1
|
Song X, Li R, Chu X, Li Q, Li R, Li Q, Tong KY, Gu X, Ming D. Multilevel analysis of the central-peripheral-target organ pathway: contributing to recovery after peripheral nerve injury. Neural Regen Res 2025; 20:2807-2822. [PMID: 39435615 PMCID: PMC11826472 DOI: 10.4103/nrr.nrr-d-24-00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/06/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities. Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites, neglecting multilevel pathological analysis of the overall nervous system and target organs. This has led to restrictions on current therapeutic approaches. In this paper, we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective, covering the central nervous system, peripheral nervous system, and target organs. After peripheral nerve injury, the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves; changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord. The nerve will undergo axonal regeneration, activation of Schwann cells, inflammatory response, and vascular system regeneration at the injury site. Corresponding damage to target organs can occur, including skeletal muscle atrophy and sensory receptor disruption. We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury. The main current treatments are conducted passively and include physical factor rehabilitation, pharmacological treatments, cell-based therapies, and physical exercise. However, most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway. Therefore, we should further explore multilevel treatment options that produce effective, long-lasting results, perhaps requiring a combination of passive (traditional) and active (novel) treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.
Collapse
Affiliation(s)
- Xizi Song
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Machine Interface and Human-Machine Fusion, Tianjin, China
| | - Ruixin Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Machine Interface and Human-Machine Fusion, Tianjin, China
| | - Xiaolei Chu
- Department of Rehabilitation, Tianjin University Tianjin Hospital, Tianjin, China
| | - Qi Li
- Department of Rehabilitation, Tianjin University Tianjin Hospital, Tianjin, China
| | - Ruihua Li
- Department of Hand Microsurgery, Tianjin University Tianjin Hospital, Tianjin, China
| | - Qingwen Li
- School of Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Kai-Yu Tong
- Department of Biomedical Engineering, the Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xiaosong Gu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Machine Interface and Human-Machine Fusion, Tianjin, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Machine Interface and Human-Machine Fusion, Tianjin, China
| |
Collapse
|
2
|
Calderon-Rivera A, Gomez K, Rodríguez-Palma EJ, Khanna R. SUMOylation and DeSUMOylation: Tug of War of Pain Signaling. Mol Neurobiol 2025; 62:3305-3321. [PMID: 39276308 DOI: 10.1007/s12035-024-04478-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/02/2024] [Indexed: 09/16/2024]
Abstract
SUMOylation is a post-translational modification that attaches a small ubiquitin-like modifier (SUMO) group to a target protein via SUMO ligases, while deSUMOylation refers to the removal of this SUMO group by sentrin-specific proteases (SENPs). Although the functions of these processes have been well described in the nucleus, the role of SUMOylation and deSUMOylation in regulating ion channels is emerging as a novel area of study. Despite this, their contributions to pain signaling remain less clear. Therefore, this review consolidates the current evidence on the link(s) between SUMOylation, deSUMOylation, and pain, with a specific focus on ion channels expressed in the sensory system. Additionally, we explore the role of SUMOylation in the expression and function of kinases, vesicle proteins, and transcription factors, which result in the modulation of certain ion channels contributing to pain. Altogether, this review aims to highlight the relationship between SUMOylation and deSUMOylation in the modulation of ion channels, ultimately exploring the potential therapeutic role of these processes in chronic pain.
Collapse
Affiliation(s)
- Aida Calderon-Rivera
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, Gainesville, FL, 32610, USA
| | - Kimberly Gomez
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, Gainesville, FL, 32610, USA
| | - Erick J Rodríguez-Palma
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, Gainesville, FL, 32610, USA
| | - Rajesh Khanna
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, Gainesville, FL, 32610, USA.
- Pain and Addiction Therapeutics (PATH) Collaboratory, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
3
|
Hestehave S, Allen HN, Gomez K, Duran P, Calderon-Rivera A, Loya-López S, Rodríguez-Palma EJ, Khanna R. Small molecule targeting Na V 1.7 via inhibition of CRMP2-Ubc9 interaction reduces pain-related outcomes in a rodent osteoarthritic model. Pain 2025; 166:99-111. [PMID: 39106443 PMCID: PMC11649477 DOI: 10.1097/j.pain.0000000000003357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/30/2024] [Indexed: 08/09/2024]
Abstract
ABSTRACT Osteoarthritis (OA) is a highly prevalent and disabling joint disease, characterized by pathological progressive joint deformation and clinical symptoms of pain. Disease-modifying treatments remain unavailable, and pain-mitigation is often suboptimal, but recent studies suggest beneficial effects by inhibition of the voltage-gated sodium channel Na V 1.7. We previously identified compound 194 as an indirect inhibitor of Na V 1.7 by preventing SUMOylation of the Na V 1.7-trafficking protein, collapsin response mediator protein 2. Compound 194 reduces the functional activity of Na V 1.7 channels and produces effective analgesia in a variety of acute and neuropathic pain models. However, its effectiveness has not yet been evaluated in models of OA. Here, we explore the effects of 194 on pain-related outcomes in the OA-like monoiodoacetate model using behavioral assessment, biochemistry, novel in vivo fiber photometry, and patch clamp electrophysiology. We found that the monoiodoacetate model induced (1) increased pain-like behaviors and calcium responses of glutamatergic neurons in the parabrachial nucleus after evoked cold and mechanical stimuli, (2) conditioned place aversion to mechanical stimulation, (3) functional weight bearing asymmetry, (4) increased sodium currents in dorsal root ganglia neurons, and (5) increased calcitonin gene-related peptide-release in the spinal cord. Crucially, administration of 194 improved all these pain-related outcomes. Collectively, these findings support indirect inhibition of Na V 1.7 as an effective treatment of OA-related pain through the inhibition of collapsin response mediator protein 2-SUMOylation via compound 194.
Collapse
Affiliation(s)
- Sara Hestehave
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York 10010, USA
- Pain Research Center, New York University, New York, NY 10010, USA
| | - Heather N. Allen
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York 10010, USA
- Pain Research Center, New York University, New York, NY 10010, USA
| | - Kimberly Gomez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York 10010, USA
- Pain Research Center, New York University, New York, NY 10010, USA
| | - Paz Duran
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York 10010, USA
- Pain Research Center, New York University, New York, NY 10010, USA
| | - Aida Calderon-Rivera
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York 10010, USA
- Pain Research Center, New York University, New York, NY 10010, USA
| | - Santiago Loya-López
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York 10010, USA
- Pain Research Center, New York University, New York, NY 10010, USA
| | - Erick J. Rodríguez-Palma
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York 10010, USA
- Pain Research Center, New York University, New York, NY 10010, USA
| | - Rajesh Khanna
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York 10010, USA
- Pain Research Center, New York University, New York, NY 10010, USA
| |
Collapse
|
4
|
McDougall JJ. NaViGating arthritis pain. Pain 2025; 166:5-6. [PMID: 39106441 DOI: 10.1097/j.pain.0000000000003358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 08/09/2024]
Affiliation(s)
- Jason J McDougall
- Departments of Pharmacology and Anaesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
5
|
Allen HN, Hestehave S, Duran P, Nelson TS, Khanna R. Uncoupling the CRMP2-Ca V2.2 Interaction Reduces Pain-Like Behavior in a Preclinical Joint-Pain Model. THE JOURNAL OF PAIN 2024; 25:104664. [PMID: 39233208 PMCID: PMC11560641 DOI: 10.1016/j.jpain.2024.104664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Osteoarthritis (OA) represents a significant pain challenge globally, as current treatments are limited and come with substantial and adverse side effects. Voltage-gated calcium channels have proved to be pharmacologically effective targets, with multiple Food and Drug Administration-approved CaV2.2 modulators available for the treatment of pain. Although effective, drugs targeting CaV2.2 are complicated by the same obstacles facing other pain therapeutics-invasive routes of administration, narrow therapeutic windows, side effects, and addiction potential. We have identified a key regulator of CaV2.2 channels, collapsin response mediator protein 2, that allows us to indirectly regulate CaV2.2 expression and function. We previously developed a peptidomimetic modulator of collapsin response mediator protein 2, CBD3063, that effectively reverses neuropathic and inflammatory pain without negative side effects by reducing membrane expression of CaV2.2. The potent analgesic properties of CBD3063, combined with the lack of negative side effects, prompted us to assess the efficacy of CBD3063 in a rodent model of OA pain. Here, we demonstrate the intraperitoneal administration of CBD3063 alleviates both evoked and nonevoked behavioral hallmarks of OA pain. Further, we reveal that CBD3063 reduces OA-induced increased neural activity in the parabrachial nucleus, a key supraspinal site modulating the pain experience. Together, these studies suggest that CBD3063 is an effective analgesic for OA pain. PERSPECTIVE: Despite the high prevalence of OA pain worldwide, current treatment options remain limited. We demonstrate that CBD3063-mediated disruption of the CaV2.2-collapsin response mediator protein 2 interaction alleviates pain in a preclinical joint pain model, providing a promising basis for the development of new OA pain treatments.
Collapse
Affiliation(s)
- Heather N Allen
- Department of Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, Florida
| | - Sara Hestehave
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York; Department of Experimental Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Paz Duran
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York
| | - Tyler S Nelson
- Department of Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, Florida
| | - Rajesh Khanna
- Department of Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, Florida.
| |
Collapse
|
6
|
Lee KH, Kim UJ, Cha M, Lee BH. Inhibiting Nav1.7 channels in pulpitis: An in vivo study on neuronal hyperexcitability. Biochem Biophys Res Commun 2024; 717:150044. [PMID: 38718567 DOI: 10.1016/j.bbrc.2024.150044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/30/2024] [Indexed: 05/21/2024]
Abstract
Pulpitis constitutes a significant challenge in clinical management due to its impact on peripheral nerve tissue and the persistence of chronic pain. Despite its clinical importance, the correlation between neuronal activity and the expression of voltage-gated sodium channel 1.7 (Nav1.7) in the trigeminal ganglion (TG) during pulpitis is less investigated. The aim of this study was to examine the relationship between experimentally induced pulpitis and Nav1.7 expression in the TG and to investigate the potential of selective Nav1.7 modulation to attenuate TG abnormal activity associated with pulpitis. Acute pulpitis was induced at the maxillary molar (M1) using allyl isothiocyanate (AITC). The mice were divided into three groups: control, pulpitis model, and pulpitis model treated with ProTx-II, a selective Nav1.7 channel inhibitor. After three days following the surgery, we conducted a recording and comparative analysis of the neural activity of the TG utilizing in vivo optical imaging. Then immunohistochemistry and Western blot were performed to assess changes in the expression levels of extracellular signal-regulated kinase (ERK), c-Fos, collapsin response mediator protein-2 (CRMP2), and Nav1.7 channels. The optical imaging result showed significant neurological excitation in pulpitis TGs. Nav1.7 expressions exhibited upregulation, accompanied by signaling molecular changes suggestive of inflammation and neuroplasticity. In addition, inhibition of Nav1.7 led to reduced neural activity and subsequent decreases in ERK, c-Fos, and CRMP2 levels. These findings suggest the potential for targeting overexpressed Nav1.7 channels to alleviate pain associated with pulpitis, providing practical pain management strategies.
