic cancers, represent a group of heterogeneous malignancies. However, these cancers are typically diagnosed at an advanced stage owing to the lack of early symptoms and are consequently associated with poor 5-year survival rates. Thus, there is an urgent need to identify novel biomarkers for early detection, as well as to accurately predict the clinical outcomes and identify effective therapeutic targets for these malignancies. Although the role of lysine acetylation in digestive tract cancers remains unclear, further analysis could improve our understanding of its role in the pathogenesis of digestive tract cancers. This review aims to summarize the implications and pathogenic mechanisms of lysine acetylation dysregulation in digestive tract cancers, as well as its potential clinical applications.
Collapse
Affiliation(s)
- Penghui Li
- Department of Gastrointestinal surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yuan Xue
- Department of thyroid surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
5
|
Huang S, He L, Zhao Y, Wei Y, Wang Q, Gao Y, Jiang X. TREM1 + tumor-associated macrophages secrete CCL7 to promote hepatocellular carcinoma metastasis. J Cancer Res Clin Oncol 2024; 150:320. [PMID: 38914803 PMCID: PMC11196310 DOI: 10.1007/s00432-024-05831-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024]
Abstract
PURPOSE Tumor-associated macrophages (TAMs) play a critical role in hepatocellular carcinoma (HCC) progression and metastasis. Systematic investigation of the cross-talk between TAMs and HCC may help in searching for the critical target to guard against HCC metastasis. METHODS AND RESULTS Herein, we found that TREM1 highly expressed in HCC tissue by analyzing the data obtain from GEO database. Interestingly, the results indicated that TREM1 was primarily expressed by monocytes. Immune infiltration studies further validated that TREM1 expression was positively related with increased infiltration of macrophages in HCC tissues. In vitro, we observed that TREM1 knockdown significantly abrogated the effect of TAMs in promoting the metastasis and epithelial-mesenchymal transition (EMT) of HCC cells. Additionally, cytokine array detection identified CCL7 as the main responsive cytokine following with TREM1 knockdown in TAMs. CONCLUSION Taken together, our findings strongly suggested that high expression of TREM1 was positively associated with metastasis and poor prognosis of HCC. Furthermore, TAMs expressing TREM1 contribute to EMT-based metastasis through secreting CCL7. These results provide a novel insight into the potential development of targeting the TREM1/CCL7 pathway for preventing metastatic HCC.
Collapse
Affiliation(s)
- Simin Huang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
- Liver Cancer Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Longguang He
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangdong Guangzhou, 510282, China
- Department of Hepatobiliary Surgery, Gaozhou People's Hospital, Guangdong Gaozhou, 525000, China
| | - Yufei Zhao
- Department of Gastrointestinal Surgery, Lab of Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yuxuan Wei
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
- Liver Cancer Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Qiwen Wang
- Department of Gastrointestinal Surgery, Lab of Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangdong Guangzhou, 510282, China.
| | - Xiaofeng Jiang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
- Liver Cancer Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
6
|
Wei H, Wang G, Tian Q, Liu C, Han W, Wang J, He P, Li M. Low shear stress induces macrophage infiltration and aggravates aneurysm wall inflammation via CCL7/CCR1/TAK1/ NF-κB axis. Cell Signal 2024; 117:111122. [PMID: 38417634 DOI: 10.1016/j.cellsig.2024.111122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/18/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
BACKGROUND This study aimed to elucidate the mechanism by which wall shear stress (WSS) influences vascular walls, accounting for the susceptibility of intracranial aneurysms (IAs) to rupture. METHOD We collected blood samples from the sacs of 24 ruptured and 28 unruptured IAs and analyzed the expression of chemokine CCL7 using enzyme-linked immunosorbent assay (ELISA). Univariate and multivariate logistic regression analyses were employed to assess clinical data, aneurysm morphology, and hemodynamics in both groups. Pearson correlation analysis investigated the relationship between CCL7 expression in aneurysm sac blood and WSS. Additionally, we established a bionic cell parallel plate co-culture shear stress model and a mouse low shear stress (LSS) model. The model was modulated using CCL7 recombinant protein, CCR1 inhibitor, and TAK1 inhibitor. We further evaluated CCL7 expression in endothelial cells and the levels of TAK1, NF-κB, IL-1β, and TNF-α in macrophages. Subsequently, the intergroup differences in expression were calculated. RESULTS CCL7 expression was significantly higher in the ruptured group compared to the unruptured group. Hemodynamic analysis indicated that WSS was an independent predictor of the risk of aneurysm rupture. A negative linear correlation was observed between CCL7 expression and WSS. Upon addition of CCL7 recombinant protein, upregulation of CCR1 expression and increased levels of p-TAK1 and p-p65 were observed. Treatment with CCR1 and TAK1 inhibitors reduced inflammatory cytokine expression in macrophages under LSS conditions. Overexpression of TAK1 significantly alleviated the inhibitory effects of CCR1 inhibitors on p-p65 and inflammatory cytokines. CONCLUSION LSS prompts endothelial cells to secrete CCL7, which, upon binding to the macrophage surface receptor CCR1, stimulates the release of macrophage inflammatory factors via the TAK1/NF-κB signaling pathway. This process exacerbates aneurysm wall inflammation and increases the risk of aneurysm rupture.
