1
|
Senapati S, Bertolini TB, Minnier MA, Yazicioglu MN, Markusic DM, Zhang R, Wicks J, Nahvi A, Herzog RW, Walsh MC, Cejas PJ, Armour SM. Inhibition of IFNAR-JAK signaling enhances tolerability and transgene expression of systemic non-viral DNA delivery. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102502. [PMID: 40206655 PMCID: PMC11979999 DOI: 10.1016/j.omtn.2025.102502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 02/28/2025] [Indexed: 04/11/2025]
Abstract
Lipid nanoparticles (LNPs) have demonstrated significant therapeutic value for non-viral delivery of mRNA and siRNA. While there is considerable interest in utilizing LNPs for delivering DNA (DNA-LNPs) to address a broad range of genetic disorders, acute inflammatory responses pose significant safety concerns and limit transgene expression below therapeutically relevant levels. However, the mechanisms and immune signaling pathways underlying DNA-LNP-triggered inflammatory responses are not well characterized. Through the use of gene-targeted mouse models, we have identified cGAS-STING and interferon-α/β receptor (IFNAR) pathways as major mediators of acute inflammation triggered by systemic delivery of DNA-LNPs. cGAS-STING activation induces expression of numerous JAK-STAT-activating cytokines, and we show that treatment of mice with the JAK inhibitors ruxolitinib or baricitinib significantly improves tolerability to systemically delivered DNA-LNPs. Furthermore, specific inhibition of IFNAR signaling enhances both DNA-LNP tolerability and transgene expression. Utilization of JAK inhibitors or IFNAR blockade represent promising strategies for enhancing the safety and efficacy of non-viral DNA delivery for gene therapy.
Collapse
Affiliation(s)
| | - Thais B. Bertolini
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | - David M. Markusic
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rui Zhang
- Discovery Group, Spark Therapeutics, Philadelphia, PA, USA
| | - Joan Wicks
- Gene Therapy Research, Spark Therapeutics, Philadelphia, PA, USA
| | - Ali Nahvi
- Discovery Group, Spark Therapeutics, Philadelphia, PA, USA
| | - Roland W. Herzog
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Pedro J. Cejas
- Discovery Group, Spark Therapeutics, Philadelphia, PA, USA
| | - Sean M. Armour
- Discovery Group, Spark Therapeutics, Philadelphia, PA, USA
| |
Collapse
|
2
|
Costa-Verdera H, Meneghini V, Fitzpatrick Z, Abou Alezz M, Fabyanic E, Huang X, Dzhashiashvili Y, Ahiya A, Mangiameli E, Valeri E, Crivicich G, Piccolo S, Cuccovillo I, Caccia R, Chan YK, Bertin B, Ronzitti G, Engel EA, Merelli I, Mingozzi F, Gritti A, Kuranda K, Kajaste-Rudnitski A. AAV vectors trigger DNA damage response-dependent pro-inflammatory signalling in human iPSC-derived CNS models and mouse brain. Nat Commun 2025; 16:3694. [PMID: 40251179 PMCID: PMC12008376 DOI: 10.1038/s41467-025-58778-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/01/2025] [Indexed: 04/20/2025] Open
Abstract
Adeno-associated viral (AAV) vector-based gene therapy is gaining foothold as treatment for genetic neurological diseases with encouraging clinical results. Nonetheless, dose-dependent adverse events have emerged in recent clinical trials through mechanisms that remain unclear. We have modelled here the impact of AAV transduction in cell models of the human central nervous system (CNS), taking advantage of induced pluripotent stem cells. Our work uncovers vector-induced innate immune mechanisms that contribute to cell death. While empty AAV capsids were well tolerated, the AAV genome triggered p53-dependent DNA damage responses across CNS cell types followed by the induction of inflammatory responses. In addition, transgene expression led to MAVS-dependent activation of type I interferon responses. Formation of DNA damage foci in neurons and gliosis were confirmed in murine striatum upon intraparenchymal AAV injection. Transduction-induced cell death and gliosis could be prevented by inhibiting p53 or by acting downstream on STING- or IL-1R-mediated responses. Together, our work identifies innate immune mechanisms of vector sensing in the CNS that can potentially contribute to AAV-associated neurotoxicity.