Collapse
Affiliation(s)
- Kyung Hee Lee
- Department of Dental Hygiene, Division of Health Science, Dongseo University, Busan, 47011, Republic of Korea
| | - Un Jeng Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Myeounghoon Cha
- Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Bae Hwan Lee
- Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
7
|
Perez-Miller S, Gomez K, Khanna R. Peptide and Peptidomimetic Inhibitors Targeting the Interaction of Collapsin Response Mediator Protein 2 with the N-Type Calcium Channel for Pain Relief. ACS Pharmacol Transl Sci 2024; 7:1916-1936. [PMID: 39022365 PMCID: PMC11249630 DOI: 10.1021/acsptsci.4c00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 07/20/2024]
Abstract
Ion channels serve pleiotropic functions. Often found in complexes, their activities and functions are sculpted by auxiliary proteins. We discovered that collapsin response mediator protein 2 (CRMP2) is a binding partner and regulator of the N-type voltage-gated calcium channel (CaV2.2), a genetically validated contributor to chronic pain. Herein, we trace the discovery of a new peptidomimetic modulator of this interaction, starting from the identification and development of CBD3, a CRMP2-derived CaV binding domain peptide. CBD3 uncouples CRMP2-CaV2.2 binding to decrease CaV2.2 surface localization and calcium currents. These changes occur at presynaptic sites of nociceptive neurons and indeed, CBD3 ameliorates chronic pain in preclinical models. In pursuit of a CBD3 peptidomimetic, we exploited a unique approach to identify a dipeptide with low conformational flexibility and high solvent accessibility that anchors binding to CaV2.2. From a pharmacophore screen, we obtained CBD3063, a small-molecule that recapitulated CBD3's activity, reversing nociceptive behaviors in rodents of both sexes without sensory, affective, or cognitive effects. By disrupting the CRMP2-CaV2.2 interaction, CBD3063 exerts these effects indirectly through modulating CaV2.2 trafficking, supporting CRMP2 as an auxiliary subunit of CaV2.2. The parent peptide CBD3 was also found by us and others to have neuroprotective properties at postsynaptic sites, through N-methyl-d-aspartate receptor and plasmalemmal Na+/Ca2+ exchanger 3, potentially acting as an auxiliary subunit for these pathways as well. Our new compound is poised to address several open questions regarding CRMP2's role in regulating the CaV2.2 pathways to treat pain with the potential added benefit of neuroprotection.
Collapse
Affiliation(s)
- Samantha Perez-Miller
- Department
of Pharmacology & Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, ARB R5-234, Gainesville, Florida 32610-0267, United States
| | - Kimberly Gomez
- Department
of Pharmacology & Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, ARB R5-234, Gainesville, Florida 32610-0267, United States
| | - Rajesh Khanna
- Department
of Pharmacology & Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, ARB R5-234, Gainesville, Florida 32610-0267, United States
- Pain
and Addiction Therapeutics (PATH) Collaboratory, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
8
|
Allen HN, Hestehave S, Duran P, Nelson TS, Khanna R. Uncoupling the CRMP2-Ca V2.2 interaction reduces pain-like behavior in a preclinical osteoarthritis model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.596514. [PMID: 38895294 PMCID: PMC11185632 DOI: 10.1101/2024.06.05.596514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Osteoarthritis (OA) represents a significant pain challenge globally, as current treatments are limited and come with substantial and adverse side effects. Voltage-gated calcium channels have proved to be pharmacologically effective targets, with multiple FDA-approved CaV2.2 modulators available for the treatment of pain. Although effective, drugs targeting CaV2.2 are complicated by the same obstacles facing other pain therapeutics-invasive routes of administration, narrow therapeutic windows, side effects, and addiction potential. We have identified a key regulator of CaV2.2 channels, collapsing response mediator protein 2 (CRMP2), that allows us to indirectly regulate CaV2.2 expression and function. We developed a peptidomimetic modulator of CRMP2, CBD3063, that effectively reverses neuropathic and inflammatory pain without negative side effects by reducing membrane expression of CaV2.2. Using a rodent model of OA, we demonstrate the intraperitoneal administration of CBD3063 alleviates both evoked and non-evoked behavioral hallmarks of OA pain. Further, we reveal that CBD3063 reduces OA-induced increased neural activity in the parabrachial nucleus, a key supraspinal site modulating the pain experience. Together, these studies suggest CBD3063 is an effective analgesic for OA pain.
Collapse
Affiliation(s)
- Heather N. Allen
- Department of Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | - Sara Hestehave
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York 10010, USA
| | - Paz Duran
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York 10010, USA
| | - Tyler S. Nelson
- Department of Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | - Rajesh Khanna
- Department of Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| |
Collapse
|
9
|
Martin L, Stratton HJ, Gomez K, Le Duy D, Loya-Lopez S, Tang C, Calderon-Rivera A, Ran D, Nunna V, Bellampalli SS, François-Moutal L, Dumaire N, Salih L, Luo S, Porreca F, Ibrahim M, Rogemond V, Honnorat J, Khanna R, Moutal A. Mechanism, and treatment of anti-CV2/CRMP5 autoimmune pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.04.592533. [PMID: 38766071 PMCID: PMC11100598 DOI: 10.1101/2024.05.04.592533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Paraneoplastic neurological syndromes arise from autoimmune reactions against nervous system antigens due to a maladaptive immune response to a peripheral cancer. Patients with small cell lung carcinoma or malignant thymoma can develop an autoimmune response against the CV2/collapsin response mediator protein 5 (CRMP5) antigen. For reasons that are not understood, approximately 80% of patients experience painful neuropathies. Here, we investigated the mechanisms underlying anti-CV2/CRMP5 autoantibodies (CV2/CRMP5-Abs)-related pain. We found that patient-derived CV2/CRMP5-Abs can bind to their target in rodent dorsal root ganglia (DRG) and superficial laminae of the spinal cord. CV2/CRMP5-Abs induced DRG neuron hyperexcitability and mechanical hypersensitivity in rats that were abolished by preventing binding to their cognate autoantigen CRMP5. The effect of CV2/CRMP5-Abs on sensory neuron hyperexcitability and mechanical hypersensitivity observed in patients was recapitulated in rats using genetic immunization providing an approach to rapidly identify possible therapeutic choices for treating autoantibody-induced pain including the repurposing of a monoclonal anti-CD20 antibody that selectively deplete B-lymphocytes. These data reveal a previously unknown neuronal mechanism of neuropathic pain in patients with paraneoplastic neurological syndromes resulting directly from CV2/CRMP5-Abs-induced nociceptor excitability. CV2/CRMP5-Abs directly sensitize pain responses by increasing sensory neuron excitability and strategies aiming at either blocking or reducing CV2/CRMP5-Abs can treat pain as a comorbidity in patients with paraneoplastic neurological syndromes.
Collapse
Affiliation(s)
- Laurent Martin
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85724 USA
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, AZ, 85724 USA
| | - Harrison J. Stratton
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85724 USA
| | - Kimberly Gomez
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85724 USA
| | - Do Le Duy
- French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, MeLiS - UCBL-CNRS UMR 5284 - INSERM U1314, Université Claude Bernard Lyon 1, Lyon, France
| | - Santiago Loya-Lopez
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85724 USA
| | - Cheng Tang
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85724 USA
| | - Aida Calderon-Rivera
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85724 USA
| | - Dongzhi Ran
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85724 USA
| | - Venkatrao Nunna
- Department of Pharmacology and Physiology, School of Medicine, St. Louis University, St. Louis, MO, 63104, USA
| | - Shreya S. Bellampalli
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85724 USA
| | - Liberty François-Moutal
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85724 USA
- Department of Pharmacology and Physiology, School of Medicine, St. Louis University, St. Louis, MO, 63104, USA
| | - Nicolas Dumaire
- Department of Pharmacology and Physiology, School of Medicine, St. Louis University, St. Louis, MO, 63104, USA
| | - Lyuba Salih
- Department of Pharmacology and Physiology, School of Medicine, St. Louis University, St. Louis, MO, 63104, USA
| | - Shizhen Luo
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85724 USA
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85724 USA
| | - Mohab Ibrahim
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85724 USA
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, AZ, 85724 USA
| | - Véronique Rogemond
- French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, MeLiS - UCBL-CNRS UMR 5284 - INSERM U1314, Université Claude Bernard Lyon 1, Lyon, France
| | - Jérôme Honnorat
- French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, MeLiS - UCBL-CNRS UMR 5284 - INSERM U1314, Université Claude Bernard Lyon 1, Lyon, France
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85724 USA
- Department of Pharmacology & Therapeutics and Pain and Addiction Therapeutics (PATH) Collaboratory, College of Medicine, University of Florida, 1200 Newell Drive, ARB R5-234, Gainesville, FL 32610-0267
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85724 USA
- Department of Pharmacology and Physiology, School of Medicine, St. Louis University, St. Louis, MO, 63104, USA
| |
Collapse
|
10
|
Kim K, Nan G, Bak H, Kim HY, Kim J, Cha M, Lee BH. Insular cortex stimulation alleviates neuropathic pain through changes in the expression of collapsin response mediator protein 2 involved in synaptic plasticity. Neurobiol Dis 2024; 194:106466. [PMID: 38471625 DOI: 10.1016/j.nbd.2024.106466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
In recent studies, brain stimulation has shown promising potential to alleviate chronic pain. Although studies have shown that stimulation of pain-related brain regions can induce pain-relieving effects, few studies have elucidated the mechanisms of brain stimulation in the insular cortex (IC). The present study was conducted to explore the changes in characteristic molecules involved in pain modulation mechanisms and to identify the changes in synaptic plasticity after IC stimulation (ICS). Following ICS, pain-relieving behaviors and changes in proteomics were explored. Neuronal activity in the IC after ICS was observed by optical imaging. Western blotting was used to validate the proteomics data and identify the changes in the expression of glutamatergic receptors associated with synaptic plasticity. Experimental results showed that ICS effectively relieved mechanical allodynia, and proteomics identified specific changes in collapsin response mediator protein 2 (CRMP2). Neuronal activity in the neuropathic rats was significantly decreased after ICS. Neuropathic rats showed increased expression levels of phosphorylated CRMP2, alpha amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR), and N-methyl-d-aspartate receptor (NMDAR) subunit 2B (NR2B), which were inhibited by ICS. These results indicate that ICS regulates the synaptic plasticity of ICS through pCRMP2, together with AMPAR and NR2B, to induce pain relief.
Collapse
Affiliation(s)
- Kyeongmin Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Guanghai Nan
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hyeji Bak
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hee Young Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Junesun Kim
- Rehabilitation Science Program, Department of Health Science, Graduate School, Korea University, Seoul 02841, Republic of Korea; Department of Health and Environment Science, College of Health Science, Korea University, Seoul 02841, Republic of Korea
| | - Myeounghoon Cha
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Bae Hwan Lee
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| |
Collapse
|
11
|
Loya-Lopez SI, Allen HN, Duran P, Calderon-Rivera A, Gomez K, Kumar U, Shields R, Zeng R, Dwivedi A, Saurabh S, Korczeniewska OA, Khanna R. Intranasal CRMP2-Ubc9 inhibitor regulates Na V 1.7 to alleviate trigeminal neuropathic pain. Pain 2024; 165:573-588. [PMID: 37751532 PMCID: PMC10922202 DOI: 10.1097/j.pain.0000000000003053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/25/2023] [Indexed: 09/28/2023]
Abstract
ABSTRACT Dysregulation of voltage-gated sodium Na V 1.7 channels in sensory neurons contributes to chronic pain conditions, including trigeminal neuropathic pain. We previously reported that chronic pain results in part from increased SUMOylation of collapsin response mediator protein 2 (CRMP2), leading to an increased CRMP2/Na V 1.7 interaction and increased functional activity of Na V 1.7. Targeting this feed-forward regulation, we developed compound 194 , which inhibits CRMP2 SUMOylation mediated by the SUMO-conjugating enzyme Ubc9. We further demonstrated that 194 effectively reduces the functional activity of Na V 1.7 channels in dorsal root ganglia neurons and alleviated inflammatory and neuropathic pain. Here, we used a comprehensive array of approaches, encompassing biochemical, pharmacological, genetic, electrophysiological, and behavioral analyses, to assess the functional implications of Na V 1.7 regulation by CRMP2 in trigeminal ganglia (TG) neurons. We confirmed the expression of Scn9a , Dpysl2 , and UBE2I within TG neurons. Furthermore, we found an interaction between CRMP2 and Na V 1.7, with CRMP2 being SUMOylated in these sensory ganglia. Disrupting CRMP2 SUMOylation with compound 194 uncoupled the CRMP2/Na V 1.7 interaction, impeded Na V 1.7 diffusion on the plasma membrane, and subsequently diminished Na V 1.7 activity. Compound 194 also led to a reduction in TG neuron excitability. Finally, when intranasally administered to rats with chronic constriction injury of the infraorbital nerve, 194 significantly decreased nociceptive behaviors. Collectively, our findings underscore the critical role of CRMP2 in regulating Na V 1.7 within TG neurons, emphasizing the importance of this indirect modulation in trigeminal neuropathic pain.