Collapse
Affiliation(s)
- Heng Wei
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Guijun Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Qi Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Chengli Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Wenrui Han
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Jianfeng Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Peibang He
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China.
| |
Collapse
|
7
|
Zhu C, Teng L, Lai Y, Yao X, Fang Y, Wang Z, Lin S, Zhang H, Li Q, Li Y, Cai J, Zhang Y, Wu C, Huang B, Li A, Liu S, Lai Q. Adipose-derived stem cells promote glycolysis and peritoneal metastasis via TGF-β1/SMAD3/ANGPTL4 axis in colorectal cancer. Cell Mol Life Sci 2024; 81:189. [PMID: 38643448 PMCID: PMC11033247 DOI: 10.1007/s00018-024-05215-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 02/07/2024] [Accepted: 03/18/2024] [Indexed: 04/22/2024]
Abstract
Peritoneal metastasis, the third most common metastasis in colorectal cancer (CRC), has a poor prognosis for the rapid progression and limited therapeutic strategy. However, the molecular characteristics and pathogenesis of CRC peritoneal metastasis are poorly understood. Here, we aimed to elucidate the action and mechanism of adipose-derived stem cells (ADSCs), a prominent component of the peritoneal microenvironment, in CRC peritoneal metastasis formation. Database analysis indicated that ADSCs infiltration was increased in CRC peritoneal metastases, and high expression levels of ADSCs marker genes predicted a poor prognosis. Then we investigated the effect of ADSCs on CRC cells in vitro and in vivo. The results revealed that CRC cells co-cultured with ADSCs exhibited stronger metastatic property and anoikis resistance, and ADSCs boosted the intraperitoneal seeding of CRC cells. Furthermore, RNA sequencing was carried out to identify the key target gene, angiopoietin like 4 (ANGPTL4), which was upregulated in CRC specimens, especially in peritoneal metastases. Mechanistically, TGF-β1 secreted by ADSCs activated SMAD3 in CRC cells, and chromatin immunoprecipitation assay showed that SMAD3 facilitated ANGPTL4 transcription by directly binding to ANGPTL4 promoter. The ANGPTL4 upregulation was essential for ADSCs to promote glycolysis and anoikis resistance in CRC. Importantly, simultaneously targeting TGF-β signaling and ANGPTL4 efficiently reduced intraperitoneal seeding in vivo. In conclusion, this study indicates that tumor-infiltrating ADSCs promote glycolysis and anoikis resistance in CRC cells and ultimately facilitate peritoneal metastasis via the TGF-β1/SMAD3/ANGPTL4 axis. The dual-targeting of TGF-β signaling and ANGPTL4 may be a feasible therapeutic strategy for CRC peritoneal metastasis.
Collapse
Affiliation(s)
- Chaojun Zhu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Lan Teng
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Yihong Lai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Xingxing Yao
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuxin Fang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Zihuan Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Simin Lin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Haonan Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Qingyuan Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Ye Li
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianqun Cai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Yue Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Changjie Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Bing Huang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Aimin Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China.
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China.
- Department of Gastroenterology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, China.
| | - Qiuhua Lai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China.
| |
Collapse
|
8
|
Deng H, Liu S, Li D, Wang W, Ye L, Xu S, Wang X, Li Y. Investigating the pharmacological mechanism of Zhengyuan jiaonang for treating colorectal cancer via network pharmacology analysis and experimental verification. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117607. [PMID: 38110132 DOI: 10.1016/j.jep.2023.117607] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/17/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhengyuan jiaonang (ZYJN) is a traditional Chinese patent medicine (CPM) used in China for adjuvant cancer therapy, which has been proved to have anti-fatigue effects. AIM OF STUDY The study aims to investigate the antitumor effects of ZYJN and its underlying mechanisms using subcutaneous transplant CT26 model. MATERIALS AND METHODS Fingerprint analysis of ZYJN was performed using high performance liquid chromatography. The potential targets of ZYJN were predicted using bioinformatic analysis, which were further validated by Western Blot assay. Subcutaneous transplant CT26 model was used to evaluate the antitumor effects of ZYJN. The effects of ZYJN on the tumor immune microenvironment were investigated by flow cytometry. Transparent imaging was used to investigate the effects of ZYJN on fibrosis and angiogenesis. RESULTS ZYJN could inhibit colorectal cancer growth when administered alone or in combination with 5-FU. The combination of ZYJN and 5-FU could significantly increase the serum level of albumin (ALB) and decrease the serum level of aspartate aminotransferase (AST). In addition, the combination of ZYJN at 0.75 g/kg and 5-FU significantly decreased the serum level of vascular endothelial growth factors (VEGF) and inhibited the angiogenesis of CT26 cancer. The combination of ZYJN at 1.50 g/kg and 5-FU could promote the fibrosis process of CT26 cancer. Additionally, combination of ZYJN and 5-FU could significantly increase the percentage of tumor-infiltrating T cells and CD4+ T cells in the late stage of CT26 model, while ZYJN at 1.50 g/kg increased the percentage of NK cells as well as CD8+ T cells in the early stage of CT26 model. Western Blot analysis revealed that administration of ZYJN at 0.75 g/kg reduced the expression of PI3K-p110α, CDK1, CCNB1 and MMP-9, and inhibited the phosphorylation of Akt (Thr308). CONCLUSIONS ZYJN could inhibit the tumor growth of CT26 colorectal cancer by promoting tumor fibrosis, suppressing angiogenesis, migration, and invasion and modulating the tumor immune microenvironment. ZYJN enhanced the efficacy and reduced the toxicity of chemotherapy drugs in combination therapy. Our findings provide evidence for the clinical application of ZYJN in cancer treatment.