Collapse
Affiliation(s)
- Helena Costa-Verdera
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Spark Therapeutics, Inc., Philadelphia, PA, USA
| | - Vasco Meneghini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | | | - Monah Abou Alezz
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Xin Huang
- Spark Therapeutics, Inc., Philadelphia, PA, USA
| | | | | | - Elisabeth Mangiameli
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Erika Valeri
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giovanni Crivicich
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Silvia Piccolo
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ivan Cuccovillo
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Caccia
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ying Kai Chan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Cirrus Therapeutics, Cambridge, MA, USA
| | - Bérangère Bertin
- Genethon, Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
| | - Giuseppe Ronzitti
- Genethon, Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
| | | | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | | | - Anna Kajaste-Rudnitski
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| |
Collapse
|
3
|
Keeler AM, Zhan W, Ram S, Fitzgerald KA, Gao G. The curious case of AAV immunology. Mol Ther 2025:S1525-0016(25)00211-4. [PMID: 40156190 DOI: 10.1016/j.ymthe.2025.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/17/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Immune responses to adeno-associated virus (AAV) have long been perplexing, from its first discovery to the latest clinical trials of recombinant AAV (rAAV) therapy. Wild-type AAV (wtAAV) does not cause any known disease, making it an ideal vector for gene therapy, as viral vectors retain virus-like properties. Although AAV stimulates only a mild immune response compared with other viruses, it is still recognized by the innate immune system and induces adaptive immune responses. B cell responses against both wtAAV and rAAV are robust and can hinder gene therapy applications and prevent redosing. T cell responses can clear transduced cells or establish tolerance against gene therapy. Immune responses to AAV gene therapy are influenced by many factors. Most clinical immunotoxicities that develop in response to gene therapies have emerged as higher doses of AAV vectors have been utilized and were not properly modeled in preclinical animal studies. Thus, several strategies have been undertaken to reduce or mitigate immune responses to AAV. While we have learned a considerable amount about how the immune system responds to AAV gene therapy since the discovery of AAV virus, it still remains a curious case that requires more investigation to fully understand.
Collapse
Affiliation(s)
- Allison M Keeler
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Genetic and Cellular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; NeroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Wei Zhan
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA; Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Katherine A Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Genetic and Cellular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
4
|
Puzzo F, Kay MA. The deLIVERed promises of gene therapy: Past, present, and future of liver-directed gene therapy. Mol Ther 2025:S1525-0016(25)00215-1. [PMID: 40156191 DOI: 10.1016/j.ymthe.2025.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Gene therapy has revolutionized modern medicine by offering innovative treatments for genetic and acquired diseases. The liver has been and continues as a prime target for in vivo gene therapy due to its essential biological functions, vascular access to the major target cell (hepatocytes), and relatively immunotolerant environment. Adeno-associated virus (AAV) vectors have become the cornerstone of liver-directed therapies, demonstrating remarkable success in conditions such as hemophilia A and B, with US Food and Drug Administration (FDA)-approved therapies like etranacogene dezaparvovec, Beqvez, and Roctavian marking milestones in the field. Despite these advances, challenges persist, including vector immunogenicity, species-specific barriers, and high manufacturing costs. Innovative strategies, such as capsid engineering, immune modulation, and novel delivery systems, are continuing to address these issues in expanding the scope of therapeutic applications. Some of the challenges with many new therapies result in the discordance between preclinical success and translation into humans. The advent of various genome-editing tools to repair genomic mutations or insert therapeutic DNAs into precise locations in the genome further enhances the potential for a single-dose medicine that will offer durable life-long therapeutic treatments. As advancements accelerate, liver-targeted gene therapy is poised to continue to transform the treatment landscape for both genetic and acquired disorders, for which unmet challenges remain.