Collapse
Affiliation(s)
- Santiago I. Loya-Lopez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York, United States of America
- NYU Pain Research Center, 433 First Avenue, New York, NY 10010, United States of America
| | - Heather N. Allen
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York, United States of America
- NYU Pain Research Center, 433 First Avenue, New York, NY 10010, United States of America
| | - Paz Duran
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York, United States of America
- NYU Pain Research Center, 433 First Avenue, New York, NY 10010, United States of America
| | - Aida Calderon-Rivera
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York, United States of America
- NYU Pain Research Center, 433 First Avenue, New York, NY 10010, United States of America
| | - Kimberly Gomez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York, United States of America
- NYU Pain Research Center, 433 First Avenue, New York, NY 10010, United States of America
| | - Upasana Kumar
- Center for Orofacial Pain and Temporomandibular Disorders, Department of Diagnostic Sciences, Rutgers School of Dental Medicine, Newark, NJ 07101, United States of America
| | - Rory Shields
- Rutgers School of Graduate Studies, Newark Health Science Campus, Newark, NJ 07101, United States of America
| | - Rui Zeng
- Department of Chemistry, College of Arts and Sciences, New York University, 100 Washington Square East, New York, NY 10003, United States of America
| | - Akshat Dwivedi
- Department of Chemistry, College of Arts and Sciences, New York University, 100 Washington Square East, New York, NY 10003, United States of America
| | - Saumya Saurabh
- Department of Chemistry, College of Arts and Sciences, New York University, 100 Washington Square East, New York, NY 10003, United States of America
| | - Olga A. Korczeniewska
- Center for Orofacial Pain and Temporomandibular Disorders, Department of Diagnostic Sciences, Rutgers School of Dental Medicine, Newark, NJ 07101, United States of America
- Rutgers School of Graduate Studies, Newark Health Science Campus, Newark, NJ 07101, United States of America
| | - Rajesh Khanna
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York, United States of America
- NYU Pain Research Center, 433 First Avenue, New York, NY 10010, United States of America
- Department of Neuroscience and Physiology and Neuroscience Institute, School of Medicine, New York University, New York, NY, 10010, USA
| |
Collapse
|
12
|
Gomez K, Stratton HJ, Duran P, Loya S, Tang C, Calderon-Rivera A, François-Moutal L, Khanna M, Madura CL, Luo S, McKiver B, Choi E, Ran D, Boinon L, Perez-Miller S, Damaj MI, Moutal A, Khanna R. Identification and targeting of a unique Na V1.7 domain driving chronic pain. Proc Natl Acad Sci U S A 2023; 120:e2217800120. [PMID: 37498871 PMCID: PMC10410761 DOI: 10.1073/pnas.2217800120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Small molecules directly targeting the voltage-gated sodium channel (VGSC) NaV1.7 have not been clinically successful. We reported that preventing the addition of a small ubiquitin-like modifier onto the NaV1.7-interacting cytosolic collapsin response mediator protein 2 (CRMP2) blocked NaV1.7 function and was antinociceptive in rodent models of neuropathic pain. Here, we discovered a CRMP2 regulatory sequence (CRS) unique to NaV1.7 that is essential for this regulatory coupling. CRMP2 preferentially bound to the NaV1.7 CRS over other NaV isoforms. Substitution of the NaV1.7 CRS with the homologous domains from the other eight VGSC isoforms decreased NaV1.7 currents. A cell-penetrant decoy peptide corresponding to the NaV1.7-CRS reduced NaV1.7 currents and trafficking, decreased presynaptic NaV1.7 expression, reduced spinal CGRP release, and reversed nerve injury-induced mechanical allodynia. Importantly, the NaV1.7-CRS peptide did not produce motor impairment, nor did it alter physiological pain sensation, which is essential for survival. As a proof-of-concept for a NaV1.7 -targeted gene therapy, we packaged a plasmid encoding the NaV1.7-CRS in an AAV virus. Treatment with this virus reduced NaV1.7 function in both rodent and rhesus macaque sensory neurons. This gene therapy reversed and prevented mechanical allodynia in a model of nerve injury and reversed mechanical and cold allodynia in a model of chemotherapy-induced peripheral neuropathy. These findings support the conclusion that the CRS domain is a targetable region for the treatment of chronic neuropathic pain.
Collapse
Affiliation(s)
- Kimberly Gomez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- NYU Pain Research Center, New York, NY10010
| | - Harrison J. Stratton
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ85724
| | - Paz Duran
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- NYU Pain Research Center, New York, NY10010
| | - Santiago Loya
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- NYU Pain Research Center, New York, NY10010
| | - Cheng Tang
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- NYU Pain Research Center, New York, NY10010
| | - Aida Calderon-Rivera
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- NYU Pain Research Center, New York, NY10010
| | | | - May Khanna
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- NYU Pain Research Center, New York, NY10010
| | - Cynthia L. Madura
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ85724
| | - Shizhen Luo
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ85724
| | - Bryan McKiver
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA 23298-0613
| | - Edward Choi
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA 23298-0613
| | - Dongzhi Ran
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ85724
| | - Lisa Boinon
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ85724
| | - Samantha Perez-Miller
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- NYU Pain Research Center, New York, NY10010
| | - M. Imad Damaj
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA 23298-0613
| | - Aubin Moutal
- Department of Pharmacology and Physiology, School of Medicine, St. Louis University, St. Louis, MO63104
| | - Rajesh Khanna
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- NYU Pain Research Center, New York, NY10010
- Department of Neuroscience and Physiology and Neuroscience Institute, School of Medicine, New York University, New York, NY10010
| |
Collapse
|
13
|
Loya-Lopez SI, Allen HN, Duran P, Calderon-Rivera A, Gomez K, Kumar U, Shields R, Zeng R, Dwivedi A, Saurabh S, Korczeniewska OA, Khanna R. Intranasal CRMP2-Ubc9 Inhibitor Regulates Na V 1.7 to Alleviate Trigeminal Neuropathic Pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.16.549195. [PMID: 37502910 PMCID: PMC10370107 DOI: 10.1101/2023.07.16.549195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Dysregulation of voltage-gated sodium Na V 1.7 channels in sensory neurons contributes to chronic pain conditions, including trigeminal neuropathic pain. We previously reported that chronic pain results in part from increased SUMOylation of collapsin response mediator protein 2 (CRMP2), leading to an increased CRMP2/Na V 1.7 interaction and increased functional activity of Na V 1.7. Targeting this feed-forward regulation, we developed compound 194 , which inhibits CRMP2 SUMOylation mediated by the SUMO-conjugating enzyme Ubc9. We further demonstrated that 194 effectively reduces the functional activity of Na V 1.7 channels in dorsal root ganglia neurons and alleviated inflammatory and neuropathic pain. Here, we employed a comprehensive array of investigative approaches, encompassing biochemical, pharmacological, genetic, electrophysiological, and behavioral analyses, to assess the functional implications of Na V 1.7 regulation by CRMP2 in trigeminal ganglia (TG) neurons. We confirmed the expression of Scn9a , Dpysl2 , and UBE2I within TG neurons. Furthermore, we found an interaction between CRMP2 and Na V 1.7, with CRMP2 being SUMOylated in these sensory ganglia. Disrupting CRMP2 SUMOylation with compound 194 uncoupled the CRMP2/Na V 1.7 interaction, impeded Na V 1.7 diffusion on the plasma membrane, and subsequently diminished Na V 1.7 activity. Compound 194 also led to a reduction in TG neuron excitability. Finally, when intranasally administered to rats with chronic constriction injury of the infraorbital nerve (CCI-ION), 194 significantly decreased nociceptive behaviors. Collectively, our findings underscore the critical role of CRMP2 in regulating Na V 1.7 within TG neurons, emphasizing the importance of this indirect modulation in trigeminal neuropathic pain.
Collapse
|
14
|
Stratton HJ, Boinon L, Gomez K, Martin L, Duran P, Ran D, Zhou Y, Luo S, Perez-Miller S, Patek M, Ibrahim MM, Patwardhan A, Moutal A, Khanna R. Targeting the vascular endothelial growth factor A/neuropilin 1 axis for relief of neuropathic pain. Pain 2023; 164:1473-1488. [PMID: 36729125 PMCID: PMC10277229 DOI: 10.1097/j.pain.0000000000002850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/08/2022] [Indexed: 02/03/2023]
Abstract
ABSTRACT Vascular endothelial growth factor A (VEGF-A) is a pronociceptive factor that causes neuronal sensitization and pain. We reported that blocking the interaction between the membrane receptor neuropilin 1 (NRP1) and VEGF-A-blocked VEGF-A-mediated sensory neuron hyperexcitability and reduced mechanical hypersensitivity in a rodent chronic neuropathic pain model. These findings identified the NRP1-VEGF-A signaling axis for therapeutic targeting of chronic pain. In an in-silico screening of approximately 480 K small molecules binding to the extracellular b1b2 pocket of NRP1, we identified 9 chemical series, with 6 compounds disrupting VEGF-A binding to NRP1. The small molecule with greatest efficacy, 4'-methyl-2'-morpholino-2-(phenylamino)-[4,5'-bipyrimidin]-6(1H)-one, designated NRP1-4, was selected for further evaluation. In cultured primary sensory neurons, VEGF-A enhanced excitability and decreased firing threshold, which was blocked by NRP1-4. In addition, NaV1.7 and CaV2.2 currents and membrane expression were potentiated by treatment with VEGF-A, and this potentiation was blocked by NRP1-4 cotreatment. Neuropilin 1-4 reduced VEGF-A-mediated increases in the frequency and amplitude of spontaneous excitatory postsynaptic currents in dorsal horn of the spinal cord. Neuropilin 1-4 did not bind to more than 300 G-protein-coupled receptors and receptors including human opioids receptors, indicating a favorable safety profile. In rats with spared nerve injury-induced neuropathic pain, intrathecal administration of NRP1-4 significantly attenuated mechanical allodynia. Intravenous treatment with NRP1-4 reversed both mechanical allodynia and thermal hyperalgesia in rats with L5/L6 spinal nerve ligation-induced neuropathic pain. Collectively, our findings show that NRP1-4 is a first-in-class compound targeting the NRP1-VEGF-A signaling axis to control voltage-gated ion channel function, neuronal excitability, and synaptic activity that curb chronic pain.