Collapse
Affiliation(s)
- Haidong Deng
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Siqi Liu
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Didi Li
- Thousand Dimensions (Beijing) Science and Technology Co., Ltd, Beijing, 102699, China
| | - Weiping Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Ling Ye
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shaofeng Xu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xiaoliang Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Yan Li
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
9
|
Riaz F, Zhang J, Pan F. Forces at play: exploring factors affecting the cancer metastasis. Front Immunol 2024; 15:1274474. [PMID: 38361941 PMCID: PMC10867181 DOI: 10.3389/fimmu.2024.1274474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024] Open
Abstract
Metastatic disease, a leading and lethal indication of deaths associated with tumors, results from the dissemination of metastatic tumor cells from the site of primary origin to a distant organ. Dispersion of metastatic cells during the development of tumors at distant organs leads to failure to comply with conventional treatments, ultimately instigating abrupt tissue homeostasis and organ failure. Increasing evidence indicates that the tumor microenvironment (TME) is a crucial factor in cancer progression and the process of metastatic tumor development at secondary sites. TME comprises several factors contributing to the initiation and progression of the metastatic cascade. Among these, various cell types in TME, such as mesenchymal stem cells (MSCs), lymphatic endothelial cells (LECs), cancer-associated fibroblasts (CAFs), myeloid-derived suppressor cells (MDSCs), T cells, and tumor-associated macrophages (TAMs), are significant players participating in cancer metastasis. Besides, various other factors, such as extracellular matrix (ECM), gut microbiota, circadian rhythm, and hypoxia, also shape the TME and impact the metastatic cascade. A thorough understanding of the functions of TME components in tumor progression and metastasis is necessary to discover new therapeutic strategies targeting the metastatic tumor cells and TME. Therefore, we reviewed these pivotal TME components and highlighted the background knowledge on how these cell types and disrupted components of TME influence the metastatic cascade and establish the premetastatic niche. This review will help researchers identify these altered components' molecular patterns and design an optimized, targeted therapy to treat solid tumors and restrict metastatic cascade.
Collapse
Affiliation(s)
- Farooq Riaz
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Jing Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Fan Pan
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| |
Collapse
|
10
|
Cheng D, Wang J, Wang Y, Xue Y, Yang Q, Yang Q, Zhao H, Huang J, Peng X. Chemokines: Function and therapeutic potential in bone metastasis of lung cancer. Cytokine 2023; 172:156403. [PMID: 37871366 DOI: 10.1016/j.cyto.2023.156403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Lung cancer is a rapidly progressing disease with a poor prognosis. Bone metastasis is commonly found in 40.6% of advanced-stage patients. The mortality rate of lung cancer patients with bone metastasis can be significantly decreased by implementing novel diagnostic techniques, improved staging and classification systems, precise surgical interventions, and advanced treatment modalities. However, it is important to note that there is currently a lack of radical procedures available for these patients due to the development of drug resistance. Consequently, palliative care approaches are commonly employed in clinical practice. Therefore, new understandings of the process of bone metastasis of lung cancer are critical for developing better treatment strategies to improve patient's clinical cure rate and quality of life. Chemokines are cell-secreted small signaling proteins in cancer occurrence, proliferation, invasion, and metastasis. In this study, we review the development of bone metastasis in lung cancer and discuss the mechanisms of specific chemokine families (CC, CXC, CX3C, and XC) in regulating the biological activities of tumors and promoting bone metastasis. We also highlight some preclinical studies and clinical trials on chemokines for lung cancer and bone metastasis.
Collapse
Affiliation(s)
- Dezhou Cheng
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Jiancheng Wang
- Department of Radiology, The Second People's Hospital of Jingzhou, China
| | - Yiling Wang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yanfang Xue
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Qing Yang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Qun Yang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Huichuan Zhao
- Department of Pathology of the First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Jinbai Huang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China; Department of Medical Imaging, the First Affiliated Hospital of Yangtze University, and School of Medicine of Yangtze University, Jingzhou, Hubei, China.
| | - Xiaochun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China.