Collapse
Affiliation(s)
- Francesco Puzzo
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| | - Mark A Kay
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
5
|
Herzog RW, Kaczmarek R, High KA. Gene therapy for hemophilia - From basic science to first approvals of "one-and-done" therapies. Mol Ther 2025:S1525-0016(25)00217-5. [PMID: 40156189 DOI: 10.1016/j.ymthe.2025.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Realistic paths to gene therapy for the X-linked bleeding disorder hemophilia started to materialize in the mid 1990s, resulting in disease correction in small and large animal models. Out of a diversity of approaches, in vivo adeno-associated viral (AAV) gene transfer to hepatocytes emerged as the most promising strategy, eventually forming the basis for multiple advanced clinical trials and regulatory approval of two products for the treatment of hemophilia B (coagulation factor IX deficiency) and one for hemophilia A (factor VIII deficiency). Ideally, gene therapy is effective with a single administration, thus providing therapeutic factor levels over a period of years, without the need for frequent injections. Overcoming multiple obstacles, some not predicted by preclinical studies, sustained partial to complete correction of coagulation for several years to an entire decade has now been documented in patients, with observation ongoing. A hyperactive form of FIX improved efficacy in hemophilia B, and superior engineered variants of FVIII are emerging. Nonetheless, challenges remain, including pre-existing immunity to AAV capsids, toxicities, inter-patient variability in response to treatment, and difficulty in obtaining durable therapeutic expression of FVIII. In alternative approaches, in vivo gene editing and ex vivo gene therapies targeting hemopoietic cells are in development.
Collapse
Affiliation(s)
- Roland W Herzog
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Radoslaw Kaczmarek
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Katherine A High
- Laboratory of Blood and Vascular Biology, Rockefeller University, New York, NY, USA.
| |
Collapse
|
6
|
Piccolo P, Brunetti-Pierri N. Current and Emerging Issues in Adeno-Associated Virus Vector-Mediated Liver-Directed Gene Therapy. Hum Gene Ther 2025; 36:77-87. [PMID: 39714937 DOI: 10.1089/hum.2024.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
Adeno-associated virus (AAV) vectors have demonstrated safety and efficacy for gene transfer to hepatocytes in preclinical models, in various clinical trials and from a clinical experience with a growing number of approved gene therapy products. Although the exact duration is unknown, the expression of therapeutic genes in hepatocytes remains stable for several years after a single administration of the vector at clinically relevant doses in adult patients with hemophilia and other inherited metabolic disorders. However, clinical applications, especially for diseases requiring high AAV vector doses by intravenous administrations, have raised several concerns. These include the high prevalence of pre-existing immunity against the vector capsid, activation of the complement and the innate immunity with serious life-threatening complications, elevation of liver transaminases, liver growth associated with loss of transgene expression, underlying conditions negatively affecting AAV vector safety and efficacy. Despite these issues, the field is rapidly advancing with a better understanding of vector-host interactions and the development of new strategies to improve liver-directed gene therapy. This review provides an overview of the current and emerging challenges for AAV-mediated liver-directed gene therapy.
Collapse
Affiliation(s)
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
- Genomics and Experimental Medicine Program, Scuola Superiore Meridionale (SSM, School of Advanced Studies), Naples, Italy
| |
Collapse
|
7
|
Maulana TI, Wevers NR, Kristoforus T, Chandler M, Lanz HL, Joore J, Vulto P, Villenave R, Kustermann S, Loskill P, Bircsak KM. Opportunities for Microphysiological Systems in Toxicity Testing of New Drug Modalities. Annu Rev Pharmacol Toxicol 2025; 65:47-69. [PMID: 39227343 DOI: 10.1146/annurev-pharmtox-061724-080621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
New drug modalities offer life-saving benefits for patients through access to previously undruggable targets. Yet these modalities pose a challenge for the pharmaceutical industry, as side effects are complex, unpredictable, and often uniquely human. With animal studies having limited predictive value due to translatability challenges, the pharmaceutical industry seeks out new approach methodologies. Microphysiological systems (MPS) offer important features that enable complex toxicological processes to be modeled in vitro such as (a) an adjustable complexity of cellular components, including immune components; (b) a modifiable tissue architecture; (c) integration and monitoring of dynamic mechanisms; and (d) a multiorgan connection. Here we review MPS studies in the context of four clinical adverse events triggered by new drug modalities: peripheral neuropathy, thrombocytopenia, immune-mediated hepatotoxicity, and cytokine release syndrome. We conclude that while the use of MPS for testing new drug modality-induced toxicities is still in its infancy, we see strong potential going forward.