Collapse
Affiliation(s)
- Harrison J. Stratton
- Department of Pharmacology, College of Medicine, The University of Arizona; Tucson, Arizona, 85724 United States of America
| | - Lisa Boinon
- Department of Pharmacology, College of Medicine, The University of Arizona; Tucson, Arizona, 85724 United States of America
| | - Kimberly Gomez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York, United States of America
- NYU Pain Research Center, 433 First Avenue, New York, NY 10010, United States of America
| | - Laurent Martin
- Department of Anesthesiology, College of Medicine, The University of Arizona; Tucson, Arizona, 85724 United States of America
| | - Paz Duran
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York, United States of America
- NYU Pain Research Center, 433 First Avenue, New York, NY 10010, United States of America
| | - Dongzhi Ran
- Department of Pharmacology, College of Medicine, The University of Arizona; Tucson, Arizona, 85724 United States of America
| | - Yuan Zhou
- Department of Pharmacology, College of Medicine, The University of Arizona; Tucson, Arizona, 85724 United States of America
| | - Shizhen Luo
- Department of Pharmacology, College of Medicine, The University of Arizona; Tucson, Arizona, 85724 United States of America
| | - Samantha Perez-Miller
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York, United States of America
- NYU Pain Research Center, 433 First Avenue, New York, NY 10010, United States of America
| | - Marcel Patek
- BrightRock Path, LLC, Tucson, Arizona 85704, United States
| | - Mohab M. Ibrahim
- Department of Anesthesiology, College of Medicine, The University of Arizona; Tucson, Arizona, 85724 United States of America
| | - Amol Patwardhan
- Department of Anesthesiology, College of Medicine, The University of Arizona; Tucson, Arizona, 85724 United States of America
| | - Aubin Moutal
- Saint Louis University - School of Medicine, Department of Pharmacology and Physiology, 1402 S. Grand Blvd., Schwitalla Hall, Room 432, Saint Louis, MO 63104
| | - Rajesh Khanna
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York, United States of America
- NYU Pain Research Center, 433 First Avenue, New York, NY 10010, United States of America
| |
Collapse
|
15
|
Tiwari MN, Hall BE, Terse A, Amin N, Chung MK, Kulkarni AB. ACTIVATION OF CYCLIN-DEPENDENT KINASE 5 BROADENS ACTION POTENTIALS IN HUMAN SENSORY NEURONS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.543017. [PMID: 37398398 PMCID: PMC10312556 DOI: 10.1101/2023.05.31.543017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Chronic pain is one of the most devastating and unpleasant conditions, associated with many pathological conditions. Tissue or nerve injuries induce comprehensive neurobiological plasticity in nociceptive neurons, which leads to chronic pain. Recent studies suggest that cyclin-dependent kinase 5 (CDK5) in primary afferents is a key neuronal kinase that modulates nociception through phosphorylation-dependent manner under pathological conditions. However, the impact of the CDK5 on nociceptor activity especially in human sensory neurons are not known. To determine the CDK5-mediated regulation of human dorsal root ganglia (hDRG) neuronal properties, we have performed the whole-cell patch clamp recordings in neurons dissociated from hDRG. CDK5 activation induced by overexpression of p35 depolarized the resting membrane potential and reduced the rheobase currents as compared to the uninfected neurons. CDK5 activation evidently changed the shape of the action potential (AP) by increasing AP rise time, AP fall time, and AP half width. The application of a prostaglandin E2 (PG) and bradykinin (BK) cocktail in uninfected hDRG neurons induced the depolarization of RMP and the reduction of rheobase currents along with increased AP rise time. However, PG and BK applications failed to induce any further significant changes in addition to the aforementioned changes of the membrane properties and AP parameters in the p35-overexpressing group. We conclude that CDK5 activation through the overexpression of p35 in dissociated hDRG neurons broadens AP in hDRG neurons and that CDK5 may play important roles in the modulation of AP properties in human primary afferents under pathological conditions, contributing to chronic pain.
Collapse
Affiliation(s)
- Manindra Nath Tiwari
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, The University of Maryland, Baltimore, Maryland 21201
| | - Bradford E. Hall
- Functional Genomics Section, National Institute of Dental and Craniofacial Research
| | - Anita Terse
- Functional Genomics Section, National Institute of Dental and Craniofacial Research
| | - Niranjana Amin
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Man-Kyo Chung
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, The University of Maryland, Baltimore, Maryland 21201
| | - Ashok B. Kulkarni
- Functional Genomics Section, National Institute of Dental and Craniofacial Research
| |
Collapse
|
16
|
Tiwari MN, Hall BE, Ton AT, Ghetti R, Terse A, Amin N, Chung MK, Kulkarni AB. Activation of cyclin-dependent kinase 5 broadens action potentials in human sensory neurons. Mol Pain 2023; 19:17448069231218353. [PMID: 37982142 PMCID: PMC10687939 DOI: 10.1177/17448069231218353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023] Open
Abstract
Chronic pain is one of the most devastating and unpleasant conditions, associated with many pathological states. Tissue or nerve injuries induce extensive neurobiological plasticity in nociceptive neurons, which leads to chronic pain. Recent studies suggest that cyclin-dependent kinase 5 (CDK5) in primary afferents is a key neuronal kinase that modulates nociception through phosphorylation under pathological conditions. However, the impact of the CDK5 on nociceptor activity especially in human sensory neurons is not known. To determine the CDK5-mediated regulation of human dorsal root ganglia (hDRG) neuronal properties, we have performed the whole-cell patch clamp recordings in neurons dissociated from hDRG. CDK5 activation induced by overexpression of p35 depolarized the resting membrane potential (RMP) and reduced the rheobase currents as compared to the control neurons. CDK5 activation changed the shape of the action potential (AP) by increasing AP -rise time, -fall time, and -half width. The application of a prostaglandin E2 (PG) and bradykinin (BK) cocktail in control hDRG neurons induced the depolarization of RMP and the reduction of rheobase currents along with increased AP rise time. However, PG and BK applications failed to induce any significant changes in the p35-overexpressing group. We conclude that, in dissociated hDRGs neurons, CDK5 activation through the overexpression of p35 broadens the AP and that CDK5 may play important roles in the modulation of AP properties in human primary afferents under the condition in which CDK5 is upregulated, contributing to chronic pain.
Collapse
Affiliation(s)
- Manindra Nath Tiwari
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, The University of Maryland, Baltimore, MD, United States
| | - Bradford E Hall
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | | | - Re Ghetti
- AnaBios, San Diego, CA, United States
| | - Anita Terse
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Niranjana Amin
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Man-Kyo Chung
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, The University of Maryland, Baltimore, MD, United States
| | - Ashok B Kulkarni
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
17
|
Sato K, Takayama KI, Inoue S. Role of piRNA biogenesis and its neuronal function in the development of neurodegenerative diseases. Front Aging Neurosci 2023; 15:1157818. [PMID: 37207075 PMCID: PMC10191213 DOI: 10.3389/fnagi.2023.1157818] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/04/2023] [Indexed: 05/21/2023] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), are caused by neuronal loss and dysfunction. Despite remarkable improvements in our understanding of these pathogeneses, serious worldwide problems with significant public health burdens are remained. Therefore, new efficient diagnostic and therapeutic strategies are urgently required. PIWI-interacting RNAs (piRNAs) are a major class of small non-coding RNAs that silence gene expression through transcriptional and post-transcriptional processes. Recent studies have demonstrated that piRNAs, originally found in the germ line, are also produced in non-gonadal somatic cells, including neurons, and further revealed the emerging roles of piRNAs, including their roles in neurodevelopment, aging, and neurodegenerative diseases. In this review, we aimed to summarize the current knowledge regarding the piRNA roles in the pathophysiology of neurodegenerative diseases. In this context, we first reviewed on recent updates on neuronal piRNA functions, including biogenesis, axon regeneration, behavior, and memory formation, in humans and mice. We also discuss the aberrant expression and dysregulation of neuronal piRNAs in neurodegenerative diseases, such as AD, PD, and ALS. Moreover, we review pioneering preclinical studies on piRNAs as biomarkers and therapeutic targets. Elucidation of the mechanisms underlying piRNA biogenesis and their functions in the brain would provide new perspectives for the clinical diagnosis and treatment of AD and various neurodegenerative diseases.
Collapse
Affiliation(s)
- Kaoru Sato
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG), Tokyo, Japan
- Integrated Research Initiative for Living Well with Dementia (IRIDE), Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG), Tokyo, Japan
| | - Ken-ichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG), Tokyo, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG), Tokyo, Japan
- *Correspondence: Satoshi Inoue,
| |
Collapse
|
18
|
Chu XL, Song XZ, Li Q, Li YR, He F, Gu XS, Ming D. Basic mechanisms of peripheral nerve injury and treatment via electrical stimulation. Neural Regen Res 2022; 17:2185-2193. [PMID: 35259827 PMCID: PMC9083151 DOI: 10.4103/1673-5374.335823] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Previous studies on the mechanisms of peripheral nerve injury (PNI) have mainly focused on the pathophysiological changes within a single injury site. However, recent studies have indicated that within the central nervous system, PNI can lead to changes in both injury sites and target organs at the cellular and molecular levels. Therefore, the basic mechanisms of PNI have not been comprehensively understood. Although electrical stimulation was found to promote axonal regeneration and functional rehabilitation after PNI, as well as to alleviate neuropathic pain, the specific mechanisms of successful PNI treatment are unclear. We summarize and discuss the basic mechanisms of PNI and of treatment via electrical stimulation. After PNI, activity in the central nervous system (spinal cord) is altered, which can limit regeneration of the damaged nerve. For example, cell apoptosis and synaptic stripping in the anterior horn of the spinal cord can reduce the speed of nerve regeneration. The pathological changes in the posterior horn of the spinal cord can modulate sensory abnormalities after PNI. This can be observed in cases of ectopic discharge of the dorsal root ganglion leading to increased pain signal transmission. The injured site of the peripheral nerve is also an important factor affecting post-PNI repair. After PNI, the proximal end of the injured site sends out axial buds to innervate both the skin and muscle at the injury site. A slow speed of axon regeneration leads to low nerve regeneration. Therefore, it can take a long time for the proximal nerve to reinnervate the skin and muscle at the injured site. From the perspective of target organs, long-term denervation can cause atrophy of the corresponding skeletal muscle, which leads to abnormal sensory perception and hyperalgesia, and finally, the loss of target organ function. The mechanisms underlying the use of electrical stimulation to treat PNI include the inhibition of synaptic stripping, addressing the excessive excitability of the dorsal root ganglion, alleviating neuropathic pain, improving neurological function, and accelerating nerve regeneration. Electrical stimulation of target organs can reduce the atrophy of denervated skeletal muscle and promote the recovery of sensory function. Findings from the included studies confirm that after PNI, a series of physiological and pathological changes occur in the spinal cord, injury site, and target organs, leading to dysfunction. Electrical stimulation may address the pathophysiological changes mentioned above, thus promoting nerve regeneration and ameliorating dysfunction.