| |
Collapse
|
11
|
Talukdar PD, Chatterji U. Transcriptional co-activators: emerging roles in signaling pathways and potential therapeutic targets for diseases. Signal Transduct Target Ther 2023; 8:427. [PMID: 37953273 PMCID: PMC10641101 DOI: 10.1038/s41392-023-01651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/27/2023] [Accepted: 09/10/2023] [Indexed: 11/14/2023] Open
Abstract
Specific cell states in metazoans are established by the symphony of gene expression programs that necessitate intricate synergic interactions between transcription factors and the co-activators. Deregulation of these regulatory molecules is associated with cell state transitions, which in turn is accountable for diverse maladies, including developmental disorders, metabolic disorders, and most significantly, cancer. A decade back most transcription factors, the key enablers of disease development, were historically viewed as 'undruggable'; however, in the intervening years, a wealth of literature validated that they can be targeted indirectly through transcriptional co-activators, their confederates in various physiological and molecular processes. These co-activators, along with transcription factors, have the ability to initiate and modulate transcription of diverse genes necessary for normal physiological functions, whereby, deregulation of such interactions may foster tissue-specific disease phenotype. Hence, it is essential to analyze how these co-activators modulate specific multilateral processes in coordination with other factors. The proposed review attempts to elaborate an in-depth account of the transcription co-activators, their involvement in transcription regulation, and context-specific contributions to pathophysiological conditions. This review also addresses an issue that has not been dealt with in a comprehensive manner and hopes to direct attention towards future research that will encompass patient-friendly therapeutic strategies, where drugs targeting co-activators will have enhanced benefits and reduced side effects. Additional insights into currently available therapeutic interventions and the associated constraints will eventually reveal multitudes of advanced therapeutic targets aiming for disease amelioration and good patient prognosis.
Collapse
Affiliation(s)
- Priyanka Dey Talukdar
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
12
|
Atiya HI, Gorecki G, Garcia GL, Frisbie LG, Baruwal R, Coffman L. Stromal-Modulated Epithelial-to-Mesenchymal Transition in Cancer Cells. Biomolecules 2023; 13:1604. [PMID: 38002286 PMCID: PMC10669774 DOI: 10.3390/biom13111604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
The ability of cancer cells to detach from the primary site and metastasize is the main cause of cancer- related death among all cancer types. Epithelial-to-mesenchymal transition (EMT) is the first event of the metastatic cascade, resulting in the loss of cell-cell adhesion and the acquisition of motile and stem-like phenotypes. A critical modulator of EMT in cancer cells is the stromal tumor microenvironment (TME), which can promote the acquisition of a mesenchymal phenotype through direct interaction with cancer cells or changes to the broader microenvironment. In this review, we will explore the role of stromal cells in modulating cancer cell EMT, with particular emphasis on the function of mesenchymal stromal/stem cells (MSCs) through the activation of EMT-inducing pathways, extra cellular matrix (ECM) remodeling, immune cell alteration, and metabolic rewiring.
Collapse
Affiliation(s)
- Huda I. Atiya
- Division of Hematology/Oncology, Department of Medicine, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Grace Gorecki
- Division of Hematology/Oncology, Department of Medicine, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Geyon L. Garcia
- Medical Scientist Training Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Leonard G. Frisbie
- Department of Integrative Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Roja Baruwal
- Molecular Pharmacology Graduate Program, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Lan Coffman
- Division of Hematology/Oncology, Department of Medicine, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee Women’s Research Institute, Pittsburgh, PA15213, USA
| |
Collapse
|
13
|
Li J, Han Z, Zhu Z, Wei L. LncRNA H19 aggravates primary graft dysfunction after lung transplantation via KLF5-mediated activation of CCL28. Am J Transplant 2023; 23:1536-1550. [PMID: 37394140 DOI: 10.1016/j.ajt.2023.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/04/2023]
Abstract
The present study aims to elucidate the possible involvement of H19 in primary graft dysfunction (PGD) following lung transplantation (LT) and the underlying mechanism. The transcriptome data were obtained through high-throughput sequencing analysis, and the differential long noncoding RNAs and messenger RNAs were screened for coexpression analysis. The interaction among H19, KLF5 and CCL28 was analyzed. A hypoxia-induced human pulmonary microvascular endothelial cell injury model was established, in which H19 was knocked down to elucidate its effect on the lung function, inflammatory response, and cell apoptosis. An orthotopic left LT model was constructed for in vivo mechanistic validation. High-throughput transcriptome sequencing analysis revealed the involvement of the H19/KLF5/CCL28 signaling axis in PGD. Silencing of H19 reduced inflammatory response and thus improved PGD. CCL28 secreted by human pulmonary microvascular endothelial cells after LT recruited neutrophils and macrophages. Mechanistic investigations indicated that H19 augmented the expression of CCL28 by binding to the transcription factor KLF5. Abundant expression of CCL28 reversed the alleviating effect of H19 silencing on PGD. In conclusion, the results point out that H19 exerts a promoting effect on PGD through increasing KLF5 expression and the subsequent CCL28 expression. Our study provides a novel insight into the mechanism of action of H19.