Collapse
Affiliation(s)
- Tengku Ibrahim Maulana
- Department for Microphysiological Systems, Institute of Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | | | - Theodora Kristoforus
- Department for Microphysiological Systems, Institute of Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | | | | | - Jos Joore
- MIMETAS BV, Oegstgeest, The Netherlands
| | | | - Remi Villenave
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Stefan Kustermann
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Peter Loskill
- Department for Microphysiological Systems, Institute of Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | | |
Collapse
|
8
|
Li N, Kumar SRP, Cao D, Munoz-Melero M, Arisa S, Brian BA, Greenwood CM, Yamada K, Duan D, Herzog RW. Redundancy in Innate Immune Pathways That Promote CD8 + T-Cell Responses in AAV1 Muscle Gene Transfer. Viruses 2024; 16:1507. [PMID: 39459842 PMCID: PMC11512359 DOI: 10.3390/v16101507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 10/28/2024] Open
Abstract
While adeno-associated viral (AAV) vectors are successfully used in a variety of in vivo gene therapy applications, they continue to be hampered by the immune system. Here, we sought to identify innate and cytokine signaling pathways that promote CD8+ T-cell responses against the transgene product upon AAV1 vector administration to murine skeletal muscle. Eliminating just one of several pathways (including DNA sensing via TLR9, IL-1 receptor signaling, and possibly endosomal sensing of double-stranded RNA) substantially reduced the CD8+ T-cell response at lower vector doses but was surprisingly ineffective at higher doses. Using genetic, antibody-mediated, and vector engineering approaches, we show that blockade of at least two innate pathways is required to achieve an effect at higher vector doses. Concurrent blockade of IL-1R1 > MyD88 and TLR9 > MyD88 > type I IFN > IFNaR pathways was often but not always synergistic and had limited utility in preventing antibody formation against the transgene product. Further, even low-frequency CD8+ T-cell responses could eliminate transgene expression, even in MyD88- or IL-1R1-deficient animals that received a low vector dose. However, we provide evidence that CpG depletion of vector genomes and including TLR9 inhibitory sequences can synergize. When this construct was combined with the use of a muscle-specific promoter, transgene expression in muscle was sustained with minimal local or systemic CD8+ T-cell response. Thus, innate immune avoidance/blockade strategies by themselves, albeit helpful, may not be sufficient to prevent destructive cellular responses in muscle gene transfer because of the redundancy of immune-activating pathways.
Collapse
Affiliation(s)
- Ning Li
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA; (N.L.); (D.C.); (M.M.-M.); (S.A.); (B.A.B.); (C.M.G.); (K.Y.)
| | - Sandeep R. P. Kumar
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA; (N.L.); (D.C.); (M.M.-M.); (S.A.); (B.A.B.); (C.M.G.); (K.Y.)
| | - Di Cao
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA; (N.L.); (D.C.); (M.M.-M.); (S.A.); (B.A.B.); (C.M.G.); (K.Y.)
| | - Maite Munoz-Melero
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA; (N.L.); (D.C.); (M.M.-M.); (S.A.); (B.A.B.); (C.M.G.); (K.Y.)
| | - Sreevani Arisa
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA; (N.L.); (D.C.); (M.M.-M.); (S.A.); (B.A.B.); (C.M.G.); (K.Y.)
| | - Bridget A. Brian
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA; (N.L.); (D.C.); (M.M.-M.); (S.A.); (B.A.B.); (C.M.G.); (K.Y.)
| | - Calista M. Greenwood
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA; (N.L.); (D.C.); (M.M.-M.); (S.A.); (B.A.B.); (C.M.G.); (K.Y.)
| | - Kentaro Yamada
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA; (N.L.); (D.C.); (M.M.-M.); (S.A.); (B.A.B.); (C.M.G.); (K.Y.)