Collapse
Affiliation(s)
- Xiao-Lei Chu
- Academy of Medical Engineering and Translational Medicine, Tianjin University; Department of Rehabilitation, Tianjin Hospital, Tianjin, China
| | - Xi-Zi Song
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Qi Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University; Department of Rehabilitation, Tianjin Hospital, Tianjin, China
| | - Yu-Ru Li
- College of Exercise & Health Sciences, Tianjin University of Sport, Tianjin, China
| | - Feng He
- College of Precision Instruments & Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Xiao-Song Gu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine; College of Precision Instruments & Optoelectronics Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
19
|
Ao C, Li C, Chen J, Tan J, Zeng L. The role of Cdk5 in neurological disorders. Front Cell Neurosci 2022; 16:951202. [PMID: 35966199 PMCID: PMC9368323 DOI: 10.3389/fncel.2022.951202] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
Neurological disorders are a group of disorders with motor, sensory or cognitive damage, caused by dysfunction of the central or peripheral nervous system. Cyclin-dependent kinases 5 (Cdk5) is of vital significance for the development of the nervous system, including the migration and differentiation of neurons, the formation of synapses, and axon regeneration. However, when the nervous system is subject to pathological stimulation, aberrant activation of Cdk5 will induce abnormal phosphorylation of a variety of substrates, resulting in a cascade signaling pathway, and thus lead to pathological changes. Cdk5 is intimately related to the pathological mechanism of a variety of neurological disorders, such as A-β protein formation in Alzheimer’s disease, mitochondrial fragmentation in cerebral ischemia, and apoptosis of dopaminergic neurons in Parkinson’s disease. It is worth noting that Cdk5 inhibitors have been reported to have neuroprotective effects by inhibiting related pathological processes. Therefore, in this review, we will briefly introduce the physiological and pathological mechanisms of Cdk5 in the nervous system, focusing on the recent advances of Cdk5 in neurological disorders and the prospect of targeted Cdk5 for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Chuncao Ao
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Chenchen Li
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jinlun Chen
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jieqiong Tan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Model for Human Diseases, Central South University, Changsha, China
| | - Liuwang Zeng
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Liuwang Zeng
| |
Collapse
|
20
|
Xu K, Wang D, He Y, Wang S, Liu G, Pan Y, Jiang H, Peng Y, Xiao F, Huang Y, Wang Q, Wu Y, Pan S, Hu Y. Identification of Anti-Collapsin Response Mediator Protein 2 Antibodies in Patients With Encephalitis or Encephalomyelitis. Front Immunol 2022; 13:854445. [PMID: 35479088 PMCID: PMC9036435 DOI: 10.3389/fimmu.2022.854445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/14/2022] [Indexed: 12/03/2022] Open
Abstract
Background and Purpose An increasing number of autoimmune encephalitis (AE)-associated autoantibodies have been successfully characterized. However, many cases of AE remain unexplained on account of unknown antibodies. The aim of the present study was to identify a novel antibody against collapsin response mediator protein 2 (CRMP2) in suspected AE patients. Methods A patient's serum and cerebrospinal fluid samples tested negative for known AE antibodies; however, strong immunolabel signals were observed in the neuronal cytoplasm of the cortex, hippocampus, and Purkinje cells on rat brain sections. Immunoprecipitation from the rat brain protein lysate, followed by mass spectrometry analysis, was used to identify the targeting antigen. Western blotting and cell-based assay with antigen-overexpressing HEK293T cells were used for antibody specificity, epitope, IgG subtype determination, and retrospective study. Results An antibody against CRMP2, a synaptic protein involved in axon guidance, was identified. The immunostains of the patient's samples on rat brain sections were eliminated by pre-absorption with HEK293T cells overexpressing CRMP2. The samples specifically immunoreacted with CRMP2, but not with CRMP1, CRMP3, CRMP4, and CRMP5. The C-terminus of CRMP2 with 536 amino acids contained the epitope for antibody binding. The subtype analysis showed that the anti-CRMP2 antibody was IgG4. Furthermore, a screening of 46 patients with neurological disoders and neuro-cytoplasm immunostainings on rat brain sections resulted in the identification of anti-CRMP2 antibodies in a case of encephalomyelitis. The two patients responded well to immunotherapies. Conclusions This study discovered that a novel anti-CRMP2 antibody was associated with suspected AE and thus should be included in the testing list for AE.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Yongming Wu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yafang Hu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
21
|
Daniels MH, Malojcic G, Clugston SL, Williams B, Coeffet-Le Gal M, Pan-Zhou XR, Venkatachalan S, Harmange JC, Ledeboer M. Discovery and Optimization of Highly Selective Inhibitors of CDK5. J Med Chem 2022; 65:3575-3596. [PMID: 35143203 DOI: 10.1021/acs.jmedchem.1c02069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most prevalent monogenic human disease, but to date, only one therapy (tolvaptan) is approved to treat kidney cysts in ADPKD patients. Cyclin-dependent kinase 5 (CDK5), an atypical member of the cyclin-dependent kinase family, has been implicated as a target for treating ADPKD. However, no compounds have been disclosed to date that selectively inhibit CDK5 while sparing the broader CDK family members. Herein, we report the discovery of CDK5 inhibitors, including GFB-12811, that are highly selective over the other tested kinases. In cellular assays, our compounds demonstrate CDK5 target engagement while avoiding anti-proliferative effects associated with inhibiting other CDKs. In addition, we show that the compounds in this series exhibit promising in vivo PK profiles, enabling their use as tool compounds for interrogating the role of CDK5 in ADPKD and other diseases.
Collapse
Affiliation(s)
- Matthew H Daniels
- Goldfinch Bio, 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Goran Malojcic
- Goldfinch Bio, 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Susan L Clugston
- Goldfinch Bio, 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Brett Williams
- Goldfinch Bio, 215 First Street, Cambridge, Massachusetts 02142, United States
| | | | - Xin-Ru Pan-Zhou
- Goldfinch Bio, 215 First Street, Cambridge, Massachusetts 02142, United States
| | | | | | - Mark Ledeboer
- Goldfinch Bio, 215 First Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
22
|
Boinon L, Yu J, Madura CL, Chefdeville A, Feinstein DL, Moutal A, Khanna R. Conditional knockout of CRMP2 in neurons, but not astrocytes, disrupts spinal nociceptive neurotransmission to control the initiation and maintenance of chronic neuropathic pain. Pain 2022; 163:e368-e381. [PMID: 35029600 PMCID: PMC8760468 DOI: 10.1097/j.pain.0000000000002344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/13/2021] [Indexed: 02/03/2023]
Abstract
ABSTRACT Mechanistic studies principally focusing on primary afferent nociceptive neurons uncovered the upregulation of collapsin response mediator protein 2 (CRMP2)-a dual trafficking regulator of N-type voltage-gated calcium (Cav2.2) as well as Nav1.7 voltage-gated sodium channels-as a potential determinant of neuropathic pain. Whether CRMP2 contributes to aberrant excitatory synaptic transmission underlying neuropathic pain processing after peripheral nerve injury is unknown. Here, we interrogated CRMP2's role in synaptic transmission and in the initiation or maintenance of chronic pain. In rats, short-interfering RNA-mediated knockdown of CRMP2 in the spinal cord reduced the frequency and amplitude of spontaneous excitatory postsynaptic currents, but not spontaneous inhibitory postsynaptic currents, recorded from superficial dorsal horn neurons in acute spinal cord slices. No effect was observed on miniature excitatory postsynaptic currents and inhibitory postsynaptic currents. In a complementary targeted approach, conditional knockout of CRMP2 from mouse neurons using a calcium/calmodulin-dependent protein kinase II alpha promoter to drive Cre recombinase expression reduced the frequency and amplitude of spontaneous excitatory postsynaptic currents, but not miniature excitatory SCss. Conditional knockout of CRMP2 from mouse astrocytes using a glial fibrillary acidic protein promoter had no effect on synaptic transmission. Conditional knockout of CRMP2 in neurons reversed established mechanical allodynia induced by a spared nerve injury in both male and female mice. In addition, the development of spared nerve injury-induced allodynia was also prevented in these mice. Our data strongly suggest that CRMP2 is a key regulator of glutamatergic neurotransmission driving pain signaling and that it contributes to the transition of physiological pain into pathological pain.
Collapse
Affiliation(s)
- Lisa Boinon
- Department of Pharmacology, College of Medicine, the University of Arizona, Tucson, Arizona 85724 United States of America
| | - Jie Yu
- Department of Pharmacology, College of Medicine, the University of Arizona, Tucson, Arizona 85724 United States of America
| | - Cynthia L. Madura
- Department of Pharmacology, College of Medicine, the University of Arizona, Tucson, Arizona 85724 United States of America
| | - Aude Chefdeville
- Department of Pharmacology, College of Medicine, the University of Arizona, Tucson, Arizona 85724 United States of America
| | - Douglas L. Feinstein
- Department of Anesthesiology, University of Illinois, Chicago, Chicago, Illinois 60612, United States of America
- Jesse Brown VA Medical Center, Chicago, Illinois, 60612, United States of America
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, the University of Arizona, Tucson, Arizona 85724 United States of America
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, the University of Arizona, Tucson, Arizona 85724 United States of America
- Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, Arizona, 85724, United States of America
| |
Collapse
|
23
|
Abstract
The chronification of pain can be attributed to changes in membrane receptors and channels underlying neuronal plasticity and signal transduction largely within nociceptive neurons that initiate and maintain pathological pain states. These proteins are subject to dynamic modification by posttranslational modifications, creating a code that controls protein function in time and space. Phosphorylation is an important posttranslational modification that affects ∼30% of proteins in vivo. Increased phosphorylation of various nociceptive ion channels and of their modulators underlies sensitization of different pain states. Cyclin-dependent kinases are proline-directed serine/threonine kinases that impact various biological and cellular systems. Cyclin-dependent kinase 5 (Cdk5), one member of this kinase family, and its activators p35 and p39 are expressed in spinal nerves, dorsal root ganglia, and the dorsal horn of the spinal cord. In neuropathic pain conditions, expression and/or activity of Cdk5 is increased, implicating Cdk5 in nociception. Experimental evidence suggests that Cdk5 is regulated through its own phosphorylation, through increasing p35's interaction with Cdk5, and through cleavage of p35 into p25. This narrative review discusses the molecular mechanisms of Cdk5-mediated regulation of target proteins involved in neuropathic pain. We focus on Cdk5 substrates that have been linked to nociceptive pathways, including channels (eg, transient receptor potential cation channel and voltage-gated calcium channel), proteins involved in neurotransmitter release (eg, synaptophysin and collapsin response mediator protein 2), and receptors (eg, glutamate, purinergic, and opioid). By altering the phosphoregulatory "set point" of proteins involved in pain signaling, Cdk5 thus appears to be an attractive target for treating neuropathic pain conditions.
Collapse
|
24
|
Zhu X, Yue L, Fan C, Liu Y, Wang Y, Zhao H. Mechanism of Cdk5-synaptophysin-SNARE pathway in acute and chronic inflammatory pain. Am J Transl Res 2021; 13:1075-1084. [PMID: 33841641 PMCID: PMC8014406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
PURPOSE Currently, there is no favorable treatment plan for inflammatory pain, so exploring new analgesics is still a research hotspot in this area. Cyclin-dependent protein kinase 5 (Cdk5) is a pain-related protein kinase, but its mechanism in inflammatory pain has not been clarified. This research aimed to explore the mechanism of Cdk5-synaptophysin (Syn)-soluble N-ethylmaleimide-sensitivity factor (NSF) attachment protein receptor (SNARE) in acute and chronic inflammatory pain. METHODS Rat models of acute and chronic inflammatory pain were induced by formalin and complete Freund's adjuvant (CFA), separately, and some rats injected with normal saline through intraplantar injection were divided into a control group. Thirty minutes before modeling, rats were given Cdk5 inhibitor (Roscovitine, Ros), SNARE scavenger (botulinum toxin A, BTTA), glutamate receptor inhibitor (MK801), and dimethyl sulfoxide (DMSO) through spinal canals, and the paw withdrawal threshold (PWT) and thermal withdrawal latency (PWL) at difference time points were compared. RESULTS Compared with rats in the control group, those in the rat models of acute and chronic inflammatory pain showed lower PWT and PWL, higher Cdk5 enzyme level, tight correlation of Cdk5 with Syn, SNARE, p25 proteins, and higher levels of Cdk5, Syn and SNARE. And the above situation was dramatically reversed under intervention of Ros, BTTA and MK801. CONCLUSION Cdk5-Syn-SNARE pathway is a therapeutic target for inflammatory pain. Blocking the activation of this pathway is beneficial to exert analgesic effect.
Collapse
Affiliation(s)
- Xichun Zhu
- Department of Pain Management, Hebei General Hospital Shijiazhuang 050051, Hebei Province, China
| | - Lihui Yue
- Department of Pain Management, Hebei General Hospital Shijiazhuang 050051, Hebei Province, China
| | - Chunyan Fan
- Department of Pain Management, Hebei General Hospital Shijiazhuang 050051, Hebei Province, China
| | - Yuting Liu
- Department of Pain Management, Hebei General Hospital Shijiazhuang 050051, Hebei Province, China
| | - Yong Wang
- Department of Pain Management, Hebei General Hospital Shijiazhuang 050051, Hebei Province, China
| | - Hongwei Zhao
- Department of Pain Management, Hebei General Hospital Shijiazhuang 050051, Hebei Province, China
| |
Collapse
|
25
|
Gomez K, Ran D, Madura CL, Moutal A, Khanna R. Non-SUMOylated CRMP2 decreases Na V1.7 currents via the endocytic proteins Numb, Nedd4-2 and Eps15. Mol Brain 2021; 14:20. [PMID: 33478555 PMCID: PMC7819318 DOI: 10.1186/s13041-020-00714-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/07/2020] [Indexed: 01/06/2023] Open
Abstract
Voltage-gated sodium channels are key players in neuronal excitability and pain signaling. Functional expression of the voltage-gated sodium channel NaV1.7 is under the control of SUMOylated collapsin response mediator protein 2 (CRMP2). When not SUMOylated, CRMP2 forms a complex with the endocytic proteins Numb, the epidermal growth factor receptor pathway substrate 15 (Eps15), and the E3 ubiquitin ligase Nedd4-2 to promote clathrin-mediated endocytosis of NaV1.7. We recently reported that CRMP2 SUMO-null knock-in (CRMP2K374A/K374A) female mice have reduced NaV1.7 membrane localization and currents in their sensory neurons. Preventing CRMP2 SUMOylation was sufficient to reverse mechanical allodynia in CRMP2K374A/K374A female mice with neuropathic pain. Here we report that inhibiting clathrin assembly in nerve-injured male CRMP2K374A/K374A mice precipitated mechanical allodynia in mice otherwise resistant to developing persistent pain. Furthermore, Numb, Nedd4-2 and Eps15 expression was not modified in basal conditions in the dorsal root ganglia (DRG) of male and female CRMP2K374A/K374A mice. Finally, silencing these proteins in DRG neurons from female CRMP2K374A/K374A mice, restored the loss of sodium currents. Our study shows that the endocytic complex composed of Numb, Nedd4-2 and Eps15, is necessary for non-SUMOylated CRMP2-mediated internalization of sodium channels in vivo.