Collapse
Affiliation(s)
- Jiwei Li
- Department of Thoracic Surgery, Zhengzhou Key Laboratory for Surgical Treatment for End-stage Lung Disease, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China.
| | - Zhijun Han
- Department of Thoracic Surgery, Zhengzhou Key Laboratory for Surgical Treatment for End-stage Lung Disease, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Zibo Zhu
- Department of Thoracic Surgery, Zhengzhou Key Laboratory for Surgical Treatment for End-stage Lung Disease, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Li Wei
- Department of Thoracic Surgery, Zhengzhou Key Laboratory for Surgical Treatment for End-stage Lung Disease, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| |
Collapse
|
14
|
Mao P, Wang T, Du CW, Yu X, Wang MD. CXCL5 promotes tumorigenesis and angiogenesis of glioblastoma via JAK-STAT/NF-κb signaling pathways. Mol Biol Rep 2023; 50:8015-8023. [PMID: 37541997 DOI: 10.1007/s11033-023-08671-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/06/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND The tumor microenvironment contains chemokines that play a crucial role in various processes, such as tumorigenesis, inflammation, and therapy resistance, in different types of cancer. CXCL5 is a significant chemokine that has been shown to promote tumor proliferation, invasion, angiogenesis, and therapy resistance when overexpressed in various types of cancer. This research aims to investigate the impact of CXCL5 on the biological functions of glioblastoma (GBM). METHODS The TCGA GBM and GEO databases were utilized to perform transcriptome microarray analysis and oncogenic signaling pathway analysis of CXCL5 in GBM. Validation of CXCL5 expression was performed using RT-qPCR and Western Blot. The impact of CXCL5 on cell proliferation, tumorigenesis, and angiogenesis in GBM was assessed through various methods, including cell proliferation assay, cloning assay, intracranial xenograft tumor models, and tube formation assay. Clinical prognosis was evaluated in 59 samples of gliomas with varying degrees of malignancy (grades 2, 3, and 4) and the TCGA GBM database, based on CXCL5 expression levels. The activities of the JAK-STAT and NF-κB signaling pathways were detected using Western Blot. RESULTS The expression of CXCL5 was highly enriched in GBM. Moreover, the inhibition of CXCL5 showed a significant efficacy in suppressing cellular proliferation and angiogenesis, resulting in extended survival rates in xenograft mouse models in comparison to the control group. Notably, pretreatment with dapsone exhibited a reversal of the impact of CXCL5 on the formation of colonies and tubes in GBM cells. Elevated expression of CXCL5 was correlated with poor outcomes in GBM patients. Furthermore, the overexpression of CXCL5 has been associated with the activation of JAK-STAT and NF-κB signaling pathways. CONCLUSIONS CXCL5 plays an important role in tumorigenesis and angiogenesis, indicating the potential for novel therapies targeting CXCL5 in GBM.
Collapse
Affiliation(s)
- Ping Mao
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Tuo Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Chang-Wang Du
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Xiao Yu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Mao-De Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| |
Collapse
|
15
|
Zhao Y, Shen M, Wu L, Yang H, Yao Y, Yang Q, Du J, Liu L, Li Y, Bai Y. Stromal cells in the tumor microenvironment: accomplices of tumor progression? Cell Death Dis 2023; 14:587. [PMID: 37666813 PMCID: PMC10477351 DOI: 10.1038/s41419-023-06110-6] [Citation(s) in RCA: 142] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023]
Abstract
The tumor microenvironment (TME) is made up of cells and extracellular matrix (non-cellular component), and cellular components include cancer cells and non-malignant cells such as immune cells and stromal cells. These three types of cells establish complex signals in the body and further influence tumor genesis, development, metastasis and participate in resistance to anti-tumor therapy. It has attracted scholars to study immune cells in TME due to the significant efficacy of immune checkpoint inhibitors (ICI) and chimeric antigen receptor T (CAR-T) in solid tumors and hematologic tumors. After more than 10 years of efforts, the role of immune cells in TME and the strategy of treating tumors based on immune cells have developed rapidly. Moreover, ICI have been recommended by guidelines as first- or second-line treatment strategies in a variety of tumors. At the same time, stromal cells is another major class of cellular components in TME, which also play a very important role in tumor metabolism, growth, metastasis, immune evasion and treatment resistance. Stromal cells can be recruited from neighboring non-cancerous host stromal cells and can also be formed by transdifferentiation from stromal cells to stromal cells or from tumor cells to stromal cells. Moreover, they participate in tumor genesis, development and drug resistance by secreting various factors and exosomes, participating in tumor angiogenesis and tumor metabolism, regulating the immune response in TME and extracellular matrix. However, with the deepening understanding of stromal cells, people found that stromal cells not only have the effect of promoting tumor but also can inhibit tumor in some cases. In this review, we will introduce the origin of stromal cells in TME as well as the role and specific mechanism of stromal cells in tumorigenesis and tumor development and strategies for treatment of tumors based on stromal cells. We will focus on tumor-associated fibroblasts (CAFs), mesenchymal stem cells (MSCs), tumor-associated adipocytes (CAAs), tumor endothelial cells (TECs) and pericytes (PCs) in stromal cells.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, 130033, Changchun, Jilin, China
| | - Meili Shen
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, 130033, Changchun, Jilin, China
| | - Liangqiang Wu
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China
| | - Haiqin Yang
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China
| | - Yixuan Yao
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China
| | - Qingbiao Yang
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China
| | - Jianshi Du
- Key Laboratory of Lymphatic Surgery Jilin Province, Jilin Engineering Laboratory for Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin University, 130033, Changchun, Jilin, China
| | - Linlin Liu
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, 130033, Changchun, Jilin, China
| | - Yapeng Li
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China.