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, USA;
| | - Roland W. Herzog
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA; (N.L.); (D.C.); (M.M.-M.); (S.A.); (B.A.B.); (C.M.G.); (K.Y.)
| |
Collapse
|
9
|
Araujo AE, Bentler M, Perez Garmendia X, Kaleem A, Fabian C, Morgan M, Hacker UT, Büning H. Adeno-Associated Virus Vectors-a Target of Cellular and Humoral Immunity-are Expanding Their Reach Toward Hematopoietic Stem Cell Modification and Immunotherapies. Hum Gene Ther 2024; 35:586-603. [PMID: 39193633 DOI: 10.1089/hum.2024.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
All current market-approved gene therapy medical products for in vivo gene therapy of monogenic diseases rely on adeno-associated virus (AAV) vectors. Advances in gene editing technologies and vector engineering have expanded the spectrum of target cells and, thus, diseases that can be addressed. Consequently, AAV vectors are now being explored to modify cells of the hematopoietic system, including hematopoietic stem and progenitor cells (HSPCs), to develop novel strategies to treat monogenic diseases, but also to generate cell- and vaccine-based immunotherapies. However, the cell types that represent important new targets for the AAV vector system are centrally involved in immune responses against the vector and its transgene product as discussed briefly in the first part of this review. In the second part, studies exploring AAV vectors for genetic engineering of HSPCs, T and B lymphocytes, and beyond are presented.
Collapse
Affiliation(s)
- Angela E Araujo
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Martin Bentler
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | | | - Asma Kaleem
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Claire Fabian
- Laboratory for Vector based immunotherapy, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- Medical Department II, University Cancer Center Leipzig (UCCL), Leipzig University Medical Center, Cancer Center Central Germany, Leipzig, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Ulrich T Hacker
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Laboratory for Vector based immunotherapy, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- Medical Department II, University Cancer Center Leipzig (UCCL), Leipzig University Medical Center, Cancer Center Central Germany, Leipzig, Germany
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| |
Collapse
|
10
|
Gonzalez-Visiedo M, Herzog RW, Munoz-Melero M, Blessinger SA, Cook-Mills JM, Daniell H, Markusic DM. Viral Vector Based Immunotherapy for Peanut Allergy. Viruses 2024; 16:1125. [PMID: 39066287 PMCID: PMC11281582 DOI: 10.3390/v16071125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Food allergy (FA) is estimated to impact up to 10% of the population and is a growing health concern. FA results from a failure in the mucosal immune system to establish or maintain immunological tolerance to innocuous dietary antigens, IgE production, and the release of histamine and other mediators upon exposure to a food allergen. Of the different FAs, peanut allergy has the highest incidence of severe allergic responses, including systemic anaphylaxis. Despite the recent FDA approval of peanut oral immunotherapy and other investigational immunotherapies, a loss of protection following cessation of therapy can occur, suggesting that these therapies do not address the underlying immune response driving FA. Our lab has shown that liver-directed gene therapy with an adeno-associated virus (AAV) vector induces transgene product-specific regulatory T cells (Tregs), eradicates pre-existing pathogenic antibodies, and protects against anaphylaxis in several models, including ovalbumin induced FA. In an epicutaneous peanut allergy mouse model, the hepatic AAV co-expression of four peanut antigens Ara h1, Ara h2, Ara h3, and Ara h6 together or the single expression of Ara h3 prevented the development of a peanut allergy. Since FA patients show a reduction in Treg numbers and/or function, we believe our approach may address this unmet need.
Collapse
Affiliation(s)
- Miguel Gonzalez-Visiedo
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.M.-M.); (S.A.B.); (J.M.C.-M.)
| | - Roland W. Herzog
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.M.-M.); (S.A.B.); (J.M.C.-M.)
| | - Maite Munoz-Melero
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.M.-M.); (S.A.B.); (J.M.C.-M.)
| | - Sophia A. Blessinger
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.M.-M.); (S.A.B.); (J.M.C.-M.)
| | - Joan M. Cook-Mills
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.M.-M.); (S.A.B.); (J.M.C.-M.)