Collapse
Affiliation(s)
- Kimberly Gomez
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA
| | - Dongzhi Ran
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA
| | - Cynthia L Madura
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA. .,Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, AZ, 85724, USA.
| |
Collapse
|
26
|
Khanna R, Moutal A, Perez-Miller S, Chefdeville A, Boinon L, Patek M. Druggability of CRMP2 for Neurodegenerative Diseases. ACS Chem Neurosci 2020; 11:2492-2505. [PMID: 32693579 DOI: 10.1021/acschemneuro.0c00307] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Collapsin response mediator proteins (CRMPs) are ubiquitously expressed phosphoproteins that coordinate cytoskeletal formation and regulate cellular division, migration, polarity, and synaptic connection. CRMP2, the most studied of the five family members, is best known for its affinity for tubulin heterodimers and function in regulating the microtubule network. Accumulating evidence has also demonstrated a key role for CRMP2 in trafficking of voltage- and ligand-gated ion channels. These functions are tightly regulated by post-translational modifications including phosphorylation and SUMOylation (addition of a small ubiquitin like modifier). Over the past decade, it has become increasingly clear that dysregulated post-translational modifications of CRMP2 contribute to the pathomechanisms of diverse diseases, including cancer, neurodegenerative diseases, chronic pain, and bipolar disorder. Here, we review the discovery, functions, and current putative preclinical and clinical therapeutics targeting CRMP2. These potential therapeutics include CRMP2-based peptides that inhibit protein-protein interactions and small-molecule compounds. Capitalizing on the availability of structural information, we identify druggable pockets on CRMP2 and predict binding modes for five known CRMP2-targeting compounds, setting the stage for optimization and de novo drug discovery targeting this multifunctional protein.
Collapse
Affiliation(s)
- Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
- Graduate Interdisciplinary Program in Neuroscience, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona 85724, United States
- Regulonix LLC, Tucson, Arizona 85718, United States
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Samantha Perez-Miller
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Aude Chefdeville
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Lisa Boinon
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Marcel Patek
- BrightRock Path, LLC, Tucson, Arizona 85704, United States
| |
Collapse
|
27
|
Moutal A, Shan Z, Miranda VG, François-Moutal L, Madura CL, Khanna M, Khanna R. Evaluation of edonerpic maleate as a CRMP2 inhibitor for pain relief. Channels (Austin) 2020; 13:498-504. [PMID: 31680630 PMCID: PMC6833970 DOI: 10.1080/19336950.2019.1684608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have previously reported that the microtubule-associated collapsin response mediator protein 2 (CRMP2) is necessary for the expression of chronic pain. CRMP2 achieves this control of nociceptive signaling by virtue of its ability to regulate voltage-gated calcium and sodium channels. To date, however, no drugs exist that target CRMP2. Recently, the small molecule edonerpic maleate (1 -{3-[2-(1-benzothiophen-5-yl)ethoxy]propyl}azetidin-3-ol maleate), a candidate therapeutic for Alzheimer’s disease was reported to be a novel CRMP2 binding compound with the potential to decrease its phosphorylation level in cortical tissues in vivo. Here we sought to determine the mechanism of action of edonerpic maleate and test its possible effect in a rodent model of chronic pain. We observed: (i) no binding between human CRMP2 and edonerpic maleate; (ii) edonerpic maleate had no effect on CRMP2 expression and phosphorylation in dorsal root ganglion (DRG) neurons; (iii) edonerpic maleate-decreased calcium but increased sodium current density in DRG neurons; and (iv) edonerpic maleate was ineffective in reversing post-surgical allodynia in male and female mice. Thus, while CRMP2 inhibiting compounds remain a viable strategy for developing new mechanism-based pain inhibitors, edonerpic maleate is an unlikely candidate.
Collapse
Affiliation(s)
- Aubin Moutal
- Department of Pharmacology, College of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | - Zhiming Shan
- Department of Pharmacology, College of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA.,Department of Anesthesiology, Shenzhen People's Hospital & Second Clinical Medical College of Jinan University, Shenzhen, P.R. China.,Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Victor G Miranda
- Department of Pharmacology, College of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA.,Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| | - Liberty François-Moutal
- Department of Pharmacology, College of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA.,Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| | - Cynthia L Madura
- Department of Pharmacology, College of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | - May Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA.,Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA.,Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
28
|
Moutal A, Ji Y, Bellampalli SS, Khanna R. Differential expression of Cdk5-phosphorylated CRMP2 following a spared nerve injury. Mol Brain 2020; 13:97. [PMID: 32571373 PMCID: PMC7310452 DOI: 10.1186/s13041-020-00633-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/03/2020] [Indexed: 11/10/2022] Open
Abstract
Effective treatment of high-impact pain patients is one of the major stated goals of the National Pain Strategy in the United States. Identification of new targets and mechanisms underlying neuropathic pain will be critical in developing new target-specific medications for better neuropathic pain management. We recently discovered that peripheral nerve injury-induced upregulation of an axonal guidance phosphoprotein collapsin response mediator protein 2 (CRMP2) and the N-type voltage-gated calcium (CaV2.2) as well as the NaV1.7 voltage-gated sodium channel, correlates with the development of neuropathic pain. In our previous studies, we found that interfering with the phosphorylation status of CRMP2 is sufficient to confer protection from chronic pain. Here we examined the expression of CRMP2 and CRMP2 phosphorylated by cyclin-dependent kinase 5 (Cdk5, on serine residue 522 (S522)) in sciatic nerve, nerve terminals of the glabrous skin, and in select subpopulations of DRG neurons in the SNI model of neuropathic pain. By enhancing our understanding of the phosphoregulatory status of CRMP2 within DRG subpopulations, we may be in a better position to design novel pharmacological interventions for chronic pain.
Collapse
Affiliation(s)
- Aubin Moutal
- Departments of Pharmacology, University of Arizona, Tucson, AZ, 85724, USA
| | - Yingshi Ji
- Departments of Pharmacology, University of Arizona, Tucson, AZ, 85724, USA.,Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Shreya Sai Bellampalli
- Departments of Pharmacology, University of Arizona, Tucson, AZ, 85724, USA.,Mayo Clinic School of Medicine, 26 Mayo Park Dr SE, Rochester, MN, 55904, USA
| | - Rajesh Khanna
- Departments of Pharmacology, University of Arizona, Tucson, AZ, 85724, USA. .,Departments of Anesthesiology, University of Arizona, Tucson, AZ, 85724, USA. .,Neuroscience Graduate Interdisciplinary Program, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA. .,BIO5 Institute, 657 East Helen Street, P.O. Box 210240, Tucson, AZ, 85724, USA. .,The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, AZ, 85724, USA.
| |
Collapse
|
29
|
Cai S, Shan Z, Zhang Z, Moutal A, Khanna R. Activity of T-type calcium channels is independent of CRMP2 in sensory neurons. Channels (Austin) 2020; 13:147-152. [PMID: 31025580 PMCID: PMC6527066 DOI: 10.1080/19336950.2019.1608129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Amongst the regulators of voltage-gated ion channels is the collapsin response mediator protein 2 (CRMP2). CRMP2 regulation of the activity and trafficking of NaV1.7 voltage-gated sodium channels as well as the N-type (CaV2.2) voltage-gated calcium channel (VGCC) has been reported. On the other hand, CRMP2 does not appear to regulate L- (CaV1.x), P/Q- (CaV2.1), and R- (CaV2.3) type high VGCCs. Whether CRMP2 regulates low VGCCs remains an open question. Here, we asked if CRMP2 could regulate the low voltage-gated (T-type/CaV3.x) channels in sensory neurons. Reducing CRMP2 protein levels with short interfering RNAs yielded no change in macroscopic currents carried by T-type channels. No change in biophysical properties of the T-type currents was noted. Future studies pursuing CRMP2 druggability in neuropathic pain will benefit from the findings that CRMP2 regulates only the N-type (CaV2.2) calcium channels.
Collapse
Affiliation(s)
- Song Cai
- a Department of Pharmacology, College of Medicine , The University of Arizona Health Sciences , Tucson , AZ , USA
| | - Zhiming Shan
- a Department of Pharmacology, College of Medicine , The University of Arizona Health Sciences , Tucson , AZ , USA.,b Department of Anesthesiology , Shenzhen People's Hospital & Second Clinical Medical College of Jinan University , Shenzhen , P.R. China
| | - Zhongjun Zhang
- b Department of Anesthesiology , Shenzhen People's Hospital & Second Clinical Medical College of Jinan University , Shenzhen , P.R. China
| | - Aubin Moutal
- a Department of Pharmacology, College of Medicine , The University of Arizona Health Sciences , Tucson , AZ , USA
| | - Rajesh Khanna
- a Department of Pharmacology, College of Medicine , The University of Arizona Health Sciences , Tucson , AZ , USA.,c The Center for Innovation in Brain Sciences , The University of Arizona Health Sciences , Tucson , AZ , USA
| |
Collapse
|
30
|
Buchta WC, Moutal A, Hines B, Garcia-Keller C, Smith ACW, Kalivas P, Khanna R, Riegel AC. Dynamic CRMP2 Regulation of CaV2.2 in the Prefrontal Cortex Contributes to the Reinstatement of Cocaine Seeking. Mol Neurobiol 2020; 57:346-357. [PMID: 31359322 PMCID: PMC6980501 DOI: 10.1007/s12035-019-01711-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/15/2019] [Indexed: 02/06/2023]
Abstract
Cocaine addiction remains a major health concern with limited effective treatment options. A better understanding of mechanisms underlying relapse may help inform the development of new pharmacotherapies. Emerging evidence suggests that collapsin response mediator protein 2 (CRMP2) regulates presynaptic excitatory neurotransmission and contributes to pathological changes during diseases, such as neuropathic pain and substance use disorders. We examined the role of CRMP2 and its interactions with a known binding partner, CaV2.2, in cocaine-seeking behavior. We employed the rodent self-administration model of relapse to drug seeking and focused on the prefrontal cortex (PFC) for its well-established role in reinstatement behaviors. Our results indicated that repeated cocaine self-administration resulted in a dynamic and persistent alteration in the PFC expression of CRMP2 and its binding partner, the CaV2.2 (N-type) voltage-gated calcium channel. Following cocaine self-administration and extinction training, the expression of both CRMP2 and CaV2.2 was reduced relative to yoked saline controls. By contrast, cued reinstatement potentiated CRMP2 expression and increased CaV2.2 expression above extinction levels. Lastly, we utilized the recently developed peptide myr-TAT-CBD3 to disrupt the interaction between CRMP2 and CaV2.2 in vivo. We assessed the reinstatement behavior after infusing this peptide directly into the medial PFC and found that it decreased cue-induced reinstatement of cocaine seeking. Taken together, these data suggest that neuroadaptations in the CRMP2/CaV2.2 signaling cascade in the PFC can facilitate drug-seeking behavior. Targeting such interactions has implications for the treatment of cocaine relapse behavior.