| | - Yuansong Bai
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, 130033, Changchun, Jilin, China.
| |
Collapse
|
16
|
Lee E, Cheung J, Bialkowska AB. Krüppel-like Factors 4 and 5 in Colorectal Tumorigenesis. Cancers (Basel) 2023; 15:cancers15092430. [PMID: 37173904 PMCID: PMC10177156 DOI: 10.3390/cancers15092430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Krüppel-like factors (KLFs) are transcription factors regulating various biological processes such as proliferation, differentiation, migration, invasion, and homeostasis. Importantly, they participate in disease development and progression. KLFs are expressed in multiple tissues, and their role is tissue- and context-dependent. KLF4 and KLF5 are two fascinating members of this family that regulate crucial stages of cellular identity from embryogenesis through differentiation and, finally, during tumorigenesis. They maintain homeostasis of various tissues and regulate inflammation, response to injury, regeneration, and development and progression of multiple cancers such as colorectal, breast, ovarian, pancreatic, lung, and prostate, to name a few. Recent studies broaden our understanding of their function and demonstrate their opposing roles in regulating gene expression, cellular function, and tumorigenesis. This review will focus on the roles KLF4 and KLF5 play in colorectal cancer. Understanding the context-dependent functions of KLF4 and KLF5 and the mechanisms through which they exert their effects will be extremely helpful in developing targeted cancer therapy.
Collapse
Affiliation(s)
- Esther Lee
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jacky Cheung
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Agnieszka B Bialkowska
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
17
|
Lantern-shaped flexible RNA origami for Smad4 mRNA delivery and growth suppression of colorectal cancer. Nat Commun 2023; 14:1307. [PMID: 36894556 PMCID: PMC9998469 DOI: 10.1038/s41467-023-37020-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
mRNA delivery has shown high application value in the treatment of various diseases, but its effective delivery is still a major challenge at present. Herein, we propose a lantern-shaped flexible RNA origami for mRNA delivery. The origami is composed of a target mRNA scaffold and only two customized RGD-modified circular RNA staples, which can compress the mRNA into nanoscale and facilitate its endocytosis by cells. In parallel, the flexible structure of the lantern-shaped origami allows large regions of the mRNA to be exposed and translated, exhibiting a good balance between endocytosis and translation efficiency. The application of lantern-shaped flexible RNA origami in the context of the tumor suppressor gene, Smad4 in colorectal cancer models demonstrates promising potential for accurate manipulation of protein levels in in vitro and in vivo settings. This flexible origami strategy provides a competitive delivery method for mRNA-based therapies.
Collapse
|
18
|
Yu J, Feng H, Sang Q, Li F, Chen M, Yu B, Xu Z, Pan T, Wu X, Hou J, Zhu Z, Yan C, Su L, Li J, Liu B. VPS35 promotes cell proliferation via EGFR recycling and enhances EGFR inhibitors response in gastric cancer. EBioMedicine 2023; 89:104451. [PMID: 36738481 PMCID: PMC9931929 DOI: 10.1016/j.ebiom.2023.104451] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Vacuolar protein sorting-associated protein 35 (VPS35) is a core component of the retromer complex which mediates intracellular protein transport. It is well known that dysfunctional VPS35 functions in the accumulation of pathogenic proteins. In our previous study, VPS35 was found to be a potential gene related to poor prognosis in gastric cancer. However, the biological functions of VPS35 in gastric cancer remain unclear. METHODS Cell viability assays were performed to examine whether VPS35 affected cell proliferation. Immunoprecipitation and biotin assays showed that VPS35 bound to epidermal growth factor receptor (EGFR) in the cytoplasm and recycled it to the cell surface. Patient-derived xenografts and organoids were used to evaluate the effect of VPS35 on the response of gastric cancer to EGFR inhibitors. FINDINGS VPS35 expression levels were upregulated in tumour tissues and correlated with local tumour invasion and poor survival in patients with gastric cancer. VPS35 promoted cell proliferation and increased tumour growth. Mechanistically, VPS35 selectively bound to endocytosed EGFR in early endosomes and recycled it back to the cell surface, leading to the downstream activation of the ERK1/2 pathway. We also found that high VPS35 expression levels increased the sensitivity of the xenograft and organoid models to EGFR inhibitors. INTERPRETATION VPS35 promotes cell proliferation by recycling EGFR to the cell surface, amplifying the network of receptor trafficking. VPS35 expression levels are positively correlated with gastric cancer sensitivity to EGFR inhibitors, which offers a potential method to stratify patients for EGFR inhibitor utilisation. FUNDING National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Junxian Yu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Haoran Feng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Qingqing Sang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Fangyuan Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Mengdi Chen
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Beiqin Yu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Zhuoqing Xu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Tao Pan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Xiongyan Wu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Junyi Hou
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Zhenggang Zhu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Chao Yan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Liping Su
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Jianfang Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China.