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - David M. Markusic
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.M.-M.); (S.A.B.); (J.M.C.-M.)
| |
Collapse
|
11
|
Cao D, Byrne BJ, de Jong YP, Terhorst C, Duan D, Herzog RW, Kumar SR. Innate Immune Sensing of Adeno-Associated Virus Vectors. Hum Gene Ther 2024; 35:451-463. [PMID: 38887999 PMCID: PMC11310564 DOI: 10.1089/hum.2024.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/04/2024] [Indexed: 06/20/2024] Open
Abstract
Adeno-associated virus (AAV) based viral vectors are widely used in human gene therapy and form the basis of approved treatments for several genetic diseases. Immune responses to vector and transgene products, however, substantially complicate these applications in clinical practice. The role of innate immune recognition of AAV vectors was initially unclear, given that inflammatory responses early after vector administration were typically mild in animal models. However, more recent research continues to identify innate immune pathways that are triggered by AAV vectors and that serve to provide activation signals for antigen-presenting cells and initiation of adaptive immune responses. Sensing of the AAV genome by the endosomal DNA receptor toll-like receptor 9 (TLR9) promotes early inflammatory response and interferon expression. Thus, activation of the TLR9>MyD88 pathway in plasmacytoid dendritic cells (pDCs) leads to the conditioning of antigen cross-presenting DCs through type I interferon (IFN-I) and ultimately CD8+ T cell activation. Alternatively, pDCs may also promote CD8+ T cell responses in a TLR9-independent manner by the production of IL-1 cytokines, thereby activating the IL-1R1>MyD88 signaling pathway. AAV can induce cytokine expression in monocyte-derived DCs, which in turn increases antibody formation. Binding of AAV capsid to complement components likely further elevates B cell activation. At high systemic vector doses in humans and in non-human primates, AAV vectors can trigger complement activation, with contributions by classical and alternative pathways, leading to severe toxicities. Finally, evidence for activation of TLR2 by the capsid and of additional innate receptors for nucleic acids has been presented. These observations show that AAV vectors can initiate several and likely redundant innate immune pathways resulting in an exaggerated adaptive immune response.
Collapse
Affiliation(s)
- Di Cao
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, Indiana, USA
| | - Barry J. Byrne
- Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Ype P. de Jong
- Division of Gastroenterology & Hepatology, Weill Cornell Medicine, New York, New York, USA
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center (BIDMC), Boston, Massachusetts, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Roland W. Herzog
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, Indiana, USA
| | - Sandeep R.P. Kumar
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
12
|
Glenn JD, Negash H, Henry W, Qian R, Liu Y, Danos O, Bruder JT, Karumuthil-Melethil S. The presence of CpGs in AAV gene therapy vectors induces a plasmacytoid dendritic cell-like population very early after administration. Cell Immunol 2024; 399-400:104823. [PMID: 38520831 DOI: 10.1016/j.cellimm.2024.104823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/01/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
AAV-mediated gene transfer is a promising platform still plagued by potential host-derived, antagonistic immune responses to therapeutic components. CpG-mediated TLR9 stimulation activates innate immune cells and leads to cognate T cell activation and suppression of transgene expression. Here, we demonstrate that CpG depletion increased expression of an antibody transgene product by 2-3-fold as early as 24 h post-vector administration in mice. No significant differences were noted in anti-transgene product/ anti-AAV capsid antibody production or cytotoxic gene induction. Instead, CpG depletion significantly reduced the presence of a pDC-like myeloid cell population, which was able to directly bind the antibody transgene product via Fc-FcγR interactions. Thus, we extend the mechanisms of TLR9-mediated antagonism of transgene expression in AAV gene therapy to include the actions of a previously unreported pDC-like cell population.