Collapse
Affiliation(s)
- William C Buchta
- Department of Neuroscience, Medical University of South Carolina (MUSC), 410C Basic Sciences Building, 173 Ashley Avenue, Charleston, SC, 29425, USA
- Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Aubin Moutal
- Department of Pharmacology, University of Arizona, Tucson, AZ, 85724, USA
| | - Bethany Hines
- Department of Neuroscience, Medical University of South Carolina (MUSC), 410C Basic Sciences Building, 173 Ashley Avenue, Charleston, SC, 29425, USA
- Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Constanza Garcia-Keller
- Department of Neuroscience, Medical University of South Carolina (MUSC), 410C Basic Sciences Building, 173 Ashley Avenue, Charleston, SC, 29425, USA
- Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Alexander C W Smith
- Department of Neuroscience, Medical University of South Carolina (MUSC), 410C Basic Sciences Building, 173 Ashley Avenue, Charleston, SC, 29425, USA
- Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Peter Kalivas
- Department of Neuroscience, Medical University of South Carolina (MUSC), 410C Basic Sciences Building, 173 Ashley Avenue, Charleston, SC, 29425, USA
- Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Rajesh Khanna
- Department of Pharmacology, University of Arizona, Tucson, AZ, 85724, USA
- Department of Anesthesiology, University of Arizona, Tucson, AZ, 85724, USA
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, AZ, USA
| | - Arthur C Riegel
- Department of Neuroscience, Medical University of South Carolina (MUSC), 410C Basic Sciences Building, 173 Ashley Avenue, Charleston, SC, 29425, USA.
- Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA.
- Department of Pharmacology, University of Arizona, Tucson, AZ, 85724, USA.
| |
Collapse
|
31
|
Zhou Y, Cai S, Moutal A, Yu J, Gómez K, Madura CL, Shan Z, Pham NYN, Serafini MJ, Dorame A, Scott DD, François-Moutal L, Perez-Miller S, Patek M, Khanna M, Khanna R. The Natural Flavonoid Naringenin Elicits Analgesia through Inhibition of NaV1.8 Voltage-Gated Sodium Channels. ACS Chem Neurosci 2019; 10:4834-4846. [PMID: 31697467 DOI: 10.1021/acschemneuro.9b00547] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Naringenin (2S)-5,7-dihydroxy-2-(4-hydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-4-one is a natural flavonoid found in fruits from the citrus family. Because (2S)-naringenin is known to racemize, its bioactivity might be related to one or both enantiomers. Computational studies predicted that (2R)-naringenin may act on voltage-gated ion channels, particularly the N-type calcium channel (CaV2.2) and the NaV1.7 sodium channel-both of which are key for pain signaling. Here we set out to identify the possible mechanism of action of naringenin. Naringenin inhibited depolarization-evoked Ca2+ influx in acetylcholine-, ATP-, and capsaicin-responding rat dorsal root ganglion (DRG) neurons. This was corroborated in electrophysiological recordings from DRG neurons. Pharmacological dissection of each of the voltage-gated Ca2+ channels subtypes could not pinpoint any selectivity of naringenin. Instead, naringenin inhibited NaV1.8-dependent and tetrodotoxin (TTX)-resistant while sparing tetrodotoxin sensitive (TTX-S) voltage-gated Na+ channels as evidenced by the lack of further inhibition by the NaV1.8 blocker A-803467. The effects of the natural flavonoid were validated ex vivo in spinal cord slices where naringenin decreased both the frequency and amplitude of sEPSC recorded in neurons within the substantia gelatinosa. The antinociceptive potential of naringenin was evaluated in male and female mice. Naringenin had no effect on the nociceptive thresholds evoked by heat. Naringenin's reversed allodynia was in mouse models of postsurgical and neuropathic pain. Here, driven by a call by the National Center for Complementary and Integrative Health's strategic plan to advance fundamental research into basic biological mechanisms of the action of natural products, we advance the antinociceptive potential of the flavonoid naringenin.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Clinical Laboratory, the First Hospital of Jilin University, Changchun 130021, China
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Song Cai
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Jie Yu
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Kimberly Gómez
- Department of Physiology, Biophysics and Neuroscience, Centre for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico
| | - Cynthia L. Madura
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Zhiming Shan
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Nancy Y. N. Pham
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Maria J. Serafini
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Angie Dorame
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - David D. Scott
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Liberty François-Moutal
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Samantha Perez-Miller
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Marcel Patek
- BrightRock Path Consulting, LLC, Tucson, Arizona 85721, United States
| | - May Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona 85724, United States
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona 85724, United States
| |
Collapse
|
32
|
Yu H, Zhang P, Chen YR, Wang YJ, Lin XY, Li XY, Chen G. Temporal Changes of Spinal Transcriptomic Profiles in Mice With Spinal Nerve Ligation. Front Neurosci 2019; 13:1357. [PMID: 31920516 PMCID: PMC6928122 DOI: 10.3389/fnins.2019.01357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/02/2019] [Indexed: 12/20/2022] Open
Abstract
Neuropathic pain (NP) is an intractable disease accompanying with allodynia, hyperalgesia and spontaneous pain. Accumulating evidence suggested that large volume of neurotransmitters, genes, and signaling pathways were implicated with the initiation and development of NP, while the underlying mechanism still remained poorly understood. Therefore, it was extremely important to further elucidate the potential regulatory networks for developing appropriate treatment options. Here, the RNA-Seq high-throughput sequencing was employed to determine the genes expression change in mice undergoing spinal nerve ligation (SNL). Meanwhile, the differentially expressed genes (DEGs) were analyzed by using integrated Differential Expression and Pathway analysis (iDEP) tools and String database. Then, quantitative real-time PCR (qRT-PCR) was employed to detect the expression of hub gens. The results showed that the DEGs mainly comprised 1712 upregulated and 1515 downregulated genes at 7 days, and consisted of 243 upregulated and 357 downregulated genes at 28 days after surgery, respectively. Additionally, 133 genes and two pathways including retrograde endocannabinoid signaling and cardiac muscle contraction collectively participated in biological reactions of 7th and 28th day after operation. Moreover, the results showed that the mRNA and protein expression of Ccl5, Cacna2d1, Cacna2d2, Cacnb2, Gabrb3, GluA1, and GluA2 were significantly upregulated in SNL-7/28d group than that of in Sham-7/28d group (SNL-7d vs. Sham-7d; SNL-28d vs. Sham-28d; P < 0.05). And the level of Glra2, Glra4, Glra3, Grik1, Grik2, NR1, NR2A, and NR2B was obviously increased in SNL-7d group compared to Sham-7d group (P < 0.05), but which was no statistical difference between SNL-28d group and Sham-28d group. Therefore, these results provided new perspectives and strategies for deeply illuminating the underlying mechanism, and identifying the key elements for treating NP.
Collapse
Affiliation(s)
- Hong Yu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Piao Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ye-Ru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yong-Jie Wang
- Institute of Neuroscience and Collaborative Innovation Center for Brain Science, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xian-Yi Lin
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiang-Yao Li
- Institute of Neuroscience and Collaborative Innovation Center for Brain Science, School of Medicine, Zhejiang University, Hangzhou, China
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
33
|
Moutal A, White KA, Chefdeville A, Laufmann RN, Vitiello PF, Feinstein D, Weimer JM, Khanna R. Dysregulation of CRMP2 Post-Translational Modifications Drive Its Pathological Functions. Mol Neurobiol 2019; 56:6736-6755. [PMID: 30915713 PMCID: PMC6728212 DOI: 10.1007/s12035-019-1568-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/15/2019] [Indexed: 12/13/2022]
Abstract
Collapsin response mediator proteins (CRMPs) are a family of ubiquitously expressed, homologous phosphoproteins best known for coordinating cytoskeletal formation and regulating cellular division, migration, polarity, and synaptic connection. CRMP2, the most studied of the five family members, is best known for its affinity for tubulin heterodimers and function in regulating the microtubule network. These functions are tightly regulated by post-translational modifications including phosphorylation, SUMOylation, oxidation, and O-GlcNAcylation. While CRMP2's physiological functions rely mostly on its non-phosphorylated state, dysregulation of CRMP2 phosphorylation and SUMOylation has been reported to be involved in the pathophysiology of multiple diseases including cancer, chronic pain, spinal cord injury, neurofibromatosis type 1, and others. Here, we provide a consolidated update on what is known about CRMP2 signaling and function, first focusing on axonal growth and neuronal polarity, then illustrating the link between dysregulated CRMP2 post-translational modifications and diseases. We additionally discuss the roles of CRMP2 in non-neuronal cells, both in the CNS and regions of the periphery. Finally, we offer thoughts on the therapeutic implications of modulating CRMP2 function in a variety of diseases.
Collapse
Affiliation(s)
- Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA
| | - Katherine A White
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60th St N, Sioux Falls, SD, 57104, USA
| | - Aude Chefdeville
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA
| | - Rachel N Laufmann
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60th St N, Sioux Falls, SD, 57104, USA
| | - Peter F Vitiello
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Douglas Feinstein
- Department of Veterans Affairs, Jesse Brown VA Medical Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Jill M Weimer
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA.
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA.
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA.
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60th St N, Sioux Falls, SD, 57104, USA.
- Department of Anesthesiology, University of Arizona, Tucson, AZ, USA.
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, AZ, USA.
| |
Collapse
|
34
|
PiRNA-DQ541777 Contributes to Neuropathic Pain via Targeting Cdk5rap1. J Neurosci 2019; 39:9028-9039. [PMID: 31519819 DOI: 10.1523/jneurosci.1602-19.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/26/2019] [Accepted: 09/03/2019] [Indexed: 01/06/2023] Open
Abstract
Piwi-Interacting RNA (piRNA) is the largest class of small noncoding RNA and is involved in various physiological and pathological processes. However, whether it has a role in pain modulation remains unknown. In the present study, we found that spinal piRNA-DQ541777 (piR-DQ541777) was significantly increased in the male mouse model of sciatic nerve chronic constriction injury (CCI)-induced neuropathic pain. Knockdown of spinal piR-DQ541777 alleviated CCI-induced thermal hyperalgesia and mechanical allodynia and spinal neuronal sensitization. However, the overexpression of spinal piR-DQ541777 in naive mice produced pain behaviors and increased spinal neuron sensitization. Furthermore, we found that piR-DQ541777 regulates pain behaviors by targeting CDK5 regulatory subunit-associated protein 1 (Cdk5rap1). CCI increased the methylation level of CpG islands in the cdk5rap1 promoter and consequently reduced the expression of Cdk5rap1, which was reversed by the knockdown of piR-DQ541777 and mimicked by the overexpression of piR-DQ541777 in naive mice. Finally, piR-DQ541777 increased the methylation level of CpG islands by recruiting DNA methyltransferase 3A (DNMT3a) to cdk5rap1 promoter. In conclusion, this study represents a novel role of piR-DQ541777 in the regulation of neuropathic pain through the methylation of cdk5rap1 SIGNIFICANCE STATEMENT Chronic pain affects ∼20% of the population of the world and is a major global public health problem. Although we have studied the neurobiological mechanism of neuropathic pain for decades, there is still no ideal drug available to treat it. This work indicates that a novel role of Piwi-interacting RNA (piRNA) DQ541777 in the regulation of neuropathic pain through the methylation of cdk5rap1 Our findings provide the first evidence of the regulatory effect of piRNAs on neuropathic pain, which may improve our understanding of pain mechanisms and lead to the discovery of novel drug targets for the prevention and treatment of neuropathic pain.