| | - Bingya Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China.
| |
Collapse
|
19
|
Chiu FY, Kvadas RM, Mheidly Z, Shahbandi A, Jackson JG. Could senescence phenotypes strike the balance to promote tumor dormancy? Cancer Metastasis Rev 2023; 42:143-160. [PMID: 36735097 DOI: 10.1007/s10555-023-10089-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/23/2023] [Indexed: 02/04/2023]
Abstract
After treatment and surgery, patient tumors can initially respond followed by a rapid relapse, or respond well and seemingly be cured, but then recur years or decades later. The state of surviving cancer cells during the long, undetected period is termed dormancy. By definition, the dormant tumor cells do not proliferate to create a mass that is detectable or symptomatic, but also never die. An intrinsic state and microenvironment that are inhospitable to the tumor would bias toward cell death and complete eradication, while conditions that favor the tumor would enable growth and relapse. In neither case would clinical dormancy be observed. Normal cells and tumor cells can enter a state of cellular senescence after stress such as that caused by cancer therapy. Senescence is characterized by a stable cell cycle arrest mediated by chromatin modifications that cause gene expression changes and a secretory phenotype involving many cytokines and chemokines. Senescent cell phenotypes have been shown to be both tumor promoting and tumor suppressive. The balance of these opposing forces presents an attractive model to explain tumor dormancy: phenotypes of stable arrest and immune suppression could promote survival, while reversible epigenetic programs combined with cytokines and growth factors that promote angiogenesis, survival, and proliferation could initiate the emergence from dormancy. In this review, we examine the phenotypes that have been characterized in different normal and cancer cells made senescent by various stresses and how these might explain the characteristics of tumor dormancy.
Collapse
Affiliation(s)
- Fang-Yen Chiu
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Raegan M Kvadas
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Zeinab Mheidly
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Ashkan Shahbandi
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - James G Jackson
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA.
| |
Collapse
|
20
|
Mesenchymal Stem Cells and Their Exocytotic Vesicles. Int J Mol Sci 2023; 24:ijms24032085. [PMID: 36768406 PMCID: PMC9916886 DOI: 10.3390/ijms24032085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Mesenchymal stem cells (MSCs), as a kind of pluripotent stem cells, have attracted much attention in orthopedic diseases, geriatric diseases, metabolic diseases, and sports functions due to their osteogenic potential, chondrogenic differentiation ability, and adipocyte differentiation. Anti-inflammation, anti-fibrosis, angiogenesis promotion, neurogenesis, immune regulation, and secreted growth factors, proteases, hormones, cytokines, and chemokines of MSCs have been widely studied in liver and kidney diseases, cardiovascular and cerebrovascular diseases. In recent years, many studies have shown that the extracellular vesicles of MSCs have similar functions to MSCs transplantation in all the above aspects. Here we review the research progress of MSCs and their exocrine vesicles in recent years.
Collapse
|
21
|
Xu M, Zhang T, Xia R, Wei Y, Wei X. Targeting the tumor stroma for cancer therapy. Mol Cancer 2022; 21:208. [PMID: 36324128 PMCID: PMC9628074 DOI: 10.1186/s12943-022-01670-1] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Tumors are comprised of both cancer cells and surrounding stromal components. As an essential part of the tumor microenvironment, the tumor stroma is highly dynamic, heterogeneous and commonly tumor-type specific, and it mainly includes noncellular compositions such as the extracellular matrix and the unique cancer-associated vascular system as well as a wide variety of cellular components including activated cancer-associated fibroblasts, mesenchymal stromal cells, pericytes. All these elements operate with each other in a coordinated fashion and collectively promote cancer initiation, progression, metastasis and therapeutic resistance. Over the past few decades, numerous studies have been conducted to study the interaction and crosstalk between stromal components and neoplastic cells. Meanwhile, we have also witnessed an exponential increase in the investigation and recognition of the critical roles of tumor stroma in solid tumors. A series of clinical trials targeting the tumor stroma have been launched continually. In this review, we introduce and discuss current advances in the understanding of various stromal elements and their roles in cancers. We also elaborate on potential novel approaches for tumor-stroma-based therapeutic targeting, with the aim to promote the leap from bench to bedside.
Collapse
Affiliation(s)
- Maosen Xu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Tao Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Ruolan Xia
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China.
| |
Collapse
|
22
|
Shan J, Han D, Shen C, Lei Q, Zhang Y. Mechanism and strategies of immunotherapy resistance in colorectal cancer. Front Immunol 2022; 13:1016646. [PMID: 36238278 PMCID: PMC9550896 DOI: 10.3389/fimmu.2022.1016646] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/05/2022] [Indexed: 11/15/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer in the world. Although there are standard treatment options for CRC, most patients respond poorly to these treatments. Immunotherapies have gradually emerged due to the increasing awareness and understanding of tumor immunity, exhibiting good therapeutic efficacy in various cancers. Immunotherapies include cytokines, immune checkpoint inhibitors (ICIs), and adoptive cell therapies. In particular, ICIs, which are antibodies against cytotoxic T lymphocyte-associated protein 4 (CTLA-4), programmed cell death 1 (PD-1), or its ligand PD-L1, have been successfully applied clinically for solid tumors, relieving the inhibitory effect of the tumor microenvironment on T cells. However, only a minority of patients with cancer achieve a durable clinical response during immunotherapy. Several factors restrict the efficacy of immunotherapy, leading to the development of drug resistance. In this review, we aimed to discuss the current status of immunotherapy for CRC and elaborate on the mechanisms that mediate resistance to immunotherapy and other potential therapeutic strategies.