Collapse
Affiliation(s)
- Justin D Glenn
- REGENXBIO Inc., 9804 Medical Center Drive, Rockville, MD 20850, USA.
| | - Henos Negash
- REGENXBIO Inc., 9804 Medical Center Drive, Rockville, MD 20850, USA
| | - William Henry
- REGENXBIO Inc., 9804 Medical Center Drive, Rockville, MD 20850, USA
| | - Randolph Qian
- REGENXBIO Inc., 9804 Medical Center Drive, Rockville, MD 20850, USA
| | - Ye Liu
- REGENXBIO Inc., 9804 Medical Center Drive, Rockville, MD 20850, USA
| | - Olivier Danos
- REGENXBIO Inc., 9804 Medical Center Drive, Rockville, MD 20850, USA
| | - Joseph T Bruder
- REGENXBIO Inc., 9804 Medical Center Drive, Rockville, MD 20850, USA
| | | |
Collapse
|
13
|
Wang JH, Gessler DJ, Zhan W, Gallagher TL, Gao G. Adeno-associated virus as a delivery vector for gene therapy of human diseases. Signal Transduct Target Ther 2024; 9:78. [PMID: 38565561 PMCID: PMC10987683 DOI: 10.1038/s41392-024-01780-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
Adeno-associated virus (AAV) has emerged as a pivotal delivery tool in clinical gene therapy owing to its minimal pathogenicity and ability to establish long-term gene expression in different tissues. Recombinant AAV (rAAV) has been engineered for enhanced specificity and developed as a tool for treating various diseases. However, as rAAV is being more widely used as a therapy, the increased demand has created challenges for the existing manufacturing methods. Seven rAAV-based gene therapy products have received regulatory approval, but there continue to be concerns about safely using high-dose viral therapies in humans, including immune responses and adverse effects such as genotoxicity, hepatotoxicity, thrombotic microangiopathy, and neurotoxicity. In this review, we explore AAV biology with an emphasis on current vector engineering strategies and manufacturing technologies. We discuss how rAAVs are being employed in ongoing clinical trials for ocular, neurological, metabolic, hematological, neuromuscular, and cardiovascular diseases as well as cancers. We outline immune responses triggered by rAAV, address associated side effects, and discuss strategies to mitigate these reactions. We hope that discussing recent advancements and current challenges in the field will be a helpful guide for researchers and clinicians navigating the ever-evolving landscape of rAAV-based gene therapy.
Collapse
Affiliation(s)
- Jiang-Hui Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, 3002, Australia
| | - Dominic J Gessler
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Neurological Surgery, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Wei Zhan
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Thomas L Gallagher
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
14
|
Rana J, Herzog RW, Muñoz-Melero M, Yamada K, Kumar SR, Lam AK, Markusic DM, Duan D, Terhorst C, Byrne BJ, Corti M, Biswas M. B cell focused transient immune suppression protocol for efficient AAV readministration to the liver. Mol Ther Methods Clin Dev 2024; 32:101216. [PMID: 38440160 PMCID: PMC10911854 DOI: 10.1016/j.omtm.2024.101216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/18/2024] [Indexed: 03/06/2024]
Abstract
Adeno-associated virus (AAV) vectors are used for correcting multiple genetic disorders. Although the goal is to achieve lifelong correction with a single vector administration, the ability to redose would enable the extension of therapy in cases in which initial gene transfer is insufficient to achieve a lasting cure, episomal vector forms are lost in growing organs of pediatric patients, or transgene expression is diminished over time. However, AAV typically induces potent and long-lasting neutralizing antibodies (NAbs) against capsid that prevents re-administration. To prevent NAb formation in hepatic AAV8 gene transfer, we developed a transient B cell-targeting protocol using a combination of monoclonal Ab therapy against CD20 (for B cell depletion) and BAFF (to slow B cell repopulation). Initiation of immunosuppression before (rather than at the time of) vector administration and prolonged anti-BAFF treatment prevented immune responses against the transgene product and abrogated prolonged IgM formation. As a result, vector re-administration after immune reconstitution was highly effective. Interestingly, re-administration before the immune system had fully recovered achieved further elevated levels of transgene expression. Finally, this immunosuppression protocol reduced Ig-mediated AAV uptake by immune cell types with implications to reduce the risk of immunotoxicities in human gene therapy with AAV.
Collapse
Affiliation(s)
- Jyoti Rana
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Roland W. Herzog
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Maite Muñoz-Melero
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Kentaro Yamada
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Sandeep R.P. Kumar
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Anh K. Lam
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - David M. Markusic
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Barry J. Byrne
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32607, USA
| | - Manuela Corti
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32607, USA
| | - Moanaro Biswas
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| |
Collapse
|