Collapse
|
35
|
Zhong Y, Chen J, Chen J, Chen Y, Li L, Xie Y. Crosstalk between Cdk5/p35 and ERK1/2 signalling mediates spinal astrocyte activity via the PPARγ pathway in a rat model of chronic constriction injury. J Neurochem 2019; 151:166-184. [PMID: 31314915 DOI: 10.1111/jnc.14827] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/07/2019] [Accepted: 07/12/2019] [Indexed: 12/16/2022]
Abstract
The specific mechanisms underlying cyclin-dependent kinase 5 (Cdk5)-mediated neuropathic pain at the spinal cord level remain elusive. The aim of the present study was to explore the role of crosstalk between Cdk5/p35 and extracellular signal-regulated kinase 1/2 (ERK1/2) signalling in mediating spinal astrocyte activity via the PPARγ pathway in a rat model of chronic constriction injury (CCI). Here, we quantified pain behaviour after CCI; detected the localization of p35, Cdk5, phosphorylated ERK1/2 (pERK1/2), phosphorylated peroxisome proliferator-activated receptor γ (pPPARγ), neuronal nuclei (a neuronal marker), glial fibrillary acidic protein (GFAP, an activated astrocyte marker) and ionized calcium binding adaptor molecule 1 (a microglial marker) in the dorsal horn using immunofluorescence; measured the protein levels of Cdk5, p35, pERK1/2, pPPARγ and GFAP using western blot analysis; and gauged the enzyme activity of Cdk5/p35 kinase using a Cdk5/p35 kinase activity assay kit. Tumour necrosis factor-α, interleukin (IL)-1β and IL-6 levels were measured using enzyme-linked immunosorbent assay (ELISA). Ligation of the right sciatic nerve induced mechanical allodynia; thermal hyperalgesia; and the time-dependent upregulation of p35, pERK1/2 and GFAP and downregulation of pPPARγ. p35 colocalized with Cdk5, pERK1/2, pPPARγ, neurons and astrocytes but not microglia. Meanwhile, intrathecal injection of the Cdk5 inhibitor roscovitine, the mitogen-activated ERK kinase (MEK) inhibitor U0126 and the PPARγ agonist pioglitazone prevented or reversed behavioural allodynia, increased pPPARγ expression, inhibited astrocyte activation and alleviated proinflammatory cytokine (tumour necrosis factor-α, IL-1β, and IL-6) release from activated astrocytes. Furthermore, crosstalk between the Cdk5/p35 and ERK1/2 pathways was observed with CCI. Blockade of either Cdk5/p35 or ERK1/2 inhibited Cdk5 activity. These findings indicate that spinal crosstalk between the Cdk5/p35 and ERK1/2 pathways mediates astrocyte activity via the PPARγ pathway in CCI rats and that targeting this crosstalk could be an effective strategy to attenuate CCI and astrocyte-derived neuroinflammation.
Collapse
Affiliation(s)
- Yu Zhong
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Jialin Chen
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Jing Chen
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Yanhua Chen
- Department of Anesthesiology, Cardiovascular Institute, Nanning, Guangxi, P. R. China
| | - Li Li
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Yubo Xie
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| |
Collapse
|
36
|
Le ST, Guros NB, Bruce RC, Cardone A, Amin ND, Zhang S, Klauda JB, Pant HC, Richter CA, Balijepalli A. Quantum capacitance-limited MoS 2 biosensors enable remote label-free enzyme measurements. NANOSCALE 2019; 11:15622-15632. [PMID: 31407757 PMCID: PMC6792296 DOI: 10.1039/c9nr03171e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We have demonstrated atomically thin, quantum capacitance-limited, field-effect transistors (FETs) that enable the detection of pH changes with 75-fold higher sensitivity (≈4.4 V per pH) over the Nernst value of 59 mV per pH at room temperature when used as a biosensor. The transistors, which are fabricated from monolayer films of MoS2, use a room temperature ionic liquid (RTIL) in place of a conventional oxide gate dielectric and exhibit very low intrinsic noise resulting in a pH resolution of 92 × 10-6 at 10 Hz. This high device performance, which is a function of the structure of our device, is achieved by remotely connecting the gate to a pH sensing element allowing the FETs to be reused. Because pH measurements are fundamentally important in biotechnology, the increased resolution demonstrated here will benefit numerous applications ranging from pharmaceutical manufacturing to clinical diagnostics. As an example, we experimentally quantified the function of the kinase Cdk5, an enzyme implicated in Alzheimer's disease, at concentrations that are 5-fold lower than physiological values, and with sufficient time-resolution to allow the estimation of both steady-state and kinetic parameters in a single experiment. The high sensitivity, increased resolution, and fast turnaround time of the measurements will allow the development of early diagnostic tools and novel therapeutics to detect and treat neurological conditions years before currently possible.
Collapse
Affiliation(s)
- Son T Le
- Nanoscale Device Characterization Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA and Theiss Research, La Jolla, CA 92037, USA
| | - Nicholas B Guros
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA. and Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Robert C Bruce
- Nanoscale Device Characterization Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Antonio Cardone
- Software and Systems Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA and University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742, USA
| | - Niranjana D Amin
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Siyuan Zhang
- Nanoscale Device Characterization Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA and Theiss Research, La Jolla, CA 92037, USA
| | - Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Harish C Pant
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Curt A Richter
- Nanoscale Device Characterization Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Arvind Balijepalli
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| |
Collapse
|
37
|
Yu H, Shin SM, Xiang H, Chao D, Cai Y, Xu H, Khanna R, Pan B, Hogan QH. AAV-encoded Ca V2.2 peptide aptamer CBD3A6K for primary sensory neuron-targeted treatment of established neuropathic pain. Gene Ther 2019; 26:308-323. [PMID: 31118475 DOI: 10.1038/s41434-019-0082-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/25/2019] [Accepted: 03/20/2019] [Indexed: 12/17/2022]
Abstract
Transmission of pain signals from primary sensory neurons to secondary neurons of the central nervous system is critically dependent on presynaptic voltage-gated calcium channels. Calcium channel-binding domain 3 (CBD3), derived from the collapsin response mediator protein 2 (CRMP2), is a peptide aptamer that is effective in blocking N-type voltage-gated calcium channel (CaV2.2) activity. We previously reported that recombinant adeno-associated virus (AAV)-mediated restricted expression of CBD3 affixed to enhanced green fluorescent protein (EGFP) in primary sensory neurons prevents the development of cutaneous mechanical hypersensitivity in a rat neuropathic pain model. In this study, we tested whether this strategy is effective in treating established pain. We constructed AAV6-EGFP-CBD3A6K (AAV6-CBD3A6K) expressing a fluorescent CBD3A6K (replacing A to K at position 6 of CBD3 peptide), which is an optimized variant of the parental CBD3 peptide that is a more potent blocker of CaV2.2. Delivery of AAV6-CBD3A6K into lumbar (L) 4 and 5 dorsal root ganglia (DRG) of rats 2 weeks following tibial nerve injury (TNI) induced transgene expression in neurons of these DRG and their axonal projections, accompanied by attenuation of pain behavior. We additionally observed that the increased CaV2.2α1b immunoreactivity in the ipsilateral spinal cord dorsal horn and DRG following TNI was significantly normalized by AAV6-CBD3A6K treatment. Finally, the increased neuronal activity in the ipsilateral dorsal horn that developed after TNI was reduced by AAV6-CBD3A6K treatment. Collectively, these results indicate that DRG-restricted AAV6 delivery of CBD3A6K is an effective analgesic molecular strategy for the treatment of established neuropathic pain.
Collapse
Affiliation(s)
- Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA. .,Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA.
| | - Seung Min Shin
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA
| | - Hongfei Xiang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, 266000, Qingdao, PR China
| | - Dongman Chao
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Yongsong Cai
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Xi'an Jiaotong University Health Science Center, 710061, Xi'an, Shaanxi, PR China
| | - Hao Xu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, 266000, Qingdao, PR China
| | - Rajesh Khanna
- Departments of Pharmacology, Neuroscience and Anesthesiology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Bin Pan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Quinn H Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA
| |
Collapse
|
38
|
Moutal A, Kalinin S, Kowal K, Marangoni N, Dupree J, Lin SX, Lis K, Lisi L, Hensley K, Khanna R, Feinstein DL. Neuronal Conditional Knockout of Collapsin Response Mediator Protein 2 Ameliorates Disease Severity in a Mouse Model of Multiple Sclerosis. ASN Neuro 2019; 11:1759091419892090. [PMID: 31795726 PMCID: PMC6893573 DOI: 10.1177/1759091419892090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/23/2019] [Accepted: 11/02/2019] [Indexed: 01/17/2023] Open
Abstract
We previously showed that treatment with lanthionine ketimine ethyl ester (LKE) reduced disease severity and axonal damage in an experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis and increased neuronal maturation and survival in vitro . A major target of LKE is collapsin response mediator protein 2 (CRMP2), suggesting this protein may mediate LKE actions. We now show that conditional knockout of CRMP2 from neurons using a CamK2a promoter to drive Cre recombinase expression reduces disease severity in the myelin oligodendrocyte glycoprotein (MOG)35–55 EAE model, associated with decreased spinal cord axonal damage, and less glial activation in the cerebellum, but not the spinal cord. Immunohistochemical staining and quantitative polymerase chain reaction show CRMP2 depletion from descending motor neurons in the motor cortex, but not from spinal cord neurons, suggesting that the benefits of CRMP2 depletion on EAE may stem from effects on upper motor neurons. In addition, mice in which CRMP2 S522 phosphorylation was prevented by substitution for an alanine residue also showed reduced EAE severity. These results show that modification of CRMP2 expression and phosphorylation can influence the course of EAE and suggests that treatment with CRMP2 modulators such as LKE act in part by reducing CRMP2 S522 phosphorylation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kinga Lis
- University of Illinois, Chicago, IL, USA
| | - Lucia Lisi
- Universita Cattolica del Sacro Cuore, Rome,
Italy
| | - Kenneth Hensley
- Arkansas College of Osteopathic Medicine, Fort Smith,
AR, USA
| | | | - Douglas L. Feinstein
- University of Illinois, Chicago, IL, USA
- Jesse Brown VA Medical Center, Chicago, IL, USA
| |
Collapse
|
39
|
Phosphorylated CRMP2 Regulates Spinal Nociceptive Neurotransmission. Mol Neurobiol 2018; 56:5241-5255. [PMID: 30565051 DOI: 10.1007/s12035-018-1445-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/03/2018] [Indexed: 01/01/2023]
Abstract
The collapsin response mediator protein 2 (CRMP2) has emerged as a central node in assembling nociceptive signaling complexes involving voltage-gated ion channels. Concerted actions of post-translational modifications, phosphorylation and SUMOylation, of CRMP2 contribute to regulation of pathological pain states. In the present study, we demonstrate a novel role for CRMP2 in spinal nociceptive transmission. We found that, of six possible post-translational modifications, three phosphorylation sites on CRMP2 were critical for regulating calcium influx in dorsal root ganglion sensory neurons. Of these, only CRMP2 phosphorylated at serine 522 by cyclin-dependent kinase 5 (Cdk5) contributed to spinal neurotransmission in a bidirectional manner. Accordingly, expression of a non-phosphorylatable CRMP2 (S522A) decreased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs), whereas expression of a constitutively phosphorylated CRMP2 (S522D) increased the frequency of sEPSCs. The presynaptic nature of CRMP2's actions was further confirmed by pharmacological antagonism of Cdk5-mediated CRMP2 phosphorylation with S-N-benzy-2-acetamido-3-methoxypropionamide ((S)-lacosamide; (S)-LCM) which (i) decreased sEPSC frequency, (ii) increased paired-pulse ratio, and (iii) reduced the presynaptic distribution of CaV2.2 and NaV1.7, two voltage-gated ion channels implicated in nociceptive signaling. (S)-LCM also inhibited depolarization-evoked release of the pro-nociceptive neurotransmitter calcitonin gene-related peptide (CGRP) in the spinal cord. Increased CRMP2 phosphorylation in rats with spared nerve injury (SNI) was decreased by intrathecal administration of (S)-LCM resulting in a loss of presynaptic localization of CaV2.2 and NaV1.7. Together, these findings indicate that CRMP2 regulates presynaptic excitatory neurotransmission in spinal cord and may play an important role in regulating pathological pain. Novel targeting strategies to inhibit CRMP2 phosphorylation by Cdk5 may have great potential for the treatment of chronic pain.
Collapse
|