Collapse
Affiliation(s)
- Jiqi Shan
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dong Han
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunyi Shen
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingyang Lei
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, China
| |
Collapse
|
23
|
Xu Z, Lv Z, Chen F, Zhang Y, Xu Z, Huo J, Liu W, Yu S, Tuersun A, Zhao J, Zong Y, Shen X, Feng W, Lu A. Dysbiosis of human tumor microbiome and aberrant residence of Actinomyces in tumor-associated fibroblasts in young-onset colorectal cancer. Front Immunol 2022; 13:1008975. [PMID: 36119074 PMCID: PMC9481283 DOI: 10.3389/fimmu.2022.1008975] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common form of cancer, and the incidence of sporadic young-onset colorectal cancer (yCRC) has been increasing. Microbiota residing in the tumor microenvironment are emerging tumor components. The colonic microbiome differs between patients with CRC and healthy controls; however, few studies have investigated the role of the tumor microbiota in disease diagnosis and tumorigenesis of yCRC. We performed 16S rRNA sequencing analysis to identify the microbiome in CRC and found that tumor microbial diversity decreased in yCRC. Proteobacteria and Firmicutes were the most abundant phyla in all CRC samples, and Actinomyces and Schaalia cardiffensis were the key microbiota in the yCRC group. Correlation analysis revealed that Actinomyces co-occurred with various pro-tumor microbial taxa, including Bacteroidia, Gammaproteobacteria, and Pseudomonas. An independent cohort was used to validate the results. The Actinomyces in CRC was co-localized with cancer-associated fibroblasts and activated the TLR2/NF-κB pathway and reduces CD8+ T lymphocyte infiltration in CRC microenvironment. This study suggests that tumoral microbiota plays an important role in promoting tumorigenesis and therefore has potential as a promising non-invasive tool and intervention target for anti-tumor therapy.
Collapse
Affiliation(s)
- Zhuoqing Xu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zeping Lv
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fangqian Chen
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuchen Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zifeng Xu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianting Huo
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wangyi Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Suyue Yu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Abudumaimaitijiang Tuersun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jingkun Zhao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yaping Zong
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaonan Shen
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Aiguo Lu, ; Wenqing Feng, ; Xiaonan Shen,
| | - Wenqing Feng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Aiguo Lu, ; Wenqing Feng, ; Xiaonan Shen,
| | - Aiguo Lu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Aiguo Lu, ; Wenqing Feng, ; Xiaonan Shen,
| |
Collapse
|
24
|
Ma C, Ma RJ, Hu K, Zheng QM, Wang YP, Zhang N, Sun ZG. The molecular mechanism of METTL3 promoting the malignant progression of lung cancer. Cancer Cell Int 2022; 22:133. [PMID: 35331234 PMCID: PMC8944087 DOI: 10.1186/s12935-022-02539-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
Lung cancer remains one of the major causes of cancer-related death globally. Recent studies have shown that aberrant m6A levels caused by METTL3 are involved in the malignant progression of various tumors, including lung cancer. The m6A modification, the most abundant RNA chemical modification, regulates RNA stabilization, splicing, translation, decay, and nuclear export. The methyltransferase complex plays a key role in the occurrence and development of many tumors by installing m6A modification. In this complex, METTL3 is the first identified methyltransferase, which is also the major catalytic enzyme. Recent findings have revealed that METTL3 is remarkably associated with different aspects of lung cancer progression, influencing the prognosis of patients. In this review, we will focus on the underlying mechanism of METT3 in lung cancer and predict the future work and potential clinical application of targeting METTL3 for lung cancer therapy.
Collapse
Affiliation(s)
- Chao Ma
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, 105 Jiefang Road, Jinan, 250013 Shandong China
- School of Clinical Medicine, Weifang Medical University, Weifang, 261053 Shangdong China
| | - Rui-Jie Ma
- Cheeloo College of Medicine, Shandong University, Jinan, 250013 Shangdong China
| | - Kang Hu
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, 105 Jiefang Road, Jinan, 250013 Shandong China
- School of Clinical Medicine, Weifang Medical University, Weifang, 261053 Shangdong China
| | - Qi-Ming Zheng
- Cheeloo College of Medicine, Shandong University, Jinan, 250013 Shangdong China
| | - Ye-Peng Wang
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, 105 Jiefang Road, Jinan, 250013 Shandong China
| | - Nan Zhang
- Breast Center, Central Hospital Affiliated to Shandong First Medical University, 105 Jiefang Road, Jinan, 250013 Shandong China
| | - Zhi-Gang Sun
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, 105 Jiefang Road, Jinan, 250013 Shandong China
| |
Collapse
|